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An extension of the concept of least absolute deviation regression for problems with multivariate

response is considered. The approach is based on a transformation and retransformation technique that

chooses a data-driven coordinate system for transforming the response vectors and then retransforms

the estimate of the matrix of regression parameters, which is obtained by performing coordinatewise

least absolute deviations regression on the transformed response vectors. It is shown that the estimates

are equivariant under non-singular linear transformations of the response vectors. An algorithm called

TREMMER (Transformation Retransformation Estimates in Multivariate MEdian Regression) has been

suggested, which adaptively chooses the optimal data-driven coordinate system and then computes the

regression estimates. We have also indicated how resampling techniques like the bootstrap can be used

to conveniently estimate the standard errors of TREMMER estimates. It is shown that the proposed

estimate is more ef®cient than the non-equivariant coordinatewise least absolute deviations estimate,

and it outperforms ordinary least-squares estimates in the case of heavy-tailed non-normal multivariate

error distributions. Asymptotic normality and some other optimality properties of the estimate are also

discussed. Some interesting examples are presented to motivate the need for af®ne equivariant

estimation in multivariate median regression and to demonstrate the performance of the proposed

methodology.
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1. Introduction

Consider a linear regression set-up with a k-dimensional regressor x and a univariate

response y satisfying the linear model y � âTx� e, where our objective is to estimate and

make inferences about the k-dimensional parameter vector â based on a set of independent

observations (y1, x1), (y2, x2), . . . , (yn, xn). In this set-up, the method of least absolute

deviations (LAD) and the method of least squares (LS) have competed with each other for

more than two hundred years. The LAD estimation technique is known to have greater

antiquity than the LS method (see, for example, Bloom®eld and Steiger 1983). Legendre

published his `principle of least squares' in 1805. But nearly half a century earlier, sometime

between 1755 and 1757, R.J. Boscovitch discussed an interesting criterion for ®tting a line to

n . 2 points in the plane (see Eisenhart 1961), which is nothing but ®tting a line by

minimizing the sum of absolute deviations from the points among all lines constrained to

pass through the mean of the data points. In 1760, he outlined a simple geometric algorithm

to ®nd a solution to this constrained minimization problem, which was algebraically
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formalized by Laplace in 1789. For a long period, no good algorithm for computing LAD

estimates in a general set-up was available even when k � 2. LS estimates certainly did not

have this drawback as they can be expressed as simple and closed-form solutions to certain

systems of linear equations, and this has greatly contributed towards the overwhelming

popularity of LS over LAD among practitioners from the very inception of LS. Another

serious dif®culty with LAD estimation was that the distributional properties of the resulting

estimates were not easy to work out analytically, whereas those of LS estimates were well

known and easy to use for the purpose of making statistical inference. Bassett and Koenker

(1978) investigated LAD estimates in linear models and proved several interesting results

related to them. Since then a vast amount of literature has evolved extending the notion of

LAD estimation in various directions in the linear regression set-up with a univariate

response. Koenker and Bassett (1978) proposed and investigated quantile regression in linear

models. Ruppert and Carroll (1980) considered two methods of de®ning a regression

analogue of a trimmed mean. The ®rst one was originally suggested by Koenker and Bassett

(1978) and uses their concept of regression quantiles. Its asymptotic behaviour is completely

analogous to that of a trimmed mean. The second method uses residuals from a preliminary

estimator, and its asymptotic behaviour heavily depends on that preliminary estimate. Welsh

(1987) proposed another analogue of trimmed mean using the von Mises functional approach,

and he established asymptotic and robustness properties of the proposed estimate, which are

equivalent to those of the estimate proposed by Koenker and Bassett (1978). It is now well

known that the LAD regression problem can be formulated as a linear programming problem,

and, as a result, several good algorithms are available for computing LAD estimates

(Armstrong and Kung 1978; Barrodale and Roberts 1973; Bloom®eld and Steiger 1983;

Koenker and d'Orey 1987; Narula and Wellington 1977; Wesolowsky 1981). For estimating

the parameters of a structural equation in a simultaneous equation model, Amemiya (1982)

extended LAD estimators to two-stage LAD estimators and established the strong consistency

and asymptotic normality of the estimates. Subsequently McKean and Schrader (1987),

Schrader and McKean (1987) and Bai et al. (1990b) showed that the statistical inference

procedures based on LAD estimates are quite similar to the classical analysis of variance

based on least squares. Here the reduction in sum of squares is replaced by the reduction in

sum of absolute errors, which leads to summarization of the analysis in the form of a `LAD

analysis of variance table'. Strong consistency of LAD estimates and their Bahadur-type

representations have been established by Babu (1989) and also discussed as a special case of

a very general result obtained by Neimiro (1992).

But so far all the work documented in the literature is essentially restricted to a

univariate response y. Almost nothing exists in the literature beyond LS methods when we

have a d-dimensional (d . 1) response vector y, and the problem is to estimate the k 3 d

matrix of parameters â in the multiresponse linear regression model y � âTx� e. To

motivate the need for considering such a multiresponse linear regression, let us consider the

following example.

Example 1. The Biological Sciences Division of the Indian Statistical Institute, Calcutta,

collected data on blood pressures of 40 Marwari females residing in the Burrabazar area of

Calcutta (see Table 1). It is well known to physiologists that arterial pressure tends to increase
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with age. Several empirical studies have been made in this context, and it has been observed

that this relationship depends on various environmental factors as well as ethnic status. In

other words, there is no common relationship that works for all human beings, and it is

different for different groups of people. Nevertheless, it is accepted by all physiologists that

age is an important factor in deciding what should be a normal blood pressure.

We are interested here in ®nding an empirical relationship between systolic and diastolic

blood pressures and age for a normal Marwari woman residing in Calcutta. Now in Figure

1, which shows the scatterplots of systolic and diastolic blood pressure against age, there

are some outlying observations and the spread of the data is very high. It is well known

that, unlike LAD estimates, the LS estimates of the regression parameters are highly

sensitive to outlying data points (for example, those corresponding to very high or low

blood pressures). One can argue that very high- or low-pressure cases should not have any

undue in¯uence on an empirically developed relationship between the blood pressures and

the age of a normal female. This is one of the primary reasons for using an appropriate

extension of the LAD method that will be suitable for this multiresponse regression

problem.

Rao (1988) addressed the problem of generalizing LAD estimation in the multiresponse

linear regression set-up and suggested the use of univariate LAD regression for each

coordinate of the response vector. He has shown that under simple conditions that estimate

Table 1. Systolic and diastolic blood pressure and age of Marwari females in Calcutta

Serial

no.

Age Systolic

pressure

Diastolic

pressure

Serial

no.

Age Systolic

pressure

Diastolic

pressure

1 52 130 80 21 26 130 84

2 21 120 88 22 76 160 90

3 60 180 100 23 37 110 80

4 38 110 90 24 48 130 90

5 19 100 70 25 40 160 112

6 50 170 100 26 36 150 90

7 32 130 84 27 39 140 100

8 41 120 80 28 38 110 74

9 36 140 84 29 16 110 70

10 57 170 106 30 48 130 100

11 52 110 80 31 22 120 80

12 19 120 80 32 30 110 70

13 17 110 70 33 19 120 80

14 16 120 80 34 39 124 84

15 67 160 90 35 38 130 94

16 42 130 90 36 45 120 84

17 44 140 90 37 22 130 80

18 56 170 100 38 20 120 86

19 32 150 94 39 18 120 80

20 21 140 94 40 31 112 80
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is asymptotically normal, but the problem with his estimation technique is that it does not

take into account the interdependence of the coordinates of the response vector, and it may

not always be wise to ignore correlations that exist among different response variables.

Another approach to generalizing LAD estimation in the multivariate response problem is

due to Bai et al. (1990a), who extended the notion of spatial median (cf. Brown 1983;

Chaudhuri 1992; Haldane 1948) in the regression set-up, and obtained their estimate by

minimizing
Pn

i�1 iyi ÿ âTxi i with respect to â (here i:i denotes the usual Euclidean norm).

It is easy to observe that while, in the univariate case, this leads to estimates that are

equivariant under the scale transformation of the response variable, in the case of

multivariate response, the estimated parameter matrix will not be equivariant under arbitrary

non-singular linear transformations of the response vector. In another generalization,

Koenker and Portnoy (1990) suggested M-estimation in the multiresponse linear regression

model. Though their generalization has some nice properties, it fails to be af®ne equivariant

and they have discussed the lack of af®ne equivariance of their estimates and related

matters in some detail. It is worth noting here (see also Chakraborty and Chaudhuri 1998)

that Bickel (1964) raised an important issue related to the ef®ciency of the vector of

coordinatewise medians. He pointed out that the performance of the vector of medians

becomes really poor in the presence of high correlations among the components of the data

vector. He concluded that the reason behind this abysmal performance of the vector of

medians may be a lack of af®ne equivariance. Similar feelings have been expressed by other

authors (see Brown and Hettmansperger 1987; 1989), who suggested some af®ne

equivariant multivariate location estimates.

Chakraborty and Chaudhuri (1998) investigated in detail connections between the af®ne
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Figure 1. The systolic and diastolic blood pressures against age, for 40 women, showing high

variability, with some possible outliers
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equivariance (or lack of it) and asymptotic ef®ciency (or loss of it) of multivariate location

estimates when the components of the data vector are correlated. Let us consider the blood

pressures data discussed in Example 1. It is fairly obvious from Figure 2 that there exists

high correlation between the systolic and diastolic pressures of a person as one would

expect, and instead of using the LAD regression for each of the two pressure measurements

separately, we need to use some af®ne equivariant approach.

Example 2. Srinivasan (1995) compiled fertility and mortality ®gures from the of®cial

publications of the Registrar General of India and ®gures on female literacy rates from

Decennial Census reports. The data set contains total fertility rates (TFR), infant mortality

rates (IMR) and female literacy rates (FLR) for the years 1971, 1981 and 1991 for 16 most

populated states of India.

Our interest here is in exploring the relationships between TFR and IMR on the one

hand, and FLR on the other, over different years and regions. As the data set contains only

48 observations, we amalgamated the states into four regions ± North, South, East and

West ± instead of looking at them separately. It is well known from socio-demographic

studies that TFR and IMR are highly correlated (see Figure 3). So in this situation too the

asymptotic ef®ciency of the non-equivariant coordinatewise LAD estimates is likely to be

very poor and one needs to use af®ne equivariant estimates of regression parameters that

will take into account the interdependence between TFR and IMR.

In this paper, we propose and investigate in detail a technique for estimating parameters

in linear models with multivariate response, which will lead to estimates that are equivariant

under non-singular linear transformations of the response vector. First observe that the LAD
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Figure 2. Systolic blood pressure against diastolic blood pressure
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regression problem is a median regression problem in the sense that the conditional median

of the response y given the regressors x is being estimated, whereas the LS regression

problem is a mean regression problem, where the conditional mean of y given x is

estimated. So, in order to solve the multiresponse LAD linear regression problem, one

needs to de®ne a proper analogue of the median in several dimensions. Now, there are

several de®nitions of the multivariate median available in the literature (for detailed reviews,

see Chaudhuri 1992, Small 1990). The vector of coordinatewise medians lacks the property

of equivariance even under orthogonal transformations, and its regression analogue, which is

the coordinatewise LAD estimates, has the same drawback. The spatial median is

equivariant under orthogonal transformations but not under arbitrary af®ne transformations,

and the same is true for the regression estimates proposed by Bai et al. (1990a). There are

several de®nitions of multivariate medians that are af®ne equivariant in nature (see Liu

1990; Oja 1983; Tukey 1975), and each of them leads to a regression analogue, which will

be equivariant under non-singular linear transformations of the response. However, none of

these regression analogues has been considered in the existing literature, and all of them are

computationally so intensive that having estimates of regression parameters may turn out to

be virtually impossible in practice with the available computing resources even when both

the sample size and the dimension of the parameter space are only moderately large.

Chakraborty and Chaudhuri (1996) proposed a version of the multivariate median following

the idea of `data-driven coordinate systems' introduced by Chaudhuri and Sengupta (1993),

which is computationally much less intensive, and we consider here the regression analogue

of their transformation-retransformation median. We will demonstrate that the proposed
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Figure 3. Total fertility rate against infant mortality rate, showing high correlation
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estimate outperforms the matrix of coordinatewise LAD estimates when the real-valued

components of the response vector are correlated. The procedure suggested in this paper is

easy to compute, and we provide a convenient algorithm, which enables one to compute

parameter estimates as well as to invoke resampling strategies such as the bootstrap to

estimate the ®nite-sample variance-covariance matrix of the estimates.

In Section 2, we pose the multiresponse linear regression problem in detail with

necessary assumptions, and describe the methodology as well as the computation of the

estimate of the parameter matrix. Then we demonstrate, with two real examples, the

performance of the procedure. In Section 3, we establish some important asymptotic results

about the proposed estimate and demonstrate some optimal properties of the adaptive

transformation-retransformation median regression estimates. All proofs are postponed to

the Appendix.

2. Description and computation of estimates

Consider the following multiresponse linear model:

yi � âTxi � ei, i � 1, . . . , n

where the yi are d 3 1 response vectors, the xi are k 3 1 dimensional vectors of explanatory

variables, the ei are d-dimensional error vectors, and â is a k 3 d matrix of parameters. We

assume that the ei are independent and identically distributed with a common probability

distribution on Rd . Before de®ning the transformation-retransformation strategy, let us

observe a simple geometrical fact about any given af®ne transformation of a set of

multivariate responses. For a non-singular d 3 d matrix A, the transformation that maps yi

into Ayi, for 1 < i < n, essentially expresses the original linear model in terms of a new

coordinate system determined by A and, depending on whether A is an orthogonal matrix or

not, this new coordinate system may or may not be an orthonormal system. The fundamental

idea that lies at the root of data-based transformation-retransformation is to form an

appropriate `data-driven coordinate system' (see also Chakraborty et al. 1998) and to express

the linear model in terms of that coordinate system ®rst. This is equivalent to making an

af®ne transformation of the error vectors. Then one computes parameter estimates based on

the transformed response vectors. Finally, the estimates of regression parameters are

retransformed so as to express everything in terms of original coordinate system (see also

Chakraborty and Chaudhuri 1996; 1998). Now, in order to form a `data-driven coordinate

system', we need d points in Rd and the lines joining the origin to these d points will form

various coordinate axes. In order to obtain a valid coordinate system, these d points must

satisfy some non-singularity condition.

Let us de®ne

An � fa: a � f1, 2, . . . , ng and #fi: i 2 ag � kg,
Bn � fb: b � f1, 2, . . . , ng and #fi: i 2 bg � dg,
Sn � fá � a [ b: a 2 An b 2 Bn, a \ b � ög:
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Note that Sn is the set of all subsets of k � d indices from the set f1, 2, . . . , ng. For a ®xed

á � fi1, . . . , ik , j1, . . . , jdg 2 Sn, let W(á) be the k 3 k matrix whose columns are the

vectors xi1 , . . . , xi k
, and Z(á) be the d 3 k matrix whose columns are the vectors yi1 , . . . yi k

.

We will assume that W(á) is invertible and de®ne E(á) to be the d 3 d matrix consisting of

the columns y j1 ÿ Z(á)fW(á)gÿ1x j1 , . . . , y jd
ÿ Z(á)fW(á)gÿ1x jd

. If the error vectors ei

happen to be i.i.d. random vectors with a common probability distribution, which is

absolutely continuous with respect to the Lebesgue measure on Rd , the matrix E(á) will be

invertible with probability one. Then de®ne transformed response vectors z
(á)
j � fE(á)gÿ1y j

for 1 < j < n with j =2 á. Let Ã̂(á)
n be the matrix of parameter estimates obtained by

regressing each coordinate of the d-dimensional transformed vectors z
(á)
i separately on the xi

for 1 < i < n and i =2 á using the LAD method. Then de®ne the transformation-

retransformation estimate of the parameter matrix as â̂(á)
n � Ã̂(á)

n fE(á)gT. Note that â̂(á)
n is

obtained by retransforming the earlier Ã̂(á)
n by the linear transformation E(á). The following

theorem asserts the equivariance of â̂(á)
n under non-singular transformations of the response

vector and the regression equivariance of it.

Theorem 2.1 For a ®xed á 2 Sn, let â̂(á)
n be the estimated matrix of parameters based on the

data points (y1, x1), (y2, x2), . . . , (yn, xn) as described above.

(i) Suppose that A is a ®xed d 3 d non-singular matrix. Then the transformation-

retransformation estimate computed from (Ay1, x1), . . . , (Ayn, xn) in the same way as

above (using the same index set á) will be â̂(á)
n AT.

(ii) Suppose that the response vectors yi are transformed to yi ÿGTxi for i � 1, . . . , n,

where G is a ®xed k 3 d matrix. Then the transformation-retransformation estimate will be

transformed to â̂(á)
n ÿG.

From the de®nition of the transformation-retransformation estimate of the matrix of

parameters and from Theorem 2.1, we make the following simple observations:

Observation 1. If k � 1 and the regressors xi � 1, for 1 < i < n, then our problem reduces to

estimation of the multivariate median of the observations y1, y2, . . . , yn, and our estimation

procedure leads to the transformation-retransformation multivariate median introduced in

Chakraborty and Chaudhuri (1996).

Observation 2. The transformation-retransformation estimate of the parameter matrix is

obtained as the minimizer of
P

i=2ájfE(á)gÿ1(yi ÿ âTxi)j with respect to â 2 Rk3d , where j:j
denotes the l1-norm in Rd . This implies that the estimate â̂(á)

n is equivariant under linear

reparametrization of the design points xi. In other words, if we transform our regressor

vectors xi to Bxi, for 1 < i < n, where B is a k 3 k nonsingular matrix, then our estimate is

transformed to (BT)ÿ1â̂(á)
n .

Observation 3. Consider the multiresponse linear model with an intercept term ã 2 Rd ,

yi � ã� âTxi � ei, i � 1, . . . , n:

If the yi are transformed to yi � b, where b is a d-dimensional vector, then by (ii) of
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Theorem 2.1 our transformation-retransformation estimate ã̂(á)
n will be transformed to

ã̂(á)
n � b and â̂(á)

n will remain unchanged.

There are several linear models with multivariate responses discussed in the existing

literature, of which seemingly unrelated regression (SUR) models (Zellner 1962) deal with

different sets of explanatory variables for different responses and are immensely popular

among the econometricians. But to keep things simple, we have considered the multivariate

regression model with the same explanatory variables for all responses. This simple model

also has a lot of applications, some of which are demonstrated by our Examples 1 and 2.

Multivariate analysis of variance problems can also be formulated in terms of this model. It

is interesting to note that this transformation-retransformation strategy is a general tool for

constructing af®ne equivariant estimates out of non-equivariant estimates whatever the

regression model may be. In particular, it is also possible to suitably modify our

transformation-retransformation strategy for SUR models.

2.1. Asymptotic normality and selection of á

Clearly, for different choices of the subset of indices á, we have different estimates of the

parameter matrix â. So the natural question that arises at this stage is which subset of indices

á we should use. Our approach for selecting the subset á is based on the minimization of the

generalized variance (Wilks 1932) of the estimate â̂(á)
n , which is de®ned as the determinant of

the variance-covariance matrix of the estimate. Recall that this determinant is proportional to

the volume of the concentration ellipsoid associated with the sampling distribution of the

estimate. If we assume that the underlying common probability distribution of the error

vector e is elliptically symmetric with a density of the form fdet(Ó)gÿ1=2 f (eTÓÿ1e) where Ó
is a d 3 d positive de®nite matrix, and f (eTe) is a spherically symmetric density on Rd , we

have a nice simple form for the asymptotic generalized variance of the estimate â̂(á)
n for a

given á as given in the following theorem. Let us write fÓÿ1=2E(á)gÿ1 � R(á)J(á), where

R(á) is a diagonal matrix with positive diagonal entries, and J(á) is a matrix whose rows are

of unit length. The following theorem gives the asymptotic distribution of the estimated

regression parameter matrix â̂(á)
n .

Theorem 2.2. Fix á 2 Sn. Assume that the density f is such that any univariate marginal g of

the spherically symmetric density f (eTe) is differentiable and positive at zero, and

maxi=2áxT
i f
P

j=2áx jx
T
j gÿ1xi converges to zero as n tends to in®nity. Then, as n tends to

in®nity, the conditional distribution of fP j=2áx jx
T
j g1=2(â̂(á)

n ÿ â), given the ei with i 2 á,

converges weakly to a multivariate normal distribution with zero mean and cÓ1=2V(á)Ó1=2


Ik as the variance matrix. Here c � f2g(0)gÿ2, V(á) � fJ(á)gÿ1fD(á)gf[J(á)]Tgÿ1, and

D(á) is the d 3 d matrix whose (i, j)th element is (2=ð)sinÿ1ãij, ãij being the inner product

of the ith and the jth row of J(á). We denote by 
 the usual Kronecker product, and Ik is the

identity matrix of dimension k 3 k.

It follows from the preceding theorem that â̂(á)
n is an n1=2-consistent estimate of â, and its

conditional asymptotic generalized variance is
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[cdfdet(Ó)gdetfV(á)g]k det
X
i=2á

xix
T
i

( )" #ÿd

:

Corollary 2.3. Suppose that the conditions on the distribution of the error vector e stated in

Theorem 2.2 are satis®ed, and assume that nÿ1
Pn

i�1xix
T
i converges to a positive de®nite

matrix Q as n tends to in®nity. Then the conditional distribution of
���
n
p

(â̂(á)
n ÿ â), given the ei

with i 2 á, converges weakly to a multivariate normal distribution with zero mean and

cÓ1=2V(á)Ó1=2 
Qÿ1 as the variance matrix, where c and V(á) are as in Theorem 2.2.

Under the assumptions of Corollary 2.3, the expression of the asymptotic generalized

variance becomes

[cdfdet(Ó)gdetfV(á)g]k[nkdet(Q)]ÿd

The following fact, which directly follows from Theorem 3.2 of Chakraborty and Chaudhuri

(1996), establishes a lower bound for detfV(á)g (� v(á), say), and this yields a lower bound

for conditional asymptotic generalized variance of â̂(á)
n .

Fact 2.4. For the matrices D(á) and J(á) de®ned above, we have detfD(á)g > [detfJ(á)g]2,

so that detfV(á)g > 1. This lower bound is sharp in the sense that an exact equality in place

of the inequality will hold if J(á) happens to be an orthogonal matrix.

We now propose to choose that subset á which minimizes the asymptotic generalized

variance of â̂(á)
n . The above-mentioned expression for generalized variance involves the scale

matrix Ó, which is in general unknown. We will need a consistent af®ne equivariant

estimate Ó̂ of Ó, and then we can transform the yi to Ó̂ÿ1=2yi, for 1 < i < n, and construct

the transformation matrix E(á) and the corresponding matrix V̂(á) as well as detfV̂(á)g
(� v̂(á), say) based on those transformed observations. An optimal á is de®ned as

á̂ � arg mináv̂(á). We now indicate the basic computational steps involved in the

computation of the adaptive transformation-retransformation estimate in multivariate median

regression. From now on, we shall use the abbreviation TREMMER (Transformation

Retransformation Estimate in Multivariate MEdian Regression) for that estimate.

2.2. TREMMER algorithm

1. Obtain a consistent and af®ne equivariant estimate Ó̂ of the scale matrix Ó associated

with the distribution of the random error e from the data (y1, x1), . . . , (yn, xn).

2. Transform all the response vectors yi to Ó̂ÿ1=2yi for 1 < i < n. Then ®x a subset

á 2 Sn and compute v̂(á) as given above; this appears in the expression for the asymptotic

generalized variance of the estimate â̂(á)
n .

3. Minimize v̂(á) with respect to á 2 Sn. Call this á̂. One can reduce the amount of

computation time required for searching for the optimal á by stopping whenever v̂(á) is

suf®ciently close to 1 because we know from Fact 2.4 that the lower bound for v(á) is 1.
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This approximation makes the algorithm very fast.

4. Form the matrix W(á̂) with columns xi1 , . . . , xi k
, where i1, . . . , ik are the ®rst k

elements of the subset á̂ and also form the matrix Z(á̂) whose columns are yi1 , . . . , yi k
.

Then construct the transformation matrix E(á̂) with columns y j1 ÿ Z(á̂)fW(á̂)gÿ1x j1 ,

. . . , y jd
ÿ Z(á̂)fW(á̂)gÿ1x jd

where j1, . . . , jd are the last d elements of á̂.

5. Transform all response vectors yi to z
(á̂)
i � fE(á̂)gÿ1yi, for i =2 á̂. Compute the

coordinatewise LAD estimate Ã̂(á̂)
n of the matrix of parameters by regressing the z

(á̂)
i on the

xi, for i =2 á̂. Then retransform that matrix to obtain the TREMMER estimate as

â̂(á̂)
n � Ã̂(

ná̂)fE(á̂)gT.

Before we discuss some applications of the TREMMER algorithm with real data sets, let

us note that while transforming the response vectors by the square root of the variance-

covariance matrix of some preliminary error estimates is a popular approach (see Zellner

1962), the resulting coordinate system does not have any simple and natural geometric

interpretation. Moreover, such a transformation does not lead to an af®ne equivariant

modi®cation of coordinatewise LAD estimates, and the limitation of such an approach lies

primarily in the fact that there does not exist an af®ne equivariant square root of the usual

estimates of the Ó matrix. Our `data-driven coordinate system' is a widely applicable tool

for converting non-equivariant (or non-invariant) procedures into equivariant (or invariant)

procedures, which is not limited to coordinatewise LAD estimates. Besides, for a properly

selected subset á (as suggested in the TREMMER algorithm) the matrix [E(á)][E(á)]T

provides an estimate of the scale matrix Ó up to some scalar multiple. The advantage of

using E(á) is that it leads to af®ne equivariance.

In step 1, we have to use a consistent and af®ne equivariant estimate of the scale matrix

Ó. As the methodology is quite general, one may use any estimate with those properties and

it is up to the user to select a proper estimate for his/her problem. Depending on the nature

of the problem, one may use robust estimates of Ó (see, Davies 1987), but in general

constructing such robust estimates of Ó is computationally intensive, and if it is not

extremely necessary, then one may use the variance-covariance matrix of ordinary LS

residuals as an af®ne equivariant, consistent estimate of Ó. The robustness of Ó along with

the geometry of the data cloud plays an interesting role in the robustness of our estimate,

which we propose to discuss elsewhere.

Note that once the matrix E(á̂) is formed, the computation of â̂(á̂)
n is straightforward as it

requires solving a linear programming problem for which a lot of ef®cient algorithms are

available (Armstrong and Kung 1978; Barrodale and Roberts 1973; Wesolowsky 1981). As

a result, the adaptive version of the TREMMER estimate continues to remain

computationally advantageous. To compute the ®nite-sample conditional variation of the

TREMMER estimate given a ®xed choice of transformation, we have used resampling

techniques such as the bootstrap (see also Chakraborty and Chaudhuri 1998). To implement

the bootstrap, one chooses the transformation matrix adaptively ®rst, and then, ®xing that

transformation matrix, one transforms all the yi to obtain the z
(á̂)
i as before. Then one

computes Ã̂(á̂)
n and retransforms it to obtain â̂(á̂)

n . The sampling variation of â̂(á̂)
n is estimated

by resampling from the pairs (yi, xi), for 1 < i < n, i =2 á̂, and calculating the TREMMER

estimate of â for each bootstrap replication, keeping the optimal subset á̂ ®xed. Then one
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computes the sample variance-covariance matrix of those TREMMER estimates correspond-

ing to different bootstrap samples. It takes only a few seconds to produce such an estimate

of the conditional sampling variation of â̂(á̂)
n based on 10 000 (say) bootstrap samples on a

486 PC. We next illustrate the procedure with Examples 1 and 2.

Example 1 (continued). Table 2 gives the TREMMER estimates of the regression

coef®cients, and the corresponding standard errors of the estimates are reported in the

parentheses. Standard errors have been computed based on 10 000 bootstrap replications.

In addition to the adaptive equivariant estimate, we have computed the non-equivariant

LAD estimates of the regression parameters and estimated the generalized variances of both

for comparison. To compare two multidimensional estimates, Bickel (1964) de®ned the

measure of ef®ciency as the pth root of the ratio of corresponding generalized variances,

where p is the dimension of the estimate. In the above example the dimension of the

parameter is 4, and to compute the ef®ciency of TREMMER estimate we have taken the

fourth root of the ratio of the generalized variances of the TREMMER estimate and

coordinatewise LAD estimate. The ef®ciency estimated from 10 000 bootstrap replications

turns out to be 1.145 365. Figure 4 shows the TREMMER lines on the scatterplots of

systolic and diastolic pressures against age.

Example 2 (continued). TFR is a measure of fertility that denotes the average number of

children born to a woman in her entire reproductive span, assuming that she experiences the

level of age-speci®c fertility rate obtained in a given year or period. IMR is de®ned as the

number of deaths of children below age 1 per 1000 live births. Detailed studies of the

demographic transition in the developed and developing countries have revealed a strong link

between declines in the mortality levels of a population (especially in the infant and child

mortality) and fertility levels. One of the major determinants of demographic transition

leading to decline in infant mortality and fertility is education of women. FLR is de®ned as

the percentage of literate females among those females aged 7 years and above. Our interest

is to see the effect of FLR and time on TFR and IMR. Table 3 gives TREMMER estimates

and corresponding standard errors of various regional effects and the effects of time and FLR

in an analysis of covariance type linear model.

From Table 3, we see that both FLR and time have strong negative effects on both TFR

and IMR. So in India, infant mortality and fertility levels both seem to be declining with

time and as female literacy increases. However, there is not much visible regional variation

in the data, except for the fact that the South tends to have the lowest TFR and IMR levels.

In this example, we again observed that the TREMMER estimate is more ef®cient than the

Table 2. TREMMER estimates

Pressures Constant Age

Systolic 102.8509 0.8519

(5.8851) (0.2628)

Diastolic 73.1056 0.3587

(3.6855) (0.1425)

694 B. Chakraborty



coordinatewise LAD estimates, the ef®ciency being 1.456 471 as estimated from 10 000

bootstrap replications.

3. Asymptotic optimality properties of TREMMER

In this section, we will discuss the asymptotic performance of the adaptive TREMMER

estimate and establish some ef®ciency results. For this purpose we impose some conditions

on the xi.

Condition A. There exists a constant M . 0, a sequence of integers fkng such that kn !1
as n!1, and at least one partition of the set f1, 2, . . . , ng containing kn subsets such that

in each subset of that partition there exists at least one á 2 Sn satisfying ifW(á)gÿ1xi i < M
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Figure 4. TREMMER regression lines superimposed on plots of blood pressure against age

Table 3. TREMMER estimates for demographic data

Regional effects

Coeff. of Coeff. of

North East West South Time FLR

TFR 6.9603 6.7627 6.7958 6.0459 ÿ0.6361 ÿ0.0338

(0.3631) (0.3589) (0.3358) (0.3640) (0.1946) (0.0139)

IMR 156.7407 164.0223 162.5226 144.9509 ÿ10.5994 ÿ1.2508

(12.7284) (19.5363) (14.9983) (14.7764) (4.4422) (0.4476)
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for all i 2 á and all n suf®ciently large.

Condition B. The density h of a d-dimensional random vector e is spherically symmetric and

satis®es

�
Rd3 k

h
Xk

i�1

aiei

 !( )dYk

i�1

h(ei) dei ,1

where e1, . . . , ek are independent and identically distributed with common density h and the

ai are given constants.

Note that if the spherically symmetric density h is bounded Condition B is trivially

satis®ed.

Remark. In the case of one-way analysis of variance problem, one can always construct a

partition of the index set f1, 2, . . . , ng such that in each subset at least one replication of

each treatment occurs. Note that in order to satisfy the condition max1<i<nxT
i

fPn
j�1x jx

T
j gÿ1xi ! 0 as n!1, the number of replications of each treatment goes to

in®nity. Thus one can easily have a sequence of partitions so that Condition A holds. We

discuss in the following proposition another simple situation where Condition A holds.

Proposition 3.1. Suppose that the xi are independent and identically distributed random

variables satisfying nÿ1
Pn

i�1xix
T
i !

p
Q as n!1. Then the probability of the event that

Condition A holds goes to one as n tends to in®nity.

Suppose that á� 2 Sn minimizes detfV(á)g (� v(á), say) which is de®ned in Theorem

2.2, when the scale matrix Ó is known.

Theorem 3.2. Assume that the ei are independent and identically distributed with a common

elliptically symmetric distribution fdet(Ó)gÿ1=2 f (eTÓÿ1e) such that the spherically symmetric

density h(e) � f (eTe) satis®es Condition B, all of its univariate marginal g is differentiable

and positive at 0, Ó is a d 3 d positive de®nite matrix, and the xi satisfy Condition A. Then

v(á�) converges to one in probability as n tends to in®nity.

Theorem 3.2 implies that if the scale matrix Ó happens to be known and the adaptive

selection of á� 2 Sn is done using that known Ó, the conditional generalized variance of

the resulting adaptive TREMMER estimate tends to the lower bound established in Fact 2.4.

However, in practice Ó is unknown, and we will estimate it by a consistent and af®ne

equivariant estimate Ó̂ when we minimize v̂(á) to obtain á̂. The next theorem tells us that

the difference between v(á̂) and v(á�) is asymptotically negligible.

Theorem 3.3. Under the assumptions of the previous theorem, v(á̂)ÿ v(á�) converges in

probability to zero as n tends to in®nity.
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Theorems 3.2 and 3.3 suggest that there is an optimal choice of the subset á 2 Sn for

which v(á) attains its lower bound as n goes to in®nity when the scale matrix Ó is known.

If Ó is unknown, with a consistent and equivariant estimate of Ó, we can choose a subset

á̂ 2 Sn such that v(á̂) also attains its lower bound of 1 asymptotically. Thus for n

suf®ciently large, we will be able to get hold of an á̂ such that v(á̂) , 1� å, for any å. 0.

Any á 2 Sn, for which v(á) , 1� å, will produce an estimate with conditional asymptotic

generalized variance close to [(c=n)d det(Ó)]k[det(Q)]ÿd , where Q is the positive de®nite

limit of nÿ1
Pn

i�1xix
T
i as n tends to in®nity. From the asymptotic result obtained by Rao

(1988), it can be seen that the asymptotic generalized variance of the coordinatewise LAD

estimates of the parameter matrix is [(c=n)ddet(Ã)]k[det(Q)]ÿd , where the (i, j)th element

of Ã is (ó iió jj)
1=2(2=ð)sinÿ1rij, rij � ó ij=(ó iió jj)

1=2. Here ó ij is the (i, j)th element of Ó
and c is as de®ned earlier. Following the line of arguments used in the proof of Fact 2.4 in

Chakraborty and Chaudhuri (1996), it is easy to see that det(Ã) > det(Ó), and equality holds

only if Ó is a diagonal matrix. If the asymptotic ef®ciency of two competing estimates of

the k 3 d parameter matrix is de®ned as the (k 3 d)th root of the ratio of their asymptotic

generalized variances, the ef®ciency of TREMMER estimate compared to the non-

equivariant coordinatewise LAD estimate is always greater than or equal to one. Further,

Theorems 3.2 and 3.3 imply that it is possible to get hold of an appropriate transformation

matrix E(á) for large n such that the estimate â̂(á)
n will be more (or less) ef®cient than the

ordinary LS estimate depending on whether the tail of the univariate marginal g of the

spherically symmetric density f (eTe) is `heavy' (or `light'). It is important to note that the

gain in ef®ciency of the af®ne equivariant TREMMER estimates over non-equivariant

coordinatewise LAD estimates is due to the issue of af®ne equivariance and ef®ciency, a

point originally made by Bickel (1964); and if the procedure, on which transformation-

retransformation is applied, is af®ne equivariant then the resulting estimate remains same

and there is no ef®ciency gain due to transformations. Observe that we are using a linear

transformation which retains the linear structure of the model, and the ef®ciency gain is

solely due to non-equivariance of the coordinatewise LAD estimates in multiresponse linear

models under non-singular linear transformations.

We close this section by presenting some simulation results to demonstrate the

performance of the adaptive TREMMER estimate in small samples. In the model

yi � âTxi � ei we have generated the ei from bivariate normal ( f (eTe) �
(2ð)ÿ1 exp(ÿ(eTe)=2)) and Laplace ( f (eTe) � (2ð)ÿ1 exp(ÿ

�������
eTe
p

)) distributions, with

Ó � 1 r
r 1

� �
:

We have taken â � 0, k � 2; the ®rst element of xi is one and the second element is

generated from standard univariate normal distribution. Using these ei, xi and â, we have

generated the observations (yi, xi) for i � 1, . . . , n. We have used a set of ®ve different

values of r and two sample sizes, namely 20 and 30. Our adaptive TREMMER estimate was

compared with the coordinatewise LAD estimate, and for the purpose of ef®ciency

computation, the estimates of their generalized variances were obtained based on 10 000

Monte Carlo replications. The ef®ciency is taken to be the fourth root of the ratio of the

generalized variances of the two competing estimates of â.
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From Tables 4 and 5, we see that TREMMER estimates are more ef®cient than

coordinatewise LAD estimates in the presence of substantial correlations even with small

sample sizes. As correlation among the real-valued coordinates of the response vector

increases, the ef®ciency of TREMMER over coordinatewise LAD increases. It will be

appropriate to note here that, unlike what has been done in Examples 1 and 2 where we

estimated conditional sampling variation using the bootstrap, in these simulations we have

compared the unconditional sampling variation of TREMMER estimates with that of the

coordinatewise LAD.

We conclude by noting that when the underlying distribution of the ei is not elliptically

symmetric, the conditional asymptotic normality of â̂(á)
n still holds but with a more

complicated variance matrix. To choose the best subset á in that case, one can estimate the

asymptotic generalized variance of â̂(á)
n for a given á by resampling or some other

technique and then try to minimize that over different possible choices of á. But this will

be computationally much more intensive, and we do not intend to consider it here.

Appendix: proofs

Proof of Theorem 2.1. (i) First observe that, in view of the way the matrix Z(á) has been

constructed, if the yi are transformed to Ayi, Z(á) will be transformed to AZ(á). In turn the

transformation matrix E(á) is transformed to AE(á). Also, note that the z
(á)
i remain invariant

under a non-singular linear transformation of the yi. Hence, the estimated matrix of

regression parameters Ã̂(á)
n obtained by regressing each coordinate of the z

(á)
i on the xi using

LAD separately is invariant under that transformation. Consequently â̂(á)
n , which was

originally de®ned as Ã̂(á)
n fE(á)gT, will be transformed to â̂(á)

n AT.

(ii) Observe that, if the yi are transformed to yi ÿGTxi, the matrix Z(á) will be

transformed to Z(á)ÿGTW(á). In turn the transformation matrix E(á) remain invariant.

Also, note that the z
(á)
i are transformed to z

(á)
i ÿ fE(á)gÿ1GTxi. Hence, the estimated

Table 5. Ef®ciency ®gures for bivariate Laplace

Sample r
Size 0.75 0.80 0.85 0.90 0.95

20 1.0431 1.1825 1.3816 1.4899 1.6065

30 1.0181 1.2396 1.4935 1.6243 1.6740

Table 4. Ef®ciency ®gures for bivariate normal

Sample r
Size 0.75 0.80 0.85 0.90 0.95

20 1.0539 1.2695 1.4931 1.3253 1.8995

30 1.2391 1.2590 1.2251 1.5327 1.9898
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matrix of regression parameters Ã(á)
n obtained by regressing each coordinate of the z

(á)
i on

the xi using LAD will be transformed to Ã(á)
n ÿGf[E(á)]Tgÿ1, by the regression

equivariance property of LAD. Consequently â̂(á)
n will be transformed to â̂(á)

n ÿG. h

Proof of Theorem 2.2. In view of the equivariance of the regression estimates â̂(á)
n under non-

singular linear transformations of the yi, it is suf®cient to prove the theorem in the special

case when Ó is the d 3 d identity matrix. De®ne e�i � fE(á)gÿ1ei, for 1 < i < n and i =2 á,

to be the transformed error vectors. Then, given the ei for which i 2 á, we have as the

transformed model,

z
(á)
i � ÃTxi � e�i , i =2 á:

Under the assumption that maxi=2áxT
i f
P

j=2áx jx
T
j gÿ1xi converges to zero as n tends to

in®nity, we have the representation (see Babu 1989)

2gi(0)
X
j=2á

x jx
T
j

( )1=2

(Ã̂(á)
in ÿ Ãi) �

X
j=2á

X
l=2á

x lx
T
l

( )ÿ1=2

x j sign(Uji)� Rn,

where U ji is the ith component of e�j , gi is the ith marginal density of the distribution of e�j
and Ã̂(á)

in and Ãi are the ith columns of Ã̂(á)
n and Ã respectively. Here Rn converges in

probability to zero. By the assumption on the xi stated in the theorem, the Lindeberg

condition for the central limit theorem is satis®ed for the ®rst term on the right-hand side,

and hence we have the asymptotic normality of the estimated regression parameter matrix

given the ei for which i 2 á. Note that we have not used the elliptic symmetry of the error

distribution. In other words, asymptotic normality holds in a large class of probability

distributions.

Now, under the assumption of elliptic symmetry of the error distribution as stated in the

theorem, the e�i with i =2 á are conditionally i.i.d. random vectors with common density

jdetfE(á)gj f feT[E(á)]T[E(á)]eg. Let r1, . . . , rd be the diagonal entries of R(á). In view of

the representation discussed above, the conditional distribution of fP j=2áx jx
T
j g1=2 (Ã̂(á)

n ÿ Ã)

will converge weakly to a kd-variate normal distribution with zero mean, and limiting

variance matrix S(á)
 Ik . Here the matrix S(á) is such that its ith diagonal entry is cr2
i ,

and, for i 6� j, its (i, j)th element is 4crirjfPr(Ulj , 0 and Uli , 0)ÿ 1
4
g. Uli and Ulj are the

ith and the jth components of e�l respectively. Note that we are using the fact that for a d-

dimensional random vector z with a spherically symmetric distribution, the distribution of

the random variable aTz is the same for any a 2 Rd such that aTa � 1. Also, since the

conditional distribution of e�i is elliptically symmetric around the origin in Rd , PrfUlj , 0

and Uli , 0g does not depend on the density f . Recall that the rows of J(á) are of unit

length obtained by normalizing the rows of fE(á)gÿ1. We now have the following by some

routine analytic computation:

Pr(Ulj , 0 and Uli , 0) � 1
4
� (1=2ð)sin ÿ1ãij:

So, the matrix S(á) is nothing but cfR(á)gfD(á)gfR(á)g. Next recall that

â̂(á)
n � Ã̂(á)

n fR(á)gÿ1f[J(á)]Tgÿ1:
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By straightforward algebra, the proof of the theorem is now complete. h

Proof of Corollary 2.3. The proof of this corollary follows from observing the fact that

nÿ1
Pn

i�1xix
T
i converges to a positive de®nite matrix Q which implies that

max1<i<nxT
i f
Pn

j�1x jx
T
j gÿ1xi converges to zero as n tends to in®nity. h

Proof of Proposition 3.1. As the xi are independent and identically distributed, there exists

M . 0 such that, for any á 2 Sn,

Pr[max
i2á

ifW(á)gÿ1xi i , M] � ä. 0,

for some ä. 0. Consider any sequence of integers fkng such that kn !1 and n=kn !1
as n!1. Then

PrfCondition A holdsg > 1ÿ kn(1ÿ ä)cn=(k�d)

where cn � n=kn. Thus the result follows immediately. h

Proof of Theorem 3.2. First observe that in view of the af®ne equivariance of â̂(á)
n , it is

enough to consider the case when Ó � Id . Consider A1n, A2n, . . . , Ak n,n disjoint subsets of

f1, 2, . . . , ng, such that Condition A holds. So for suf®ciently large n, we will have at least

one subset of indices ái 2 Ain such that ifW(ái)gÿ1x j l
i is bounded by M for l � 1, . . . , d

and f j1, j2, . . . , jdg � ái. Note that for a subset of indices á, any column of the

transformation matrix E(á) can be written as e j1 ÿ
Pk

l�1(wT
l x j1 )ei l

, where wT
l is the lth row

of fW(á)gÿ1. As the ei are i.i.d. with spherically symmetric density h, the joint pdf of

ei1 , . . . , ei k
, e j1 , . . . , e jd

can be written as
Q

i2áh(ei). Consider the following transformation

of variables

u1 � e j1 ÿ
Xk

l�1

(wT
l x j1 )ei l

, . . . , ud � e jd
ÿ
Xk

l�1

(wT
l x jd

)ei l

ud�1 � ei1 , . . . , ud�k � ei k
:

Then the joint density of u1, . . . , ud�k is given by

Yd

i�1

h ui �
Xk

l�1

(wT
l x ji

)ud� l

( )Yk

i�1

h(ud�i)

Therefore, the joint density of u1, . . . , ud at the origin in Rd3d is�
Rd3 k

Yd

i�1

h
Xk

l�1

(wT
l x ji

)ud� l

( )Yk

i�1

h(ud�i) dud�1 . . . dud�k

which exists and is positive by Condition B. Now, in view of Condition A and the continuity

of h at 0 2 Rd , the joint density of u1, . . . , ud must remain bounded away from zero in a

neighbourhood of 0 2 Rd3d . Therefore, the probability that the columns of E(á) will be
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nearly orthogonal (and hence v(á) � detfV(á)g will be very close to 1) is bounded away

from zero. So we have, for any å. 0,

inf
xi:i2á

Pr[v(á) , 1� å] � på . 0:

Then

Prfv(á�) > 1� åg � Prf8á 2 Sn, v(á) > 1� åg
< Prfv(á1) > 1� å, . . . , v(ákn

) > 1� åg

< (1ÿ på)
kl ! 0 as n!1: h

Proof of Theorem 3.3. As Ó̂ is a consistent estimate of Ó, by the simple arguments used in

Chakraborty and Chaudhuri (1998), it can be shown that supá2Sn
jĴ(á)ÿ J(á)j converges in

probability to zero as n tends to in®nity, which in turn implies that

sup
á2Sn

jD̂(á)ÿ D(á)j!p 0, (1)

sup
á2Sn

j[detfĴ(á)g]2 ÿ [detfJ(á)g]2j!p 0 (2)

and

sup
á2S n

jdetfD̂(á)g ÿ detfD(á)gj!p 0 as n!1: (3)

For M9 . 0, de®ne K n
M9 � fá: á 2 Sn and v(á) < M9g. Then by (1), (2) and (3) it is easy to

see that supá2K n
M9
jv̂(á)ÿ v(á)j converges in probability to zero as n tends to in®nity.

From Theorem 3.2, we have that á�, which minimizes v(á), is in the set K n
M9, and hence

in view of the fact stated above á̂ will be in K n
M9 with probability tending to one as n tends

to in®nity if M9 . 0 is chosen to be suitably large.

Next, since á̂ minimizes v̂(á), and á� minimizes v(á), it follows by some

straightforward analysis that jv̂(á̂)ÿ v(á̂)j, å, and jv̂(á�)ÿ v(á�)j, å will imply that

jv̂(á̂)ÿ v(á�)j, å. Hence, it follows that v̂(á̂)ÿ v(á�) converges in probability to zero,

which completes the proof with previous observations. h
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