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1. As is well known [2; 4; llJO), we have the following theorem.

Theorem A. If an n-dimensional Riemannian space admits a group of
motions of the maximum order n(n + l)/2, then, the space is of constant curva-
ture.

Thus, it might be interesting to ask whether an w-dimensional Rieman-
nian space can admit complete groups of motions of order w(w+l)/2 —1,
n(n + l)/2 — 2, • • • or not, and if so, then what the structure of the cor-
responding space is.

In this connection, we have a very suggestive theorem due to G. Fubini
[4, p. 229; 5]:

Theorem B. An n-dimensional Riemannian space for n>2 cannot admit a
complete group of motions of order w(w + l)/2 — 1.

On the other hand, it was an open problem to determine the «-dimensional
Finslerian space which admits a group of motions of the maximum order
w(w + l)/2. Recently, H. C. Wang [8] gave the answer to this problem by
proving the following beautiful theorem.

Theorem C. If an n-dimensional Finslerian ¿pace for n>2, n^i, admits
a group of motions of order greater than n{n — l)/2-f-l, then the space is Rie-
mannian and of constant curvature{2).

To prove this theorem, Wang used, among others, the first of the follow-
ing theorems due to D. Montgomery and H. Samelson [ó].

Theorem D. In an n-dimensional Euclidean space for n^i, there exists no
proper subgroup of the rotation group of order greater than (« —l)(ra —2)/2.

Theorem E. In an n-dimensional Euclidean space for »^4, n^ñ, any sub-
group of the rotation group of order (n — 1) (n — 2)/2 fixes one and only one direc-
tion.

Wang's Theorem C not only generalizes Theorem A, but also gives the
following interesting
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P) The numbers between brackets refer to the bibliography at the end of the paper.
(2) Professor H. C. Wang pointed out to the author that Theorem D below, and conse-

quently this Theorem C, are not true for re = 4.
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Theorem F. An n-dimensional Riemannian space for w>2, «^4, which is
not of constant curvature cannot admit a group of motions of order greater than
n(n-\)/2 + \.

On the other hand, by studying the integrability conditions of the so-
called Killing equations, I. P. Egorov [3] has proved recently the following
two theorems.

Theorem G. The maximum order of the complete groups of motions in
n-dimensional Riemannian spaces which are not Einstein spaces is «(« —1)/2
+ 1.

Theorem H. The order of complete groups of motions of those n-dimensional
Riemannian spaces which are different from spaces of constant curvature is not
larger than n{n —l)/2+2.

According to Theorem C, if an «-dimensional Riemannian space for ra>2,
«^4, admits a group of motions G, of order r>n(n — l)/2 + l, then the space
is of constant curvature. The largest group of motions in a space of constant
curvature being of order «(« + l)/2, if we denote it by G, then Gr must be a
subgroup of G.

But, as will be seen in the next section, by exactly the same method as
that used by Wang to prove Theorem C, we can prove that the group G> coin-
cides with the largest group G, that is to say:

Theorem I. In an n-dimensional Riemannian space for «5^4, there exists
no group of motions of order r such that

1 1
— n(n + 1) > r > — n(n — 1) + 1.

Thus, it might not be useless to study the «-dimensional Riemannian
spaces which admit a group of motions of order «(« — l)/2 + l. This is the
main purpose of the present paper, in which Theorem E plays an important
rôle. The main result appears in the last Theorem 9.

2. We begin with a sketch of the proof of Theorem I. We consider an «-
dimensional Riemannian space Vn with positive definite fundamental metric
form ds2 — g,k{x)dx'dxk (i,j, k, I, m = l, 2, ■ ■ • , «) and assume that the space
Vn admits a continuous group GT of motions of order r>n(n — l)/2 + l.

We take an arbitrary point Po(xJ) in the space Vn and consider all the
motions of Gr leaving this point Po fixed. These motions constitute a sub-
group G(P0) of Gr consisting of the motions:

(1) Ta:   &-f(ir,a)

with the property

xo = f (x0;a),
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a being r0^r — n essential parameters [4, pp. 64-65]. The subgroup G(PQ) is
called a subgroup of stability of Gr at the point Po.

To each transformation Ta of G(Po) corresponds a linear transformation
Sa defined by

dfHxo; a)
(2) Sa:   dv = dxK

dxj,

It is easily seen that if Ta—>Sa and Ta>-*Sa', then TaTa>—>SaSa', where
TaTa' is a product of two transformations while SaSa- is a product of two
matrices.

Thus, all the S's forming a linear group L(Po), it is readily proved [8]
that the correspondence Ta—>Sa is an isomorphism between G {Pa) and L(Pq)
in the sense of topological groups, and consequently that G(P0) and L(P0)
are of the same order.

The group G(Pq) being a group of motions fixing the point Po in an «-di-
mensional Riemannian space, the group I-(Po) is a rotation group in an
«-dimensional Euclidean space.

On the other hand, we know that the order r0 of G{Po) or of L(P0) satisfies
the inequality

fe ¡S r — ».

But, we are assuming that

1
r > — «(« — 1) + 1,

and consequently we have

1 1
r0 > — n(n — 1) -f- 1 — n = — («— 1)(« — 2).

Thus, from Theorem D, we must have, for «^4,

1
r0 = — n{n — 1),

and consequently the group L(Po) coincides with rotation group 0{n). Thus,
G(Po) contains a motion which carries any given direction at Po into any
given direction at Po. We note here that, in the above discussion, the point
Po was an arbitrary point.

Now, we take two arbitrary points Pi and P2 in Vn such that they are
sufficiently near to each other and consequently they can be joined by a
geodesic. We consider a midpoint M of this geodesic segment and a direction
at M tangent to this geodesic. Then, in the group of stability G(M), there
exists a motion which changes the direction of this tangent into the op-
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posite direction. Since a motion does not change the length of a curve and
carries a geodesic into a geodesic, this motion carries Pi into P2.

If there are given two arbitrary points A and B in V„, then we join these
points by a curve, and choose a series of points on it Pi, Pi, • • • , Pn in such
a way that A and Pi, Pi and P2, P2 and P3, • • • , P^-i and Pjv, Pn and B can
be joined by geodesies. If we denote the midpoints of the geodesic segments
APU PiP2, PiP3, • • • , Pn-\Pn, PnB by Mo, Mlt ■ ■ • , MN respectively,
then, applying suitable motions belonging to G(M0), G(Mi), • • • , G{MN)
successively, we can carry the point A into the point B. The points A and B
being any points in Vn, this means that our group Gr is transitive and conse-
quently that

r = r0 + n = n(n + l)/2.

Thus, Theorem I is proved.
3. Next, we assume that the space V„ admits a continuous group GT of

motions of order r =n(n — l)/2 + l.
If we denote r infinitesimal operators of the group G, by

XAf = ù(x) — {A = \,2,--- ,r)
dxl

and the rank of the matrix (¿¿(xo)) at a point Po(*J) by q<¡, then n^q0, and
the subgroup G(P0) of stability at Po is of order [4, p. 65]

1
r — q0 = — n(n — 1) + 1 — ?o-

Now, suppose that n>q<,, then we have

1 1
r — 90 > — n(n — 1) + 1 — n = — (n — l)(w — 2).

Thus, the subgroup G(Po) of stability at Po, and consequently the cor-
responding rotation group L(P0), is of order greater than (« —1)(« —2)/2.
Thus, from Theorem D, we conclude that, for «5^4, the rotation group
L(Po) coincides with 0(n).

Thus, if we denote the generic rank of the matrix (&(#)) by q and assume
that n>q, then our Riemannian space admits free mobility around any point
of the space, and, consequently, our group becoming transitive (see, for
example, [2]), we have n = q, which contradicts our assumption.

Thus, we must have n—q and consequently:

Theorem 1. If an n-dimensional Riemannian space for «5^4 admits a
group of motions of order «(« —l)/2 + l, then the group is transitive.

In the following, since we need always Theorem E, we assume hereafter
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that «^4, «*¿8.
If we suppose that our Vn admits a group Gr of motions of order

r = n(n — l)/2 + l, and if we fix a point Po in Vn, then the above mentioned ro-
tation group ¿(Po) is of order (« —l)(w —2)/2, and consequently, by Theorem
E, it consists of all rotations around a fixed direction. Thus, with every point
P of the space Vn, there is attached one and only one direction which is left
invariant under the subgroup G(P) of stability at the point P. We shall de-
note this direction by £(P).

Now, we take two arbitrary points P and Q in our Riemannian space.
Since the group G, of motions is transitive, there exists a motion T carrying
the point P into the point Q. If we denote an arbitrary motion fixing the
point Q by TQ, then the motion T~1TqT fixes the point P. Thus, applying
T^TqT to the direction £(P), we obtain

T-'TQn{P) = Ê(P),
£(P) being invariant under T~1TqT. From the above equation, we have

TQn(p) = n(p),
which shows that the direction P£(P) at Q is invariant under any Tq. Thus,
we must have

n(p) = m),
and consequently:

Theorem 2. If an n-dimensional Riemannian space V„ for «^4, «?¿8
admits a group of motions of order «(« —l)/2 + l, then there exists a field of
directions such that the direction £(P) at P *s transformed into the direction
k{Q) at Q by any motion of the group carrying the point P into the point Q.

Now, we consider the geodesic which is tangent to the above mentioned
direction £(P) at P. Since the group G{P) of stability at P is a group of mo-
tions and fixes the point P and the direction £(P), it fixes also this geodesic
pointwise. Thus, if we take an arbitrary point Q on this geodesic, G(P) fixes
the point Q. Now, we consider an orthogonal frame at P whose first axis is in
the direction of £(P) and transport it parallelly along the geodesic to the
point Q. Then we have, at Q, an orthogonal frame whose first axis is tangent
to the geodesic. The parallelism of vectors along a curve being preserved by a
motion, a motion belonging to G(P) gives the same effect on the orthogonal
frame at Q as on that at P. This shows that the group G(P) behaves, at Q,
as a group of motions fixing the point Q and of order (« —1)(« —2)/2, and
consequently that G(P)=G(Q). The group G(Q) fixing the tangent to the
geodesic and £(£>), the tangent must coincide with £(Q), and consequently
the geodesic is a trajectory of the direction £.

Since there is one and only one trajectory passing through an arbitrary
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point of the space, these geodesies depend on « — 1 parameters, and are
transformed into each other by a motion belonging to G,. Thus we have [2,
p. 294]:

Theorem 3. If an n-dimensional Riemannian space Vn for «^4, «5^8
admits a group of motions of order «(« —l)/2 + l, then there exists a family of
geodesies such that, passing through a point of the space, there is one and only
one geodesic of the family and the geodesic passing through P is transformed into
the geodesic passing through Q by a motion of the group carrying the point P into
the point Q.

4. Now we take a point M in Vn; then there is associated a direction
£(ikf) with this point. We attach to this point an orthogonal frame of refer-
ence [e,-] in such a way that the first axis ei is in the direction of !~(M) and
we consider all the frames of reference which are obtainable from this original
one by all the motions of the transitive group Gr. Such a family of orthogonal
frames of reference is said to be adapted to the group of motions under
consideration.

The frames of reference thus attached to different points of the space
depend on «(« — l)/2 + l parameters, the first n of which are coordinates
x1, x2, ■ ■ ■ , xn of the origin M and the last (« —1)(« —2)/2 of which are
parameters v1, v2, ■ ■ ■ , t)<"_1H'1_2)/2 fixing the directions of the axes e2, • • • , en.

Now, with respect to these moving orthogonal frames of reference, we
write down the formulas

(3) dM = coje,-,        dei = «¿>ey

defining the Euclidean connexion without torsion of the Riemannian space
under consideration. Here the «,• and co.y are Pfaffian forms with respect to x
and v.

The frames of reference being orthogonal ones, we must have

(4) totj + <*H = 0.

Moreover, the frames of reference being adapted ones, the Pfaffian forms
a), and (¿a are invariant under the group [2, p. 274].

We can see that the forms w,- are linear homogeneous in dx\ because they
must vanish when the point (xl) is fixed, that is to say, when the dx' vanish,
and moreover that the forms oin are also linear homogeneous in dx{ because
the vector ei must be invariant, say, ¿ei=coi¿ej = 0, when the point (#*) is
fixed.

Thus, to,- being « linearly independent forms, we must have relations of
the form

(5) un = CjkUk,

Cjk being functions of x and v.
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But, all the motions belonging to Gr leave wi; and w* invariant, and con-
sequently they leave Cy* invariant. Thus, the group being transitive on all
the frames, the c3-k are all constants.

To find the values of these constants c,k, we shall follow a method given
by E. Cartan [2, pp. 293-295].

At two infinitely nearby points M and M' of the space, we consider the
orthogonal frames of reference (Rm) and (Rm') both adapted to the group
Gr. Next, we effect, on both of them, an infinitesimal rotation around the
first axis, these rotations being defined respectively with respect to (Rm)
and (Rw) by a bivector having the same components £,y. By the assump-
tion, £,y must satisfy

(6) kn = 5/1 - 0.
We denote the orthogonal frames of reference thus obtained from (Rm)

and (Rm>) by (Rm) and (Rm>) respectively. Then the figure consisting of
(Rm) and (Rm) is congruent to the figure consisting of (Rm') and (Rm'),
that is to say, there exists a displacement which carries at the same time
(Rm) into (Rm>) and (Rm) into (Rm'). This displacement is analytically repre-
sented with respect to (Rm) by the set of vector w< and bivector w,y. But,
under the transformation of the orthogonal frames of reference which carries
(Rm) into (Rm) , these components «,• and w,y will receive the variations

(7) oui = CikUk,        ao¡ij — £ikUkj + £y¡t«í*.

But, from (5), we have

ScOiy =  CjkScilk-

Substituting (5) and (7) into this equation, we find

£lfcW*} + ZjkCklUl =  CjkttklUi,

or

(8) ijkCki — Cjkiu = 0

by virtue of £u = 0 and the linear independence of w¡.
First putting j = l in (5), we find

(9) clk = 0.

Next, putting /= 1 in (8), and taking account of £« =-0, we get

%jkCkl  —   0,

which must be satisfied by any £y* (= — £*,) satisfying (6), from which we
conclude

(10) Cki = 0.
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Finally, since £iy = £yi = 0, we may consider that the summation index
k in (8) takes the values 2, 3, • • • , « only. Then, in (8), putting j = r, l = t
(r, s, t, u, v = 2, 3, • • -, «), we obtain

Çr&Cat CrgÇut   =   U,

which may be also written in the form

(11) íuv(5urCvt — Cru8vt)  = 0.

Equation (11) must be satisfied for any £U!) satisfying £Ui>+£»u = 0, from
which we get

(OurCvt  —   CruOvt)   —   (SvrCui  —   CrvOut)   —   0.

Contracting, in this equation, with respect to r and v, we find

(12) (n — 2)cut + Ctu = cvvhut.

If « = 3, then we have

(13) Cut t~ Ctu = cv„5ut,

and consequently, we can conclude from (9), (10), and (13), that the matrix
(Cjk) has the form

(14)

/0       0       0>
(cjk) = ( 0        c       a

NO     -a C

Since this case was throughly studied by E. Cartan [2, pp. 300-306], we
assume hereafter «>3, «^4, «5^8, that is to say, «>4, «5^8.

Then, taking the anti-symmetric part of both members of (12), we find
(» — 3)(cut — ctu) =0, from which

Cut Ctu,

and consequently

1
Cut Cvv0ut<« — 1

Thus, in this case, the matrix (c,-*) has the form

0   0   0 • • • 0

(15) (Cjk)  =

0    c   0 •
0   0    c-

0   0   0-
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Consequently, we have, from (5),

(16) ü>u — cws.

Thus, from the equations of structure

dwi  =   [w.-yCUyj,

we find

dwi — [wijoj,] = 0.

Thus, the Pfaffian form coi is an exact differential:

(17) "i = dg(x),

and, consequently, we can see that, in our space, there exists an «>l family of
hypersurfaces g(x) = constant along which we have wi = 0, or

dM = co2e2 + • • • + wnen.

Since vectors e2, • • ■ , en are always tangent to one of these hypersurfaces,
we can see that these hypersurfaces, regarded as (« — 1)-dimensional Rie-
mannian spaces, admit the free mobility. Thus, these hypersurfaces regarded
as (« — 1)-dimensional Riemannian spaces are all of constant curvature.

It is clear that the orthogonal trajectories of these hypersurfaces are
geodesies referred to in Theorem 3.

Since any of these geodesies which are orthogonal trajectories of these
hypersurfaces is transformed into any of these geodesies by a motion of Gr,
we can see that any of these hypersurfaces is also transformed into any of
these hypersurfaces by a motion of Gr. Thus, these hypersurfaces, regarded
as (« — l)-dimensional Riemannian spaces, must be of the same constant
curvature.

Now, we must distinguish here two cases: (I) c = 0 and (II) c¿¿0.
We shall first assume that c = 0 in (16). Then we have

(18) col = 0,

and consequently

(19) de¡ = 0,

which shows that the ei is a parallel vector field. Thus, the normal to the
hypersurfaces referred to above being always parallel, the hypersurfaces
must be totally geodesic, their orthogonal trajectories being geodesies.

We next assume that ct*0 in (16). Then we have

1
w. = — "is,

c

and consequently
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dM = coiei + <a,e,

1
= wid H-(*¡i,e,

c

1
= coid -\-dei,

c

from which

(20) di M-ei) = oiiei,

which shows that

■(if-7»)-

dÍM-ei ) = 0

along the hypersurfaces wi = 0, that is to say, the vector ei is a concurrent
vector field [10] along the hypersurfaces referred to above. The normals to
these hypersurfaces being concurrent along them, these hypersurfaces are
totally umbilical hypersurfaces with constant mean curvature and their
orthogonal trajectories are geodesic Ricci curves. Thus we have:

Theorem 4. If an n-dimensional Riemannian space Vn for n>4, «?¿8
admits a group of motions of order «(« —l)/2 + l; then (I) there exists an <x>1
family of totally geodesic hypersurfaces whose orthogonal trajectories are geo-
desies, these hypersurfaces regarded as (n — i)-dimensional Riemannian spaces
being of the same constant curvature, or (II) there exists an «j1 family of totally
umbilical hypersurfaces with constant mean curvature whose orthogonal trajec-
tories are geodesic Ricci curves, these hypersurfaces regarded as (« — ̂ -dimen-
sional Riemannian spaces being of the same constant curvature. In both cases,
the group leaves the family of geodesies and that of hypersurfaces invariant.

5. We shall first study case (I). If case (I) in Theorem 4 occurs, then, the
normals to these hypersurfaces being a parallel vector field, by a well known
theorem [10], there exists a coordinate system in which the fundamental
metric form of the space takes the form

(21) ds2 = (dx1)2 + gu(x')dxsdx\

the form gs^x^dx'dx' being the fundamental metric form of an («— 1)-
dimensional Riemannian space Fn_i of constant curvature.

Conversely, if there exists a coordinate system in which the fundamental
metric form of the space Vn takes the form (21), gs^x^dx'dx1 being the funda-
mental metric form of an (« —l)-dimensional Riemannian space Fn_i of
constant curvature, then it is evident that case (I) in Theorem 4 occurs and
the space admits a group of motions Gr of order «(« —1)/2 -(-1 :
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x1 = x1 + t,        xr = fr(x; a),

where xr=fr(x; a) represent the group of motions of order «(« —1)/2 in the
(« —l)-dimensional Riemannian space Fn_i of constant curvature. Thus we
have:

Theorem 5. A necessary and sufficient condition that case (I) in Theorem 4
occur is that there exist a coordinate system in which the fundamental metric
form of the space takes the form (21), g.^x^dx'dx1 being the fundamental metric
form of an (« —1) -dimensional Riemannian space of constant curvature.

In this coordinate system, the fundamental tensors being of the form

(g*) -(rt      Y    («'o = (n   , A\0   g.t(xr)/ \0  gT'(x')J

if we calculate the Christoffel symbols of Vn:

we then find

(22)

the other

being zero, where

\jk) 2        \dxk      dx'       dx1/'

\st\   =   W      '

denotes the Christoffel symbols of F„_i:

U<J       2     Vox1      a»;'     aW
Next, calculating the Riemann-Christoffel curvature tensor of Vn:

. (jk) \jl) im \   ( i \ im \   ( i V
dx1 dx" \jkt \ml)       \jl)  \tnk) '

we find

(23) R\tu = R*'.tu,
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the other R'ßi being zero, where R*rttu denotes the Riemann-Christoffel
curvature tensor of Fn_i:

dx" dx' {stj      {.vu) (su)      (vt )

But, we know that
R*

(24) R*\tu =--r--— (ft/« - ft,/),
(n — 1)(« — 2)

R* being an absolute constant, and consequently we have, for the Ricci
tensor Rjk = Rijki of Vn,

R*
(25) R.t =- g.t,

n — 1

the other Rß being zero. From (25), we obtain, for the scalar curvature R
= g*Rjk of Vn,

(26) R = R*.
Thus if we put

(27) '* = - n~^2 + 2(n - 1)(, - 2) ' *'* = <""*
we then find

Ä* i?*ft«
""ll — "77-777-77 ' Tut —  ~2(« - 1)(» - 2) 2(« - 1)(» - 2)

(28) r
R* R*S,

7T1,   =  - ) TTTt  =    — '-'-(
2(«- 1)(» - 2) 2(« - 1)(« - 2)

the other it's being zero.
Thus, for the Weyl conformai curvature tensor:

(29) C jki = R jki + Tjkài — TjiSk + gjkir i — gjtïï k,

we find

(30) Cm = 0.
Thus, since we are assuming «>4, our space must be conformally flat.
Conversely, if we assume that our space is conformally flat and admits a

parallel vector field, then there exists a coordinate system in which

ds2 = (dx1)2 + g.t(xr)dx'dx'
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and

| T 1 = | r\   ,       R'„u = R*r«u,       R.t = R*.t,       R = R*,

the other

Q-Kjk)
Riiki and Rjk being zero. From these we have

R* R*.t   , R*g,t
Til — 777-777-"777 ' ^'t2(n - 1)(« - 2) » - 2      2(» - 1)(« - 2)

R* R*r, R*dTt
■ ) Trt  =

2(« - 1)(» - 2) n - 2      2(n - 1)(« - 2)

the other 7r's being zero.
First, from

Cl,n = irat + fttir1! = 0,

we find

R*
R*.t =--g.t,

« — 1

and consequently

R*g.t R*ôt
lr«< —-77-777-77 ' %r*

2(n - 1)(« - 2) 2(« - 1)(« - 2)

Next, from

C ¡tu  =   R atu +  tat^u  —  Vsuht + JllT«  _   ftuT«   "™   0,

we find

R*
R*r.tu =-—-— (guSu - ft«5,),

(n — \)(n — 2)

which shows that the hypersurfaces x1=const. regarded as («—^-dimen-
sional Riemannian spaces are of the same constant curvature. Thus we have:

Theorem 6. A necessary and sufficient condition that case (I) in Theorem 4
occur is that the space be conformally flat and admit a parallel vector field.

T. Adati and the present author [12] proved that a necessary and suffi-
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cient condition that a space be Kagan's subprojective space is that the space
be conformally flat and admit a concircular vector field. Thus Theorem 6
shows that the space under consideration is Kagan's subprojective space.

Next, we shall try to get a characterization by curvature tensor of the
space referred to above.

First of all, there exists, in our space, a parallel vector field £*:

(31) Su* = 0,
semi-colon denoting the covariant differentiation.

We assume that £,• is a unit vector field and, £¿ being a gradient field, we
put

de(x)
(32) fc = -fV- •

dx1

First, from (31), we find

(33) Ran? = 0, (Rijkl = gimRmm)-

The sectional curvature at a point of the space determined by a 2-plane
containing the unit vector £* and an arbitrary unit vector r¡{ orthogonal to
£* is given by — P1y¡u£V¿i:'7í- But, the space admitting a transitive group of
motions which carry the field £' into itself and any vector orthogonal to £*'
into any vector orthogonal to £\ this sectional curvature must be an absolute
constant. But, from (33), we have

(34) - iRtf(itV«Y = °
for any 17', which shows that this sectional curvature is always zero.

On the other hand, we know that the hypersurfaces given by

(35) g(x) = constant

are totally geodesic and are of the same constant curvature. Thus, represent-
ing one of (35) by parametric equations:

xi - «*(«'),

and putting

dxi
Vr'  =  -I

dur

we have, from the equation of Gauss,

(36) R*rstn   =   RijklVriV»'VtkVu',

where R*rs¡u are components of curvature tensor of the hypersurface, and
consequently have the form
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(37) R   rstu  =   K(gstgru  —   gsugrt),

g*, being the fundamental tensor of the hypersurface: gs*t = gjkV*'rltk-

* ■   i
fti ™ gjkv.'vr-

The -rv in (37) represents the sectional curvature determined by a 2-plane
orthogonal to £*'. The space admitting a transitive group of motions fixing ¿j*
invariant, K must be an absolute constant.

Now, putting r]aj = gijg*r"i]ri, we have

(38) 77,. TJ  y   =   5y   —   £ {y, g8Í77  y77  jfc   =   gyfc   —   g/ffe

Multiplying both members of (36) by r¡rari''i,rjtcri''d (a, b, c, d = 1, 2, • • • , «)
and contracting, we have, by virtue of (37) and (38),

K(gstgru  —  giugrth aV  bV cV   d

= Rand - Ùa)(si - rt»)(*î - Ùc)(Ôa - Ùd),
or, by virtue of (33) and (38),

K[(gbc  —   i t£c) (gad —   ío?<¡)   —   (gbd  —   h£d)(gac  ~   £a£c)]   =   Rabcd,

from which

(39)     Ruh = K[(gjkgn - gngik) - (tigjk - kjgik)h + (íign - £/fti)£*].

Conversely, suppose that the curvature tensor of the space has the form
(39) where K is a constant and £¿ is a unit parallel vector field. The vector
£i being a gradient, if we put %i = dg/dxi, then the hypersurfaces g(x)=con-
stant are totally geodesic and their orthogonal trajectories are geodesies.

Representing one of these hypersurfaces by xi = xi(ur), we have, from
(39) and the equation of Gauss,

* , * * *   *.
K  rstu  =  Ii{gatgru ~ giugrt),

where R*ratu is curvature tensor of the hypersurface. This equation shows
that the hypersurfaces regarded as (« — 1)-dimensional Riemannian spaces
are of the same constant curvature. Thus we have:

Theorem 7. A necessary and sufficient condition that case (I) in Theorem 4
occur is that the curvature tensor of the space have the form (39) where K is a
constant and f ,■ is a unit parallel vector field.

From (39), we have

(40) Rim-,m = 0.

Thus, we can see that our space is symmetric in the sense of E. Cartan [2].
6. We shall next study case (II). If case (II) in Theorem 4 occurs, then
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the normals to the hypersurfaces being Ricci directions, by a well known
theorem [9], the space admits a so-called concircular transformation [9]
and consequently there exists a coordinate system in which the fundamental
metric form of the space takes the form [9]:

(41) ds2 = (dx1)2 + fWMx^dx'dx',

the form gatdx'dx1 =f(x1)fst(xr)dxadx' being that of (n — l)-dimensional Rie-
mannian spaces F„_i of the same constant curvature.

Here, if the function f(xl) reduces to a constant, then our case reduces to
case (I). Consequently, in this case (II), we assume thatf(x1) is not a constant.

Calculating the Christoffel symbols of Vn, we find

the other

being zero, where f' = df/dxl and the
0
0'

denote Christoffel symbols formed from g„t=f(xl)f,t(xr) or, what amounts to
the same thing, from/,<(xr).

Next, calculating the Riemann-Christoffel curvature tensor R'ßi of Vn,
we find

1  P
R\

/If       1  /'2\
/        4   PJ

/If" 1    f,2\    T(43) *W--*lul-  -(77-77)*«'

1  /'2
^rs(M    =     ~    -R'illf    =     R*rStU-(gstSll   —    gêuSl),

4   f
the other P',-« being zero, where P*r,(U denotes Riemann-Christoffel curva-
ture tensor of F„_i.

From (43), we get

7? ( 1   f" 1   "H*lsl" ~ V7 7~ 7 TV^'
(44) J J1  fn
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the other P,-yn not related to these being zero.
From the first equation of (44), we see that the sectional curvature de-

termined by two unit orthogonal vectors

(1, 0, 0, ■  ■ •   , 0), (0, 772, t,3, • • ■   , 77")

is

/if"       1  f,2\- W¥- = - [- - - - -)(45)
/       4   f2,

and does not depend on (0, r]2, ■ ■ ■ , r¡n). But, the space admitting a transi-
tive group of motions which carry the field (1, 0, 0, • • ■ , 0) into itself
and any vector orthogonal to it into any vector orthogonal to it, this sectional
curvature must be an absolute constant.

From the second equation of (44), we see that the sectional curvature
determined by two mutually orthogonal unit vectors

(0, v\ n\ ■ • ■ , Vn),       (0, r2, f3, • ■ • , f)

is

- Rr.iuvTn'r = - f Ä*r.i„i»rrVf + — yJ-

This having to be independent of the choice of 77r and f, we must have

(46) R*r.t*   =   K*(gstgru  -   gaugrl),

and consequently

(47) - RrstuVW = K* - ~ f— ■
4   P

The group being transitive, this scalar must be also an absolute constant.
Equation (46) shows that the hypersurfaces xl = const., regarded as

(« — l)-dimensional Riemannian spaces, are of constant curvature. But we
know that these must be of the same constant curvature. Thus, K* is also an
absolute constant.

On the other hand, we have

ft, = f&Míñ,
ir\* - 7 fr»(*h. j *hi_-ù*\
\slf 2        \dx'        dx-       dx»/'

and consequently

R  rstu = rT,tu,

where F\tu is the Riemann-Christoffel curvature tensor formed with/si(xr).
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Thus,

(48) R*„tu   = ÄX^Fratu.

From (46) and (48), we obtain

Kx^Fratu   = Ax^K^fatfru ~ f.ufrt),

or

(49) F „tu = F(f.tfru - f.ufrt),

where

(50) F = fK*
is an absolute constant.

Now, we know that F and K* are both absolute constants. But, we are
assuming that the function /(x1) is not constant. Thus, we must have

F = 0,        K* = 0,
from which

(51) Fratu  =   0, R*ratu   M   0.

Moreover, the right-hand side of (47) being a constant, we put

1  f'2
— — = k2,
4   /»

& being a constant different from zero, from which we get

(52) / = dV11',

a2 being an arbitrary positive constant.
Thus, the fundamental metric form (41) takes the form

(53) ds2 = (áx1)2 + a2e2kxlfai(xr)dx'dx\

where the form fat(x')dxsdx' is, as equation (51)  shows, the fundamental
metric form of an (« — 1)-dimensional Euclidean space.

Moreover, substituting (52) into (44), we get

-Kuiu =   +   k2gau, Rratu  =   ~   k2(gatgru ~  gaugrt),

which may be also written as

(54) Rijki = - h2(gjkgu - gjigik).

Thus, the space is of negative constant curvature.
Conversely, if an «-dimensional Riemannian space is of negative constant

curvature —£2, then it ¡swell known [l] that its metric can be written in the
form (53), or
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(55) ds2 = (áx1)2 + a2e2kxl[(dx2)2 + ■ ■ ■ + (dxn)2],

or, on putting

1
aekxl = — i

ku

in the form

du2 + (dx2)2 + • • ■ + (dxn)2
(56) ds2 =-—- •

k2u2

Thus, the space admits a group of motions of order «(« — l)/2-fT given
by

(57) ü = au,        x  = a(a,x + a ),

where a is a parameter and
*r r   » r

x    =  a,x + a

represents a general motion in an (n — 1)-dimensional Euclidean space. Thus
we have:

Theorem 8. A necessary and sufficient condition that case (II) in Theorem 4
occur is that the space be of negative constant curvature.

7. Gathering all the results, we can state the following:

Theorem 9. A necessary and sufficient condition that an n-dimensional
Riemannian space Vn for « > 4, « ^ 8 admit a group Gr of motions of order
r = n(n —1)/2 +1 is that the space be the product space of a straight line and an
(n — 1) -dimensional Riemannian space of constant curvature (this is equivalent
to the fact that the space is conformally flat and admits a parallel vector field)
or that the space be of negative constant curvature.

The author wishes to express here his gratitude to Professor D. Mont-
gomery and to his colleagues, Professors K. Iwasawa, H. E. Rauch, and
H. C. Wang, discussions with whom were very valuable during this research.
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