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Introduction. Let/(x) be a real-valued function continuous on the interval
a^x^b. Then/(x) is said to be strictly convex if and only if the graph of
any linear function for a^x^b meets the graph off(x) in at most two points.
In this situation, one may consider the linear functions on a^x^b as a two-
parameter family—for each pair of points (xi, yx) and (x2, y2), Xi^x2, there is
exactly one linear graph through these points—and the strictly convex func-
tions as "associated" with the linear functions.

Beckenbach and Bing [l, 3](:) generalized this situation by replacing the
linear functions by a more general 2-parameter family, that is, a family of
continuous functions such that for each pair of points (xi, yx) and (x2, y2),
Xi7¿x2, there is one and only one member of the family through these points;
then in a natural way they have introduced the associated convex functions.
These authors have shown that many properties of the class of linear func-
tions and convex functions hold for 2-parameter families and their associated
convex functions. One surprising result was the observation that a 2-param-
eter family need not be topologically equivalent to the family of linear func-
tions on the interval O^xgl.

T. Popoviciu [9] has given the definition for re-parameter families, but
stated no properties. We obtain results here for such families of functions and
their associated convex functions which are in part generalizations of those
obtained by Beckenbach and Bing. We also obtain results related to the
work of T. Popoviciu [7, 8] on convex functions associated with linear
families, to that of M. M. Peixoto [6] on the derivatives of generalized con-
vex functions, and to that on approximation discussed by S. Bernstein [4]
and C. J. de la Vallée Poussin [5].

1. Definitions and elementary properties.
Definition 1. An n-parameter family is a set of single-valued, real, con-

tinuous functions/(x) on an interval a^x^b such that for every set of points
(xi, yi) (i—i, ■ • ■ , w) with a^xi<x2< • • • <xn^b there is exactly one
f(x) with/(x,)=y¿.

Hereafter all functions are assumed to be single-valued, real, and continu-
ous on a^x^b. We designate an re-parameter family by F.

Simple examples of re-parameter families are the set of all polynomials of
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degree not greater than « — 1 on a fixed closed interval and the set of all linear
combinations of either 1, sin x, sin 2x, • • • , sin (re —l)x on a^x^b where
0<a<o<x or 1, sin x, cos x, sin 2x, cos 2x, • • • , and so on, with re such
functions and 0<a<ô<27r. These families are in particular linear because
there exist re functions f\, ■ ■ • , /n in terms of which every/ may be expressed
as a linear combination:/=a1/i+ • • • +£[„/„. Popoviciu [8] has discussed
them.

Theorem 1. If an n-parameter family F is closed under addition, then it is
linear.

Proof. Choose re vertical axes x = Xi, • ■ • , x = x„ where Xi, • • • , xn are
distinct values on (a, b). Any member/ of F is uniquely described by the re
values (f(xi), • • • ,f(x„)); we represent/by this vector. This correspondence
preserves addition. Since the set of w-dimensional vectors forms a group
under addition and has a basis of re vectors, by the isomorphism the same
must be true of F.

The example given by Beckenbach and Bing of a 2-parameter family
which is not topologically equivalent to the family of linear polynomials
may be modified slightly so that all the functions are analytic; for example,
for the member/(x) determined by (xi, y{), (x2, y2) take

f(x) = ex + d       if    (yi — y2)/(xi — x2) ¿ 0,
f(x) = ex+c + d     otherwise,

with suitably chosen c, d.
However 1-parameter families are topologically equivalent to the set of

constant functions y = c. A 1-1 correspondence is attained by setting c=f(a)
for a given / in F. An application of Theorem 5 below completes the proof.

The next definition is reminiscent of an unsatisfactory definition of being
tangent.

Definition 2. A function g(x) is said to graze h(x) at x=x0 if (i) g(x0)
— h(xa) and (ii) there is a positive e such that for a^x0 — e<x<x0+e^o,
g(x)—h(x) does not change sign.

Definition 3. A function g(x) is said to be convex with respect to a given
w-parameter family F if g(x) is real-valued and continuous on (a, b) and inter-
sects no member of F more than re times, multiplicities not being reckoned.

Theorem 2. If g is convex and has re intersections with an f of F, then g does
not graze f anywhere for a<x<b.

This result was proved by Beckenbach for re = 2. We shall prove it for
re = 1 and then reduce the general case to this one. Suppose g grazes / at x'.
Then g—f always has the same sign and is zero only for x=x'; assume g—f
^0. Furthermore x'^a or o by Definition 2. Let/i and/2 be members of F,

/i intersecting g at x = a, and ft intersecting g at x = 6. Now / and /i, being

9
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members of a 1-parameter family, never intersect. Thus/i—/is always of the
same sign, which is seen to be positive by taking x = a. Now g and/i, having
a point in common, cannot intersect again. Since /i = g at an end point, /i — g
always has the same sign, which is indeed positive by taking x = x'. Similarly
ft — g è 0. Now /i —ft = (fi — g) — (ft — g) and is negative for x = a and positive for
x = o. Being continuous, it must be zero somewhere on (a, b). But this is a
contradiction to the fact that /i, being distinct from ft, cannot intersect it.

We next consider the general case. Suppose g grazes/ at x =Xi. Let (a', b')
be a closed interval with xi in its interior and containing abscissas of none of
the other re —1 points of intersection. If we take only those functions/ in F
which pass through the other re —1 points of intersection and restrict them
to (a', b'), we obtain a 1-parameter family F' in which g restricted to (a', b')
is a convex function g'. But then g' cannot graze any function of F'; hence g
does not graze/ at xi.

Corollary. If g is convex and has re — 1 intersections with an f of F but not
at x = a or b, and if sign \g(a) —f(a)} = ( — 1}n+1 sign \g(b) —f(b)}, then g and
f intersect exactly re — 1 times.

Proof. There could be at most one more intersection and if this occurred
g —f would change sign at each intersection according to the theorem so that
sign {g(a)—f(a)} =( —l)n sign {g(b)—f(b)}. This is a contradiction to the
hypothesis of the corollary.

Theorem 3. 7//i and /2 are distinct members of F and intersect re —1 times,
then /i does not graze f2 anywhere on a<x<b.

This is a consequence of the previous theorem. Suppose /i grazes f2 at
xi. Let (a', b') be a closed interval having xi in its interior and containing
none of the abscissas of the other re —2 points of intersection. Choose x' not
in (a', 6') and with /i(x') ^ft(x'). Let F' be the 1-parameter family of those
functions of F passing through the other re —2 points of intersection and also
through (x', /2(x')), restricted to the interval (a', b'). Then /i restricted to
(a', 6') is convex with respect to F' and intersects /2 on (a', b') at one point.
By the previous theorem/i cannot graze ft at xi.

Corollary. If /i and ft are in F, and intersect at least re — 2 times but not
for x = a or b, and if sign {fi(a)— ft(a)} =( —1)" sign {fi(b)—fi(b)\, then /i
intersects ft exactly re — 2 times.

A proof of this uses this same reasoning as was used for the corollary of
the preceding theorem.

We have inserted the following theorem here, even though its proof de-
pends on Theorem 5 below, because it is closely related to the material of this
section.

Theorem 4. If g is convex and iff in F intersects g in « points x=xi, • • •, xB
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(xi< • • • <x„), the sign of f(x)—g(x) on Xi<x<x2 is independent of the
choice of f.

If re = l the theorem is to be interpreted as stating that the sign of /— g
for Xi<x^ô is independent of the choice of/.

Proof. Let Xi, • • • , x„ vary continuously in (a, b), only maintaining that
Xi< • ■ • <x„, and let/(x) vary accordingly so that/(x) =g(x) at Xi, • • • , x„.
Since/(x) maintains its maximum number of variations in sign (Theorem 2),
by continuity (Theorem 5) these variations must remain in the same order.

As a consequence of Theorem 4 it follows that convex functions as defined
here are concave or convex in the sense of Popoviciu [8]. The converse is
obvious.

2. Convergence. The set F may be easily metrized by choosing « distinct
X,- (i = 1, • • -, re) on the interval (a, b) and defining the distance from/i to/2 as

(/i, ft) = max | fi(xi) - ft(Xi) |.
i

That (/i, /2)^0 is obvious from its definition; also (/i, f2) = (f2, /i). That
(fi, ft) = 0 if and only if /i =/2 follows immediately from the definition of F.
Finally

(fuh)  À (fl,ft) + (/*/»)■
It is easily seen that the space F is complete with respect to this metric.

Furthermore the functions converge point-wise. Indeed the convergence is
uniform as a consequence of the next theorem.

Theorem 5. If In sequences (xu), (yu), • • ■ , (xnk), (ynk) converge to
X\, yi, • • ■ , xn, yn respectively, where all the x's are on the interval (a, b) and if
XikT^Xjk, Xít^Xj (ij^j), then the sequence of functions fk in F determined by
(xik, y,k) (í = l, • • • , w) converges uniformly to the function f in F passing
through (xi, yu), ■ ■ ■ , (xn,yn).

The proof is indirect. If the sequence {/¿} does not converge uniformly
to /, then there is a positive e, an infinite subsequence {fki}, and a sequence
{£ki\ for which \fki(kk,)— /(£*;) | >€• Since the g*¿ are bounded, they have
an accumulation point | to which a subsequence {&J of $», converges and
we may also require that fkj(^k,) —/(?*;) always have the same sign. Let X be 1
or —1 taking that same sign. Assume that Xi<x2< • ■ ■ <xn, and for sim-
plicity of notation we denote the sequence {fkj} by {/,■} since we no longer
refer to the original sequence {/,•}. Similarly the notation {^kj} will be re-
placed by {f y}.

Case: xr<£<x,-+i for some r such that Kr<n — 1, and xn¿¿b. Set x/
= (xy-|-x3+i)/2 (jVr, re), x/ =£, x„' =(xn+o)/2. Let/' in F be determined by
the re points
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(*/,/(*/))     (i^r), (xr',/(*r') + Xe/2).

We shall find an/,- distinct from/' having « intersections with/', and this is a
contradiction.

Now /' intersects / at the re—1 points where x = x/ (ij^r), and since
xl <x,-+i<x¿+1, by Theorem 2, /'(x,) —/(x.) must alternate in sign as i suc-
cessively takes the values from 1 to r and from r+1 to re, but it must have the
same sign for i equal to r and r+1, the sign being the same as at x', that is,
the same as the sign of X.

Suppose

(1) V =min |/'(x,)-/(x,)|;
i

then 77 > 0 since/does not intersect/' at any x,-. Because of the continuity of
/' there is a positive 5 such that

(2) I /'(*) - f'(xi) I < v/2     if     I x - Xi I < 5.
Under the hypothesis of the theorem for sufficiently large m

(3) I Xi — xim I < 5
and

(4) I f(xi) - fm(xim) I < v/2.
Suppose f'(xi) —f(xi) is positive; if negative a similar discussion occurs. By
(1), (2), and (3), f'(xim)>\f'(xi)+f(xi)]/2; whereas by (1) and (4), fm(xim)
<[f'(xi)+f(Xi)]/2. Hence f'(xim) —fm(xim) has the same sign as/'(x¿)-/(x,),
the conclusion which is also true if/'(x,)—/(x.) were negative. Because this
last quantity alternates in sign for i—\, ■ ■ ■ , r and also for t' = r + l, •••,«,
there will be the same alternations in sign for /'(x!m) — /m(x¡„) and hence at
least re —2 intersections of/' and/m inasmuch as the functions are continuous.

Finally we shall prove the existence of two more intersections on the inter-
val xr<x<xr+i. Since/' and/ are continuous there is a positive ô such that
for x in the interval xr<£ — 8<x<£+8<xr+i, 0< |/(x) — f'(x)\ <3e/4, the
value of [/(£) —/'(£)| being e/2. For m sufficiently large, \%m — £| <8. Because
|/(£») -f'(U I <|/(?»)-/«(£.) |, f(U and /(£„,) are both larger or both
smaller than fm(^m) or, in other words, /'(£m) —/»>(?»») has the same sign as
/(£m) —fm(^m), this sign being the same as that of —X from the definition of X.
But it was shown in the preceding paragraph that /'(x,m) — fm(xim) has the
same sign as/'(x<) — /(x¿). This sign is the same as that of X, as was observed
at the beginning of the proof of this case. Thus the sign of/'(x) —fm(x) alter-
nates as x goes from xrm to £m to xr+i,m. For sufficiently small 5, xrm<£m
<xr+i,m, and/' and/m have at least two more intersections.

For the other cases slight modifications of this proof are used. If instead
of xn7^b we had Xi^a, the same proof applies after first reflecting with re-
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spect to the y-axis. If however Xi = a and x„ = o we proceed much as before.
But we first introduce two auxiliary functions in F: fl determined the same
as the former/', and/2 determined by the same re points except that (a,f(a))
is used instead of (xB ,/(x„')). Notice that xB =b. Since these two functions
intersect in re —1 points, // —ft must alternate in sign from one intersection
to the next by Theorem 3. Another function f$ in F determined by the re —1
intersections of// and// and the point (a, (// (a)+ft (a)]/2) will always lie
between/i' and// also by Theorem 3. This/3' has properties that the func-
tion /' had which are needed for the proof in the first case; namely that
f'(xi)—f(xi) alternates sign except for i = r and r-f-1. This can be seen by
considering // (x,) —f(xt) and f{ (x¡) — /(x¿). These have the same sign (or are
zero) for fixed * and alternate sign for i—\, • • ■ ,r and again for i = r
+ 1, • • • , re. But fi {Xi)—f(xi) must do likewise because// always lies be-
tween // and/2'.

If originally £>x„, the proof is exactly the same as in the first case but with
r = re. Then re —1 intersections are obtained on the intervals x,-<x<x¿+i
(i=í, • • • , re—1) and another intersection for xB<x<o.

If £<Xi, a reflection with respect to the y-axis transforms this case into
that of the paragraph above.

We next consider the changes in the original proof if £ equals xr.
If ¿^xB or Xi ,then we may take the sequence £,- such that £/—£ always has

the same sign; assume it to be positive. Let/' in F be determined by (x<,/(x<)
+ Xe/2) (* = 1, • • • , «) where the ambiguous sign is chosen + for i = r and
alternates sign for i^r, while it is taken + for ¿ = r+l and alternates sign
for »¡£r+l- Then the same type of reasoning as used originally shows there
is at least one intersection of/' and/m (for sufficiently large m) on each of the
re —2 intervals Xj<x<x<+i (i^r). Two more intersections are obtained much
as before on the interval xr<x<xrfi by the use of the smaller interval
xr<x<xr+5.

If £ = xn, we proceed as above providing we may take the sequence {£,}
such that £y<x„. Otherwise we model the proof after the one for the case
£>xn. Determine/'in 7" by the points (xf,/(x<) + ( — l )n_iXe/2) (i'=l, • • -,re).
The alternations in sign from one x¿ to the next will provide re —1 instead of
re —2 intersections with the fm as in the case £<x„. Another intersection is
obtained because /m(£m) —/'(£>») and/m(xB) —/'(xn) have opposite signs.

3. Derivatives of convex functions. Peixoto [6] has given several results
about the existence of derivatives for 2-parameter families. We shall prove the
following theorem.

Theorem 6. If all the functions in an n-parameter family F (re ̂ 3) have
derivatives on a<x<b, then so does any function g convex with respect to F.

Choose Xo on a<x<b. Then there is a positive h such that a<x0 — h<x0
-\-2h<b. We reduce to the situation of a 3-parameter family by first choosing
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re —3 points x4, • • • , x„ on the open interval (xo+2h, o). Those members of F
passing through (x<, g(x,)) (i = 4, • • -, re) form a 3-parameter family F' on
a^x^x0+2h and g restricted to that interval is a function g' convex with
respect to F'.

Start with // in 7"' determined by having it intersect g' at x = x0 — h,
Xo, Xo+h. It is essentially no restriction to assume/0' —g'>0 on the interval
(xo — h, Xo). Consider all// in F' which intersect g' at x = x0, x0+A, and a value
x/ between Xo and x0+h. Then by Theorem 4,// — g'<0 for x<x0; and conse-
quently// —// <0 at x = x0 — h. Let y\ be the least upper bound of // (x0 — h).
This bound is not attained, for if //, corresponding to such an upper bound,
intersected g at x = x0, x/, x0+A, then the function in 7" determined by inter-
sections with gat x = x0, Xo+Xo/2, x0+h lies below// forx0<x<x0' and must
lie above// for x<Xo by Theorem 3 so that yi would not have been an upper
bound. Let /i be that function in F' determined by

(x0 - h, yi),        (xo, g(x0)),        (xo + h, g(x0 + h)).

It does not intersect g for x0<x<x0+Ä by the argument above, nor for
x>xo+Ä because there it is above any // by Theorem 3. It does not inter-
sect g for x<x0 or for x>x0+A by Theorem 5 since/i is the limit of functions
which do not intersect g there.

Also/i^g when x0 — h<x<Xo+h. For, /i<g atx = x0 — h where g=f¿,
and hence/i<g when x<x0. Next/i>// when x<x0, this being true at xo — h;
by Theorem 3,/i <// when x0<x<x0+&. But// (x0') =g(x0'); hence/i<g at
x = Xo' and consequently for x0<x<x0+A.

By the same process we can find an/2 in F' intersecting g just at x = x0 — h
and xo and such that/2^g for x0 —A<x<xo+Ä. Because the derivatives of
/i and f2 exist and f2 grazes /] at x0, we conclude df2/dx = dfi/dx at x = x0.
Finally/2(x')—/2(x0)^g(x')—g(xo)è/i(x')—//(xo) for x0 — h<x'<x0+h. On
dividing by x' —x0 and letting x'—»x0, we finish the proof of the theorem.

4. Approximation of functions. Within the set F we have a very simple
metric whose determination in a particular case is a finite process. But for
the topic of approximation we introduce the metric commonly used for con-
tinuous functions; namely, if gi, g2 are continuous functions on a^x^b, the
distance between gi and gt is

||gi - gt\\ = max | gi(x) - gt(x) |.
X

In F the two metrics are equivalent by Theorem 5.
Definition 4. A best approximant in 7" of a continuous function g is a

function /' in F for which

||/'-ill = g,l.b. ||/-g||
fiaF

and this value is called the modulus of approximation of g in 7".
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Theorem 7. For any function g, a best approximant in F exists.

For let k be the modulus of approximation. Then there is a sequence fm
such that limOT,„ ||/m — g|| =k. Choose re distinct values xi, • • • , x„ on the
interval (a, b). There is a one-to-one correspondence between the functions
f in F and the sets of values yu • ■ ■ , yn taken by the functions / at
x = Xi, ■ • ■ , x„. Let fm(xi)=ymi. Then there is a subsequence fmj of fm for
which ymj% is convergent (i=l, ■ • ■ , re), converging to y'. Let/' correspond
to the set y{, • • ■ , yñ ; by Theorem 5, ||/' — g|| =k.

Theorem 8. If f is a best approximant in F of a continuous function g,
then f—g takes the value ±||/—g|| at a set ofn-\-l points and with opposite signs
for consecutive points of the set.

Let ft = ||/— g||. Let ^ be the smallest value of x for which |/—g| =k, a
smallest value existing because/—g is continuous. This £i is the beginning of
an increasing sequence of values £i, £2, • • • such that fl+i is the smallest x
larger than £; for which/(x) — g(x) = — [/(£,•) — g(£<) ]. Suppose that the conclu-
sion of the theorem is not satisfied so that the sequence ends with £„,, mSn.
Let Xi (i = 1, • • • , m — 1) be the largest value of x smaller than ¿,+i at which
/—g = 0. These values also exist because/—g is continuous. Also £i<x¿ be-
cause at £,■ the sign of/—g is opposite to its sign at £i+i. Let x0 = a, xm = b.
Suppose ( — 1 ){[/(?«) — g(£>)] —k; a similar argument applies if the signs are all
reversed. Let k{ (¿=1, • • • , m — 1) be the maximum of ( — l)i+1(/— g) on
the interval (*<_i, x¿) and &' = max k(. By our construction 0^k'<k, for the
smallest value of x larger than x<_i at which ( — l)i+1(/—g) =k is £¿+i, and
£¿+i>Xi. Let e — (k — k')/2. Since/(xi)-g(xi) =0, there is an interval Xi<x
<Xi + 5<£2 on which |/(x)— g(x)| <k'.

lin —mis even, choose distinct points x/, • • • , x„_m on the open interval
(xi, Xi + ô), and finally take x" = Xi+5. Determine/' in F so that it intersects

/ at x = xi, • • • , xm_i, x/, ■ • • , xB_m and passes through (x", f(x")—r¡),
where r¡ is positive and chosen sufficiently small by Theorem 5 so that ||/— /'||
<e. Since/ and/' have re—1 intersections, they cross at each intersection
and nowhere else. By construction the sign of /(£2) — g(£2) is positive while
that of f'(x") — f(x") is negative and £2 is on the interval (x", x2). Thus the
sign of /(£¿) — g(¡ti) is opposite to that of /' —/ on (x,-_i, x¿) (i = 3, • • • , m).

For a moment let us discuss values on the interval (x2, x3); here/</'
since/($3)-gíÍ3)<0.Atapointwhere/</'<g, |/'-g| <|/-g| =*.If/<g</',
then|/'-g| <|/'-/| <e<¿.Ifg</,then|/'-g| < |/'-/| + |/-g| <e+k'<k.
Thus on (xi, x2) always |/'— g| <k. Much the same argument proves that
[/' —g| <k on the intervals (x,_i, x,.) (î = 4, • ■ • , m) and on (x", x2), and also
on (xo, Xi) since there are an odd number of intersections of f and /' from
x = x2 to x = xi. On the interval (xx, x"), \f'-g\ <|/'-/| +|/~g| <e + k'<k.
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Thus everywhere \f — g\ <|/_g| ; ||/'—g|| <||/—g|| since all these functions
are continuous; and / cannot be a best approximant.

If however n — mis odd then choose just re — m— 1 points x/, • • • , xB_m_!
as before. If \f(a)-g(a)\ H|/-«||, let *4-»-i-o; or if \f(b)-g(b)\ ^\\f-g\\
we may take x'n_m_l = b. Then choose x" as before and the proof goes through
much the same. But if a = £i, o = £m, then let ya=f(a) —r¡[f(a)—g(a)], yb=f(b)
-T)[f(ô)-g(o)], where r¡>0 and sufficiently small that ||/-/'|| <e. Here/' is
determined by the points of/ at x = Xi, • • • , xm_i, x/, • • • , x'n_m_u and by
(a, y<¡), (b, yb)- Thus/' has re —2 intersections with /. It has no more by the
corollary of Theorem 3. Since the intersections are precisely Xi, • • • , xm_i
and an even number x/, • • • , x'n_m_lt the former proof may now be carried
out.

Corollary 1. A necessary and sufficient condition that f in F be a best ap-
proximant of g is that f—g= +||/—g|| at w + 1 values o/x = Xi, • • • , x„+i and
with opposite signs for consecutive x¿.

Let /i be a best approximant, and assume/ is not. Then at the values of
x where /—g= +||/—g||, /—/i is not zero and takes the sign of f—g. Thus
/—/i changes sign n times and consequently/and/i intersect « times. This is
a contradiction to/ and/i being distinct.

It is not true that +||/—g|| must be attained at a and at o; let F be the
3-parameter family of parabolas and straight lines and let g be a sine curve
having several cycles between a and b and not taking an extreme value at a
or at b.

Corollary 2. If f—g equals ni\, ■ ■ • , mn+i at the successive values
Xi, • • ■ , xn+i and if successive mi have opposite signs, then the modulus of ap-
proximation is not less than the minimum of the mi nor more than their maximum.

For the proof much the same reasoning applies as was used to justify
Corollary 1.

Theorem 9. If gis continuous there is exactly one best approximant in Fof g.

Let / and h be best approximants in 7" of g. Let f—g take the values
+ 11/—g|| at points with x = Xi, • • -, xn+i, where the sign alternates for
adjacent points and Xi< • • • <xB+i; similarly for h and points at x = x/ ¡ • • -,
xB+1. We may assume that if x,- is on an interval where |/—g| =||/—g||, then
Xi is the least value of x on that interval. Arrange the x<, x/ (i=l, ■ ■ ■ , re + 1)
in order, obtaining a set &,, • • • , £2n+2. By a slight deformation which does
not change the position of any intersections or introduce additional inter-
sections, we may assume £,<£,+i. We consider the possibility of an inter-
section of/ and h on the interval £»<x^£i+i and we would like to average
two values of £ for every intersection in order to obtain re intersections. The

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 LEONARD TORNHEIM [November

following cases are typical of all possible cases; here/+ means/—g = ||/'—g||
and/-that/-g=-||/-g||.

Case I II III

h f+ f+ f+
few /- h+ h-

min. no. of intersections 0 10

We need consider in detail only those cases where the number of intersections
is 0, namely, I and III. Now I gives 0 intersections only if &(£,•) =/(£,•) and
h>f for £,<xa£«+i- At £<+2 we may have/+, h~, or h+. In the first two then
there would be an intersection for £,-+i<x:££¿+2, and the last by itself is not
possible because since we have h+ at ¿,- and not on £i<xá£¿+2, we cannot
have h+ at £i+2. Thus we have used only two ¿'s and obtained an intersection.

For case III at £<+2 we may have h+ or f~ and both of these give an inter-
section.

In Theorem 9 the hypothesis that g be continuous is not superfluous; for
example, let 7" be the 2-parameter family of linear functions on the interval
( — 1,1) and let g be — 1 when — 1 ;S x < 0 and +1 when 0 ;= x i£ 1. Then all the
lines y = mx, 0 = w = 2, are best approximants. Theorem 7 is true if g is bounded
even if not continuous, after redefining ||/—g|| of course as l.u.b. |/(x) — g(x) |,
the proof being as before. Theorems 8 and 9 are still true if g is merely bounded
when 7" is a 1-parameter family. To prove the former, if/ is in 7", let l.u.b.
(f—g) =k, g.l.b. (f—g) = — k', and k?¿k'. Assume k — k' is positive and let it
equal 2e. By Theorem 5 there is an/' in 7" such that 0<f—f'<e. Since/and
/' are continuous and do not intersect, f—f>n where r¡ >0. Then f — g
<f—g — 7]^k — 77, while/'—g = (/' —/) + (f—g) ?S — e — fc'so that/'approximates
g better than /. Next to prove Theorem 9 without the assumption that g is
continuous, we let/and/' be two best approximants in Fand we may assume
/'—/>e>0 on (a, b) since / and /' are continuous and do not intersect.
Choose xi such that/(xi) — g(xi) >||/— g|| —e. Now/'(xi) — g(xi) >/(xi) -g(xi)
+e>||/—g|| =||/' — g||, and this is impossible by the definition of ||/' — g||.
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