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It is shown how classification learning machines can be used to do multivariate goodness—of-fit and two—sample

testing.

1. INTRODUCTION

In the goodness—offit testing problem one is given
a data set of N measured observations {x;}}¥, each
of which is presumed to be randomly drawn indepen-
dently from some probability distribution with den-
sity p(x). The goal is to test the hypothesis that
p(x) = po(x), where pg(x) is some specified refer-
ence probability density. Ideally, the test should have
power against all alternatives. That is as the sample
size N becomes arbitrarily large, N — oo, the test
will reject the hypothesis for all distributions p # pg
at any non zero significance « level.

A related problem is two—sample testing. Here one
has two data sets: {x;}}Y, drawn from p(x), and
{z;}M, drawn from ¢(z). The goal is to test the hy-
pothesis that p = ¢, again with power against all alter-
natives; as N — oo and M — oo the test will always
reject when p # q. Two—sample testing can be used to
do goodness—of-fit testing. A random sample {z;}},
is drawn from the reference distribution ¢ = py and
then a two-sample test is performed on {x;}¥, and
{z:}L,.

In univariate (one-dimensional) problems each ob-
servation x; (and z;) consists of only a single measure-
ment. In this case there are a wide variety of useful
and powerful goodness—of—fit and two—sample testing
procedures. Some of these can be extended to two or
perhaps three dimensions if the sample size is large
enough. However, when each observation consists of
many measured attributes x; = {x;1, %2, *, Tin}
(and z; = {zi1,2i2," * 2in}) , for large n, these
tests rapidly loose power because all finite samples
are sparse in high dimensional settings owing to the
“curse—of-dimensionality” (Bellman 1961).

2. MACHINE LEARNING
CLASSIFICATION

The purpose of a learning machine is to predict (es-
timate) the unknown value of an attribute y given a
set of jointly measured values x of other attributes.
The quantity y is called the “output” or “response”
variable, and x = {x1, - -, 2, } are referred to as the
“input” or “predictor” variables. In the binary clas-
sification problem, the response variable realizes two

values, i.e. y € {—1,1}, respectively labeling the ob-
servations from each of two classes. The goal is to
produce a model F(x) that represents a score reflect-
ing confidence that y = 1, given a set of joint values
for the predictor variables x. This score can then be
used in a decision rule to obtain a corresponding pre-
diction

N 1 if F(x)>t*
9(x) = { —1 otherwise.

Here t* is a threshold whose value is chosen to mini-
mize the error rate.

There are a variety of ways one can go about try-
ing to find a good predicting function F'(x). In pre-
dictive or machine learning a “training” data base
{yi,x;}}¥., of N previously solved cases is used for
which the values of all variables (response and pre-
dictors) have been jointly measured. A “learning ma-
chine” is applied to these data in order to extract (esti-
mate) a good scoring function F'(x). There are a great
many commonly used learning machines. These in-
clude linear/logistic regression, neural networks, ker-
nel methods, decision trees, support vector machines,
etc. Many are intended for use with large numbers of
predictor variables. For descriptions of a wide variety
of such learning procedures see Hastie, Tibshirani and
Friedman 2001.

3. TWO-SAMPLE TESTING

Binary classification procedures can be used for
two—sample testing. A predictor variable training
data set is created by pooling the two samples

{u M = {xi 1, u{za}Y.

Those observations that originated from the first sam-
ple (1 < i < N) are assigned a response value y; = 1
while those from the second sample (N +1 < ¢ <
N + M) are assigned y; = —1. A binary classification
learning machine is applied to this training data to
produce a scoring function F'(u). This is then used to
score each of the observations {s; = F(u;)} N1,
Consider the two sets of score values S} = {s;}¥,
and S_ = {s;})"\M . These are the scores respec-
tively assigned by the learning machine F'(u) to the
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first sample {x;}2, and the second sample {z;}%,.
Each of these sets of numbers Sy can be viewed as
a random sample from respective probability distri-
butions with densities py(s) and p_(s). Consider a
univariate two-sample test T for the equality of these
densities p, (s) = p_(s). Let f represent the value of
the corresponding test statistic

t= T({Si}ililv{si iV:JJFV]\il) (1)

Examples of commonly applied univariate two—sample
tests include chi-squared, Kolmogorov—Smirnov,
Mann—Whitney, t—test, etc. This quantity (1) is taken
to be the statistic for the multivariate two—sample test
for the equality of the distributions of {x;}¥, and
{z:}L (=)

3.1. Null distrib ution

In order to test the “null” hypothesis p = ¢ it is
necessary to know the distribution Hy(¢) of (1) when
the hypothesis is in fact true. One rejects the null
hypothesis at significance level « if the value ¢ actu-
ally observed is greater than or equal to the 1 — «
quantile of Hy(t), assuming smaller values of ¢ repre-
sent greater likelihood of p = ¢. For commonly ap-
plied univariate two—sample tests the corresponding
null distributions are known and have been tabulated.
These distributions are valid for the multivariate ap-
plication provided that separate independent data sets
are respectively used for training the learning machine
and evaluating the scores (1).

When the same data is used for both training and
subsequent scoring, these univariate null distributions
are not valid. In this case one can perform a per-
mutation (“Fisher’s exact”) test. Let {5(i)}Y*+ rep-
resent a random permutation of the integers {1,2,- -
-, N 4+ M}. One constructs a data set {y;(;), u; 1™
in which the actual response values {y;}2 ™ are
randomly permuted among the predictors {u;} Y.
These data are then used to train the learning ma-
chine, score the observations, and compute the test
statistic (1). This random permutation process is re-
peated many (say P) times producing a set of test
statistic values {#;};. One can then reject the null
hypothesis with significance level « if the value ¢ com-
puted form the original data {y;,u;} -+ is greater
than or equal to the 1 — a quantile of {#;}/,. This is
valid for any number of random permutations P, but
power increases with increasing P, reaching a dimin-
ishing return for large enough values.

4. GOODNESS-OF-FIT TESTING

As noted in Section 1, two—sample testing can be
used to perform goodness—of-fit tests. One draws an

artificial (“Monte Carlo”) sample {z; }£, from the ref-
erence distribution ¢ = pg and tests the hypothesis
p = ¢, where p(x) is the unknown probability density
of the data sample {x;}¥ ;. The test is valid for any
size M of the Monte Carlo sample, but power increases
with increasing M, reaching a diminishing return for
M >> N.

In two-sample testing a null distribution Ho(t)
is constructed by repeated random permutations of
the responses {y; } N1 over the predictors {u; }* 1.
This is valid for the goodness—of-fit application as
well. However in the goodness—of-fit context there is
an alternative method for creating a null distribution
that can increase power at the expense of increased
computation. One repeatedly draws many (say P) in-
dependent Monte Carlo samples of size M from the
reference distribution. Each of these Monte Carlo
samples {zgl)}iﬂil is used, along with the actual data
{x;}}¥,, for training the learning machine and subse-
quent scoring to produce a test statistic value ¢; from
(1). This produces a set of values {f;} | that can
be used as a null distribution to test the hypothesis
P = po in the usual manner.

The permutation procedure used with two—sample
testing to construct a null distribution conditions on
the observed data values {x;}¥, and {z;},; only in-
formation from the labels {y; = £1}-+* that identify
the sample from which each observation originated is
used. When used for goodness—of-fit testing this con-
ditions on the values of the single Monte Carlo sample
{z;}4, drawn from the reference distribution ¢ = py.
Goodness—of-fit testing using repeated Monte Carlo
samples as described above does not involve such con-
ditioning and thereby uses information from the val-
ues of {z;}M,, as well as the labels {y; = +1}Y+M
in testing the null hypothesis. Using this additional
information has the potential for increased power at
the expense of having to generate many Monte Carlo
samples, instead of just one.

5. DISCUSSION

As noted in the introduction, a desirable property of
goodness—of—fit and two—sample tests is power against
all alternatives to the null hypothesis. This will be the
case provided that the chosen leaning machine is uni-
versal. That is, as the number of observations used
to train it grows arbitrarily large, N, M — oo, an
“optimal” scoring function F'(u) is produced that is a
strictly monotone function of Pr(y = +1| u). Some
examples of universal learning machines are decision
trees, neural networks, and support vector machines
based on appropriate kernels. Additionally, a consis-
tent univariate test statistic must be used in (1). That
is, as N, M — oo they will always reject the null hy-

pothesis when p; (s) # p_(s).
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This notion of power against all alternatives ap-
plies in the asymptotic limit of infinite data. It has
at best limited meaning in actual finite data applica-
tions. With finite data, tests based on different types
of (even universal) learning machines will have differ-
ential power against different alternative distributions
p # po or p # q. Depending upon the actual data dis-
tribution(s) p(x) (and ¢(z)) encountered in a particu-
lar application, some learning machines will have more
power than others. Thus, the power of these tests can
be highly sensitive to the learning machine employed.
Particular choices depend on the types of potential
differences between the distributions that are deemed
most important to detect. For example, if the distri-
butions tend to be different on a large fraction of the
variables, near-neighbor or kernel methods will pro-
vide high power. On the other hand if they tend to
differ on only a relatively small number of variables,
decision trees will provide greater sensitivity.

Some multivariate two—sample tests based on near—
neighbors have an advantage in that the permutation
null distribution can be computed analytically. For
these tests repeated learning machine training and
scoring based on randomly generated permutations
is not required (see Friedman and Rafsky 1979 and
1983).

In contrast to the dependence on the particular
learning machine employed, the multivariate proce-
dures described here are not likely to be very sensitive
to the choice of a univariate test statistic (1).

It should be noted that as a data analytic proce-
dure hypothesis testing extracts very little informa-
tion from the data. This summary information can
be encoded in a single binary bit: b = 0/1 = ac-
cept/reject the null hypothesis. This represents a
rather terse summary of a data set often consisting
of many millions of bits. Furthermore, such tests will
nearly always reject given enough data. Null hypothe-
ses are seldom strictly true. It is unlikely that the hy-
pothesized reference distribution pg(x), or the distri-

bution of the second sample ¢(z), will be ezactly equal
to that of the observed data p(x). Especially if a uni-
versal learning machine is employed, enough data will
detect the differences however small between them.

If the null hypothesis cannot be rejected then, at
least for the size of the samples used, little additional
information concerning the nature of the differences
between the distributions is likely to be obtainable.
However, rejection should serve as a signal to ex-
amine the data further in a attempt to extract the
ways in which the distributions differ. Some learn-
ing machines such as neural networks, near—neighbor
and kernel methods, and support vector machines are
“black box” procedures that produce little or no inter-
pretable information. Thus, they are not appropriate
for this part of the exercise. Other methods such as
decision trees are highly interpretable. For example,
a decision tree produces sequences of simple inequali-
ties (“cuts”) that identify joint values of the measured
variables x for which p(x) >> po(x), p(x) << po(x),
and p(x) 2 po(x). Such information might yield con-
siderable insight into the mechanism that produced
the data.
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