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On Nash Equilibria in Stochastic Games?

Krishnendu Chatterjee, Marcin Jurdzi�nski, and Rupak Majumdar

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, USA

fc krish,mju,rupakg@eecs.berkeley.edu

Abstract. We study in�nite stochastic games played by n-players on
a �nite graph with goals given by sets of in�nite traces. The games are
stochastic (each player simultaneously and independently chooses an ac-
tion at each round, and the next state is determined by a probability
distribution depending on the current state and the chosen actions), in-
�nite (the game continues for an in�nite number of rounds), nonzero sum
(the players' goals are not necessarily conicting), and undiscounted. We
show that if each player has a reachability objective, that is, if the goal
for each player i is to visit some subset Ri of the states, then there exists
an �-Nash equilibrium in memoryless strategies. We study the complex-
ity of �nding such Nash equilibria. Given an n-player reachability game,
and a vector of values (v1; : : : ; vn), we show it is NP-hard to determine
if there exists a memoryless �-Nash equilibrium where each player gets
payo� at least vi. On the other hand, for every �xed �, the value can be
�-approximated in FNP.
We study two important special cases of the general problem. First, we
study n-player turn-based probabilistic games, where at each state atmost
one player has a nontrivial choice of moves. For turn-based probabilistic
games, we show the existence of �-Nash equilibria in pure strategies for
all games where the goal of each player is a Borel set of in�nite traces.
We also derive the existence of pure exact Nash equilibria for n-player
turn-based games where each player has an !-regular objective.
Then we study the two player case and show that already for two-player
games exact Nash equilibria may not exist. Our techniques for the gen-
eral case also yield NP \ coNP �-approximation algorithms for zero-sum
reachability games, improving the previously known EXPTIME bound.

1 Introduction

The interaction of several agents is naturally modeled as non-cooperative games
[25, 27]. The simplest, and most common interpretation of a non-cooperative
game is that there is a single interaction among the players (\one-shot"), after
which the payo�s are decided and the game ends. However, many, if not all,
strategic endeavors occur over time, and in stateful manner. That is, the games
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progress over time, and the current game is decided based on the history of
the interactions. In�nite stochastic games [30, 8] form a natural model for such
interactions. A stochastic game is played over a state space, and is played in
rounds. In each round, each player chooses an available action simultaneously
with and independently from all other players, and the game moves to a new
state under a possibly probabilistic transition relation based on the current state
and the joint actions. For the veri�cation and control of reactive systems, such
games are in�nite: play continues for an in�nite number of rounds, giving rise
to an in�nite sequence of states, called the outcome of the game. The players
receive a payo� based on a payo� function mapping in�nite outcomes to a real
in [0; 1].

Payo�s are generally Borel measurable functions [23]. For example, the payo�
set for each player is a Borel set Bi in the Cantor topology on S! (where S is the
set of states), and player i gets payo� 1 if the outcome of the game is a member of
Bi, and 0 otherwise. In veri�cation, payo� functions are usually index sets of !-
regular languages. !-regular sets occur in low levels of the Borel hierarchy (they
are in �3\�3), but they form a robust and expressive language for determining
payo�s for commonly used speci�cations [20]. The simplest !-regular games
correspond to safety (closed sets) or reachability (open sets) objectives.

Traditionally automata theory and veri�cation has considered zero sum or
strictly competitive versions of stochastic games. In these games there are two
players with complementary objectives; so the payo� for one is one minus the
payo� of the other. We argue that in many modeling instances this is too pes-
simistic an assumption. The environment of a component in a distributed system
is not necessarily malicious. In fact, many natural interactions are modeled as
a game between several components each with its own speci�cation, and each
component is interested solely in establishing its own speci�cation without re-
gard to the speci�cation of other components. For example, consider a set of n
processors each sending out data on a common network. At each round, each
process can decide to send data or do nothing. If more than one process tries
to send data simultaneously, then there is a conict and the data is not sent; if
there is a unique processor sending out data in a round, then its data is sent out.
The game for two processors is schematically shown in Figure 1. It can be easily
generalized for n processors. Each processor wishes to send an in�nite number
of data packets, that is, process i has the speci�cation that the game visits the
node i in�nitely often.

Traditionally, the system will be modeled as a zero sum game between process
i and an environment consisting of all other processes, and the requirement will
be speci�ed in a game logic such as alternating-time temporal logic [1] as hhiii23i,
that is, we ask if player i has a strategy to visit node i in�nitely often, against all
strategies of the other players. This condition is too restrictive, and indeed, this
cannot be proved for the network game (consider a strategy of the environment
where all the other processors try to send at each round). We claim that the
right way to model this system is as a non-zero sum game, where each processor
i has the obligation 23i, and is solely interested in ensuring its speci�cation
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(1,_): denotes process 1 sends packets and process 2 does not.
 (_,2):denotes process 1 does not send packet and process 2 does.

(_,_)

(_,_)
(1,2)

(_,_)

(_,_): denotes neither of the processes send packets.
(1,2): denotes both processes send packets.

Fig. 1. The two processor game

without regard to the speci�cations of the other players. The solution concept
in such games is a Nash equilibrium [13], that is, a strategy pro�le such that no
processor can gain by deviating from the pro�le, assuming all other processors
continue playing their strategies in the pro�le. However, the existence of Nash
equilibria in in�nite games is not clear.

Notice that the network game has a Nash equilibrium where the proces-
sors are allocated time slots, and processor i only sends in time slot k where k
mod n = i. Indeed this is a solution adopted in time triggered protocols in real
time systems [16]. There is a (symmetric) equilibrium in the game as well: each
processor rolls an n-sided dice, and sends data only if the dice shows 1. Then
with probability 1, all processors can send data in�nitely often. Interestingly,
exponential backo� behavior implemented in real networks also have the above
property, indeed, it is a Nash equilibrium where the strategy of a player is obliv-
ious to the total number of processes participating in the game. The emergence
of quite rich behavior in such a simple example shows the modeling power of
stochastic games.

This work is motivated by the result by Secchi and Sudderth [29]. Secchi and
Sudderth [29] proved that a Nash equilibrium exists for safety conditions where
each player i has a subset of states Si as their safe states and gets a payo� 1 if the
play never leaves the set Si and else get payo� 0. In the open (or reachability)
game, each player i has a subset of states Ri as reachability targets. Player i gets
payo� 1 if the outcome visits some state from Ri at some point, and 0 otherwise.
Our main results on reachability games are summarised below.

1. We show that reachability games on �nite state spaces always have �-Nash
equilibria in memoryless strategies. This is the best one can hope for: there
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are two player non zero sum reachability games with no Nash equilibria [17].
In general equilibrium strategies require randomization.

2. We show that the problem of �nding an �-Nash equilibrium in memoryless
strategies where each player gets at least some (speci�ed) payo� is NP-hard.
Related NP-hardness results appear in [5], but our results do not follow
from theirs as our payo�s are restricted to be binary. Moreover, for any
constant �, we give an NP algorithm to approximate the value of some �-
Nash equilibrium in memoryless strategies. Already for two-person zero-sum
games with reachability objective, values can be algebraic and there are
simple examples when they are irrational [8]. Hence approximating the values
is the best one can achieve.

Together with [29] this solves the existence question for the lowest level of the
Borel hierarchy. We leave the existence of Nash equilibria in stochastic games
where objectives are sets in higher levels of the Borel hierarchy as an interesting
open question. We also study two important special cases of the general problem:
turn-based probabilistic games [33, 28], where at each stage, at most one player
has a nontrivial choice of actions, and the two-player case of general stochastic
games.

For the special case of two person turn-based probabilistic zero sum games
we prove a pure strategy determinacy theorem for all Borel payo� functions. The
proof is a specialization of Martin's determinacy proof for stochastic games with
Borel payo�s [23]. Using this, and a general construction of threat strategies [25],
we show that �-Nash equilibria exist for all turn based probabilistic games with
arbitrary Borel set payo�s. Moreover, using further structural properties for
turn-based probabilistic parity games, we show the existence of pure strategy
Nash equilibria for parity payo�s. Since parity games are a canonical form for
!-regular properties [31], this proves that (exact) Nash equilibria exist for turn
based probabilistic games with !-regular payo�s. Using an NP \ co-NP strategy
construction algorithm for parity games [3], we get an NP algorithm to �nd a
Nash equilibrium in these games.

For the special case of two-player (concurrent) games, we show an improved
NP \ co-NP upper bound to approximate the values for two-person zero sum
reachability games within �-tolerance for any constant �, improving the pre-
viously best known EXPTIME upper bound [8]. This generalizes a result of
Condon [4]. Notice that the solution of a zero-sum reachability game can be
irrational, hence we can only hope to compute it to an �-precision.

Related Work

Stochastic games were introduced by Shapley [30] and have been extensively
studied in several research communities; the book of Filar and Vrieze [10] pro-
vides a uni�ed treatment of the theories of stochastic games and Markov decision
processes. Existence of Nash equilibria in (nonzero sum) discounted stochastic
games was proved by Fink [11]. Since then, several results have appeared for
special cases [32, 33]. One of the most important results in stochastic games in
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recent times is due to Vieille [34], [35] where he shows the existence of �-Nash
equilibria for two-person non-zero sum game with limit average criteria. The
existence of Nash equilibria for n-person stochastic games with limit average
criteria is still open. Our result shows in the special case of turn-based proba-
bilistic n-person games �-Nash equilibria exists as limit average criteria occurs
in low levels of Borel hierarchy.

In�nite games with Borel winning conditions have been studied by descrip-
tive set theorists [15]. Martin [23] proved the determinacy result for two-person
stochastic zero sum games with Borel payo�, building on his earlier proof of
Borel determinacy in perfect information games [22]. This result was extended
by Maitra and Sudderth [19]. In the case of non-zero sum games the existence
of Nash equilibria for Borel payo�s remain some of the most important ques-
tions in stochastic games. Secchi and Sudderth [29] showed the existence of Nash
equlibria with safety conditions.

Computing the values of a Nash equlibria, when it exists, is another chal-
lenging problem [26, 36]. Recently [5] show hardness of several such questions.
Condon [4] studies two-person turn-based probabilistic discounted games with
reachability objective and showed that the values at a state can be computed
in NP \ co-NP. Her result can be applied to show that the values of a two-
person turn-based probabilistic zero-sum games with reachability objective can
be computed in NP \ co-NP. We show that for the general case of two-person
(concurrent) zero-sum games with reachability objective values can be approxi-
mated in NP \ co-NP. For zero-sum stochastic games with !-regular objectives,
[8] gives doubly exponential algorithms, and [3] gives more eÆcient algorithms
for the turn-based case.

2 De�nitions

An n-person stochastic game G consists of a �nite, nonempty set of states S,
n players 1; 2; : : : ; n, a �nite set of action sets A1; A2; : : : ; An for the players, a
conditional probability distribution p on S� (A1�A2�� � ��An) called the law
of motion, and bounded, real valued payo� functions �1; �2; : : : ; �n de�ned on
the history space H = S�A�S�A � � � , where A = A1�A2�� � �An. The game
is called a n-player deterministic game if for all states s 2 S and action choices
a = (a1; a2; : : : ; an) there is a unique state s0 such that p(s0js; a) = 1.

Play begins at an initial state s0 = s 2 S. Each player independently and
concurrently selects a mixed action a1i with a probability distribution �i(s) be-
longing to P(Ai), the set of probability measures on Ai. Given s0 and the chosen
mixed actions a1 = (a11; a

1
2; : : : a

1
n) 2 A, the next state s1 has the probability dis-

tribution p(�js0; a1). Then again each player i independently selects a2i with a
distribution �i((s0; a

1; s1)) and given a2 = (a21; a
2
2; : : : ; a

2
n), the next state s2 has

the probability distribution p(�js1; a2). Play continues in this fashion thereby
generating a random histroy h = (s0; a

1; s1; a
2; : : :) 2 H . Note that the game

continues for an in�nite number of steps [9], and the payo� is decided based
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on the in�nite outcome. This is useful to model interactions between reactive
systems [21].

A function �i that speci�es for each partial history h
0 = (s0; a

1; s1; a
2; : : : ; sk)

the conditional distribution �i(h
0) 2 P(Ai) for player i's next action ak+1i

is called a strategy for player i. A strategy pro�le � = (�1; �2; : : : ; �n) con-
sists of a strategy �i for each player i. A selector for a player i is a mapping
�i : S ! P(Ai). A selector pro�le � = (�1; �2; : : : ; �n) consists of a selec-
tor �i for each player i. The memoryless/stationary strategy �1i for player i
is the strategy which choses mixed action �i(s

0) each time the play visits s0.
A strategy pro�le �1 = (�11 ; �

1
2 ; : : : ; �

1
n ) is a memoryless startegy pro�le if

all the strategies �11 ; �
1
2 ; : : : ; �

1
n are memoryless. Given a memoryless strat-

egy pro�le �1 = (�11 ; �
1
2 ; : : : ; �

1
n ) we write � = (�1; �2; : : : ; �n) to denote the

corresponding selector pro�le for the players. An initial state s and a strategy
pro�le � = (�1; �2; : : : ; �n) together with the law of motion p determine a prob-
ability distribution Ps;� on the history space. We write Es;� for the expectation
operator associated with Ps;� .

Assume now that the payo� functions �i : H ! R are bounded and measur-
able, where R is the set of reals. If the initial state of the game is s and each
player i choses a strategy �i, then the payo� to each player i is the expectation
Es;��i, where � is the strategy pro�le � = (�1; �2; : : : ; �n).

For � � 0, an �-equilibrium at the initial state s is a pro�le � =
(�1; �2; : : : ; �n) such that, for all i = 1; 2; : : : ; n

Es;��i � sup
�i

Es;(�1;:::;�i�1;�i;�i+1;:::;�n)�i � �

where �i ranges over the set of all strategies for player i. In other words, each �i
gurantees an expected payo� for player i which is within � of the best possible
expected payo� for player i when every other player j 6= i playes �j . A 0-
equilibrium is called a Nash equilibirum and for every � > 0 an �-equilibrium is
called an �-Nash equilibrium [13]. A strategy pro�le � for an �-Nash equilibrium
is referred as the �-equilibrium pro�le. Similarly, a strategy pro�le � for a Nash
equilibrium is referred as the Nash equilibrium pro�le.

Let ri : S ! R be a daily reward function for player i; i = 1; 2; : : : ; n. It is
known that Nash equilibria exist for some interesting payo� functions such as a
discounted payo�

�i(h) =
1X

k=0

�nri(sk); 0 < � < 1

(cf. Mertens and Parthasarathy [24] and the references there), but need not exist
for other payo� functions such as an average reward

�i(h) = lim sup
n

1

n

n�1X

k=0

ri(sk); 0 < � < 1

even for a two-person, zero-sum game with �nite state space (cf. Gillete [12],
Blackwell and Ferguson [2] for a famous counterexample and Vielle [34] and [35]
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for the existence of \equilibirum payo�s" in two person, non-zero sum games.)
A game with a total reward objective is a game with payo� for player i (�Ti )
de�ned as

�Ti (h) =

1X

k=0

ri(sk)

which assigns to a history a payo� that is the sum total of the reward of the
states.

Secchi and Sudderth [29] proved that Nash equilibrium exist for safety con-
ditions where each player i has a subset of states Si as their safe states and gets
a payo� 1 if the play never leaves the set Si and else get payo� 0. That is, let
S11 ; S

1
2 ; : : : ; S

1
n be the subsets of of H de�ned by

S1i = fh = (s0; a
1; s1; a

2; : : : ) : sk 2 Si for all k = 0; 1; : : : g

and take the payo� function �Sii to be the indicator function of S1i for i =
1; 2; : : : ; n. The problem for Nash equilibrium for reachability objective was left
open. In this work we show for every positive � we have a �-Nash equilibrium in
n-player stochastic games with reachability objective. We now formally de�ne
the payo� functions. To de�ne the payo� functions we study, let R1; R2; : : : ; Rn
be subsets of the state space S. The subet of states Ri is referred as the target
set for player i. Then let R11 ; R

1
2 ; : : : ; R

1
n be the subsets of H de�ned by

R1i = fh = (s0; a
1; s1; a

2; : : : ) : 9k; sk 2 Rig

and take the payo� function �Ri

i to be the indicator function of R1i for i =
1; 2; : : : ; n. Thus each player recieves a payo� of 1 if the process of states s0; s1; : : :
reaches a state in Ri and recieves payo� 0 otherwise. We call stochastic games
with the payo� functions of this form reach-a-set-games.

3 Existence of �-Nash Equilibria

We de�ne a few more notations which we will use in our proofs below.
Given a strategy pro�le � = (�1; �2; : : : ; �n) the strategy pro�le ��i =
(�1; : : : ; �i�1; �i+1; : : : ; �n) is the strategy pro�le obtained by deleting the
strategy �i from � whereas for any strategy �i of player i, �(��i; �i) =
(�1; : : : ; �i�1; �i; �i+1; : : : ; �n) denotes the strategy pro�le where player i follows
�i and the other players follows the strategy of ��i. Similar de�nitions hold for
selector pro�les as well. The main result of this section is the existence of �-Nash
equilibria.

Theorem 1 (�-equilibrium). A n-person reach-a-set-game G with a �nite
state space has an �-Nash equilibrium at every initial state s 2 S for every
positive �. Moreover, there is a memoryless �-equilibrium strategy pro�le.

As Example 1 below shows, even for 2-player games with reachability objec-
tive Nash equilibrium need not exist. Hence �-Nash equilibrium is the best one
can achieve for n-person reach-a-set-games.
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Example 1. [�-equilibrium] Consider the following game, adapted from [9, 17].
The state space of the game is S = fs; t; ug. The action set for player 1 in state
s is fa; bg and for player 2 is fc; dg. The state t; u are absorbing states in the
sense when the process of states reaches t; u it stays there for ever. The game
has a deterministic law of motion p as follows:

p(sjs; a; c) = p(tjs; a; d) = p(tjs; b; c) = p(ujs; b; d) = 1:

The target set for player 1 is ftg and for player 2 is fug. For every � > 0 player 1
chooses move a; b with probability 1 � � and � respectively to ensure reaching
the state t with probability of 1 � � from s. However, player 1 has no strategy
reach t with probability 1: if player 1 decides to play move b at the n-th round
of the game, player 2 can play move d at the n-th round, so that the probability
of reaching t is always less than 1.

De�nition 1 (�-discounted games). Given a n-player game G we use G� to
denote a �-discounted version of the game G. The game G� at each step halts
with probability � (goes to a special sink state halt which has a reward 0 for
every player) and continues as the game G with probability 1��. � is called the
discount-factor.

De�nition 2 (Markov Decision Process (MDP) reach-a-set-game). A
Markov Decision Process (MDP) is a 1-player stochastic game. A MDP reach-
a-set-game is a 1 player stochastic reach-a-set-game.

De�nition 3 (Values of MDP). Given a MDP reach-a-set-game G the value
of the game at state s is denoted by

v(s) = sup
�
Es;��

R1
1

where � ranges over all strategy and �R11 is the reach-a-set-game payo� for the
player in the game G. Similarly, we use

v�(s) = sup
�
Es;��

R
1

to denote the value at state s in the game G�, where G� is the �-discounted
version of the game G. In a similar way given a MDP GT with a total reward
objective we use the following notation

vT (s) = sup
�
Es;��

T
1 :

Also, v�T (s) denote the value at state s for the game G�T which is the �-discounted
version of the game GT .

Lemma 1. Let G be a MDP reach-a-set-game and G� be the �-discounted ver-
sion of G. Then for all state s 2 S we have

v(s)� v�(s) � �:

8



Proof. Given a MDP reach-a-set-game G, let R � S be the target set for the
player. We construct a total reward game GT as follows:

{ State Space: ST = S [ fsinkg
{ Reward Function: r(s) = 1 if s 2 R else 0.
{ Law of Motion: For all s 2 S n R, we have pT (s

0js) = p(s0js) and for all
s 2 R [ fsinkg we have pT (sinkjs) = 1.

That is, in the total reward game GT , de�ned on the same state space S with
a special sink state, for every state in R the game goes to the sink state and
stays there for ever. The reward is 1 for every state in R and 0 elsewhere. Let
G
�
T be the �-discounted version of the game GT . It is easy to notice that for all

state s we have v(s) = vT (s) and v
�(s) = v

�
T (s). It follows from the continuity

of the values of MDP's with total reward objective with � ! 0 for positive total
reward (Theorem 4.4.1, pg-197 Filar-Vrieze [10]) and the Lipschitz continuity of
the values of MDP's with total reward objective (Theorem 4.3.7, pg-185 Filar-

Vrieze [10]) that for all s 2 S we have vT (s) � v
�
T (s) � �. The required result

follows.

De�nition 4 (Stopping time of history in �-discounted games). Con-
sider the stopping time T de�ned on histories h = (s0; a

1; s1; a
2; : : : ) by

T (h) = inffk � 0 : xk = haltg

where as usual the in�mum of the empty set is +1.

Lemma 2. Let G� be a n-player �-discounted stochastic game. Then, for all
initial states s and all strategy pro�les � we have

Ps;�[T > m] � (1� �)m

Proof. At each step of the game G� the game reaches the halt state with prob-
ability �. Hence the probability of not reaching the halt state in m steps is
� (1� �)m.

The proof of the next Lemma is similar to the proof of Lemma 2.2 of Stay-
in-a-set games of Secchi and Sudderth [29].

Lemma 3. There exist selectors �i : S ! P(Ai); i = 1; 2; : : : ; n, such that the
memoryless pro�le �1 = (�11 ; �

1
2 ; : : : ; �

1
n ) is a Nash equilibrium pro�le in G�

for every s 2 S.

Proof. Regard each n-tuple � = (�1; �2; : : : ; �n) of selectors as a vector in a
compact, convex subset K of the appropriate Eucledian space. Then de�ne a
correspondence � that maps each element � of K to the set �(�) of all elements
g = (g1; g2; : : : ; gn) of K such that, for i = 1; 2; : : : ; n and all s 2 S, g1i (s) is an
optimal response for player i in G� against �1�i = (�11 ; : : : ; �

1
i�1; �

1
i+1; : : : ; �

1
n ).

Clearly, it suÆces to show that there is a � 2 K such that �(�) = �. To show
this, we will verify the Kakutani's Fixed Point Theorem [14]:
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1. For every � 2 K, �(�) is closed, convex and nonempty;
2. If, for k = 1; 2; : : : ; g(k) 2 �(�(k)); limk!1 g(k) = g and limk!1 �(k) = �

then g 2 �(�).

To verify condition 1., �x � = (�1; �2; : : : ; �n) 2 K and i 2 f1; 2; : : : ; ng. For
each s 2 S, let v(s) be the maximal payo� that player i can achieve in G�

against �1�i. Since �xing the strategy for all the other player the game becomes
a MDP we know that g1i is an optimal response to �1�i if and only if, for each
s 2 S, gi(s) puts positive probability only on actions ai 2 Ai that maximize the
expectation of v(s), namely,

X

s0

v(s)p(s0js; (ai; ��i(s)))

Hence condition 1. follows easily.
Condition 2. is an easy consequence of the continuity mapping

� 7! Es;�1(s)�
Ri

i

fromK to the real line. It follows from Lemma 2 that the mapping is continuous.

De�nition 5 (Memoryless strategy pro�le, MDP and Markov Chains).
Given a n-player stochastic game G let �1 = (�11 ; �

1
2 ; : : : ; �

1
n ) be a memoryless

strategy pro�le and � = (�1; �2; : : : ; �n) be the corresponding selector pro�le.
Then the game G� is a Markov chain where the law of motion p� is de�ned
by the functions in selector pro�le � and the law of motion p of the game G.
Similarly, G��i

is a Markov Decision process where the mixed action of each
player j 6= i at a state s is �xed according to the selector function �j(s). The law
of the motion p��i

of the MDP is determined by the selectors in ��i and law of
motion p of G.

Lemma 4. Given a n-player stochastic game G and a positive � there is a mem-
oryless pro�le �1 = (�11 ; �

1
2 ; : : : ; �

1
n ) such that �1 is an �-Nash equilibrium

pro�le in G.

Proof. Given the game G we construct a game G� which is a discounted version
of G with discount-factor �. It follows from Lemma 3 that there is a memoryless
strategy pro�le �1 in G� such that �1 is a Nash equilibrium pro�le in the
game G�. We show that the pro�le �1 is an �-equilibrium pro�le for G. Let
� = (�1; �2; : : : ; �n) be the selector functions corresponding the strategy pro�le
�1 = (�11 ; �

1
2 ; : : : ; �

1
n ). Consider any player i and the strategy pro�le �1�i. The

game G��i
is a MDP where the mixed actions of all the other players are �xed

according to the ��i. Also, G
�
��i

is the MDP which is the �-discounted version
of the game G��i

. It follows from Lemma 1 that �1 is an �-equilibrium pro�le
in the game G.

Lemma 4 yields Theorem 1.

10



4 Complexity of computing equilibrium values

Let � be an �-equilibrium pro�le. Then, the value at a state s for a player i for the
equilibrium pro�le �, denoted v�i (s), is Es;��

Ri

i . The value of an �-equilibrium
pro�le � at a state s is the value vector v�(s) = (v�1 (s); v

�
2 (s); : : : ; v

�
n(s)). Our

main results about the computational complexity of computing the value of any
�-equilibrium pro�le within a tolerance of � are summarized below.

Theorem 2 (Computing values of a memoryless equilibrium pro�le).
For n-player deterministic reach-a-set-game G, a initial state s and a value
vector v = (v1; v2; : : : ; vn) it is NP-hard to determine whether there is a Nash
equilibrium pro�le � such that the value for every player i from the state s for
the pro�le � ,i.e. v�i (s) is greater than equal to vi. Given a �xed � there is a
NP algorithm to compute if there is an �-equilibrium pro�le � in memoryless
strategies such that for all player i we have v�i (s) � vi � �.

4.1 Reduction of 3-SAT to computing equilibrium values

We �rst prove it is NP-hard to compute a memoryless Nash equilibrium pro�le
of n-player deterministic reach-a-set games by reduction from 3-SAT. Given
a 3-SAT formula  with n-clauses and m-variables we will construct a n-
player deterministic reach-a-set-game G . Let the variables in the formula  

be x1; x2; : : : ; xm and the clauses be C1; C2; : : : ; Cn. In the game G each clause
is a player. The state space S, the law of motion and the target states are de�ned
as follows:

{ State Space:

S = f1; 2; : : : ;m;m+ 1; (1; 0); (1; 1); (2; 0); (2; 1); : : : ;
(i; 0); (i; 1); : : : ; (m; 0); (m; 1); sinkg:

{ Law of Motion: For any state (i; 0); (i; 1) the game always moves to the state
i+ 1. Let Ci = fCi1 ; Ci2 ; : : : ; Cikg be the set of clauses in which variable xi
occurs. Then, in state i players i1; i2; : : : ; ik have a choice of moves between
f0; 1g. If all the players chose move 0 the game proceeds to state (i; 0), if
all the players chose move 1 the game proceeds to state (i; 1), else the game
goes to the sink state. Once the game reaches the sink state or the state
m+ 1 it remains there for ever.

{ Target States: The target set for the players is de�ned as follows:
let C0

i = fC0
k1
; C0

k2
; : : : ; C0

kl
g be the set of clauses that are satis�ed assigning

xi = 0, then the state (i; 0) is a target state for players k1; k2; : : : ; kl. Simi-
larly, let C1

i = fC1
k0
1

; C1
k0
2

; : : : ; C1
k0
j
g be the set of clauses that are satis�ed by

assigning the variable xi = 1 then the state (i; 1) is a target state for players
k01; k

0
2; : : : ; k

0
j . States 1; 2; : : : ;m + 1 and the sink state is not a target state

for any player.

The game is illustrated in Figure 2.
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Fig. 2. The game G 
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Lemma 5 (NP-hardness). Consider a n-player reach-a-set-game G, an ini-
tial state s and a value vector v = (v1; v2; : : : ; vn). It is NP-hard to determine
whether there is a Nash equilibrium pro�le such that the value of each player i
at state s � vi.

Proof. We reduce the 3-SAT problem to the problem of determining whether
there is an equilibrium such that each player has a value � vi at state s. Given
a 3-SAT formula  we construct the game G as described above. Each player
gets a value 1 at state 1 i� the formula  is satis�able. If the formula is satis�able
then consider a satisfying assignment to the variables. Then at each state i all
the players chose the move as speci�ed by the satisfying assignment and hence
every player get a payo� 1. If all the players get an payo� 1 in the game G it
follows from the construction of G that there is an assignment such that every
clause is satis�ed and hence the 3-SAT formula  is satis�able.

The Nash equilibrium condition in memoryless strategies can be written as
a sentence in the �rst order theory of reals with addition and multiplication
((R;+; �)). The length of the sentence is polynomial in the size of the game and
the depth of the quanti�ers is constant. This gives an EXPTIME procedure
for the following decision problem: given a game G and a value vector v =
(v1; v2; : : : ; vn) is there an �-Nash equilibrium in memoryless strategy pro�le
such that each player i gets payo� � vi. Notice that the reduction to the theory
of reals with addition and multiplication allows us to solve other problems in a
similar way. For example, given a game G whether there is an �-Nash equilibrium
in memoryless strategy pro�le such that player i gets a payo� at least vi can be
solved in time exponential in the game and polynomial in log( 1

�
) using binary

search in the interval [0; 1].
Since the number of Nash equilibria where each player gets a payo� 1 is ex-

actly the number of satisfying assignments, the following corollary is immediate.

Corollary 1. Counting the number of Nash equilibria in reachability games
where each player gets at least a given payo� is #P-hard.

4.2 Approximating equilibrium value in NP

We will show that the memoryless �-equilibrium pro�le can be approximated by
a k-uniform memoryless strategy pro�le. We will use a result by Lipton et.al. [18].
Given a n-player stochastic reach-a-set-game G we use jSj to denote the size of
the state space and l to denote the maximum number of moves available to any
player at any state of G.

De�nition 6 (Pure selector). A selector function �i for player i is pure if for
all states s 2 S we have that there is an action ai 2 Ai such that �i(aijs) = 1.

De�nition 7 (k-uniform selector and k-uniform memoryless strategy).
A selector function �ki for player i is a k-uniform selector if for all states s 2 S
we have �ki is the uniform distribution on a multiset M of pure selectors with
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jM j = k. A selector pro�le �k = (�k1 ; �
k
2 ; : : : ; �

k
n) is k-uniform if all the selec-

tors �ki is a k-uniform selector for all i 2 f1; 2; : : : ; ng. A memoryless strat-

egy pro�le �k;1 = (�k;11 ; �
k;1
2 ; : : : ; �k;1n ) is k-uniform is the selector pro�le

�k = (�k1 ; �
k
2 ; : : : ; �

k
n) corresponding to the strategy pro�le �k;1 is k-uniform.

Lemma 6 ([18]). Let J be a matrix-game (1 Step game) with n-players and
each player has atmost l moves. Let � be a Nash-equilibrium strategy/selector.

Then for every � > 0 there exists, for every k � 3n2 lnn2l
�2

, a set of k-uniform
strategy/selector such that the deviation from any pure strategy/selector with
positive support in � is less than �.

De�nition 8 (Di�erence of two MDP's). Let G1 and G2 be two MDP's
de�ned on the same state space S. The di�erence of the two MDP's, denoted
err(G1; G2), is de�ned as

err(G1; G2) =
X

s;s02S2

jp1(sjs
0)� p2(sjs

0)j

That is, err(G1; G2) is the sum of the di�erence of the probabilities of all the
edges of the MDP's.

Lemma 7. Let G� be a discounted n-player stochastic reach-a-set-game and
�1 be a memoryless Nash equilibrium pro�le with selector pro�le � =

(�1; �2; : : : ; �n). Then for every � > 0, there exists, for every k � 3n2 lnn2l
( �

n�jSj2
)2 ,

a set of k-uniform memoryless strategy pro�le �k;1 (with selector pro�le �k)
such that the following holds:

{ for any player i, the MDP's G��i
and G�k�i

satisfy

err(G��i
; G�k�i

) � �

Proof. It follows from Lemma 6 that there is a selector pro�le �k such that for
any player i the deviation (or error) of �ki from any pure strategy with positive
support of �i at any state s 2 S is atmost �

n�jSj2 . Since there are n players for

any edge the di�erence in probabilities in G��i
and G�k�i

is atmost �
jSj2 . Since

there can be atmost jSj2 edges the result follows.

Lemma 8. Given a n-player discounted stochastic reach-a-set-game G� then

for every � there exists, for every k � 3n4jSj4 lnn2l
�2

there is a k-uniform memory-

less strategy pro�le �k;1 = (�k;11 ; �
k;1
2 ; : : : ; �k;1n ) such that �k;1 is an �-Nash

equilibrium pro�le in the game G�.

Proof. The result follows from Lemma 7 and Lipschitz continuity of values of
MDP's with respect to err (Theorem 4.3.7,pg-185 Filar-Vrieze [10]).

Lemma 9. Given a n-player stochastic reach-a-set-game G for every � > 0,

there exists, for every k � 12n4jSj4 lnn2l
�2

a k-uniform memoryless strategy pro�le
�k;1 such that �k;1 is a �-equilibrium pro�le for the game G.
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Proof. Let G
�
2 be a discounted version of the G with a discount factor �

2 . Let
�k;1 be a k-uniform memoryless strategy pro�le such that �k;1 is a �

2 -Nash
equilibrium pro�le in G

�
2 . Existence of such a �k;1 follows from Lemma 8. Then

�k;1 is a strategy pro�le which is an �-equilibrium pro�le in the game G.

Lemma 10. Given a constant � the value of an �-equilibrium with a memoryless
strategy pro�le of a n-player stochastic reach-a-set-game can be approximated
within � tolerance by an NP algorithm.

Proof. The NP algorithm guesses a k-uniform selector �k for a k-uniform mem-
oryless �-equilibrium strategy pro�le �k;1. It then veri�es that the value for the
MDP's G�k�i

for every state s 2 S and each player i is within �-tolerance as com-

pared to the value of the Markov Chain de�ne by G�k . Since the computation
of values of a MDP can be achieved in polynomial time (using Linear program
solution) it follows that the approximation within � tolerance can be achieved
by a NP-algorithm.

Lemmas 5 and 10 yield Theorem 2.

5 Games with Turns

An n-person stochastic game is turn-based if at each state, there is exactly one
player who determines the next state. Formally, we extend the action sets Ai
for i = 1; : : : ; n to be state dependent, that is, for each state s 2 S, there are
action sets Ais for i = 1; : : : ; n, and we restrict the action sets so that for any
s 2 S, there is at most one i 2 f 1; : : : ; n g such that jAisj > 1. A strategy �i for
player i is pure if for every history h = (s0; a

1; s1; : : : ; a
k; sk) there is a action

ak 2 Aisk such that �i(a) = 1. In other words, a strategy is pure if for every
history the strategy chooses one action rather than a probability distribution
over the action set. A strategy pro�le is pure if all the strategies of the pro�le
are pure.

We consider payo� functions that are index sets of Borel sets (see e.g., [15]
for de�nitions), that is, given a Borel set B, we consider a payo� function �B
that assigns a payo� 1 to a play that is in the set B, and 0 to a play that is
not in the set B. With abuse of notation, we identify the set B with the payo�
function �B . We consider turn based games in which each player is given a Borel
payo� Bi. If n = 2, we call the game two-player. A two-player Borel game is
zero sum if the payo� set B of one player is the complement S! n B of the
other player, that is, the players have strictly opposing objectives. Borel sets are
studied in descriptive set theory for their rich structural properties. A deep result
by Martin shows that two player zero sum in�nite stochastic games with Borel
payo�s have a value [23]. The proof constructs, for each real v 2 (0; 1] a zero sum
turn-based deterministic in�nite-state game with Borel payo� such that a (pure)
winning strategy for player 1 in this game can be used to construct a (mixed)
winning strategy in the original game that assures player 1 a payo� of at least v.
From the determinacy of turn-based deterministic games with Borel payo�s [22],
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the existence of value in zero sum stochastic games with Borel payo�s follows.
Moreover, the proof constructs �-optimal mixed winning strategies. A careful
inspection of Martin's proof in the special case of turn-based probabilistic games
shows that the �-optimal strategies of player 1 are pure. The mixed strategies
are derived from solving certain one-shot concurrent games at each round. In
our special case these one-shot games have pure winning strategies since only
one player has a choice of moves.

Lemma 11. Pure memory determinacy For each � > 0 there is a pure strategy
�1 of player 1 such that for all strategies �2 of player 2 E�1;�2s f f g � v � �.

Theorem 3. For each � > 0 there exists an �-Nash equilibrium in every n-player
turn based probabilistic games with Borel payo�s.

Proof. Our construction is based on a general construction from repeated games.
The basic idea is that player i plays optimal strategies in the zero sum game
against all other players, and any deviation by player i is punished inde�nitely
by the other players by playing �-optimal spoiling strategies in the zero sum
game against player i (see, e.g., [25, 34]). Let player i have the payo� set Bi,
for i = 1; : : : ; n. Consider the n zero sum games played between i and the team
[n]nfig, with the winning objectiveBi for i. By lemma 11 here is a pure �-optimal
strategy �ii for player i in this game, and a pure �-optimal spoiling strategy for

players j 6= i. This spoiling strategy induces a strategy �ji for each player j 6= i.
Now consider the strategy � i for player i as follows. Player i plays the strategy
�ii as long as all the other players j play �jj and switch to �ij as soon as some
player j deviates. Since the strategies are pure, any deviation is immediately
noted. The strategies � i for i = 1; : : : ; n form an �-Nash equilibrium.

Notice that the construction above for probabilistic Borel games guarantees
only �-optimality. As a special case, using the determinacy result of [22], we get
that turn based deterministic games (perfect information games) with payo�s
corresponding to Borel sets have Nash equilibria.

Corollary 2. Every turn-based deterministic game with payo�s corresponding
to Borel sets has a Nash equilibrium with pure strategy pro�le.

A particularly interesting case of turn based probabilistic games is when
each payo� function B is an !-regular set [21]. Games with !-regular winning
conditions are used in the veri�cation and control of (probabilistic) systems [1,
31, 6]. In the special case of turn-based probabilistic games with parity winning
conditions, pure and memoryless optimal winning strategies exist for two player
zero-sum case [3]. Moreover, the pure memoryless optimal strategies can be
computed in NP \ coNP. Therefore we have the following.

Proposition 1. There exists a Nash equilibrium with pure strategy pro�le in ev-
ery turn-based probabilistic game with parity payo� conditions. The value pro�le
of some Nash equilibrium can be computed in FNP.
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6 Games with Two Players

In this section we consider the special case of two-player reach-a-set-games,
namely two-player constant-sum games. For this special cases we prove a NP
\ coNP bound to approximate the value of a �-equilibrium pro�le, given a �xed
�.

6.1 Two-player constant-sum reach-a-set-games

We now de�ne a two-player constant-sum reach-a-set-game.

De�nition 9 (Two-player constant-sum reach-a-set-games). For a two-
player reach-a-set-game G let � denote the set of all �-equilibrium strategy pro�le
for � � 0. We use the following notation

v1(s) = sup
�2�

Es;��
R1
1 and

v2(s) = sup
�2�

Es;��
R2
2 :

The game is constant-sum if for all state s 2 S we have the following conditions:

{ v1(s) + v2(s) = 1.
{ for all � 2 � we have Es;��

R1
1 +Es;��

R2
1 = 1.

We now prove computing the values v1(s) and v2(s) within a �-tolerance,
given a �xed � can be achieved in NP \ coNP.

Lemma 12. Let G be a two-player constant-sum reach-a-set-game, s an initial
state and v1 and v2 be two values. For a �xed � it can be determined in NP \
coNP whether

v1(s) � v1 � �:

Proof. It follows from Lemma 9 that there is a k-uniform memoryless �-
equilibrium pro�le �k;1 = (�k;11 ; �

k;1
2 ) with selector pro�le �k = (�k1 ; �

k
2 ). Since

two-player constant-sum reach-a-set game is a special case of n-player stochas-
tic reach-a-set-game it follows from Lemma 10 that the two-player constant-sum
reach-a-set-game unique equilibrium value can be approximated by an algorithm
in NP.

To prove that there is a coNP algorithm consider the case when v1(s) < v1��.
The coNP algorithm guesses the k-uniform selector �k2 for player 2 and veri�es
that the value of player 1 in the state s in the MDP G�k�1

is less than v1 � �.

Since the value of a MDP at any state can be computed in polynomial time
(using a Linear program solution) the required result follows.

Theorem 4 (Two-player constant-sum reach-a-set-games). Given a �xed
� the value of an �-equilibrium pro�le of two-player stochastic constant-sum
reach-a-set-games can be computed in NP \ coNP.
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6.2 Concurrent Reachability Games

We now show that the values of two player concurrent reachability games (zero-
sum reach-a-set-games) can be approximated within � tolerance in NP \ coNP.
The previous best known algorithm was exponential [8].

A two-player concurrent reachability game [7] G is a two-player stochastic
game with R1 � S as a target set of states for player 1. Given a random history
h = (s0; a

1; s1; a
2; : : : ) player 1 gets a payo� 1 if the history contains a state in

R1, else the player 2 gets an payo� 1. In other words, player 1 plays a reachability
game with target set R1 and player 2 plays a safety game with its safe set of
state S2, where S2 = SnR1. Let �1 and �2 be the set of all strategies of player 1
and player 2 respectively. Then for any state s 2 S we use the following notation

v1(s) = sup
�12�1

inf
�22�2

Es;�1;�2�
R1
1

v2(s) = sup
�22�2

inf
�12�1

Es;�1;�2�
S2
2

It follows from determinacy of Blackwell games [23] that for all states s 2 S,
we have v1(s) + v2(s) = 1. Let W2 = fsjv2(s) = 1g and W1 = fsjv1(s) = 1g.
We prove that the concurrent reachability game can be reduced to a two-player
reach-a-set game GR with W1 and W2 as the target set of states for player 1
and player 2, respectively and also all the states in W1 and W2 are absorbing
states or sink states. In the proof below we use the following notation

v
�1;�2
1 (s) = Es;�1;�2�

R1
1

reach�1;�2(W2)(s) = Es;�1;�2�
R2=W2

2

reach�1;�2(W1)(s) = Es;�1;�2�
R1=W1

1

reach(W2)(s) = sup
�22�2

inf
�12�1

reach�1;�2(W2)(s)

Lemma 13. Let G be a concurrent reachability game and GR be the two-
player reach-a-set-game with the target set for player 1 and player 2 being
R1 = W1; R2 = W2, respectively. Also every state in W1 [ W2 is an absorb-
ing state and once the process of states reaches a state in W1 or W2 it remains
there forever. Then, for all states s 2 S we have v2(s) = reach(W2)(s).

Proof. From every state s 2 W2 there is a strategy �02 such that player 2 can
stay in its safety set S n R1 with probability 1. Hence combining a strategy to
reach the set W2 with the strategy �02 we get that v2(s) � reach(W2)(s).

Suppose v2(s) > reach(W2)(s). It follows from [8] that player 2 has an op-
timal memoryless strategy in the concurrent reachability game G. Let �2 be an
optimal memoryless strategy for player 2 in the concurrent reachability game
G. Fixing the memoryless optimal strategy �2 for player 2 in the game GR we
get an MDP GR;�2 where at each state player 2 plays according to the strategy
�2. Let an optimal memoryless strategy of player 1 against the strategy �2 in
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the game G be �1. The game G�1;�2 is a Markov chain. Let C be any terminal
strongly connected component of the Markov chain G�1;�2 . If C \ R1 6= ; then
from every state s 2 C player 1 wins with probability 1, and if C \R1 = ; then
from every state s 2 C player 2 wins with probability 1. Since �2 is an optimal
strategy and �1 is an optimal strategy against �2 we have that every terminal
strongly connected component is a subset of W1 or W2. Hence in the Markov
chain GR;�1;�2 we have

reach�1;�2(W1)(s) + reach�1;�2(W2)(s) = 1

Now if v2(s) > reach�1;�2(W1)(s) then we have reach�1;�2(W1)(s) < 1�v2(s) =
v1(s). Since �2 is an optimal strategy for player 2 and �1 is an optimal
strategy against it we must have reach�1;�2(W1)(s) = v1(s). Hence this is a
contradiction. Therefore, we have v2(s) � reach(W2)(s). Hence proved that
v2(s) = reach(W2)(s).

Lemma 14. Given a �xed �, the values v1(s) and v2(s) of a concurrent reach-
ability game can be approximated within � tolerance in NP \ coNP.

Proof. It follows from Lemma 13 that a concurrent reachability game can be
reduced to a two-player stochastic reach-a-set game with target set for player 1
and player 2 beingW1 andW2 respectively. It follows from the result of deAlfaro
and Henzinger [6] that the setsW1 andW2 can be computed in polynomial time.
It follows from the result of Martin on determinacy of Blackwell games [23] that
this game is a constant-sum two-player stochastic reach-a-set-game. The result
then follows from Lemma 12.

Corollary 3 (Two-player concurrent reachability games). The value of a
two-player concurrent reachability game can be approximated within �-tolerance
in NP \ coNP, given a �xed �.

The natural question at this point is whether there is a polynomial time algo-
rithm for concurrent zero sum reachability games. Since simple stochastic games
[4] can be easily reduced to concurrent reachability games, a polynomial time
algorithm for this problem will imply a polynomial time algorithm for simple
stochastic games and mean payo� games [37]. These have been long standing
open problems in the area.
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