## Research Article

Amjad Ali, Hüseyin Işık*, Hassen Aydi, Eskandar Ameer, Jung Rye Lee*, and Muhammad Arshad

# On multivalued Suzuki-type $\boldsymbol{\theta}$-contractions and related applications 

https://doi.org/10.1515/math-2020-0139
received September 30, 2019; accepted March 11, 2020
Abstract: In this study, we develop the concept of multivalued Suzuki-type $\theta$-contractions via a gauge function and established two new related fixed point theorems on metric spaces. We also discuss an example to validate our results.

Keywords: fixed point, $\theta$-contraction, gauge function, metric space, multivalued mapping
MSC 2010: 47H10, 54H25

## 1 Introduction and preliminaries

Let $(\mathbb{k}, \hat{d})$ be a metric space. For $v \in \mathbb{k}$ and $A \subseteq \mathbb{k}$, let $\hat{d}\left(v_{1}, A\right)=\inf \left\{\widehat{d}\left(v_{1}, v_{2}\right): v_{2} \in A\right\}$. Denote $N(\mathbb{k})$, $C L(\mathbb{k}), C B(\mathbb{k})$, and $K(\mathbb{k})$ by the class of all nonempty subsets of $\mathfrak{k}$, the class of all nonempty closed subsets of $\mathbb{k}$, the class of all nonempty bounded closed subsets of $\mathbb{k}$, and the class of all nonempty compact subsets of $\mathfrak{k}$, respectively. The Pompeiu-Hausdorff metric $\hat{H}$ induced by $\hat{d}$ on $C L(\mathbb{k})$ is defined as follows:

$$
\hat{H}(A, B)=\max \left\{\sup _{\nu_{1} \in A} \widehat{d}\left(\nu_{1}, B\right), \sup _{\nu_{2} \in B} \widehat{d}\left(\nu_{2}, A\right)\right\},
$$

for all $A, B \in C L(\mathbb{k})$.
A point $v \in \mathbb{k}$ is said to be a fixed point of $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$, if $v \in \widetilde{T} v$. If, for $v_{0} \in \mathbb{k}$, there exists a sequence $\left\{v_{n}\right\}$ in $\mathbb{k}$ such that $v_{n} \in \widetilde{T} v_{n-1}$, then $O\left(\widetilde{T}, v_{0}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}$ is said to be an orbit of $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$. A mapping $f: \mathbb{k} \rightarrow \mathbb{R}$ is said to be $\widetilde{T}$-orbitally lower semicontinuous, if $\left\{v_{n}\right\}$ is a sequence in $O\left(\widetilde{T}, v_{0}\right)$ and $v_{n} \rightarrow \rho$ implies $f(\rho) \leq \lim _{\inf }^{n} f\left(v_{n}\right)$.

A multivalued mapping $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$ is called a Nadler contraction, if there is $\gamma \in(0,1)$ such that

$$
\hat{H}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right) \leq \gamma \hat{d}\left(v_{1}, v_{2}\right), \text { for all } v_{1}, v_{2} \in \mathbb{k}
$$

[^0]Nadler [1] acquired the variety of multivalued Banach contraction principle. Let $(\mathbb{k}, \hat{d})$ be a complete metric space and $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$ be a Nadler contraction. Then, $\widetilde{T}$ possesses at least one fixed point. Thereafter, many researchers worked on existence of fixed point results for multivalued mappings satisfying different classes of contractive conditions [2-15]. Among them, Vetro [16] recently proved the following result.

Theorem 1.1. Let $(\mathbb{k}, \hat{d})$ be a complete metric space and $\widetilde{T}: \mathbb{k} \rightarrow C B(\mathbb{k})$ be a multivalued mapping. Suppose that there exist $\theta \in \Xi$ and $k \in(0,1)$ such that

$$
\begin{equation*}
v_{1}, v_{2} \in \mathbb{k}, \hat{H}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right)>0 \Rightarrow \theta\left[\hat{H}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right)\right] \leq\left[\theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right]^{k} \tag{1}
\end{equation*}
$$

where $\Xi$ is the set of functions $\theta:(0, \infty) \rightarrow(1, \infty)$ satisfying the following conditions:
$\left(\theta_{\mathrm{i}}\right) \theta$ is nondecreasing and right continuous;
$\left(\theta_{\mathrm{ii}}\right)$ for every $\left\{s_{n}\right\}$ in $(0, \infty), \lim _{n \rightarrow \infty} \theta\left(s_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} s_{n}=0$;
( $\theta_{\text {iii }}$ ) there exist $r \in(0,1)$ and $\ell \in(0,+\infty]$ such that $\lim _{s \rightarrow 0^{+}} \frac{\theta(s)-1}{s^{r}}=\ell$.
Then, $\widetilde{T}$ possesses at least one fixed point.
Remark 1.2. Let $(\mathbb{k}, \widehat{d})$ be a metric space. If $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$ is a multivalued mapping satisfying (1.1), then

$$
\ln \theta\left(\hat{H}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right)\right) \leq k \ln \theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)<\ln \theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right) .
$$

Since $\theta$ is nondecreasing, we obtain

$$
\hat{H}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right)<\widehat{d}\left(v_{1}, v_{2}\right), \quad \text { for all } v_{1}, v_{2} \in \mathbb{k}, \widetilde{T} v_{1} \neq \widetilde{T} v_{2}
$$

Example 1.3. The following functions $\theta_{1}, \theta_{2}:(0, \infty) \rightarrow(1, \infty)$ defined by $\theta_{1}(r)=e^{\sqrt{r}}$ and $\theta_{2}(r)=1+\sqrt{r}$ are in $\Xi$.

Lemma 1.4. [16]. Let $(\mathbb{k}, \hat{d})$ be a metric space and $A, B \in C L(\mathbb{k})$ with $\hat{H}(A, B)>0$. Then, for every $h>1$ and $v \in A$, there exists $v=v(v) \in B$ such that

$$
\widehat{d}(v, v)<h \hat{H}(A, B) .
$$

Lemma 1.5. Let $(\mathbb{k}, \widehat{d})$ be a metric space, $B \in C L(\mathbb{k})$ and $v \in \mathbb{k}$. Then, for each $\varepsilon>0$, there exists $v \in B$ such that

$$
\widehat{d}(v, v) \leq \widehat{d}(v, B)+\varepsilon .
$$

In [17], the following family of mappings is considered:

$$
\Phi=\left\{\psi: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R} \mid \psi \text { satisfies } \psi\left(r_{1}, r_{2}\right) \leq \frac{1}{2} r_{1}-r_{2}\right\} .
$$

The following functions $\psi_{1}$ and $\psi_{2}$ are elements of $\Phi$ :
(i) $\psi_{1}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $\psi_{1}\left(r_{1}, r_{2}\right)=v\left(r_{1}\right)-u\left(r_{2}\right)$, where $v, u: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are given as $v\left(r_{1}\right)=\frac{r_{1}}{2}$ and $u\left(r_{2}\right)=r_{2}$.
(ii) $\psi_{2}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $\psi_{2}\left(r_{1}, r_{2}\right)=\frac{r_{1}}{2}-\frac{v\left(r_{1}, r_{2}\right)}{u\left(r_{1}, r_{2}\right)} r_{2}$, where $v, u: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are given as $v\left(r_{1}, r_{2}\right)=r_{1} r_{2}$ and $u\left(r_{1}, r_{2}\right)=r_{1} r_{2}+r_{2}$ for all $r_{1}, r_{2}>0$.

Recently, Khojasteh et al. [18] investigated the notion of a simulation function (see also [19-21]).
Definition 1.6. [18] A mapping $\Gamma: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is called a simulation function if:
(Г1) $\Gamma(0,0)=0$;
(Г2) $\Gamma(r, t)<t-r$ for all $r, t>0$;
(ГЗ) if $\left\{r_{n}\right\}$, $\left\{t_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty} t_{n}>0$, then

$$
\limsup _{n \rightarrow \infty} \Gamma\left(r_{n}, t_{n}\right)<0
$$

Due to the self-domain in $(\Gamma 2)$, we have $\Gamma(r, r)<0$ for each $r>0$. Denote by $\nabla$ the set of all functions satisfying the conditions $(\Gamma 1)-(\Gamma 3)$.

Example 1.7. [18-21] For $i=1,2$, let $\vartheta_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous functions with $\vartheta_{i}(r)=0$ if and only if $r=0$. The following functions $\Gamma_{j}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}(j=1, \ldots, 6)$ are in $\nabla$ :
(i) $\Gamma_{1}(r, t)=\vartheta_{1}(t)-\vartheta_{2}(r)$ for all $r, t \geq 0$, where $\vartheta_{1}(r) \leq r \leq \vartheta_{2}(r)$ for all $r>0$;
(ii) $\Gamma_{2}(r, t)=t-\frac{l_{1}(r, t)}{l_{2}(r, t)} r$ for all $r, t \geq 0$, where $l_{1}, l_{2}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow(0, \infty)$ are continuous functions such that $l_{1}(r, t)>l_{2}(r, t)$ for all $r, t>0$;
(iii) $\Gamma_{3}(r, t)=t-\vartheta_{3}(t)-r$ for all $r, t \geq 0$;
(iv) $\Gamma_{4}(r, t)=t \varphi(t)-r$ for all $r, t \geq 0$, where $\varphi: \mathbb{R}^{+} \rightarrow(0,1)$ is a function such that $\lim _{r \rightarrow s^{+}} \sup \varphi(r)<1$ for all $s>0$;
(v) $\Gamma_{5}(r, t)=\phi(t)-r$ for all $r, t \geq 0$, where $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an upper semicontinuous function such that $\phi(r)<r$ for all $r>0$ and $\phi(0)=0$;
(vi) $\Gamma_{6}(r, t)=t-\int_{0}^{r} \varsigma(u) \mathrm{d} u$ for all $r, t \geq 0$, where $\varsigma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function such that $\int_{0}^{\varepsilon} \varsigma(u) \mathrm{d} u$ exists and $\int_{0}^{\varepsilon} \varsigma(u) \mathrm{d} u>\varepsilon$ for all $\varepsilon>0$.
Let $(\mathbb{k}, \widehat{d})$ be a metric space, $\widetilde{T}$ be a self-mapping on $\mathbb{k}$, and $\Gamma \in \nabla . \widetilde{T}$ is said to be a $\nabla$-contraction w.r.t. $\Gamma$, if

$$
\Gamma\left(\widehat{d}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right), \widehat{d}\left(v_{1}, v_{2}\right)\right) \geq 0, \quad \text { for all } v_{1}, v_{2} \in \mathbb{k}
$$

Due to ( $\Gamma 2$ ), we have $\widehat{d}\left(\widetilde{T} v_{1}, \widetilde{T} v_{2}\right) \neq \widehat{d}\left(v_{1}, v_{2}\right)$ for all distinct points $v_{1}, v_{2} \in \mathbb{k}$. Thus, $\widetilde{T}$ is not an isometry, whenever $\widetilde{T}$ is a $\nabla$-contraction w.r.t. $\Gamma$. Conversely, if a $\nabla$-contraction mapping $\widetilde{T}$ on a metric space possesses a fixed point, then it is necessarily unique [18].

Theorem 1.8. [18] Every $\nabla$-contraction $\widetilde{T}$ on a metric space possesses a fixed point $v^{\star}$. Also, every Picard sequence converges to $v^{\star}$.

Samet et al. [22] and then Ali et al. [23] theorized a new type of contractions to integrate several existing theorems in the literature by classical functions.

Definition 1.9. [23] Let $(\mathbb{k}, \widehat{d})$ be a metric space and $\Lambda$ be a nonempty subset of $\mathbb{k}$. A map $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ is called $\alpha$-admissible, if there exists a mapping $\alpha: \Lambda \times \Lambda \rightarrow(0, \infty)$ such that

$$
\alpha(a, b) \geq 1 \Rightarrow \alpha(v, v) \geq 1,
$$

for all $v \in \widetilde{T} a \cap \Lambda$ and $v \in \widetilde{T} b \cap \Lambda$.

Throughout this article, $E$ denotes an interval on $\mathbb{R}^{+}$containing 0 , that is, an interval of the form $[0, R],[0, R)$, or $[0, \infty)$.

Lemma 1.10. [24] Given $v_{0} \in \Lambda$ ( $\Lambda$ is a closed subset of $\mathbb{k}$ ) such that

$$
\widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right) \in E,
$$

and $v_{n} \in \Lambda$ for some $n \geq 0$. Then, we have $\widehat{d}\left(v_{n}, \widetilde{T} v_{n}\right) \in E$.
Definition 1.11. [24] Suppose $v_{0} \in \Lambda$ and $\widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right) \in E$. Then, for every iterate $v_{n}(n \geq 0)$, which belongs to $\Lambda$, we define the closed ball $\bar{b}\left(v_{n}, \rho\right)$ with center $v_{n}$ and radius $\rho>0$.

Lemma 1.12. [24] If an element $v_{0} \in \Lambda$ satisfies $\hat{d}\left(v_{0}, \widetilde{T} v_{0}\right) \in E$ and $\bar{b}\left(v_{n}, \rho\right) \subset \Lambda$ for some $n \geq 0$, then $v_{n+1} \in \Lambda$ and $\bar{b}\left(v_{n+1}, \rho\right) \subset \bar{b}\left(v_{n}, \rho\right)$.

Definition 1.13. [24] Let $i \geq 1$. A function $\xi: E \rightarrow E$ is said to be a gauge function of order $i$ on $E$, if it satisfies the following conditions:
(i) $\xi(\lambda v)<\lambda^{i} \xi(v)$ for all $\lambda \in(0,1)$ and $v \in E$;
(ii) $\xi(v)<v$ for all $v \in E-\{0\}$.

It is easy to see that the first condition of Definition 1.13 is equivalent to the following: $\xi(0)=0$ and $\xi(v) / v^{i}$ is nondecreasing on $E-\{0\}$.

Definition 1.14. [24] A gauge function $\xi: E \rightarrow E$ is said to be a Bianchini-Grandolfi gauge function on $E$ if

$$
\begin{equation*}
\sigma(v)=\sum_{i=0}^{\infty} \xi^{i}(v)<\infty, \quad \text { for all } v \in E \tag{2}
\end{equation*}
$$

Note that a Bianchini-Grandolfi gauge function also satisfies the following functional equation:

$$
\begin{equation*}
\sigma(v)=\sigma(\xi(v))+v \tag{3}
\end{equation*}
$$

## 2 Multivalued Suzuki-type $(\boldsymbol{\theta}-\boldsymbol{\xi})$-contractions

We start with the following.
Definition 2.1. Let $(\mathbb{k}, \hat{d})$ be a metric space, $\Lambda$ be a closed subset of $\mathbb{k}$, and $\xi$ be a Bianchini-Grandolfi gauge function on an interval $E$. A mapping $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ is said to be a multivalued Suzuki-type $(\theta-\xi)$-contraction, if there exist $\psi \in \Phi$ and $\theta \in \Xi$ such that for $\widetilde{T} v \cap \Lambda \neq \varnothing$

$$
\psi[\widehat{d}(v, \widetilde{T} v \cap \Lambda), \widehat{d}(v, v)]<0
$$

implies that

$$
\begin{equation*}
\theta[\hat{H}(\widetilde{T} v \cap \Lambda, \widetilde{T} v \cap \Lambda)] \leq[\theta(\xi(\widehat{d}(v, v)))]^{k} \tag{4}
\end{equation*}
$$

for all $v \in \Lambda, \quad v \in \widetilde{T} v \cap \Lambda$ with $\hat{d}(v, v) \in E$, where $0<k<1$.
Our first main result is as follows.

Theorem 2.2. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\Lambda$ be a closed subset of $\mathbb{k}$, and $\widetilde{T}: \Lambda \rightarrow C B(\mathbb{k})$ be a multivalued Suzuki-type $(\theta-\xi)$-contraction. In addition, suppose $v_{0} \in \Lambda$ such that $\widehat{d}\left(v_{0}, c^{\star}\right) \in E$ for some $c^{\star} \in \widetilde{T} v_{0} \cap \Lambda$. Then, the following assertions hold:
(i) there exist an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\Lambda$ and $a^{\star} \in \Lambda$ such that $\lim _{n \rightarrow \infty} v_{n}=a^{\star}$;
(ii) $a^{\star}$ is a fixed point of $\widetilde{T}$ if and only if the function $g(v):=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$.

Proof. Choose $v_{1}=c^{\star} \in \widetilde{T} v_{0} \cap \Lambda$. In the case that $\widehat{d}\left(v_{0}, v_{1}\right)=0$, then $v_{0}$ is a fixed point of $\widetilde{T}$. Thus, we assume that $\hat{d}\left(v_{0}, v_{1}\right) \neq 0$. Then,

$$
\begin{align*}
\psi\left[\widehat{d}\left(v_{0}, \widetilde{T} v_{0} \cap \Lambda\right), \widehat{d}\left(v_{0}, v_{1}\right)\right] & \leq \frac{1}{2} \widehat{d}\left(v_{0}, \widetilde{T} v_{0} \cap \Lambda\right)-\widehat{d}\left(v_{0}, v_{1}\right) \\
& \leq \frac{1}{2} \widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right)-\widehat{d}\left(v_{0}, v_{1}\right)  \tag{5}\\
& <\widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right)-\widehat{d}\left(v_{0}, v_{1}\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)-\widehat{d}\left(v_{0}, v_{1}\right) \\
& =0
\end{align*}
$$

Define $\rho=\sigma\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)$. From (3), we have $\sigma(r) \geq r$. Hence, $\hat{d}\left(v_{0}, v_{1}\right) \leq \rho$ and so $v_{1} \in \bar{b}\left(v_{0}, \rho\right)$. Since $\widehat{d}\left(v_{0}, v_{1}\right) \in E$, so that from (2.1) and (2.2) it follows that

$$
\begin{equation*}
\theta\left[\hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)\right] \leq\left[\theta\left(\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right)\right]^{k}<\left[\theta\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right]^{k} . \tag{6}
\end{equation*}
$$

By the property of right continuity of $\theta$, there exists a real number $h_{1}>1$ such that

$$
\begin{equation*}
\theta\left[h_{1} \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)\right] \leq\left[\theta\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right]^{k} \tag{7}
\end{equation*}
$$

From

$$
\widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right) \leq \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)<h_{1} \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right) \text {, }
$$

by Lemma 1.4 , there exists $v_{2} \in \widetilde{T} v_{1} \cap \Lambda$ such that $\widehat{d}\left(v_{1}, v_{2}\right) \leq h_{1} \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)$. Since $\theta$ is nondecreasing, by (7), this inequality gives that

$$
\begin{equation*}
\theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right) \leq \theta\left[h_{1} \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)\right] \leq\left[\theta\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right]^{k} . \tag{8}
\end{equation*}
$$

We assume that $\widehat{d}\left(v_{1}, v_{2}\right) \neq 0$, otherwise $v_{1}$ is a fixed point of $\widetilde{T}$. From Remark 1.2 , we have $\widehat{d}\left(v_{1}, v_{2}\right)<\hat{d}\left(v_{0}, v_{1}\right)$ and so $\hat{d}\left(v_{1}, v_{2}\right) \in E$. Next, $v_{2} \in \bar{b}\left(v_{0}, \rho\right)$ because that

$$
\begin{aligned}
\hat{d}\left(v_{0}, v_{2}\right) & \leq \hat{d}\left(v_{0}, v_{1}\right)+\widehat{d}\left(v_{1}, v_{2}\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)+\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)+\sigma\left(\xi\left(\hat{d}\left(v_{0}, v_{1}\right)\right)\right) \\
& =\sigma\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)=\rho .
\end{aligned}
$$

Also, since

$$
\begin{aligned}
\psi\left[\widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right), \widehat{d}\left(v_{1}, v_{2}\right)\right] & \leq \frac{1}{2} \widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right)-\widehat{d}\left(v_{1}, v_{2}\right) \\
& \leq \frac{1}{2} \widehat{d}\left(v_{1}, \widetilde{T} v_{1}\right)-\widehat{d}\left(v_{1}, v_{2}\right) \\
& \left.<\widehat{d}\left(v_{1}, \widetilde{T} v_{1}\right)-\widehat{d}\left(v_{1}, v_{2}\right)\right) \\
& \leq \widehat{d}\left(v_{1}, v_{2}\right)-\widehat{d}\left(v_{1}, v_{2}\right) \\
& =0
\end{aligned}
$$

from (4), we get

$$
\begin{equation*}
\theta\left[\hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)\right] \leq\left[\theta\left(\xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right)\right]^{k}<\left[\theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right]^{k} \tag{9}
\end{equation*}
$$

Since $\theta$ is right continuous, there exists a real number $h_{2}>1$ such that

$$
\begin{equation*}
\theta\left[h_{2} \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)\right] \leq\left[\theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right]^{k} \tag{10}
\end{equation*}
$$

Next, from

$$
\widehat{d}\left(v_{2}, \widetilde{T} v_{2} \cap \Lambda\right) \leq \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)<h_{2} \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)
$$

by Lemma 1.4 , there exists $v_{3} \in \widetilde{T} v_{2} \cap \Lambda$ such that $\hat{d}\left(v_{2}, v_{3}\right) \leq h_{2} \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)$. By (10), this inequality gives that

$$
\theta\left(\widehat{d}\left(v_{2}, v_{3}\right)\right) \leq \theta\left[h_{2} \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)\right] \leq\left[\theta\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right]^{k} \leq\left[\theta\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right]^{k^{2}}
$$

We assume that $\widehat{d}\left(v_{2}, v_{3}\right) \neq 0$, otherwise $v_{2}$ is a fixed point of $\widetilde{T}$. From Remark 1.2, we have $\widehat{d}\left(v_{2}, v_{3}\right)<$ $\widehat{d}\left(v_{1}, v_{2}\right)$ and so $\hat{d}\left(v_{2}, v_{3}\right) \in E$. Also, we have $v_{3} \in \bar{b}\left(v_{0}, \rho\right)$, since

$$
\begin{aligned}
\widehat{d}\left(v_{0}, v_{3}\right) & \leq \widehat{d}\left(v_{0}, v_{1}\right)+\hat{d}\left(v_{1}, v_{2}\right)+\widehat{d}\left(v_{2}, v_{3}\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)+\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)+\xi^{2}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \sum_{i=0}^{\infty} \xi^{i}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& =\sigma\left(\hat{d}\left(v_{0}, v_{1}\right)\right)=\rho
\end{aligned}
$$

Continuing in this manner, we build two sequences $\left\{v_{n}\right\} \subset \bar{b}\left(v_{0}, \rho\right)$ and $\left\{h_{n}\right\} \subset(1, \infty)$ such that $v_{n+1} \in \widetilde{T} v_{n} \cap \Lambda$, $v_{n} \neq v_{n+1}$ with $\hat{d}\left(v_{n}, v_{n+1}\right) \in E$ and

$$
1<\theta\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right) \leq \theta\left(h_{n} \hat{H}\left(\widetilde{T} v_{n-1} \cap \Lambda, \widetilde{T} v_{n} \cap \Lambda\right)\right) \leq\left[\theta\left(\widehat{d}\left(v_{n-1}, v_{n}\right)\right)\right]^{k},
$$

for all $n \in \mathbb{N}$. Then,

$$
\begin{equation*}
1<\theta\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right) \leq\left[\theta\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right]^{k^{n}}, \quad \text { for all } n \in \mathbb{N} \tag{11}
\end{equation*}
$$

which gives that

$$
\lim _{n \rightarrow \infty} \theta\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)=1
$$

and by $\left(\theta_{i i}\right)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \widehat{d}\left(v_{n}, v_{n+1}\right)=0 \tag{12}
\end{equation*}
$$

Next, we prove that $\left\{v_{n}\right\}$ is a Cauchy sequence in $\mathbb{k}$. Setting $\delta_{n}:=\widehat{d}\left(v_{n}, v_{n+1}\right)$, from $\left(\theta_{i i i}\right)$, there exist $r \in(0,1)$ and $\ell \in(0, \infty]$ such that

$$
\lim _{n \rightarrow \infty} \frac{\theta\left(\delta_{n}\right)-1}{\left(\delta_{n}\right)^{r}}=\ell
$$

Take $\lambda \in(0, \ell)$. From the definition of limit, there exists $n_{0} \in \mathbb{N}$ such that

$$
\left[\delta_{n}\right]^{r} \leq \lambda^{-1}\left[\theta\left(\delta_{n}\right)-1\right], \quad \text { for all } n>n_{0}
$$

Using (11) and the above inequality, we deduce

$$
n\left[\delta_{n}\right]^{r} \leq \lambda^{-1} n\left(\left[\theta\left(\delta_{0}\right)\right]^{k^{n}}-1\right), \quad \text { for all } n>n_{0}
$$

This implies that

$$
\lim _{n \rightarrow \infty} n\left[\delta_{n}\right]^{r}=\lim _{n \rightarrow \infty} n\left[d\left(v_{n}, v_{n+1}\right)\right]^{r}=0
$$

Thence, there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(v_{n}, v_{n+1}\right) \leq \frac{1}{n^{1 / r}}, \quad \text { for all } n>n_{1} \tag{13}
\end{equation*}
$$

Let $p>n>n_{1}$. Then, using the triangular inequality and (13), we get

$$
\widehat{d}\left(v_{n}, v_{p}\right) \leq \sum_{j=n}^{p-1} \widehat{d}\left(v_{j}, v_{j+1}\right) \leq \sum_{j=n}^{p-1} \frac{1}{j^{1 / r}}<\sum_{j=n}^{\infty} \frac{1}{j^{1 / r}}
$$

Due to the convergence of the series $\sum_{j=n}^{\infty} \frac{1}{j^{1 / r}}$, we deduce that $\left\{v_{n}\right\}$ is a Cauchy sequence in the closed ball $\bar{b}\left(v_{0}, \rho\right)$. Since $\bar{b}\left(v_{0}, \rho\right)$ is closed in $\mathbb{k}$, there exists an $a^{\star} \in \bar{b}\left(v_{0}, \rho\right)$ such that $v_{n} \rightarrow a^{\star}$. Note that $a^{\star} \in \Lambda$, because $v_{n+1} \in \widetilde{T} v_{n} \cap \Lambda$. Obviously,

$$
\frac{1}{2} \widehat{d}\left(v_{n}, \widetilde{T} v_{n} \cap \Lambda\right)<\widehat{d}\left(v_{n}, \widetilde{T} v_{n}\right) \leq \widehat{d}\left(v_{n}, v_{n+1}\right)
$$

which implies that

$$
\psi\left[\widehat{d}\left(v_{n}, \widetilde{T} v_{n} \cap \Lambda\right), \widehat{d}\left(v_{n}, v_{n+1}\right)\right]<0
$$

Also, we know that $\hat{d}\left(v_{n}, v_{n+1}\right) \in E$ for all $n$. Thus, from (4), we have

$$
\begin{aligned}
\theta\left(\widehat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)\right) & \leq \theta\left[\hat{H}\left(\widetilde{T} v_{n} \cap \Lambda, \widetilde{T} v_{n+1} \cap \Lambda\right)\right] \\
& \leq\left[\theta\left(\xi\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)\right)\right]^{k} \\
& <\theta\left[\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)\right]^{k}
\end{aligned}
$$

From Remark 1.2, we deduce that

$$
\begin{equation*}
\widehat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)<\widehat{d}\left(v_{n}, v_{n+1}\right) \tag{14}
\end{equation*}
$$

Taking limit $n \rightarrow \infty$ in (14), we obtain

$$
\lim _{n \rightarrow \infty} \widehat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)=0
$$

Since $g(v)=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$, then

$$
\widehat{d}\left(a^{\star}, \widetilde{T} a^{\star} \cap \Lambda\right)=g\left(a^{\star}\right) \leq \lim _{n} \inf g\left(v_{n+1}\right)=\liminf _{n} \widehat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)=0 .
$$

Since $\widetilde{T} a^{\star}$ is closed, we have $a^{\star} \in \widetilde{T} a^{\star}$. Conversely, if $a^{\star}$ is a fixed point of $\widetilde{T}$, then $g\left(a^{\star}\right)=0 \leq \lim _{\inf }^{n} g\left(v_{n}\right)$, since $a^{\star} \in \Lambda$.

Corollary 2.3. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\Lambda$ be a closed subset of $\mathfrak{k}$, $\xi$ be a Bianchini-Grandolf gauge function on an interval $E$, and $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi$ and $k \in(0,1)$ such that for $\widetilde{T} v \cap \Lambda \neq \varnothing$

$$
\psi[\widehat{d}(v, \widetilde{T} v \cap \Lambda), \widehat{d}(v, v)]<0
$$

implies that

$$
\sqrt{\hat{H}(\widetilde{T} v \cap \Lambda, \widetilde{T} v \cap \Lambda)} \leq k \sqrt{\xi(\hat{d}(v, v))},
$$

for all $v \in \Lambda, v \in \widetilde{T} v \cap \Lambda$ with $\widehat{d}(v, v) \in E$. In addition, suppose $v_{0} \in \Lambda$ such that $\widehat{d}\left(v_{0}, c^{\star}\right) \in E$ for some $c^{\star} \in \widetilde{T} v_{0} \cap \Lambda$. Then, the following assertions hold:
(i) there exist an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\Lambda$ and $a^{\star} \in \Lambda$ such that $\lim _{n \rightarrow \infty} v_{n}=a^{\star}$;
(ii) $a^{\star}$ is a fixed point of $\widetilde{T}$ if and only if the function $g(v):=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$.

Corollary 2.4. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\xi$ be a Bianchini-Grandolf gauge function on an interval $E$, and $\widetilde{T}: \mathbb{k} \rightarrow C B(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi, \theta \in \Xi$, and $k \in(0,1)$ such that

$$
\begin{equation*}
\psi[\widehat{d}(v, \widetilde{T} v), \widehat{d}(v, v)]<0 \Rightarrow \theta[\hat{H}(\widetilde{T} v, \widetilde{T} v)] \leq[\theta(\xi(\widehat{d}(v, v)))]^{k} \tag{15}
\end{equation*}
$$

for all $v \in \mathbb{k}, \quad v \in \widetilde{T} v$ with $\widehat{d}(v, v) \in E$. Suppose that $v_{0} \in \mathbb{k}$ such that $\widehat{d}\left(v_{0}, c^{\star}\right) \in E$ for some $c^{\star} \in \widetilde{T} v_{0}$. Then, there exists an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\mathbb{k}$ that converges to the fixed point $a^{\star} \in \mathcal{F}=\left\{v \in \mathbb{k}: \widehat{d}\left(v, a^{\star}\right) \in E\right\}$ of $\widetilde{T}$.

Example 2.5. Let $\mathbb{k}=[-10, \infty)$ be endowed with the usual metric $\hat{d}$ and let $E=[0, \infty)$. Consider the mapping $\widetilde{T}: \mathbb{k} \rightarrow C B(\mathbb{k})$ defined by

$$
\widetilde{T}(v)= \begin{cases}{\left[0, \frac{v}{8}\right],} & v \in[0,4] \\ \{0, v\}, & v \in[-10,0) \cup(4, \infty)\end{cases}
$$

Let $\psi(r, s)=\frac{r}{2}-s$, if $r, s \in[0,4]$ and $\psi(r, s)=2 s$, otherwise. Clearly, $\psi[\hat{d}(v, \widetilde{T} v), \widehat{d}(v, v)]<0$ if and only if $v, v \in[0,4]$. Let $v_{0}=4$, then we have $c^{\star}=\frac{1}{2} \in \widetilde{T} v_{0}$ such that $\widehat{d}\left(v_{0}, c^{\star}\right) \in E$. First, we examine that $\widetilde{T}$ satisfies the inequality (15) with $\theta(r)=e^{\sqrt{r e^{r}}}, \quad \xi(r)=\frac{r}{2}$, and $k=\frac{1}{2}$. For $v \in[0,4]$ and $v \in \widetilde{T} v$, we get

$$
\begin{aligned}
\theta[\hat{H}(\widetilde{T} v, \widetilde{T} v)] & =\theta\left(\frac{|v-v|}{8}\right) \\
& =e^{\sqrt{\frac{|v-v|}{8} e^{\frac{|v-v|}{8}}}} \\
& \leq e^{\frac{1}{2} \sqrt{\frac{|v-v|}{2} e^{\frac{|v-v|}{2}}}} \\
& =e^{\frac{1}{2} \sqrt{\xi(\hat{d}(v, v))} e^{\xi(\hat{d}(v, v))}} \\
& =[\theta(\xi(\widehat{d}(v, v)))]^{k}
\end{aligned}
$$

Consequently, all the conditions of Corollary 2.4 are fulfilled and 0 is a fixed point of $\widetilde{T}$. Next, observe that for $v=0$ and $v=5$

$$
\theta[\hat{H}(\widetilde{T} v, \widetilde{T} v)]=\theta[\hat{H}(\widetilde{T} 0, \widetilde{T} 5)]=\theta(5)>[\theta(5)]^{k}=[\theta(\widehat{d}(v, v))]^{k},
$$

for all $\theta \in \Xi$ and $k \in(0,1)$. Therefore, Theorem 1.1 cannot applied to this example.

## 3 Multivalued Suzuki-type ( $\alpha-\nabla$ )-contractions

Definition 3.1. Let $(\mathbb{k}, \widehat{d})$ be a metric space, $\Lambda$ be a closed subset of $\mathbb{k}$, and $\xi$ be a Bianchini-Grandolfi gauge function on an interval $E$. A mapping $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ is said to be a multivalued Suzuki-type $(\alpha-\nabla)$-contraction, if there exist $\psi \in \Phi$ and $\Gamma \in \nabla$ such that for $\widetilde{T} v \cap \Lambda \neq \varnothing$

$$
\psi[\widehat{d}(v, \widetilde{T} v \cap \Lambda), \hat{d}(v, v)]<0
$$

implies that

$$
\begin{equation*}
\Gamma[\alpha(v, v) \hat{H}(\widetilde{T} v \cap \Lambda, \widetilde{T} v \cap \Lambda), \xi(\widehat{d}(v, v))] \geq 0 \tag{16}
\end{equation*}
$$

for all $v \in \Lambda, \quad v \in \widetilde{T} v \cap \Lambda$ with $\widehat{d}(v, v) \in E$.

The second one of our results is as follows.

Theorem 3.2. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\Lambda$ be a closed subset of $\mathbb{k}$, and $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ be a multivalued Suzuki-type $(\alpha-\nabla)$-contraction. Suppose that the following conditions are satisfied:
(i) $\widetilde{T}$ is $\alpha$-admissible;
(ii) there exists $v_{0} \in \Lambda$ with $\widehat{d}\left(v_{0}, v_{1}\right) \in E$ for some $v_{1} \in \widetilde{T} v_{0} \cap \Lambda$ such that $\alpha\left(v_{0}, v_{1}\right) \geq 1$.

Then,
(a) there exist an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\Lambda$ and $a^{\star} \in \Lambda$ such that $\lim _{n \rightarrow \infty} v_{n}=a^{\star}$;
(b) $a^{\star}$ is a fixed point of $\widetilde{T}$ if and only if the function $g(v):=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$.

Proof. By the hypothesis, there exists $v_{0} \in \Lambda$ with $\hat{d}\left(v_{0}, v_{1}\right) \in E$ for some $v_{1} \in \widetilde{T} v_{0} \cap \Lambda$ such that $\alpha\left(v_{0}, v_{1}\right) \geq 1$. On the other hand, we have

$$
\begin{align*}
\psi\left[\hat{d}\left(v_{0}, \widetilde{T} v_{0} \cap \Lambda\right), \hat{d}\left(v_{0}, v_{1}\right)\right] & \leq \frac{1}{2} \widehat{d}\left(v_{0}, \widetilde{T} v_{0} \cap \Lambda\right)-\widehat{d}\left(v_{0}, v_{1}\right) \\
& \leq \frac{1}{2} \widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right)-\widehat{d}\left(v_{0}, v_{1}\right)  \tag{17}\\
& \left.<\widehat{d}\left(v_{0}, \widetilde{T} v_{0}\right)-\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)-\hat{d}\left(v_{0}, v_{1}\right) \\
& =0
\end{align*}
$$

In the case that $\hat{d}\left(v_{0}, v_{1}\right)=0$, then $v_{0}$ is a fixed point of $\widetilde{T}$. Thus, we assume that $\hat{d}\left(v_{0}, v_{1}\right) \neq 0$. Define $\rho=\sigma\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)$. From (3), we have $\sigma(r) \geq r$. Hence $\widehat{d}\left(v_{0}, v_{1}\right) \leq \rho$ and so $v_{1} \in \bar{b}\left(v_{0}, \rho\right)$. Since $\alpha\left(v_{0}, v_{1}\right) \geq 1$ and $\hat{d}\left(v_{0}, v_{1}\right) \in E$, so that from (3.1) and (3.2) it follows that

$$
\begin{aligned}
0 & \leq \Gamma\left[\alpha\left(v_{0}, v_{1}\right) \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right), \xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)\right] \\
& <\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)-\alpha\left(v_{0}, v_{1}\right) \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)
\end{aligned}
$$

which implies that

$$
\alpha\left(v_{0}, v_{1}\right) \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)<\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)
$$

We can choose an $\varepsilon_{1}>0$ such that

$$
\alpha\left(v_{0}, v_{1}\right) \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)+\varepsilon_{1} \leq \xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) .
$$

Thus,

$$
\begin{align*}
\widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right)+\varepsilon_{1} & \leq \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)+\varepsilon_{1} \\
& \leq \alpha\left(v_{0}, v_{1}\right) \hat{H}\left(\widetilde{T} v_{0} \cap \Lambda, \widetilde{T} v_{1} \cap \Lambda\right)+\varepsilon_{1}  \tag{18}\\
& \leq \xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) .
\end{align*}
$$

It follows from Lemma 1.5 that there exists $v_{2} \in \widetilde{T} v_{1} \cap \Lambda$ such that

$$
\begin{equation*}
\widehat{d}\left(v_{1}, v_{2}\right) \leq \widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right)+\varepsilon_{1} \tag{19}
\end{equation*}
$$

From (18) and (19), we infer

$$
\begin{equation*}
\widehat{d}\left(v_{1}, v_{2}\right) \leq \xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \tag{20}
\end{equation*}
$$

We assume that $\widehat{d}\left(v_{1}, v_{2}\right) \neq 0$, otherwise $v_{1}$ is a fixed point of $\widetilde{T}$. Since $\widehat{d}\left(v_{1}, v_{2}\right) \leq \xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)<\widehat{d}\left(v_{0}, v_{1}\right)$, we deduce that $\hat{d}\left(v_{1}, v_{2}\right) \in E$. Next, $v_{2} \in \bar{b}\left(v_{0}, \rho\right)$ because that

$$
\begin{aligned}
\hat{d}\left(v_{0}, v_{2}\right) & \leq \hat{d}\left(v_{0}, v_{1}\right)+\hat{d}\left(v_{1}, v_{2}\right) \\
& \leq \hat{d}\left(v_{0}, v_{1}\right)+\xi\left(\hat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)+\sigma\left(\xi\left(\hat{d}\left(v_{0}, v_{1}\right)\right)\right) \\
& =\sigma\left(\hat{d}\left(v_{0}, v_{1}\right)\right)=\rho
\end{aligned}
$$

Since $\widetilde{T}$ is $\alpha$-admissible, $\alpha\left(v_{1}, v_{2}\right) \geq 1$. Also, since

$$
\begin{aligned}
\psi\left[\widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right), \widehat{d}\left(v_{1}, v_{2}\right)\right] & \leq \frac{1}{2} \widehat{d}\left(v_{1}, \widetilde{T} v_{1} \cap \Lambda\right)-\widehat{d}\left(v_{1}, v_{2}\right) \\
& \leq \frac{1}{2} \widehat{d}\left(v_{1}, \widetilde{T} v_{1}\right)-\widehat{d}\left(v_{1}, v_{2}\right) \\
& \left.<\widehat{d}\left(v_{1}, \widetilde{T} v_{1}\right)-\widehat{d}\left(v_{1}, v_{2}\right)\right) \\
& \leq \widehat{d}\left(v_{1}, v_{2}\right)-\hat{d}\left(v_{1}, v_{2}\right) \\
& =0
\end{aligned}
$$

from (16), we get

$$
\begin{aligned}
0 & \leq \Gamma\left[\alpha\left(v_{1}, v_{2}\right) \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right), \xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)\right] \\
& <\xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)-\alpha\left(v_{1}, v_{2}\right) \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)
\end{aligned}
$$

This implies that

$$
\alpha\left(v_{1}, v_{2}\right) \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)<\xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)
$$

Now choose an $\varepsilon_{2}>0$ such that

$$
\alpha\left(v_{1}, v_{2}\right) \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)+\varepsilon_{2} \leq \xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right)
$$

Thus,

$$
\begin{align*}
\widehat{d}\left(v_{2}, \widetilde{T} v_{2} \cap \Lambda\right)+\varepsilon_{2} & \leq \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)+\varepsilon_{2} \\
& \leq \alpha\left(v_{1}, v_{2}\right) \hat{H}\left(\widetilde{T} v_{1} \cap \Lambda, \widetilde{T} v_{2} \cap \Lambda\right)+\varepsilon_{2}  \tag{21}\\
& \leq \xi\left(\widehat{d}\left(v_{1}, v_{2}\right)\right) .
\end{align*}
$$

It follows from Lemma 1.5 that there exists $v_{3} \in \widetilde{T} v_{2} \cap \Lambda$ such that

$$
\begin{equation*}
\widehat{d}\left(v_{2}, v_{3}\right) \leq \hat{d}\left(v_{2}, \widetilde{T} v_{2} \cap \Lambda\right)+\varepsilon_{2} . \tag{22}
\end{equation*}
$$

From (21) and (22), we obtain

$$
\begin{equation*}
\widehat{d}\left(v_{2}, v_{3}\right) \leq \xi^{2}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \tag{23}
\end{equation*}
$$

We assume that $\hat{d}\left(v_{2}, v_{3}\right) \neq 0$, otherwise $v_{2}$ is a fixed point of $\widetilde{T}$. From (23), we have $\hat{d}\left(v_{2}, v_{3}\right)<\hat{d}\left(v_{1}, v_{2}\right)$ and so $\hat{d}\left(v_{2}, v_{3}\right) \in E$. Also, we have $v_{3} \in \bar{b}\left(v_{0}, \rho\right)$, since

$$
\begin{aligned}
\hat{d}\left(v_{0}, v_{3}\right) & \leq \widehat{d}\left(v_{0}, v_{1}\right)+\widehat{d}\left(v_{1}, v_{2}\right)+\hat{d}\left(v_{2}, v_{3}\right) \\
& \leq \widehat{d}\left(v_{0}, v_{1}\right)+\xi\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)+\xi^{2}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \sum_{i=0}^{\infty} \xi^{i}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& =\sigma\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)=\rho
\end{aligned}
$$

Continuing in this manner, we obtain a sequence $\left\{v_{n}\right\} \subset \bar{b}\left(v_{0}, \rho\right)$ such that $v_{n+1} \in \widetilde{T} v_{n} \cap \Lambda, v_{n} \neq v_{n+1}$ with $\alpha\left(v_{n}, v_{n+1}\right) \geq 1$ and $\widehat{d}\left(v_{n}, v_{n+1}\right) \in E$ and

$$
\begin{equation*}
\widehat{d}\left(v_{n}, v_{n+1}\right) \leq \xi^{n}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right), \quad \text { for all } n \in \mathbb{N} \tag{24}
\end{equation*}
$$

For $n, m \in \mathbb{N}$ with $m>n$, by using the triangular inequality and (24), we get

$$
\begin{aligned}
\hat{d}\left(v_{n}, v_{m}\right) & \leq \widehat{d}\left(v_{n}, v_{n+1}\right)+\hat{d}\left(v_{n+1}, v_{n+2}\right)+\cdots+\widehat{d}\left(v_{m-1}, v_{m}\right) \\
& \leq \xi^{n}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)+\xi^{n+1}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)+\cdots+\xi^{m-1}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right) \\
& \leq \sum_{j=n}^{\infty} \xi^{j}\left(\widehat{d}\left(v_{0}, v_{1}\right)\right)<\infty
\end{aligned}
$$

which shows that $\left\{v_{n}\right\}$ is a Cauchy sequence in the closed ball $\bar{b}\left(v_{0}, \rho\right)$. Since $\bar{b}\left(v_{0}, \rho\right)$ is closed in $\mathbb{k}$, there exists an $a^{\star} \in \bar{b}\left(v_{0}, \rho\right)$ such that $v_{n} \rightarrow a^{\star}$. Note that $a^{\star} \in \Lambda$, because $v_{n+1} \in \widetilde{T} v_{n} \cap \Lambda$. Obviously,

$$
\frac{1}{2} \widehat{d}\left(v_{n}, \widetilde{T} v_{n} \cap \Lambda\right)<\widehat{d}\left(v_{n}, \widetilde{T} v_{n}\right) \leq \widehat{d}\left(v_{n}, v_{n+1}\right)
$$

which implies that

$$
\psi\left[\widehat{d}\left(v_{n}, \widetilde{T} v_{n} \cap \Lambda\right), \widehat{d}\left(v_{n}, v_{n+1}\right)\right]<0
$$

Also, we know that $\alpha\left(v_{n}, v_{n+1}\right) \geq 1$ and $\hat{d}\left(v_{n}, v_{n+1}\right) \in E$ for all $n$. Thus, from (16), we have

$$
\begin{aligned}
0 & \leq \Gamma\left[\alpha\left(v_{n}, v_{n+1}\right) \hat{H}\left(\widetilde{T} v_{n} \cap \Lambda, \widetilde{T} v_{n+1} \cap \Lambda\right), \xi\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)\right] \\
& <\xi\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)-\alpha\left(v_{n}, v_{n+1}\right) \hat{H}\left(\widetilde{T} v_{n} \cap \Lambda, \widetilde{T} v_{n+1} \cap \Lambda\right),
\end{aligned}
$$

which gives that

$$
\alpha\left(v_{n}, v_{n+1}\right) \hat{H}\left(\widetilde{T} v_{n} \cap \Lambda, \widetilde{T} v_{n+1} \cap \Lambda\right)<\xi\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right) .
$$

Since $v_{n+1} \in \widetilde{T} v_{n} \cap \Lambda$, from (24), we get

$$
\begin{align*}
\hat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right) & \leq \alpha\left(v_{n}, v_{n+1}\right) \hat{H}\left(\widetilde{T} v_{n} \cap \Lambda, \widetilde{T} v_{n+1} \cap \Lambda\right) \\
& <\xi\left(\widehat{d}\left(v_{n}, v_{n+1}\right)\right)  \tag{25}\\
& \leq \xi^{n+1}\left(\hat{d}\left(v_{0}, v_{1}\right)\right)
\end{align*}
$$

Taking limit $n \rightarrow \infty$ in (25), we obtain

$$
\lim _{n \rightarrow \infty} \widehat{d}\left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)=0
$$

Since $g(v)=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$, then

$$
\widehat{d}\left(a^{\star}, \widetilde{T} a^{\star} \cap \Lambda\right)=g\left(a^{\star}\right) \leq \lim _{n} \inf g\left(v_{n+1}\right)=\liminf _{n} \inf \left(v_{n+1}, \widetilde{T} v_{n+1} \cap \Lambda\right)=0
$$

Since $\widetilde{T} a^{\star}$ is closed, we have $a^{\star} \in \widetilde{T} a^{\star}$. Conversely, if $a^{\star}$ is a fixed point of $\widetilde{T}$, then $g\left(a^{\star}\right)=0 \leq \lim \inf _{n} g\left(v_{n}\right)$, since $a^{*} \in \Lambda$.

$$
\text { Taking } \Gamma(r, s)=s-\int_{0}^{r} \varsigma(t) \mathrm{d} t \quad \text { for all } r, s \geq 0 \text {, in Theorem 3.2, we get the following result. }
$$

Corollary 3.3. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\Lambda$ be a closed subset of $\mathbb{k}$, $\xi$ be a Bianchini-Grandolfi gauge function on an interval $E$, and $\widetilde{T}: \Lambda \rightarrow C L(\mathbb{k})$ be a given multivalued mapping. If there exists $\psi \in \Phi$ such that for $\widetilde{T} v \cap \Lambda \neq \varnothing$

$$
\psi[\widehat{d}(v, \widetilde{T} v \cap \Lambda), \widehat{d}(v, v)]<0
$$

implies that

$$
\int_{0}^{\alpha(v, v) \hat{H}(\widetilde{T} v \cap \Lambda, \widetilde{T} v \cap \Lambda)} \zeta(t) \mathrm{d} t \leq \xi(\widehat{d}(v, v)),
$$

for all $v \in \Lambda, \quad v \in \widetilde{T} v \cap \Lambda$ with $\widehat{d}(v, v) \in E$, where $\varsigma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function such that $\int_{0}^{\varepsilon} \varsigma(t) \mathrm{d} t$ exists and $\int_{0}^{\varepsilon} \varsigma(t) \mathrm{d} t>\varepsilon$ for all $\varepsilon>0$. Suppose that the following conditions are satisfied:
(i) $\widetilde{T}$ is $\alpha$-admissible;
(ii) there exists $v_{0} \in \Lambda$ with $\widehat{d}\left(v_{0}, v_{1}\right) \in E$ for some $v_{1} \in \widetilde{T} v_{0} \cap \Lambda$ such that $\alpha\left(v_{0}, v_{1}\right) \geq 1$.

Then,
(a) there exist an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\Lambda$ and $a^{\star} \in \Lambda$ such that $\lim _{n \rightarrow \infty} v_{n}=a^{\star}$;
(b) $a^{\star}$ is a fixed point of $\widetilde{T}$ if and only if the function $g(v):=\widehat{d}(v, \widetilde{T} v \cap \Lambda)$ is $\widetilde{T}$-orbitally lower semicontinuous at $a^{\star}$.

Corollary 3.4. Let $(\mathbb{k}, \widehat{d})$ be a complete metric space, $\xi$ be a Bianchini-Grandolf gauge function on an interval $E$, and $\widetilde{T}: \mathbb{k} \rightarrow C L(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi$ and $\Gamma \in \nabla$ such that

$$
\begin{equation*}
\psi[\widehat{d}(v, \widetilde{T} v), \widehat{d}(v, v)]<0 \Rightarrow \Gamma[\alpha(v, v) \hat{H}(\widetilde{T} v, \widetilde{T} v), \xi(\widehat{d}(v, v))] \geq 0, \tag{26}
\end{equation*}
$$

for all $v \in \mathbb{k}, \quad v \in \widetilde{T} v$ with $\widehat{d}(v, v) \in E$. Suppose that the following conditions are satisfied:
(i) $\widetilde{T}$ is $\alpha$-admissible;
(ii) there exists $v_{0} \in \mathbb{k}$ with $\widehat{d}\left(v_{0}, v_{1}\right) \in E$ for some $v_{1} \in \widetilde{T} v_{0}$ such that $\alpha\left(v_{0}, v_{1}\right) \geq 1$.

Then, there exists an orbit $\left\{v_{n}\right\}$ of $\widetilde{T}$ in $\mathbb{k}$ that converges to the fixed point $a^{\star} \in \mathcal{F}=\left\{v \in \mathbb{k}: \widehat{d}\left(v, a^{\star}\right) \in E\right\}$ of $\widetilde{T}$.

## 4 Conclusion

The study deals with the achievement of introducing the notion of a wider new class of multivalued Suzuki-type $\theta$-contractions via a gauge function. Within this framework, we introduced two related fixed point results in metric spaces. A nontrivial example was constructed to support our main results. Herein, the presented theorems and corollaries cannot be directly procured from the correlative metric space version.

## References

[1] Sam B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[2] Hojat Afshari and Hassen Aydi, On the extended multivalued Suzuki type contractions via a topological property, Fixed Point Theory 20 (2019), no. 2, 407-416.
[3] Nayab Alamgir, Quanita Kiran, Hüseyin Işık, and Hassen Aydi, Fixed point results via a Hausdorff controlled type metric, Adv. Differ. Equ. 2020 (2020), 24, DOI: 10.1186/s13662-020-2491-8.
[4] Aiman Mukheimer, Jelena Vujakovic, Aftab Hussain, Hassen Aydi, Stojan Radenoviv, and Saman Yaqoob, A new approach to multivalued nonlinear weakly Picard operators, J. Ineq. Appl. 2019 (2019), 288, DOI: 10.1186/s13660-019-2244-y.
[5] Pradip Patle, Deepesh Patel, Hassen Aydi, and Stojan Radenović, On $H^{+}$-type multivalued contractions and applications in symmetric and probabilistic spaces, Mathematics 7 (2019), 144, DOI: 10.3390/math7020144.
[6] Haitham Qawaqneh, Mohd S. Noorani, Wasfi Shatanawi, Hassen Aydi and Habes Alsamir, Fixed point results for multivalued contractions in b-metric spaces, Mathematics 7 (2019), 132, DOI: 10.3390/math7020132.
[7] Nedal Tahat, Hassen Aydi, Erdal Karapinar, and Wasfi Shatanawi, Common fixed points for single-valued and multivalued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012 (2012), 48, DOI: 10.1186/1687-1812-2012-48.
[8] Amjad Ali, Fahim Uddin, Muhammad Arshad, and Maliha Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A 538 (2020), 122669, DOI: 10.1016/j.physa.2019.122669.
[9] Muhammad U. Ali, Quanita Kiran, and Naseer Shahzad, Fixed point theorems for multivalued mappings involving $\alpha$-function, Abstr. Appl. Anal. 2014 (2014), 409467, DOI: 10.1155/2014/409467.
[10] Maria Samreen, Khansa Waheed, and Quanita Kiran, Multivalued $\varphi$-contractions and fixed point theorems, Filomat 32 (2018), no. 4, 1209-1220.
[11] Hüseyin Işık and Cristiana Ionescu, New type of multivalued contractions with related results and applications, U.P.B. Sci. Bull. Series A 80 (2018), no. 2, 13-22.
[12] Heddi Kaddouri, Hüseyin Işık, and Said Beloul, On new extensions of F-contraction with application to integral inclusions, U.P.B. Sci. Bull. Series A 81 (2019), no. 3, 31-42.
[13] Hüseyin Işık, Vahid Parvaneh, Babak Mohammadi, and Ishak Altun, Common fixed point results for generalized Wardowski type contractive multi-valued mappings, Mathematics 7 (2019), 1130, DOI: 10.3390/math7111130.
[14] Hüseyin Işık, Babak Mohammadi, Choonkil Park and Vahid Parvaneh, Common fixed point and endpoint theorems for a countable family of multi-valued mappings, Mathematics 8 (2020), 292, DOI: 10.3390/math8020292.
[15] Mujahid Abbas, Hira Iqbal, and Adrian Petrusel, Fixed points for multivalued Suzuki type $(\theta, R)$-contraction mapping with applications, J. Funct. Spaces 2019 (2019), 9565804, DOI: 10.1155/2019/9565804.
[16] Francesca Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math. 31 (2015), no. 3, 403-410.
[17] Hanan A. Alolaiyan, Mujahid Abbas, and Basit Ali, Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications, J. Nonlinear Sci. Appl. 10 (2017), 1201-1214.
[18] Farshid Khojasteh, Satish Shukla, and Stojan Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat 29 (2015), no. 6, 1189-1194.
[19] Ankush Chanda, Lakshmi K. Dey, and Stojan Radenović, Simulation functions: a survey of recent results, RACSAM 113 (2019), 2923-2957.
[20] Hüseyin Işık, Nurcan B. Gungor, Choonkil Park, and Sun Y. Jang, Fixed point theorems for almost Z-contractions with an application, Mathematics 6 (2018), 37, DOI: 10.3390/math6030037.
[21] Antonio-Francisco Roldán-López-de-Hierro, Erdal Karapınar, Concepción Roldan-Lopez-de-Hierro, and Juan MartınezMoreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355.
[22] Bessem Samet, Calogero Vetro, and Pascal Vetro, Fixed point theorem for $\alpha$ - $\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[23] Muhammad U. Ali, Tayyab Kamran, and Erdal Karapinar, A new approach to $\alpha$ - $\psi$-contractive nonself multivalued mappings, J. Ineq. Appl. 2014 (2014), 71, DOI: 10.1186/1029-242X-2014-71.
[24] Petko D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal. 67 (2007), 2361-2369.


[^0]:    * Corresponding author: Hüseyin Işık, Department of Mathematics, Muş Alparslan University, 49250 Muş, Turkey, e-mail: isikhuseyin76@gmail.com
    * Corresponding author: Jung Rye Lee, Department of Mathematics, Daejin University, Gyeonggi 11159, Korea, e-mail: jrlee@daejin.ac.kr
    Amjad Ali: Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan, e-mail: amjad.phdma98@iiu.edu.pk
    Hassen Aydi: Université de Sousse, Institut Supérieur d'Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia; China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, e-mail: hassen.aydi@isima.rnu.tn Eskandar Ameer: Department of Mathematics, Taiz University, Taiz, Yemen, e-mail: eskandarameer@yahoo.com Muhammad Arshad: Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan, e-mail: marshadzia@iiu.edu.pk

