Research Article

Amjad Ali, Hüseyin Işık*, Hassen Aydi, Eskandar Ameer, Jung Rye Lee*, and Muhammad Arshad

On multivalued Suzuki-type θ -contractions and related applications

https://doi.org/10.1515/math-2020-0139 received September 30, 2019; accepted March 11, 2020

Abstract: In this study, we develop the concept of multivalued Suzuki-type θ -contractions via a gauge function and established two new related fixed point theorems on metric spaces. We also discuss an example to validate our results.

Keywords: fixed point, θ -contraction, gauge function, metric space, multivalued mapping

MSC 2010: 47H10, 54H25

1 Introduction and preliminaries

Let (\mathbb{k}, \hat{d}) be a metric space. For $v \in \mathbb{k}$ and $A \subseteq \mathbb{k}$, let $\hat{d}(v_1, A) = \inf\{\hat{d}(v_1, v_2): v_2 \in A\}$. Denote $N(\mathbb{k})$, $CL(\mathbb{k})$, $CB(\mathbb{k})$, and $K(\mathbb{k})$ by the class of all nonempty subsets of \mathbb{k} , the class of all nonempty closed subsets of \mathbb{k} , the class of all nonempty compact subsets of \mathbb{k} , respectively. The Pompeiu-Hausdorff metric \hat{H} induced by \hat{d} on $CL(\mathbb{k})$ is defined as follows:

$$\hat{H}(A, B) = \max\left\{\sup_{v_1\in A} \hat{d}(v_1, B), \sup_{v_2\in B} \hat{d}(v_2, A)\right\},\$$

for all $A, B \in CL(\mathbb{k})$.

A point $v \in \mathbb{k}$ is said to be a fixed point of $\tilde{T} \colon \mathbb{k} \to CL(\mathbb{k})$, if $v \in \tilde{T}v$. If, for $v_0 \in \mathbb{k}$, there exists a sequence $\{v_n\}$ in \mathbb{k} such that $v_n \in \tilde{T}v_{n-1}$, then $O(\tilde{T}, v_0) = \{v_0, v_1, v_2, ...\}$ is said to be an orbit of $\tilde{T} \colon \mathbb{k} \to CL(\mathbb{k})$. A mapping $f \colon \mathbb{k} \to \mathbb{R}$ is said to be \tilde{T} -orbitally lower semicontinuous, if $\{v_n\}$ is a sequence in $O(\tilde{T}, v_0)$ and $v_n \to \rho$ implies $f(\rho) \leq \liminf_n f(v_n)$.

A multivalued mapping \tilde{T} : $\mathbb{k} \to CL(\mathbb{k})$ is called a Nadler contraction, if there is $\gamma \in (0, 1)$ such that

$$\hat{H}(\tilde{T}\upsilon_1, \tilde{T}\upsilon_2) \le \gamma \hat{d}(\upsilon_1, \upsilon_2), \text{ for all } \upsilon_1, \upsilon_2 \in \mathbb{K}.$$

^{*} **Corresponding author: Hüseyin Işık,** Department of Mathematics, Muş Alparslan University, 49250 Muş, Turkey, e-mail: isikhuseyin76@gmail.com

^{*} Corresponding author: Jung Rye Lee, Department of Mathematics, Daejin University, Gyeonggi 11159, Korea, e-mail: jrlee@daejin.ac.kr

Amjad Ali: Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan, e-mail: amjad.phdma98@iiu.edu.pk

Hassen Aydi: Université de Sousse, Institut Supérieur d'Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia; China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, e-mail: hassen.aydi@isima.rnu.tn Eskandar Ameer: Department of Mathematics, Taiz University, Taiz, Yemen, e-mail: eskandarameer@yahoo.com Muhammad Arshad: Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan, e-mail: marshadzia@iiu.edu.pk

³ Open Access. © 2020 Amjad Ali *et al.*, published by De Gruyter. 😰 This work is licensed under the Creative Commons Attribution 4.0 Public License.

Nadler [1] acquired the variety of multivalued Banach contraction principle. Let (\mathbb{k}, \hat{d}) be a complete metric space and $\tilde{T}: \mathbb{k} \to CL(\mathbb{k})$ be a Nadler contraction. Then, \tilde{T} possesses at least one fixed point. Thereafter, many researchers worked on existence of fixed point results for multivalued mappings satisfying different classes of contractive conditions [2–15]. Among them, Vetro [16] recently proved the following result.

Theorem 1.1. Let (\mathbb{k}, \hat{d}) be a complete metric space and $\tilde{T} \colon \mathbb{k} \to CB(\mathbb{k})$ be a multivalued mapping. Suppose that there exist $\theta \in \Xi$ and $k \in (0, 1)$ such that

$$v_1, v_2 \in \mathbb{k}, \hat{H}(\tilde{T}v_1, \tilde{T}v_2) > 0 \Rightarrow \theta[\hat{H}(\tilde{T}v_1, \tilde{T}v_2)] \le \left[\theta(\hat{d}(v_1, v_2))\right]^k, \tag{1}$$

where Ξ is the set of functions θ : $(0, \infty) \to (1, \infty)$ satisfying the following conditions:

- $(\theta_i) \ \theta$ is nondecreasing and right continuous;
- (θ_{ii}) for every $\{s_n\}$ in $(0, \infty)$, $\lim_{n\to\infty} \theta(s_n) = 1$ if and only if $\lim_{n\to\infty} s_n = 0$;
- (θ_{iii}) there exist $r \in (0, 1)$ and $\ell \in (0, +\infty]$ such that $\lim_{s \to 0^+} \frac{\theta(s) 1}{s!} = \ell$.

Then, \tilde{T} possesses at least one fixed point.

Remark 1.2. Let (k, \hat{d}) be a metric space. If $\tilde{T}: k \to CL(k)$ is a multivalued mapping satisfying (1.1), then

$$\ln \theta(\hat{H}(\tilde{T}v_1,\tilde{T}v_2)) \le k \ln \theta(\hat{d}(v_1,v_2)) < \ln \theta(\hat{d}(v_1,v_2)).$$

Since θ is nondecreasing, we obtain

$$\hat{H}(\tilde{T}\upsilon_1, \tilde{T}\upsilon_2) < \hat{d}(\upsilon_1, \upsilon_2), \text{ for all } \upsilon_1, \upsilon_2 \in \mathbb{K}, \tilde{T}\upsilon_1 \neq \tilde{T}\upsilon_2.$$

Example 1.3. The following functions θ_1 , θ_2 : $(0, \infty) \to (1, \infty)$ defined by $\theta_1(r) = e^{\sqrt{r}}$ and $\theta_2(r) = 1 + \sqrt{r}$ are in Ξ .

Lemma 1.4. [16]. Let (\mathbb{k}, \hat{d}) be a metric space and $A, B \in CL(\mathbb{k})$ with $\hat{H}(A, B) > 0$. Then, for every h > 1 and $v \in A$, there exists $v = v(v) \in B$ such that

$$\hat{d}(v,v) < h\hat{H}(A,B)$$

Lemma 1.5. Let (k, \hat{d}) be a metric space, $B \in CL(k)$ and $v \in k$. Then, for each $\varepsilon > 0$, there exists $v \in B$ such that

$$\widehat{d}(v,v) \leq \widehat{d}(v,B) + \varepsilon.$$

In [17], the following family of mappings is considered:

$$\Phi = \left\{ \psi \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R} | \psi \text{ satisfies } \psi(r_1, r_2) \leq \frac{1}{2}r_1 - r_2 \right\}.$$

The following functions ψ_1 and ψ_2 are elements of Φ :

- (i) $\psi_1: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ defined by $\psi_1(r_1, r_2) = v(r_1) u(r_2)$, where $v, u: \mathbb{R}^+ \to \mathbb{R}^+$ are given as $v(r_1) = \frac{r_1}{2}$ and $u(r_2) = r_2$.
- (ii) $\psi_2: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ defined by $\psi_2(r_1, r_2) = \frac{r_1}{2} \frac{v(r_1, r_2)}{u(r_1, r_2)}r_2$, where $v, u: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ are given as $v(r_1, r_2) = r_1r_2$ and $u(r_1, r_2) = r_1r_2 + r_2$ for all $r_1, r_2 > 0$.

Recently, Khojasteh et al. [18] investigated the notion of a simulation function (see also [19–21]).

Definition 1.6. [18] A mapping $\Gamma: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is called a simulation function if:

(Γ 1) Γ (0, 0) = 0;

- (Γ 2) Γ (r, t) < t r for all r, t > 0;
- (Γ 3) if { r_n }, { t_n } are sequences in (0, ∞) such that $\lim_{n\to\infty}r_n = \lim_{n\to\infty}t_n > 0$, then

$$\limsup_{n\to\infty}\Gamma(r_n,t_n)<0.$$

Due to the self-domain in (Γ 2), we have $\Gamma(r, r) < 0$ for each r > 0. Denote by ∇ the set of all functions satisfying the conditions (Γ 1)–(Γ 3).

Example 1.7. [18–21] For i = 1, 2, let $\vartheta_i: \mathbb{R}^+ \to \mathbb{R}^+$ be continuous functions with $\vartheta_i(r) = 0$ if and only if r = 0. The following functions $\Gamma_j: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ (j = 1, ..., 6) are in ∇ :

- (i) $\Gamma_1(r, t) = \vartheta_1(t) \vartheta_2(r)$ for all $r, t \ge 0$, where $\vartheta_1(r) \le r \le \vartheta_2(r)$ for all r > 0;
- (ii) $\Gamma_2(r, t) = t \frac{l_1(r, t)}{l_2(r, t)}r$ for all $r, t \ge 0$, where $l_1, l_2: \mathbb{R}^+ \times \mathbb{R}^+ \to (0, \infty)$ are continuous functions such that $l_1(r, t) > l_2(r, t)$ for all r, t > 0;
- (iii) $\Gamma_3(r, t) = t \vartheta_3(t) r$ for all $r, t \ge 0$;
- (iv) $\Gamma_4(r, t) = t\varphi(t) r$ for all $r, t \ge 0$, where $\varphi \colon \mathbb{R}^+ \to (0, 1)$ is a function such that $\lim_{r \to s^+} \sup \varphi(r) < 1$ for all s > 0;
- (v) $\Gamma_5(r, t) = \phi(t) r$ for all $r, t \ge 0$, where $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is an upper semicontinuous function such that $\phi(r) < r$ for all r > 0 and $\phi(0) = 0$;
- (vi) $\Gamma_6(r, t) = t \int_0^r \zeta(u) du$ for all $r, t \ge 0$, where $\zeta \colon \mathbb{R}^+ \to \mathbb{R}^+$ is a function such that $\int_0^{\varepsilon} \zeta(u) du$ exists and $\int_0^{\varepsilon} \zeta(u) du > \varepsilon$ for all $\varepsilon > 0$.

Let (\mathbb{k}, \hat{d}) be a metric space, \tilde{T} be a self-mapping on \mathbb{k} , and $\Gamma \in \nabla$. \tilde{T} is said to be a ∇ -contraction w.r.t. Γ , if

$$\Gamma(\widehat{d}(\widetilde{T}v_1,\widetilde{T}v_2),\widehat{d}(v_1,v_2)) \ge 0$$
, for all $v_1, v_2 \in \mathbb{K}$.

Due to (Γ 2), we have \hat{d} ($\tilde{T}v_1, \tilde{T}v_2$) $\neq \hat{d}$ (v_1, v_2) for all distinct points $v_1, v_2 \in \mathbb{K}$. Thus, \tilde{T} is not an isometry, whenever \tilde{T} is a ∇ -contraction w.r.t. Γ . Conversely, if a ∇ -contraction mapping \tilde{T} on a metric space possesses a fixed point, then it is necessarily unique [18].

Theorem 1.8. [18] Every ∇ -contraction \tilde{T} on a metric space possesses a fixed point v^* . Also, every Picard sequence converges to v^* .

Samet et al. [22] and then Ali et al. [23] theorized a new type of contractions to integrate several existing theorems in the literature by classical functions.

Definition 1.9. [23] Let (k, \hat{d}) be a metric space and Λ be a nonempty subset of k. A map $\tilde{T}: \Lambda \to CL(k)$ is called α -admissible, if there exists a mapping $\alpha: \Lambda \times \Lambda \to (0, \infty)$ such that

$$\alpha(a, b) \geq 1 \implies \alpha(v, v) \geq 1,$$

for all $v \in \widetilde{T}a \cap \Lambda$ and $v \in \widetilde{T}b \cap \Lambda$.

Throughout this article, *E* denotes an interval on \mathbb{R}^+ containing 0, that is, an interval of the form [0, R], [0, R), or $[0, \infty)$.

Lemma 1.10. [24] Given $v_0 \in \Lambda$ (Λ is a closed subset of \Bbbk) such that

$$d(v_0, \tilde{T}v_0) \in E,$$

and $v_n \in \Lambda$ for some $n \ge 0$. Then, we have $\hat{d}(v_n, \tilde{T}v_n) \in E$.

Definition 1.11. [24] Suppose $v_0 \in \Lambda$ and $\hat{d}(v_0, \tilde{T}v_0) \in E$. Then, for every iterate $v_n (n \ge 0)$, which belongs to Λ , we define the closed ball $\overline{b}(v_n, \rho)$ with center v_n and radius $\rho > 0$.

Lemma 1.12. [24] If an element $v_0 \in \Lambda$ satisfies $\hat{d}(v_0, \tilde{T}v_0) \in E$ and $\bar{b}(v_n, \rho) \subset \Lambda$ for some $n \ge 0$, then $v_{n+1} \in \Lambda$ and $\bar{b}(v_{n+1}, \rho) \subset \bar{b}(v_n, \rho)$.

Definition 1.13. [24] Let $i \ge 1$. A function $\xi: E \to E$ is said to be a gauge function of order *i* on *E*, if it satisfies the following conditions:

(i) $\xi(\lambda v) < \lambda^i \xi(v)$ for all $\lambda \in (0, 1)$ and $v \in E$;

(ii) $\xi(v) < v$ for all $v \in E - \{0\}$.

It is easy to see that the first condition of Definition 1.13 is equivalent to the following: $\xi(0) = 0$ and $\xi(v)/v^i$ is nondecreasing on $E - \{0\}$.

Definition 1.14. [24] A gauge function $\xi: E \to E$ is said to be a Bianchini-Grandolfi gauge function on *E* if

$$\sigma(v) = \sum_{i=0}^{\infty} \xi^i(v) < \infty, \quad \text{for all } v \in E.$$
(2)

Note that a Bianchini-Grandolfi gauge function also satisfies the following functional equation:

$$\sigma(v) = \sigma(\xi(v)) + v. \tag{3}$$

2 Multivalued Suzuki-type ($\theta - \xi$)-contractions

We start with the following.

Definition 2.1. Let (\mathbb{k}, \hat{d}) be a metric space, Λ be a closed subset of \mathbb{k} , and ξ be a Bianchini-Grandolfi gauge function on an interval E. A mapping $\tilde{T}: \Lambda \to CL(\mathbb{k})$ is said to be a multivalued Suzuki-type $(\theta - \xi)$ -contraction, if there exist $\psi \in \Phi$ and $\theta \in \Xi$ such that for $\tilde{T} \upsilon \cap \Lambda \neq \emptyset$

$$\psi[\widehat{d}(\upsilon,\widetilde{T}\upsilon\cap\Lambda),\widehat{d}(\upsilon,\upsilon)]<0,$$

implies that

$$\theta[\hat{H}(\tilde{T}\upsilon \cap \Lambda, \tilde{T}\upsilon \cap \Lambda)] \le [\theta(\xi(\hat{d}(\upsilon, \upsilon)))]^{k}, \tag{4}$$

for all $v \in \Lambda$, $v \in \tilde{T}v \cap \Lambda$ with $\hat{d}(v, v) \in E$, where 0 < k < 1.

Our first main result is as follows.

Theorem 2.2. Let (\mathbb{k}, \hat{d}) be a complete metric space, Λ be a closed subset of \mathbb{k} , and $\tilde{T} \colon \Lambda \to CB(\mathbb{k})$ be a multivalued Suzuki-type $(\theta - \xi)$ -contraction. In addition, suppose $v_0 \in \Lambda$ such that $\hat{d}(v_0, c^*) \in E$ for some $c^* \in \tilde{T}v_0 \cap \Lambda$. Then, the following assertions hold:

- (i) there exist an orbit $\{v_n\}$ of \tilde{T} in Λ and $a^* \in \Lambda$ such that $\lim_{n\to\infty} v_n = a^*$;
- (ii) a^* is a fixed point of \tilde{T} if and only if the function $g(v) \coloneqq \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* .

Proof. Choose $v_1 = c^* \in \tilde{T}v_0 \cap \Lambda$. In the case that $\hat{d}(v_0, v_1) = 0$, then v_0 is a fixed point of \tilde{T} . Thus, we assume that $\hat{d}(v_0, v_1) \neq 0$. Then,

$$\begin{split} \psi [\hat{d} (v_0, \tilde{T}v_0 \cap \Lambda), \hat{d} (v_0, v_1)] &\leq \frac{1}{2} \hat{d} (v_0, \tilde{T}v_0 \cap \Lambda) - \hat{d} (v_0, v_1) \\ &\leq \frac{1}{2} \hat{d} (v_0, \tilde{T}v_0) - \hat{d} (v_0, v_1) \\ &< \hat{d} (v_0, \tilde{T}v_0) - \hat{d} (v_0, v_1) \\ &\leq \hat{d} (v_0, v_1) - \hat{d} (v_0, v_1) \\ &= 0. \end{split}$$
(5)

Define $\rho = \sigma(\hat{d}(v_0, v_1))$. From (3), we have $\sigma(r) \ge r$. Hence, $\hat{d}(v_0, v_1) \le \rho$ and so $v_1 \in \overline{b}(v_0, \rho)$. Since $\hat{d}(v_0, v_1) \in E$, so that from (2.1) and (2.2) it follows that

$$\theta[\hat{H}(\tilde{T}v_0 \cap \Lambda, \tilde{T}v_1 \cap \Lambda)] \le \left[\theta(\xi(\hat{d}(v_0, v_1)))\right]^k < \left[\theta(\hat{d}(v_0, v_1))\right]^k.$$
(6)

By the property of right continuity of θ , there exists a real number $h_1 > 1$ such that

$$\theta[h_1 \hat{H} (\tilde{T} v_0 \cap \Lambda, \tilde{T} v_1 \cap \Lambda)] \le \left[\theta(\hat{d} (v_0, v_1))\right]^k.$$
⁽⁷⁾

From

$$\widehat{d} (\upsilon_1, \widetilde{T}\upsilon_1 \cap \Lambda) \leq \widehat{H} (\widetilde{T}\upsilon_0 \cap \Lambda, \widetilde{T}\upsilon_1 \cap \Lambda) < h_1 \widehat{H} (\widetilde{T}\upsilon_0 \cap \Lambda, \widetilde{T}\upsilon_1 \cap \Lambda),$$

by Lemma 1.4, there exists $v_2 \in \tilde{T}v_1 \cap \Lambda$ such that $\hat{d}(v_1, v_2) \leq h_1 \hat{H}(\tilde{T}v_0 \cap \Lambda, \tilde{T}v_1 \cap \Lambda)$. Since θ is nondecreasing, by (7), this inequality gives that

$$\theta(\hat{d}(v_1, v_2)) \le \theta[h_1 \hat{H}(\tilde{T}v_0 \cap \Lambda, \tilde{T}v_1 \cap \Lambda)] \le [\theta(\hat{d}(v_0, v_1))]^k.$$
(8)

We assume that $\hat{d}(v_1, v_2) \neq 0$, otherwise v_1 is a fixed point of \tilde{T} . From Remark 1.2, we have $\hat{d}(v_1, v_2) < \hat{d}(v_0, v_1)$ and so $\hat{d}(v_1, v_2) \in E$. Next, $v_2 \in \overline{b}(v_0, \rho)$ because that

$$\widehat{d} (v_0, v_2) \leq \widehat{d} (v_0, v_1) + \widehat{d} (v_1, v_2) \leq \widehat{d} (v_0, v_1) + \xi (\widehat{d} (v_0, v_1)) \leq \widehat{d} (v_0, v_1) + \sigma (\xi (\widehat{d} (v_0, v_1))) = \sigma (\widehat{d} (v_0, v_1)) = \rho.$$

Also, since

$$\begin{split} \psi \left[\hat{d} (v_1, \tilde{T}v_1 \cap \Lambda), \hat{d} (v_1, v_2) \right] &\leq \frac{1}{2} \hat{d} (v_1, \tilde{T}v_1 \cap \Lambda) - \hat{d} (v_1, v_2) \\ &\leq \frac{1}{2} \hat{d} (v_1, \tilde{T}v_1) - \hat{d} (v_1, v_2) \\ &< \hat{d} (v_1, \tilde{T}v_1) - \hat{d} (v_1, v_2)) \\ &\leq \hat{d} (v_1, v_2) - \hat{d} (v_1, v_2) \\ &= 0, \end{split}$$

from (4), we get

$$\theta[\hat{H}(\tilde{T}v_1 \cap \Lambda, \tilde{T}v_2 \cap \Lambda)] \le [\theta(\xi(\hat{d}(v_1, v_2)))]^k < [\theta(\hat{d}(v_1, v_2))]^k.$$
(9)

Since θ is right continuous, there exists a real number $h_2 > 1$ such that

$$\theta[h_2 \hat{H}(\tilde{T}v_1 \cap \Lambda, \tilde{T}v_2 \cap \Lambda)] \le [\theta(\hat{d}(v_1, v_2))]^k.$$
⁽¹⁰⁾

Next, from

$$\widehat{d}(v_2,\widetilde{T}v_2\cap\Lambda)\leq \widehat{H}(\widetilde{T}v_1\cap\Lambda,\widetilde{T}v_2\cap\Lambda)< h_2\widehat{H}(\widetilde{T}v_1\cap\Lambda,\widetilde{T}v_2\cap\Lambda),$$

by Lemma 1.4, there exists $v_3 \in \tilde{T}v_2 \cap \Lambda$ such that $\hat{d}(v_2, v_3) \leq h_2 \hat{H}(\tilde{T}v_1 \cap \Lambda, \tilde{T}v_2 \cap \Lambda)$. By (10), this inequality gives that

$$\theta(\widehat{d}(v_2, v_3)) \leq \theta[h_2 \widehat{H}(\widetilde{T}v_1 \cap \Lambda, \widetilde{T}v_2 \cap \Lambda)] \leq [\theta(\widehat{d}(v_1, v_2))]^k \leq [\theta(\widehat{d}(v_0, v_1))]^{k^2}.$$

We assume that $\hat{d}(v_2, v_3) \neq 0$, otherwise v_2 is a fixed point of \tilde{T} . From Remark 1.2, we have $\hat{d}(v_2, v_3) < \hat{d}(v_1, v_2)$ and so $\hat{d}(v_2, v_3) \in E$. Also, we have $v_3 \in \overline{b}(v_0, \rho)$, since

$$\widehat{d} (v_0, v_3) \leq \widehat{d} (v_0, v_1) + \widehat{d} (v_1, v_2) + \widehat{d} (v_2, v_3) \leq \widehat{d} (v_0, v_1) + \xi (\widehat{d} (v_0, v_1)) + \xi^2 (\widehat{d} (v_0, v_1)) \leq \sum_{i=0}^{\infty} \xi^i (\widehat{d} (v_0, v_1)) = \sigma (\widehat{d} (v_0, v_1)) = \rho.$$

Continuing in this manner, we build two sequences $\{v_n\} \in \overline{b}(v_0, \rho)$ and $\{h_n\} \in (1, \infty)$ such that $v_{n+1} \in \widetilde{T}v_n \cap \Lambda$, $v_n \neq v_{n+1}$ with $\hat{d}(v_n, v_{n+1}) \in E$ and

$$1 < \theta(\widehat{d}(v_n, v_{n+1})) \leq \theta(h_n \widehat{H}(\widetilde{T}v_{n-1} \cap \Lambda, \widetilde{T}v_n \cap \Lambda)) \leq [\theta(\widehat{d}(v_{n-1}, v_n))]^k,$$

for all $n \in \mathbb{N}$. Then,

$$1 < \theta(\hat{d}(v_n, v_{n+1})) \le [\theta(\hat{d}(v_0, v_1))]^{k^n}, \quad \text{for all } n \in \mathbb{N},$$
(11)

which gives that

$$\lim_{n\to\infty}\theta(\widehat{d}(v_n,v_{n+1}))=1,$$

and by (θ_{ii}) , we have

$$\lim_{n \to \infty} \hat{d} \left(v_n, v_{n+1} \right) = 0. \tag{12}$$

Next, we prove that $\{v_n\}$ is a Cauchy sequence in k. Setting $\delta_n := \hat{d}(v_n, v_{n+1})$, from (θ_{iii}) , there exist $r \in (0, 1)$ and $\ell \in (0, \infty]$ such that

$$\lim_{n\to\infty}\frac{\theta(\delta_n)-1}{(\delta_n)^r}=\ell.$$

Take $\lambda \in (0, \ell)$. From the definition of limit, there exists $n_0 \in \mathbb{N}$ such that

$$[\delta_n]^r \leq \lambda^{-1} [\theta(\delta_n) - 1], \text{ for all } n > n_0.$$

Using (11) and the above inequality, we deduce

$$n[\delta_n]^r \leq \lambda^{-1}n([\theta(\delta_0)]^{k^n}-1), \text{ for all } n>n_0.$$

This implies that

$$\lim_{n\to\infty} n \left[\delta_n\right]^r = \lim_{n\to\infty} n \left[d\left(\upsilon_n, \upsilon_{n+1}\right)\right]^r = 0.$$

Thence, there exists $n_1 \in \mathbb{N}$ such that

$$d(v_n, v_{n+1}) \le \frac{1}{n^{1/r}}, \quad \text{for all } n > n_1.$$
 (13)

Let $p > n > n_1$. Then, using the triangular inequality and (13), we get

$$\widehat{d}(v_n, v_p) \leq \sum_{j=n}^{p-1} \widehat{d}(v_j, v_{j+1}) \leq \sum_{j=n}^{p-1} \frac{1}{j^{1/r}} < \sum_{j=n}^{\infty} \frac{1}{j^{1/r}}.$$

Due to the convergence of the series $\sum_{j=n}^{\infty} \frac{1}{j^{1/r}}$, we deduce that $\{v_n\}$ is a Cauchy sequence in the closed ball $\overline{b}(v_0, \rho)$. Since $\overline{b}(v_0, \rho)$ is closed in \Bbbk , there exists an $a^* \in \overline{b}(v_0, \rho)$ such that $v_n \to a^*$. Note that $a^* \in \Lambda$, because $v_{n+1} \in \widetilde{T}v_n \cap \Lambda$. Obviously,

$$\frac{1}{2}\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n\cap\Lambda)<\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n)\leq\widehat{d}(\upsilon_n,\upsilon_{n+1}),$$

which implies that

$$\psi[\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n\cap\Lambda),\widehat{d}(\upsilon_n,\upsilon_{n+1})]<0.$$

Also, we know that $\hat{d}(v_n, v_{n+1}) \in E$ for all *n*. Thus, from (4), we have

$$\theta(\widehat{d} (\upsilon_{n+1}, \widetilde{T}\upsilon_{n+1} \cap \Lambda)) \leq \theta[\widehat{H} (\widetilde{T}\upsilon_n \cap \Lambda, \widetilde{T}\upsilon_{n+1} \cap \Lambda)]$$
$$\leq [\theta(\xi(\widehat{d} (\upsilon_n, \upsilon_{n+1})))]^k$$
$$< \theta[(\widehat{d} (\upsilon_n, \upsilon_{n+1}))]^k.$$

From Remark 1.2, we deduce that

$$\widehat{d}(v_{n+1}, \widetilde{T}v_{n+1} \cap \Lambda) < \widehat{d}(v_n, v_{n+1}).$$
(14)

Taking limit $n \to \infty$ in (14), we obtain

$$\lim_{n\to\infty}\widehat{d}(v_{n+1},\widetilde{T}v_{n+1}\cap\Lambda)=0.$$

Since $g(v) = \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* , then

$$\widehat{d} (a^*, \widetilde{T}a^* \cap \Lambda) = g(a^*) \leq \liminf_{n \to \infty} g(v_{n+1}) = \liminf_{n \to \infty} \widehat{d} (v_{n+1}, \widetilde{T}v_{n+1} \cap \Lambda) = 0.$$

Since $\tilde{T}a^*$ is closed, we have $a^* \in \tilde{T}a^*$. Conversely, if a^* is a fixed point of \tilde{T} , then $g(a^*) = 0 \le \liminf_n g(v_n)$, since $a^* \in \Lambda$.

Corollary 2.3. Let (\mathbb{k}, \hat{d}) be a complete metric space, Λ be a closed subset of \mathbb{k} , ξ be a Bianchini-Grandolfi gauge function on an interval E, and $\tilde{T} \colon \Lambda \to CL(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi$ and $k \in (0, 1)$ such that for $\tilde{T} \upsilon \cap \Lambda \neq \emptyset$

$$\psi[\widehat{d}(\upsilon,\widetilde{T}\upsilon\cap\Lambda),\widehat{d}(\upsilon,\upsilon)]<0,$$

implies that

$$\sqrt{\hat{H}\left(\widetilde{T}\upsilon\cap\Lambda,\,\widetilde{T}\upsilon\cap\Lambda\right)}\,\leq k\sqrt{\xi\left(\widehat{d}\left(\upsilon,\upsilon\right)\right)}\,,$$

for all $v \in \Lambda$, $v \in \tilde{T}v \cap \Lambda$ with $\hat{d}(v, v) \in E$. In addition, suppose $v_0 \in \Lambda$ such that $\hat{d}(v_0, c^*) \in E$ for some $c^* \in \tilde{T}v_0 \cap \Lambda$. Then, the following assertions hold:

- (i) there exist an orbit $\{v_n\}$ of \tilde{T} in Λ and $a^* \in \Lambda$ such that $\lim_{n\to\infty} v_n = a^*$;
- (ii) a^* is a fixed point of \tilde{T} if and only if the function $g(v) \coloneqq \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* .

Corollary 2.4. Let (\mathbb{k}, \hat{d}) be a complete metric space, ξ be a Bianchini-Grandolfi gauge function on an interval E, and \tilde{T} : $\mathbb{k} \to CB(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi$, $\theta \in \Xi$, and $k \in (0, 1)$ such that

$$\psi[\widehat{d}(v,\widetilde{T}v),\widehat{d}(v,v)] < 0 \Rightarrow \theta[\widehat{H}(\widetilde{T}v,\widetilde{T}v)] \le [\theta(\xi(\widehat{d}(v,v)))]^k, \tag{15}$$

for all $v \in \mathbb{k}$, $v \in \tilde{T}v$ with $\hat{d}(v, v) \in E$. Suppose that $v_0 \in \mathbb{k}$ such that $\hat{d}(v_0, c^*) \in E$ for some $c^* \in \tilde{T}v_0$. Then, there exists an orbit $\{v_n\}$ of \tilde{T} in \mathbb{k} that converges to the fixed point $a^* \in \mathcal{F} = \{v \in \mathbb{k} : \hat{d}(v, a^*) \in E\}$ of \tilde{T} .

Example 2.5. Let $\Bbbk = [-10, \infty)$ be endowed with the usual metric \hat{d} and let $E = [0, \infty)$. Consider the mapping $\tilde{T} \colon \Bbbk \to CB(\Bbbk)$ defined by

$$\widetilde{T}(\upsilon) = \begin{cases} \left[0, \frac{\upsilon}{8}\right], & \upsilon \in [0, 4], \\ \{0, \upsilon\}, & \upsilon \in [-10, 0) \cup (4, \infty) \end{cases}$$

Let $\psi(r, s) = \frac{r}{2} - s$, if $r, s \in [0, 4]$ and $\psi(r, s) = 2s$, otherwise. Clearly, $\psi[\hat{d}(v, \tilde{T}v), \hat{d}(v, v)] < 0$ if and only if $v, v \in [0, 4]$. Let $v_0 = 4$, then we have $c^* = \frac{1}{2} \in \tilde{T}v_0$ such that $\hat{d}(v_0, c^*) \in E$. First, we examine that \tilde{T} satisfies the inequality (15) with $\theta(r) = e^{\sqrt{re^r}}$, $\xi(r) = \frac{r}{2}$, and $k = \frac{1}{2}$. For $v \in [0, 4]$ and $v \in \tilde{T}v$, we get

$$\begin{split} \theta\left[\hat{H}\left(\tilde{T}\nu,\,\tilde{T}\nu\right)\right] &= \theta\!\left(\frac{|\nu-\nu|}{8}\right) \\ &= e^{\sqrt{\frac{|\nu-\nu|}{8}e^{\frac{|\nu-\nu|}{8}}}} \\ &\leq e^{\frac{1}{2}\sqrt{\frac{|\nu-\nu|}{2}e^{\frac{|\nu-\nu|}{2}}}} \\ &= e^{\frac{1}{2}\sqrt{\xi\left(\hat{d}\left(\nu,\nu\right)\right)e^{\xi\left(\hat{d}\left(\nu,\nu\right)\right)}}} \\ &= \left[\theta\left(\xi\left(\hat{d}\left(\nu,\nu\right)\right)\right)\right]^{k}. \end{split}$$

Consequently, all the conditions of Corollary 2.4 are fulfilled and 0 is a fixed point of \tilde{T} . Next, observe that for v = 0 and v = 5

$$\theta[\hat{H}(\tilde{T}\upsilon,\tilde{T}\upsilon)] = \theta[\hat{H}(\tilde{T}\upsilon,\tilde{T}5)] = \theta(5) > [\theta(5)]^k = [\theta(\hat{d}(\upsilon,\upsilon))]^k,$$

for all $\theta \in \Xi$ and $k \in (0, 1)$. Therefore, Theorem 1.1 cannot applied to this example.

3 Multivalued Suzuki-type ($\alpha - \nabla$)-contractions

Definition 3.1. Let (\mathbb{k}, \hat{d}) be a metric space, Λ be a closed subset of \mathbb{k} , and ξ be a Bianchini-Grandolfi gauge function on an interval *E*. A mapping $\tilde{T}: \Lambda \to CL(\mathbb{k})$ is said to be a multivalued Suzuki-type $(\alpha - \nabla)$ -contraction, if there exist $\psi \in \Phi$ and $\Gamma \in \nabla$ such that for $\tilde{T}v \cap \Lambda \neq \emptyset$

$$\psi\left[\widehat{d}\left(\upsilon,\widetilde{T}\upsilon\cap\Lambda\right),\widehat{d}\left(\upsilon,\upsilon\right)\right]<0,$$

implies that

$$\Gamma\left[\alpha(v,v)\hat{H}(\tilde{T}v\cap\Lambda,\tilde{T}v\cap\Lambda),\xi(\hat{d}(v,v))\right]\geq0,$$
(16)

for all $v \in \Lambda$, $v \in \tilde{T}v \cap \Lambda$ with $\hat{d}(v, v) \in E$.

The second one of our results is as follows.

Theorem 3.2. Let (k, \hat{d}) be a complete metric space, Λ be a closed subset of k, and $\tilde{T} \colon \Lambda \to CL(k)$ be a multivalued Suzuki-type $(\alpha - \nabla)$ -contraction. Suppose that the following conditions are satisfied:

- (i) \tilde{T} is α -admissible;
- (ii) there exists $v_0 \in \Lambda$ with $\hat{d}(v_0, v_1) \in E$ for some $v_1 \in \tilde{T}v_0 \cap \Lambda$ such that $\alpha(v_0, v_1) \geq 1$.

Then,

- (a) there exist an orbit $\{v_n\}$ of \tilde{T} in Λ and $a^* \in \Lambda$ such that $\lim_{n\to\infty} v_n = a^*$;
- (b) a^* is a fixed point of \tilde{T} if and only if the function $g(v) \coloneqq \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* .

Proof. By the hypothesis, there exists $v_0 \in \Lambda$ with $\hat{d}(v_0, v_1) \in E$ for some $v_1 \in \tilde{T}v_0 \cap \Lambda$ such that $\alpha(v_0, v_1) \ge 1$. On the other hand, we have

$$\begin{split} \psi[\hat{d} (v_{0}, \tilde{T}v_{0} \cap \Lambda), \hat{d} (v_{0}, v_{1})] &\leq \frac{1}{2} \hat{d} (v_{0}, \tilde{T}v_{0} \cap \Lambda) - \hat{d} (v_{0}, v_{1}) \\ &\leq \frac{1}{2} \hat{d} (v_{0}, \tilde{T}v_{0}) - \hat{d} (v_{0}, v_{1}) \\ &< \hat{d} (v_{0}, \tilde{T}v_{0}) - \hat{d} (v_{0}, v_{1})) \\ &\leq \hat{d} (v_{0}, v_{1}) - \hat{d} (v_{0}, v_{1}) \\ &= 0. \end{split}$$
(17)

In the case that $\hat{d}(v_0, v_1) = 0$, then v_0 is a fixed point of \tilde{T} . Thus, we assume that $\hat{d}(v_0, v_1) \neq 0$. Define $\rho = \sigma(\hat{d}(v_0, v_1))$. From (3), we have $\sigma(r) \ge r$. Hence $\hat{d}(v_0, v_1) \le \rho$ and so $v_1 \in \overline{b}(v_0, \rho)$. Since $\alpha(v_0, v_1) \ge 1$ and $\hat{d}(v_0, v_1) \in E$, so that from (3.1) and (3.2) it follows that

$$0 \leq \Gamma \left[\alpha(v_0, v_1) \hat{H} \left(\tilde{T} v_0 \cap \Lambda, \tilde{T} v_1 \cap \Lambda \right), \xi \left(\hat{d} \left(v_0, v_1 \right) \right) \right] \\ < \xi \left(\hat{d} \left(v_0, v_1 \right) \right) - \alpha(v_0, v_1) \hat{H} \left(\tilde{T} v_0 \cap \Lambda, \tilde{T} v_1 \cap \Lambda \right),$$

which implies that

$$\alpha(v_0, v_1)\hat{H}(\tilde{T}v_0 \cap \Lambda, \tilde{T}v_1 \cap \Lambda) < \xi(\hat{d}(v_0, v_1)).$$

We can choose an $\varepsilon_1 > 0$ such that

$$\alpha(v_0, v_1)\hat{H}(\tilde{T}v_0 \cap \Lambda, \tilde{T}v_1 \cap \Lambda) + \varepsilon_1 \leq \xi(\hat{d}(v_0, v_1))$$

Thus,

$$\widehat{d} (\upsilon_{1}, \widetilde{T}\upsilon_{1} \cap \Lambda) + \varepsilon_{1} \leq \widehat{H} (\widetilde{T}\upsilon_{0} \cap \Lambda, \widetilde{T}\upsilon_{1} \cap \Lambda) + \varepsilon_{1}
\leq \alpha (\upsilon_{0}, \upsilon_{1}) \widehat{H} (\widetilde{T}\upsilon_{0} \cap \Lambda, \widetilde{T}\upsilon_{1} \cap \Lambda) + \varepsilon_{1}
\leq \xi (\widehat{d} (\upsilon_{0}, \upsilon_{1})).$$
(18)

It follows from Lemma 1.5 that there exists $v_2 \in \tilde{T}v_1 \cap \Lambda$ such that

$$\widehat{d}(v_1, v_2) \le \widehat{d}(v_1, \widetilde{T}v_1 \cap \Lambda) + \varepsilon_1.$$
(19)

From (18) and (19), we infer

$$\hat{d}(v_1, v_2) \le \xi(\hat{d}(v_0, v_1)).$$
⁽²⁰⁾

We assume that $\hat{d}(v_1, v_2) \neq 0$, otherwise v_1 is a fixed point of \tilde{T} . Since $\hat{d}(v_1, v_2) \leq \xi(\hat{d}(v_0, v_1)) < \hat{d}(v_0, v_1)$, we deduce that $\hat{d}(v_1, v_2) \in E$. Next, $v_2 \in \overline{b}(v_0, \rho)$ because that

$$\begin{aligned} \widehat{d} (v_0, v_2) &\leq \widehat{d} (v_0, v_1) + \widehat{d} (v_1, v_2) \\ &\leq \widehat{d} (v_0, v_1) + \xi (\widehat{d} (v_0, v_1)) \\ &\leq \widehat{d} (v_0, v_1) + \sigma (\xi (\widehat{d} (v_0, v_1))) \\ &= \sigma (\widehat{d} (v_0, v_1)) = \rho. \end{aligned}$$

Since \tilde{T} is α -admissible, $\alpha(v_1, v_2) \ge 1$. Also, since

$$\begin{split} \psi [\hat{d} (v_1, \tilde{T}v_1 \cap \Lambda), \hat{d} (v_1, v_2)] &\leq \frac{1}{2} \hat{d} (v_1, \tilde{T}v_1 \cap \Lambda) - \hat{d} (v_1, v_2) \\ &\leq \frac{1}{2} \hat{d} (v_1, \tilde{T}v_1) - \hat{d} (v_1, v_2) \\ &< \hat{d} (v_1, \tilde{T}v_1) - \hat{d} (v_1, v_2)) \\ &\leq \hat{d} (v_1, v_2) - \hat{d} (v_1, v_2) \\ &= 0. \end{split}$$

from (16), we get

$$0 \leq \Gamma \left[\alpha(v_1, v_2) \hat{H} \left(\tilde{T} v_1 \cap \Lambda, \tilde{T} v_2 \cap \Lambda \right), \xi \left(\hat{d} \left(v_1, v_2 \right) \right) \right] \\ < \xi \left(\hat{d} \left(v_1, v_2 \right) \right) - \alpha(v_1, v_2) \hat{H} \left(\tilde{T} v_1 \cap \Lambda, \tilde{T} v_2 \cap \Lambda \right).$$

This implies that

$$\alpha(\upsilon_1, \upsilon_2)\hat{H}(\tilde{T}\upsilon_1 \cap \Lambda, \tilde{T}\upsilon_2 \cap \Lambda) < \xi(\hat{d}(\upsilon_1, \upsilon_2)).$$

Now choose an $\varepsilon_2 > 0$ such that

$$\alpha(\upsilon_1, \upsilon_2)\hat{H}(\tilde{T}\upsilon_1 \cap \Lambda, \tilde{T}\upsilon_2 \cap \Lambda) + \varepsilon_2 \leq \xi(\hat{d}(\upsilon_1, \upsilon_2)).$$

Thus,

$$\widehat{d} (\upsilon_{2}, \widetilde{T}\upsilon_{2} \cap \Lambda) + \varepsilon_{2} \leq \widehat{H} (\widetilde{T}\upsilon_{1} \cap \Lambda, \widetilde{T}\upsilon_{2} \cap \Lambda) + \varepsilon_{2}
\leq \alpha (\upsilon_{1}, \upsilon_{2}) \widehat{H} (\widetilde{T}\upsilon_{1} \cap \Lambda, \widetilde{T}\upsilon_{2} \cap \Lambda) + \varepsilon_{2}
\leq \xi (\widehat{d} (\upsilon_{1}, \upsilon_{2})).$$
(21)

It follows from Lemma 1.5 that there exists $v_3 \in \tilde{T}v_2 \cap \Lambda$ such that

$$\widehat{d}(v_2, v_3) \le \widehat{d}(v_2, \widetilde{T}v_2 \cap \Lambda) + \varepsilon_2.$$
(22)

From (21) and (22), we obtain

$$\hat{d}(v_2, v_3) \le \xi^2 (\hat{d}(v_0, v_1)).$$
⁽²³⁾

We assume that $\hat{d}(v_2, v_3) \neq 0$, otherwise v_2 is a fixed point of \tilde{T} . From (23), we have $\hat{d}(v_2, v_3) < \hat{d}(v_1, v_2)$ and so $\hat{d}(v_2, v_3) \in E$. Also, we have $v_3 \in \overline{b}(v_0, \rho)$, since

$$\begin{aligned} \widehat{d} (v_0, v_3) &\leq \widehat{d} (v_0, v_1) + \widehat{d} (v_1, v_2) + \widehat{d} (v_2, v_3) \\ &\leq \widehat{d} (v_0, v_1) + \xi (\widehat{d} (v_0, v_1)) + \xi^2 (\widehat{d} (v_0, v_1)) \\ &\leq \sum_{i=0}^{\infty} \xi^i (\widehat{d} (v_0, v_1)) \\ &= \sigma (\widehat{d} (v_0, v_1)) = \rho. \end{aligned}$$

Continuing in this manner, we obtain a sequence $\{v_n\} \subset \overline{b}(v_0, \rho)$ such that $v_{n+1} \in \widetilde{T}v_n \cap \Lambda$, $v_n \neq v_{n+1}$ with $\alpha(v_n, v_{n+1}) \ge 1$ and $\widehat{d}(v_n, v_{n+1}) \in E$ and

$$\widehat{d}(v_n, v_{n+1}) \le \xi^n(\widehat{d}(v_0, v_1)), \quad \text{for all } n \in \mathbb{N}.$$
(24)

For $n, m \in \mathbb{N}$ with m > n, by using the triangular inequality and (24), we get

$$\begin{aligned} \widehat{d} (v_n, v_m) &\leq \widehat{d} (v_n, v_{n+1}) + \widehat{d} (v_{n+1}, v_{n+2}) + \dots + \widehat{d} (v_{m-1}, v_m) \\ &\leq \xi^n (\widehat{d} (v_0, v_1)) + \xi^{n+1} (\widehat{d} (v_0, v_1)) + \dots + \xi^{m-1} (\widehat{d} (v_0, v_1)) \\ &\leq \sum_{j=n}^{\infty} \xi^j (\widehat{d} (v_0, v_1)) < \infty, \end{aligned}$$

which shows that $\{v_n\}$ is a Cauchy sequence in the closed ball $\overline{b}(v_0, \rho)$. Since $\overline{b}(v_0, \rho)$ is closed in \mathbb{K} , there exists an $a^* \in \overline{b}(v_0, \rho)$ such that $v_n \to a^*$. Note that $a^* \in \Lambda$, because $v_{n+1} \in \widetilde{T}v_n \cap \Lambda$. Obviously,

$$\frac{1}{2}\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n\cap\Lambda)<\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n)\leq\widehat{d}(\upsilon_n,\upsilon_{n+1}),$$

which implies that

$$\psi[\widehat{d}(\upsilon_n,\widetilde{T}\upsilon_n\cap\Lambda),\widehat{d}(\upsilon_n,\upsilon_{n+1})]<0.$$

Also, we know that $\alpha(v_n, v_{n+1}) \ge 1$ and $\hat{d}(v_n, v_{n+1}) \in E$ for all *n*. Thus, from (16), we have

$$0 \leq \Gamma \left[\alpha(\upsilon_n, \upsilon_{n+1}) \hat{H} \left(\tilde{T}\upsilon_n \cap \Lambda, \tilde{T}\upsilon_{n+1} \cap \Lambda \right), \xi \left(\hat{d} \left(\upsilon_n, \upsilon_{n+1} \right) \right) \right] \\ < \xi \left(\hat{d} \left(\upsilon_n, \upsilon_{n+1} \right) \right) - \alpha(\upsilon_n, \upsilon_{n+1}) \hat{H} \left(\tilde{T}\upsilon_n \cap \Lambda, \tilde{T}\upsilon_{n+1} \cap \Lambda \right),$$

which gives that

$$\alpha(\upsilon_n, \upsilon_{n+1})\hat{H}(\tilde{T}\upsilon_n \cap \Lambda, \tilde{T}\upsilon_{n+1} \cap \Lambda) < \xi(\hat{d}(\upsilon_n, \upsilon_{n+1})).$$

Since $v_{n+1} \in \tilde{T}v_n \cap \Lambda$, from (24), we get

$$\widehat{d} (\upsilon_{n+1}, \widetilde{T}\upsilon_{n+1} \cap \Lambda) \leq \alpha(\upsilon_n, \upsilon_{n+1})\widehat{H} (\widetilde{T}\upsilon_n \cap \Lambda, \widetilde{T}\upsilon_{n+1} \cap \Lambda)
< \xi(\widehat{d} (\upsilon_n, \upsilon_{n+1}))
\leq \xi^{n+1}(\widehat{d} (\upsilon_0, \upsilon_1)).$$
(25)

Taking limit $n \to \infty$ in (25), we obtain

$$\lim_{n\to\infty}\widehat{d}(v_{n+1},\widetilde{T}v_{n+1}\cap\Lambda)=0.$$

Since $g(v) = \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* , then

$$\widehat{d} (a^{\star}, \widetilde{T}a^{\star} \cap \Lambda) = g(a^{\star}) \leq \liminf_{n} g(v_{n+1}) = \liminf_{n} \widehat{d} (v_{n+1}, \widetilde{T}v_{n+1} \cap \Lambda) = 0.$$

Since $\tilde{T}a^*$ is closed, we have $a^* \in \tilde{T}a^*$. Conversely, if a^* is a fixed point of \tilde{T} , then $g(a^*) = 0 \le \liminf_n g(v_n)$, since $a^* \in \Lambda$.

Taking $\Gamma(r, s) = s - \int_{0}^{r} \zeta(t) dt$ for all $r, s \ge 0$, in Theorem 3.2, we get the following result.

Corollary 3.3. Let (\mathbb{k}, \hat{d}) be a complete metric space, Λ be a closed subset of \mathbb{k} , ξ be a Bianchini-Grandolfi gauge function on an interval E, and $\tilde{T} \colon \Lambda \to CL(\mathbb{k})$ be a given multivalued mapping. If there exists $\psi \in \Phi$ such that for $\tilde{T} \upsilon \cap \Lambda \neq \emptyset$

$$\psi[\widehat{d}(\upsilon,\widetilde{T}\upsilon\cap\Lambda),\widehat{d}(\upsilon,\upsilon)]<0,$$

implies that

$$\int_{0}^{(\nu,\nu)\hat{H}(\widetilde{T}\nu\cap\Lambda,\widetilde{T}\nu\cap\Lambda)} \varsigma(t) dt \leq \xi(\hat{d}(\nu,\nu)),$$

for all $v \in \Lambda$, $v \in \tilde{T}v \cap \Lambda$ with $\hat{d}(v, v) \in E$, where $\varsigma: \mathbb{R}^+ \to \mathbb{R}^+$ is a function such that $\int_0^{\varepsilon} \varsigma(t) dt$ exists and

 $\int_{0}^{\varepsilon} \varsigma(t) dt > \varepsilon \text{ for all } \varepsilon > 0. \text{ Suppose that the following conditions are satisfied:}$

α

- (i) \tilde{T} is α -admissible;
- (ii) there exists $v_0 \in \Lambda$ with $\hat{d}(v_0, v_1) \in E$ for some $v_1 \in \tilde{T}v_0 \cap \Lambda$ such that $\alpha(v_0, v_1) \ge 1$.

Then,

- (a) there exist an orbit $\{v_n\}$ of \tilde{T} in Λ and $a^* \in \Lambda$ such that $\lim_{n\to\infty} v_n = a^*$;
- (b) a^* is a fixed point of \tilde{T} if and only if the function $g(v) \coloneqq \hat{d}(v, \tilde{T}v \cap \Lambda)$ is \tilde{T} -orbitally lower semicontinuous at a^* .

Corollary 3.4. Let (\mathbb{k}, \hat{d}) be a complete metric space, ξ be a Bianchini-Grandolfi gauge function on an interval E, and $\tilde{T} \colon \mathbb{k} \to CL(\mathbb{k})$ be a given multivalued mapping. If there exist $\psi \in \Phi$ and $\Gamma \in \nabla$ such that

$$\psi[\hat{d}(v,\tilde{T}v),\hat{d}(v,v)]<0 \Rightarrow \Gamma[\alpha(v,v)\hat{H}(\tilde{T}v,\tilde{T}v),\xi(\hat{d}(v,v))] \ge 0,$$
(26)

for all $v \in k$, $v \in \tilde{T}v$ with $\hat{d}(v, v) \in E$. Suppose that the following conditions are satisfied:

- (i) \tilde{T} is α -admissible;
- (ii) there exists $v_0 \in \mathbb{k}$ with $\hat{d}(v_0, v_1) \in E$ for some $v_1 \in \tilde{T}v_0$ such that $\alpha(v_0, v_1) \ge 1$.

Then, there exists an orbit $\{v_n\}$ of \tilde{T} in \Bbbk that converges to the fixed point $a^* \in \mathcal{F} = \{v \in \Bbbk : \hat{d} (v, a^*) \in E\}$ of \tilde{T} .

4 Conclusion

The study deals with the achievement of introducing the notion of a wider new class of multivalued Suzuki-type θ -contractions via a gauge function. Within this framework, we introduced two related fixed point results in metric spaces. A nontrivial example was constructed to support our main results. Herein, the presented theorems and corollaries cannot be directly procured from the correlative metric space version.

References

- [1] Sam B. Nadler, *Multi-valued contraction mappings*, Pacific J. Math. **30** (1969), 475–488.
- [2] Hojat Afshari and Hassen Aydi, *On the extended multivalued Suzuki type contractions via a topological property*, Fixed Point Theory **20** (2019), no. 2, 407–416.
- [3] Nayab Alamgir, Quanita Kiran, Hüseyin Işık, and Hassen Aydi, *Fixed point results via a Hausdorff controlled type metric*, Adv. Differ. Equ. **2020** (2020), 24, DOI: 10.1186/s13662-020-2491-8.
- [4] Aiman Mukheimer, Jelena Vujakovic, Aftab Hussain, Hassen Aydi, Stojan Radenoviv, and Saman Yaqoob, A new approach to multivalued nonlinear weakly Picard operators, J. Ineq. Appl. 2019 (2019), 288, DOI: 10.1186/s13660-019-2244-y.
- [5] Pradip Patle, Deepesh Patel, Hassen Aydi, and Stojan Radenović, *On H*⁺*-type multivalued contractions and applications in symmetric and probabilistic spaces*, Mathematics **7** (2019), 144, DOI: 10.3390/math7020144.
- [6] Haitham Qawaqneh, Mohd S. Noorani, Wasfi Shatanawi, Hassen Aydi and Habes Alsamir, *Fixed point results for multi-valued contractions in b-metric spaces*, Mathematics **7** (2019), 132, DOI: 10.3390/math7020132.

- [7] Nedal Tahat, Hassen Aydi, Erdal Karapinar, and Wasfi Shatanawi, Common fixed points for single-valued and multivalued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012 (2012), 48, DOI: 10.1186/1687-1812-2012-48.
- [8] Amjad Ali, Fahim Uddin, Muhammad Arshad, and Maliha Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A 538 (2020), 122669, DOI: 10.1016/j.physa.2019.122669.
- [9] Muhammad U. Ali, Quanita Kiran, and Naseer Shahzad, *Fixed point theorems for multivalued mappings involving a-function*, Abstr. Appl. Anal. **2014** (2014), 409467, DOI: 10.1155/2014/409467.
- [10] Maria Samreen, Khansa Waheed, and Quanita Kiran, *Multivalued* φ -contractions and fixed point theorems, Filomat **32** (2018), no. 4, 1209–1220.
- [11] Hüseyin Işık and Cristiana Ionescu, *New type of multivalued contractions with related results and applications*, U.P.B. Sci. Bull. Series A **80** (2018), no. 2, 13–22.
- Heddi Kaddouri, Hüseyin Işık, and Said Beloul, On new extensions of F-contraction with application to integral inclusions, U.P.B. Sci. Bull. Series A 81 (2019), no. 3, 31–42.
- [13] Hüseyin Işık, Vahid Parvaneh, Babak Mohammadi, and Ishak Altun, *Common fixed point results for generalized Wardowski type contractive multi-valued mappings*, Mathematics **7** (2019), 1130, DOI: 10.3390/math7111130.
- [14] Hüseyin Işık, Babak Mohammadi, Choonkil Park and Vahid Parvaneh, *Common fixed point and endpoint theorems for a countable family of multi-valued mappings*, Mathematics 8 (2020), 292, DOI: 10.3390/math8020292.
- [15] Mujahid Abbas, Hira Iqbal, and Adrian Petrusel, *Fixed points for multivalued Suzuki type* (θ,R)-contraction mapping with applications, J. Funct. Spaces **2019** (2019), 9565804, DOI: 10.1155/2019/9565804.
- [16] Francesca Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math. 31 (2015), no. 3, 403-410.
- [17] Hanan A. Alolaiyan, Mujahid Abbas, and Basit Ali, *Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications*, J. Nonlinear Sci. Appl. **10** (2017), 1201–1214.
- [18] Farshid Khojasteh, Satish Shukla, and Stojan Radenović, *A new approach to the study of fixed point theorems via simulation functions*, Filomat **29** (2015), no. 6, 1189–1194.
- [19] Ankush Chanda, Lakshmi K. Dey, and Stojan Radenović, *Simulation functions: a survey of recent results*, RACSAM **113** (2019), 2923–2957.
- [20] Hüseyin Işık, Nurcan B. Gungor, Choonkil Park, and Sun Y. Jang, *Fixed point theorems for almost Z-contractions with an application*, Mathematics **6** (2018), 37, DOI: 10.3390/math6030037.
- [21] Antonio-Francisco Roldán-López-de-Hierro, Erdal Karapınar, Concepción Roldan-Lopez-de-Hierro, and Juan Martınez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345–355.
- [22] Bessem Samet, Calogero Vetro, and Pascal Vetro, *Fixed point theorem for* α - ψ -contractive type mappings, Nonlinear Anal. **75** (2012), 2154–2165.
- [23] Muhammad U. Ali, Tayyab Kamran, and Erdal Karapinar, A new approach to α-ψ-contractive nonself multivalued mappings, J. Ineq. Appl. 2014 (2014), 71, DOI: 10.1186/1029-242X-2014-71.
- [24] Petko D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal. **67** (2007), 2361–2369.