
On Musical Performances Identification,

Entropy and String Matching

Antonio Camarena-Ibarrola and Edgar Chávez
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Abstract. In this paper we address the problem of matching musical
renditions of the same piece of music also known as performances. We
use an entropy based Audio-Fingerprint delivering a framed, small foot-
print AFP which reduces the problem to a string matching problem. The
Entropy AFP has very low resolution (750 ms per symbol), making it
suitable for flexible string matching.

We show experimental results using dynamic time warping (DTW),
Levenshtein or edit distance and the Longest Common Subsequence
(LCS) distance. We are able to correctly (100%) identify different ren-
ditions of masterpieces as well as pop music in less than a second per
comparison.

The three approaches are 100% effective, but LCS and Levenshtein can
be computed online, making them suitable for monitoring applications
(unlike DTW), and since they are distances a metric index could be use
to speed up the recognition process.

1 Introduction

The alignment of musical performances has been a subject of interest in several
Music Information Retrieval disciplines such as Polyphonic Audio Matching [1],
querying by melody [2] and score-performance matching [3], or its on line ver-
sion called score-performance following [4]. The last discipline has the goal of
qualifying where a performance is in respect to a score, thus enabling automatic
accompaniment and automatic adding of special effects based on the position of
the performance in time, according to meta-data included in the score.

In this paper we propose a method for comparing performances allowing on-
line detection of occurrences in an audio channel, for this purpose, we make use of
efficient and versatile aligning techniques developed for matching DNA sequences
[5] and for finding strings occurrences in texts allowing errors [6]. Tests using
the classical DTW technique were also included as a reference. Hidden Markov
Models (HMM) were not considered in the experiments due to the fact that they
need training to compute their optimal parameters and topology which has to
be done at designing time, if the collection of songs changed, the topology would
not be optimal any more, redesigning the HMM every time a song is added to the
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collection is impractical especially if the HMM has already been implemented in
hardware (i.e Field Programmable Gate Arrays), therefore, using HMM as an
aligning technique was discarded.

For the feature extraction level, a string AFP based on an Information Content
Analysis was preferred since it has probed to be very robust to signal degrada-
tions although never tried in matching musical performances [7], also because it
is a string AFP of short length being the outcome of a low resolution analysis.

AFPs are compact content based representations of audio files which must
be robust to common signal degradations like noise contamination, equalization,
lossy compression and re-recording (Loudspeakers to microphone transmission).
Existing AFPs are basically of four kinds: (I) Sequences of Feature Vectors also
known as trajectories or traces since they are extracted at equally spaced periods
of time, an example of this is the spectral flatness based AFP used by MPEG-7
[8]. (II) Single vectors are the smallest AFPs, they usually include the means
and variances of features extracted from the whole song, (i.e Beats per Minute)
this AFPs do not require any aligning technique but are not very robust to
signal degradations. (III) Strings resulting from codification of feature vectors.
Haitsma-Kalker “Hash string” [9] or the entropy-based AFP used in this work
[7] are good examples of this kind of AFPs. (IV) HMMs are also used as AFPs,
normally a HMM is built for each one of the songs from the collection [10].

For the purpose of matching performances, trajectories AFPs are suitable for
DTW, however, to compare them using flexible string matching techniques, they
would have to be subject to some vector quantization technique in order to turn
them into strings, this implies some precision loss. String AFPs are suitable
for matching performances using flexible string matching distances, Haitsma-
Kalker’s AFPs are extremely long strings since they were designed to identify
songs with only 3 seconds of audio and therefore result from a very high reso-
lution analysis, however they are impractical in matching performances for the
high computational cost needed for aligning them. For example, a 5 minute song
would be represented by a string whose length would be of 25 862 characters
each one from an alphabet of 232. Finally, since the spectral entropy based AFP
is obtained from a low resolution analysis a 5 minute song will produce a string
of only 400 characters from an alphabet of 224, quite suitable for our problem.

1.1 The Spectral Entropy Based Audio Fingerprint

Claude Shannon stated that the level of information in a signal could be mea-
sured with Boltzman’s formula (1) for computing entropy in gases which as we
know is a measure of chaos or disorder [11].

H(x) = E[I(p)] =
n∑

i=1

piI(p) = −
n∑

i=1

piln(pi) (1)

Entropy has been used in speech signals as a segmentation criterium in noisy
environments [12] and in deciding the desirable frame rate in the analysis of
Speech signals [13], but it had never been used as the main feature used for
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matching audio files. Recently, a first Entropy-based AFP was proposed in [14]
which estimates the information content in audio signals every second directly in
time domain using histograms, later the same authors proposed an espectral en-
tropy based AFP [7] which is more robust to noise, equalization and loudspeaker
to microphone transmission than the spectral flatness based AFP adopted by
MPEG-7 [15]. The espectral entropy based AFP results from the codification
of the sign of the derivative in time of the entropy for critical bands 1 to 24
according to Bark scale. The signal is first segmented in frames of 1.5 seconds
with 50 percent overlapping so that one vector of 24 ceros and ones is obtained
every 750 milliseconds, to every frame, a Hanning window is applied, then taken
to the frequency domain via the fast fourier transform (FFT). For every critical
band, the result is considered to be a two dimensional (i.e. real and imaginary
part), random variable with gaussian distribution and mean zero, according to
[16]. The spectral entropy for band p is determined using equation (2)

H = ln(2πe) +
1
2
ln(σxxσyy − σ2

xy) (2)

where σxx and σyy also known as σ2
x and σ2

y are the variances of the real and the
imaginary part respectively and σxy = σyx is the covariance between the real and
the imaginary part of the spectrum in its rectangular form and so σxyσyx = σ2

xy

Just as a spectrogram indicates the amount of energy a signal has both on time
and frequency, a entropygram show the information level for every critical band
and frame position in time. Figure 1 shows the entropygram of two performances
of Mozart’s Serenade Number 13 Allegro and figure 2 shows the entropygrams
of two performances of Tchaikovsky’s Nutcracker waltz of the Flower.

The sign of the Entropygram’s time derivative is coded to built the string AFP
as indicated in equation (3) where the bit corresponding to band b and frame n
(i.e. b(n, b)) is determined with the sign of the difference of the entropygram’s
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Fig. 1. Entropygrams of the two performances of Mozart’s Serenade Number 13 Allegro
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Fig. 2. Entropygrams of the two performances of Tchaikovsky’s Nutcracker waltz of
the flower

entries H(n, b) and H(n − 1, b). This is the same as coding the information of
wether the entropy for each band is increasing or not.

b(n, b) = 1 ∀ H(n, b) − H(n − 1, b) > 0
= 0 ∀ H(n, b) − H(n − 1, b) ≤ 0

The spectral entropy based AFP can be seen as a string formed with symbols
of 24 bits so that the alphabet size is 224 and the number of symbols equals the
duration of the musical performance in seconds multiplied by 4/3.

1.2 DTW

Aligning two performances R(n), 0 ≤ n ≤ N and T (m), 0 ≤ m ≤ M is
equivalent to finding a warping function m = w(n) that maps indices n and
m so that a time registration between the time series is obtained. Function w
is subject to the boundary conditions w(0) = 0 and w(N) = M and might
be subject to local restrictions, an example of such restriction is that if the
optimal warping function goes through point (n, m) it must go through either
(n− 1, m− 1), (n, m− 1) or (n− 1, m) as depicted in figure 3, a penalization of
2 is charged when choosing (n − 1, m − 1) and of 1 if (n, m − 1) or (n − 1, m)
are chosen, this way the three possible paths from (n − 1, m − 1) to (n, m) (i.e.
first to (n, m − 1) and then (n, m)) will all have the same cost of 2. Other local
restrictions defined by Sakoe and Chiba [17] can be used.

Let dn,m be the distance between frame n of performance R and frame m of
performance T , then the optimal warping function between R and T is defined
by the minimum accumulated distance Dn,m as in (3).
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Fig. 3. Symmetric local restriction of first order

Dn,m =
n∑

p=1

dR(p),T (w(p)) (3)

Once a local restriction is selected, DN,M can be computed using the recur-
rence defined in equations (4),(5) and (6), which correspond to local restriction
shown in figure 3. Based on this recurrence DN,M can be efficiently obtained
using dynamic programming.

Di,0 =
i∑

k=0

di,0 (4)

D0,j =
j∑

k=0

d0,j (5)

Di,j = min

⎧
⎨

⎩

Di−1,j−1 + 2di,j

Di−1,j + di,j

Di,j−1 + di,j

(6)

1.3 String Distances

The Levenshtein distance between two strings is defined as the number of oper-
ations needed to convert one of them into the other, the considered operations
are inserts, deletes and substitutions and sometimes transpositions, a different
cost to each operation may be considered depending on the specific problem. If
only substitutions are allowed with the cost of 1, the distance is the same as
the Hamming distance, if only insertions and deletions are allowed both with
the cost of 1 the distance is known as the Longest common subsequence (LCS)
distance, finally if only insertions are allowed at the cost of 1, the asymmetric
Episode distance is obtained [6].

To compute the Levenshtein distance between the string t of length N and
the string p of length M the equations (7),(8) and (9) are used assuming all edit
operations (insert,delete and sustitutions) have the same cost of 1.

Ci,0 = i ∀ 0 ≤ i ≤ N (7)
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C0,j = j ∀ 0 ≤ j ≤ M (8)

Ci,j =
{

Ci−1,j−1 ti = pj

min[Ci−1,j−1, Ci,j−1, Ci−1,j ] + 1 ti �= pj
(9)

The classical approach for computing the Levenshtein distance relies in Dy-
namic Programming, for instance, the Levenshtein distance between the string
”hello” and the string ”yellow” is 2 as can be seen on location (5, 6) of matrix
(10) corresponding to two operations (i.e substitute “h” by a “y” and add a “w”
at the end)

y e l l o w
0 1 2 3 4 5 6

h 1 1 2 3 4 5 6
e 2 2 1 2 3 4 5
l 3 3 2 1 2 3 4
l 4 4 3 2 1 2 3
o 5 5 4 3 2 1 2

(10)

There is no need for keeping the whole dynamic programming table in mem-
ory. The Levenshtein distance can be computed maintaining only one column.
To do so, initialize this only column with Ci = i and then use equation (11) to
update it while reading the text.

C
′
i =

{
Ci−1 ti = pj

min[Ci−1, C
′
i−1, Ci] + 1 ti �= pj

(11)

Where C
′
is the column being computed and C is the previous one

For the purpose of finding occurrences of a pattern on a text we must allow a
match to occur at any time, this is achieved by setting C

′
0 = 0 and monitoring

if the last element on every column is less or equal to the predefined maximum
distance. In matrix (12) the string att is found at positions 2, 3 and 5 with one
error (i.e. substrings at, atc) and position 6 without errors inside the text atcatt.

a t c a t t
0 0 0 0 0 0 0

a 1 0 1 1 0 1 1
t 2 1 0 2 1 0 1
t 3 2 1 1 2 1 0

(12)

2 Experiments

The original goal for this work was to test the spectral entropy based AFP
described in section 1.1 in the problem of matching musical performances and
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see how well this features could be aligned with a traditional techniques like
DTW. However, using efficient and versatile aligning techniques commonly used
in matching DNA sequences allows finding occurrences of music by any of its
performances in an audio channel, which could not be done with DTW since it
would require having both whole songs prior to the aligning. However DTW was
included in the experiments as a reference to mesure the aligning capabilities of
the Levenshtein and the LCS distances.

2.1 Using the Longest Common Subsequence Distance

To use the spectral entropy based AFP as a string, the symbols are considered
to belong to an alphabet that is too large (224), it would be naive to consider two
symbols as completely different just because they differ in one bit, remember that
the symbols are made of bits that result from an information content analysis on
unrepeatable audio segments, therefore, we considered two symbols as different
only if the Hamming distance was grater than 7.

Once defined the rule to decide wether two symbols are different or not, the
LCS distance will be used hopping that the same sequence of acoustic events
will be present in both performances, only shorter subsequences in one of them
with respect to the other, in this context a symbol represents an acoustic event.

The recurrence defined in (13),(14) and (15) is used with dynamic program-
ming to compute the LCS distance.

Ci,0 = i ∀ 0 ≤ i ≤ N (13)

C0,j = j ∀ 0 ≤ j ≤ M (14)

Ci,j =
{

Ci−1,j−1 ti = pj

min[Ci,j−1, Ci−1,j ] + 1 ti �= pj
(15)

2.2 Using the Levenshtein Distance

Using a threshold to decide wether an acoustic event equals another may seem
dangerous, so instead of throwing away the differences between the symbols, they
may be used as the substitution cost in the Levenshtein distance while keeping
the insertion and deletion cost to 1.

Ci,j = min

⎧
⎨

⎩

Ci−1,j−1 + d(ti, pj)
Ci,j−1 + 1
Ci−1,j + 1

(16)

Where d(ti, pj) = Hamming(ti, pj)/24 since ti and pj are made from 24 bits
and we want d(ti, pj) to be a value between 0 and 1.
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2.3 Using DTW

Using local restriction depicted in figure 3, DTW was implemented with dynamic
programming based on the recurrences defined with equations (4),(5) and (6)
with di,j being the Hamming distance between row i of one performance’s AFP
and row j of the other performance’s AFP.

2.4 Normalizing the Distances

The Levenshtein distance between performances of length N and M can not be
greater than the length of the longest one of them, so in order to normalize the
Levenshtein distance it was divided by max(N, M), once normalized, it was posi-
ble to set a threshold to decided wether two performances match or not. The LCS
distance can not be grater than N + M , so in order to normalize the LCS distance
it was divided by N + M . The DTW distance was also divided by N + M .

2.5 The Test Set

Pairs of Master pieces from Mozart and Tchaikovsky played by different orches-
tras as well as pairs of beatles’s songs played at two different events formed the

Table 1. Pairs of Performances for the experiments. Performers: (i) The Beatles.
(ii) London Festival Orchestra, Cond.: Henry Adolph. (iii) London Festival Orchestra,
Cond.: Alberto Lizzio. (iv) Camerata Academica, Cond.: Alfred Scholz. (v) Slovak Phil-
harmonic Orchestra, Cond.: Libor Pesek. (vi) London Philharmonic Orchestra, Cond.:
Alfred Scholz.

Name dur1 dur2

All my loving 2:09 (i) 2:08 (i)

All you need is love 3:49 (i) 3:46 (i)

Come together 4:18 (i) 4:16 (i)

Eleanor Rigby 2:04 (i) 2:08 (i)

Here comes the sun 3:07 (i) 3:04 (i)

Lucy in the sky with diamonds 3:27 (i) 3:27 (i)

Nowhere man 2:40 (i) 2:44 (i)

The Nutcracker Waltz of the flowers 7:09 (ii) 7:06 (iii)

The Nutcracker Dance of the Reeds 2:39 (ii) 2:41 (iii)

Octopus’s garden 2:52 (i) 2:48 (i)

Mozart’s Serenade 13 Menuetto 2:19 (iv) 2:10 (v)

Mozart’s Serenade 13 Allegro 6:30 (iv) 7:52 (v)

Mozart’s Serenade 13 Romance 6:45 (iv) 5:47 (v)

Mozart’s Serenade 13 Rondo 3:24 (iv) 2:55 (v)

Sgt Pepper’s Lonely hearts 2:01 (i) 2:01 (i)

Something 3:02 (i) 2:59 (i)

Swan Lake theme 3:14 (ii) 3:13 (iii)

Symphony 41 Molto Allegro 8:50 (vi) 8:55 (vi)

With a little help from my friends 2:44 (i) 2:43 (i)

Yellow submarine 2:37 (i) 2:35 (i)
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test set of 40 audio files, the set of pairs is listed on table 1 where for each pair
the duration of both performances is shown.

2.6 Results

The 40 audio files of the test set were put into comparison against each other,
the 1 600 resulting distances were stored in a confusion matrix and represented
as gray tones in figures 4, 5 and 6. A low distance is represented as a dark gray
tone and a high distance as a light gray tone, the first raw have the distances
between the first audio file and the rest of them, the second raw are the distances
between the second audio file and every other one, and so on. Since the audio
files share a unique prefix if they correspond to the same song, the ideal resulting
graphical confusion matrix would be all white with 20 black squares along the
main diagonal, each square’s wide would have to be of exactly of two columns.
Figure 4 corresponds to the experiment using DTW, figure 5 is the graphical
confusion matrix when using LCS distance and figure 6 corresponds to the use
of the Levenshtein distance.

Fig. 4. Confusion Matrix result from using DTW

Fig. 5. Confusion Matrix result from using the Longest Common Subsequence distance
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Fig. 6. Confusion Matrix result from using The Levenshtein distance

3 Conclusions

The espectral entropy based string AFP was successfully used in the problem of
matching audio performances, the other string AFP of Haitsma-Kalker produces
so long strings that for a four minute song a string of 20 690 symbols is obtained
while a string of only 320 symbols is obtained with the entropy based AFP,
aligning such long strings is impractical and so no tests were included for the
Hash string AFP. The three aligning techniques tried, DTW, LCS and Leven-
shtein distance worked very well, either using the nearest neighbor criterium or
simply selecting a threshold every performance matched the other performance
of the same song. The flexible string based aligning techniques are more ade-
quate in the issue of monitoring occurrences of performances in audio signals
as described in subsection 1.3. We believe that more algorithms developed in
the field of matching DNA sequences [5] can be adjusted to their use in Music
Information Retrieval using the spectral entropy based string AFP.
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