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1. Introduction

In this paper, we study a steady flow of incompressible viscous Newtonian fluids in
an infinite two-dimensional pipe-like domain with an obstacle inside. We assume
that there is no friction on the boundary of the considered model. At infinity, at the
inlet and outlet of the pipe, the velocity of the fluid is assumed to be constant.

We describe such a flow by applying the steady Navier–Stokes equations with
slip boundary conditions which read

(v∇)v − ν�v + ∇p = 0, in �,

div v = 0, in �,

v · n = 0, on ∂�, (1.1)

n · T(v, p) · τ = 0, on ∂�,

v → (v∞, 0), as x1 → ±∞,
where v is the velocity of the fluid, p – the pressure, ν – constant positive viscous
coefficient, n and τ are normal and tangent vectors to the boundary ∂�, the dot ·
denotes the scalar product in R2 and

T(v, p) = νD(v)− pId (1.2)

is the stress tensor, Id is the identity matrix and

D(v) = {vi,j + vj,i}i,j=1,2. (1.3)
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Figure 1.

Our aim is to prove the existence of weak solutions to problem (1.1). Next,
applying the extra properties of the slip boundary conditions, we will be able to
regularize them under the assumption of smoothness of the boundary.

Problem (1.1) can be treated as a type of Leray problem [1, 2, Chap. XI]. The
classical Leray problem consists of Equation (1.1)1,2 with no slip boundary condi-
tions v|∂� = 0 and with the Poiseuille flow at infinity. The slip boundary condition
(1.1)2,3 describes a perfect boundary which does not admit friction between the sur-
face of the pipe and the fluid. This model compared to the zero Dirichlet condition,
has not only different physical interpretation but also gives different mathematical
properties. This kind of relation enables us to describe the vorticity of the velocity
field on the boundary as a function of the velocity and a curvature of the boundary.

The existence of solutions to the two-dimensional Leray problem ‘in the large’
is still an open question. The difficulty is hidden in the Dirichlet integral

∫
�

∇v :
∇v dx. For Leray’s problem, this quantity is infinite [1, 2, Chap. XI]. By using the
known techniques, we are able to prove only the existence of solutions for small
data [6]. For large fluxes, there is the result of Ladyzhenskaya and Solonnikov [5],
but only for a modification of Leray’s problem which does not involve the condi-
tions at infinity. As we will see in the problem considered in this paper, the Dirichlet
integral is finite for any v∞.

The slip boundary conditions are not so popular in considerations dealing with
Navier–Stokes equations, but in general the results are the same [3, 9]. Constrains
(1.1)2,3 arise naturally from the Neumann boundary conditions for the free bound-
ary problem in steady cases [7, 8]. But they are also a special case of the friction
(slip) conditions n·T(v, p)·τ+f v ·τ = 0 if friction f is neglectable (if f → +∞,
we get the Dirichlet no-slip data and Leray’s problem). The properties of conditions
of this type, in particular the relation with the problem on the vorticity of the
velocity, have been used also in a three-dimensional evolutional case for a problem
in a bounded domain in [11].

Solutions to problem (1.1) can be treated as a perturbation of the flow for a case
when there is no obstacle inside the pipe. Such an unperturbed solution is equal to
a constant flow v̄ = (v∞, 0) which follows from the properties of slip conditions
(1.1)2,3. It follows that condition (1.1)5 is quite natural from the physical point of
view for our model. Since we do not require that domain � be a simply connected
model, (1.1) can be treated also as an approximation of a flow around an obstacle
in the whole space.
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About a domain � ⊂ R2 – see Figure 1 – we require that � is connected, ∂� is
sufficiently smooth – at least C2 and, moreover,

� ⊂ (−∞,+∞)× (0,H), (1.4)

and there exists a number h > 0 such that

� \ [−L,L] × [0,H − h]
= ((−∞,+∞)× (0,H)) \ ([−L,L] × [0,H − h]). (1.5)

Condition (1.5) says that the obstacle is bounded – the perturbation is local – and
the following inclusion holds:

(−∞,+∞)× (H − h,H) ⊂ �. (1.6)

Regularity of ∂� implies that the measure of ∂(� ∩ ((−L,L)× (0,H))) is finite.
We do not assume that � is simply connected.

Since the flux of the flow by (1.1)2 is equal to∫
I (x1)

v1(x1, x2) dx2 = Hv∞ �= 0, (1.7)

where I (x1) = {x2 : (x1, x2) ∈ �}, we have difficulties with the integration of
velocity v over �. The solution is the same as in the classical Leray problem. We
have to find a vector field a: � → R2 with features similar to the sought-after
solution, i.e. we need to construct a field which satisfies

div a = 0 in �,
a · n = 0, n · D(a) · τ = 0 on ∂�,
a → (v∞, 0) as x1 → ±∞.

(1.8)

By (1.8)1, we see that∫
I (x1)

a1(x1, x2) dx2 = Hv∞. (1.9)

Thus introducing a new variable

u = v − a, (1.10)

we obtain a new sought-after function with zero flux∫
I (x1)

u1(x1, x2) dx2 = 0. (1.11)

Using (1.10) from problem (1.1), we obtain the equations for function u:

(u∇)u+ (a∇)u− ν�u+ ∇p = −(u∇)a − (a∇)a + ν�a, in �,
div u = 0, in �,
u · n = 0, n · T(u, p) · τ = 0, on ∂�,
u → 0 as x1 → ±∞.

(1.12)
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We define a weak solution for problem (1.12), but first we have to obtain the
compability of Equations (1.12)1 with boundary condition (1.12)3. By (1.12)2 and
(1.2), we note

−ν�u+ ∇p = −div T(u, p) = −νdiv D(u)+ ∇p. (1.13)

This remark leads to the definition: We say that u is a weak solution to problem
(1.12) if u ∈ V and the identity

ν

∫
�

D(u) : ∇φ dx +
∫
�

((u∇)u+ (a∇)u+ (u∇)a) · φ dx

= −
∫
�

(a∇)a · φ dx − ν
∫
�

D(a) : ∇φ dx (1.14)

holds for all φ ∈ V , where

V = {
f ∈ H 1(�; R2) : f · n|∂� = 0, div f = 0

}
. (1.15)

The main result of this paper is the following:

THEOREM A. At least one weak solution of (1.12) exists in the sense of (1.14)
such that u ∈ V and

‖∇u‖L2(�) + ‖u‖L2(�) � M(v∞). (1.16)

In the formulation of the weak solution, a vector field a is used satisfying con-
ditions (1.8). Moreover, to show Theorem A, we need some extra properties of this
field. Thus, the next result is the following:

THEOREM B. Let δ > 0 be fixed. There exists a vector field a: �→ R2 satisfying
(1.8) such that a ∈ C∞(�̄) and

‖∇a‖L2(�) + ‖(a∇)a‖L2(�) � c(v∞, δ). (1.17)

Moreover, for any u ∈ V ,∣∣∣∣
∫
�

(u∇)a · u dx

∣∣∣∣ � δ‖u‖2
H 1(�)

. (1.18)

We use standard techniques in the proof of Theorem A. The difference with
Leray’s problem lies in the existence of a suitable field a. A key element of the
method is estimate (1.18) which, for the classical Leray problem, is able to obtain
only for small data. In our case, Theorem B gives the estimate for any δ > 0 which
guarantees the existence of general solutions to problem (1.12). The construction
of field a is based on an old idea of Ladyzhenskaya [4] giving estimate (1.18). By
estimates (1.16) and (1.17), we conclude that the velocity, v being the solution to
problem (1.1) given by (1.10), defines the finite Dirichlet integral

∫
�

∇v : ∇v dx
for any v∞.
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Finally, we want to regularize the weak solutions obtained from Theorem A. To
do this, we apply an important feature of the slip boundary condition. By simple
calculations, we can completely determine the Dirichlet boundary data to the equa-
tion on the vorticity of the velocity field. Two-dimensional properties simplify the
problem to the following one:

(v∇)α − ν�α = ν�rot a − (v∇)rot a, in �,
α = 2u · τχ, on ∂�,
α → 0 as x1 → ±∞,

(1.19)

where χ is the curvature of ∂� and α = rot u = u2
,1 − u1

,2.
Applying this information, we easily show:

THEOREM C. If boundary ∂� is C∞-smooth, then solutions u and ∇p to prob-
lem (1.12) given by Theorem A, belong to C∞(�̄), in particular

‖u‖H 2(�) + ‖∇p‖L2(�) � c(v∞). (1.20)

An application to prove Theorem C of problem (1.19) enables us to increase the
regularity of the velocity without any knowledge of the pressure. By the standard
theory, we are able to get only local information about a norm of the pressure [2,
10]. Using this way it would be hard for us to obtain estimate (1.20) which is
global (for whole �). Let us note that Theorem C does not give information about
the limits of the pressure at infinity. In particular, the function p can tend to infinity.

2. Notation

In our consideration, we try to restrict ourselves to the use of standard notations.
By Hm(�), for m ∈ N, we mean the closure of C∞(�) in the norm

‖f ‖2
Hm(�) =

∑
0�|α|�m

∫
�

|∂αf |2 dx, (2.1)

where

∂α = ∂α1
x1
∂α2
x2
, α = (α1, α2) ∈ N × N and |α| = α1 + α2.

LEMMA 2.1 (The Korn inequality). Let � satisfy conditions defined above, then
there exists ν̃ > 0 such that

ν

∫
�

(D(u))2 dx � ν̃‖u‖2
H 1(�)

for all u ∈ V, (2.2)

where V is defined by (1.15) and ν̃/ν is dependent of every quantities of domain�.

Proof of Lemma 2.1 is in the Appendix – or in [9].
In the proof of Theorem A, where we apply the Galerkin method, we need in

particular we need to solve the approximated problem in finite-dimensional spaces.
We use the well-known result presented in [10, Chap. II].
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LEMMA 2.2. Let H be a finite-dimensional Hilbert space with a scalar product
(·, ·). If P : H → H is a continuous map which satisfies the condition

(P (ξ), ξ)H > 0, for all ξ : ‖ξ‖ = M, (2.3)

for someM > 0, then there exists ξ∗ ∈ H such that

P(ξ∗) = 0 and ‖ξ∗‖ � M. (2.4)

We denote all constants by a letter c. Constants which are fixed in each proof
are denoted by A1, A2, . . . .

3. Proof of Theorem A

We prove the existence of weak solutions by applying the Galerkin method. From
the elementary theory, there exists a base of space V – see definition (1.15) – such
that

V = span{w1, w2, . . . , wn, . . .}‖·‖
H1(�), (3.1)

where (wk,wl)H 1(�) = δkl .
Space V can be approximated by a finite-dimensional Hilbert space

V N = span{w1, w2, . . . , wN}. (3.2)

To construct an approximation of solution u, which is searched for in the form
of

uN =
N∑
k=1

cNk wk, (3.3)

we solve the following system on coefficients cNk :

ν

∫
�

D(uN) : ∇wk dx +
∫
�

(
(uN∇)uN + (a∇)uN + (uN∇)a) · wk dx

= −
∫
�

(a∇)a ·wk dx − ν
∫
�

D(a) : ∇wk dx (3.4)

for k = 1, . . . , N . Problem (3.4) follows from the weak formulation (1.14).
As we see, it is not so easy to solve (3.4) and to show the existence of solutions

to this problem, we apply Lemma 2.2. Let us define operator P(·) in our case. For
uN ∈ V N defined as in (3.4)

P(uN) =
N∑
k=1

(
ν

∫
�

(D(uN)+ D(a)) : ∇wk dx +

+
∫
�

(
(uN∇)uN + (a∇)uN + (a∇)a + (uN∇)a)wk dx

)
· wk. (3.5)
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It is obviously that P : V N → V N and it is a continuous map. To show condition
(2.3), we put ‖uN‖V N = k. Note that, by the properties of the base vectors,

‖uN‖2
V N

= ‖uN‖2
H 1(�)

, (uN, ũN )VN = (uN , ũN)H 1(�). (3.6)

We examine

(P (uN), uN)VN

= ν
∫
�

(
D(uN)+ D(a)

) : ∇uN dx +

+
∫
�

(
(uN∇)uN + (a∇)uN + (a∇)a + (uN∇)a)uN dx. (3.7)

Estimate the right-hand side of (3.7). By Lemma 2.1,

ν

∫
�

D(uN) : ∇uN dx = ν
∫
�

(
D(uN)

)2
dx � ν̃‖uN‖2

H 1(�)
. (3.8)

The Schwarz inequality gives∣∣∣∣ν
∫
�

D(a) : ∇uN dx

∣∣∣∣ � A1‖∇a‖L2(�)‖uN‖H 1(�),∣∣∣∣
∫
�

(a∇)auN dx

∣∣∣∣ � A2‖(a∇)a‖L2(�)‖uN‖H 1(�).

Since uN ∈ V , in particular div uN = 0 and by (1.8)1 we get∫
�

(uN∇)uNuN dx = 0 and
∫
�

(a∇)uNuN dx = 0.

The last term of the right-hand side of (3.7) can be bounded by Theorem B – esti-
mate (1.18) with δ = 1/2ν̃, where ν̃ is taken to be, as in the Korn inequality (2.2),∣∣∣∣

∫
�

(uN∇)a · uN dx

∣∣∣∣ � 1
2 ν̃‖uN‖2

H 1(�)
. (3.9)

Summing up, by (3.8) and (3.9) from (3.7), we obtain

(P (uN), uN)VN

� ‖uN‖H 1(�)

(
ν̃

2
‖uN‖H 1(�) − A3(‖∇a‖L2(�) + ‖(a∇)a‖L2(�))

)
. (3.10)

IfM = ‖uN‖V N is so large that

ν̃

2
M − A3(‖∇a‖L2(�) + ‖(a∇)a‖L2(�)) > 0, (3.11)

then inequality (3.10) implies

(P (uN), uN)VN > 0, for all ‖uN‖V N = M. (3.12)
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By Lemma 2.2 and remark (3.6), we conclude that there exists uN∗ ∈ V N such that

P(uN∗ ) = 0. (3.13)

Hence, we have found the coefficients cnk (uN∗ = ∑N
k=1 c

N
k wk) and, moreover, by

(3.12) and (2.4), we have

‖uN∗ ‖H 1(�) � M, (3.14)

where k is independent of N – see (3.11).
By the properties of Hilbert spaces, there exists a subsequence {uNk∗ }∞

k=0 such
that

uNk∗ ⇀ u∗ as k → ∞ weakly in V. (3.15)

Without loss of generality, we can take a subsequence {uNk∗ }∞
k=0 in such a way that

uNk∗ → u∗ as k → ∞ strongly in L4(� ∩ ([−k, k] × (0,H)), (3.16)

for all k ∈ N, which is possible by the Rellich theorem. Then we can prove that∫
�

(uNk∗ ∇)uNk∗ · φ dx →
∫
�

(u∗∇)u∗ · φ dx, for all φ ∈ V. (3.17)

And by the Galerkin method, function u∗ is a weak solution in the sense of
(1.14). Estimate (1.16) is concluded from (3.14) and by (3.11) we find a bound

M >
2A3(‖∇a‖L2(�) + ‖(a∇)a‖L2(�))

ν̃
. (3.18)

4. Proof of Theorem B

In this part of the paper, we construct a vector field a:�→ R2. A method from [4]
is adapted here to obtain a field near the obstacle. To simplify, we assume that
v∞ � 0 which does not change our considerations.

To define a field a, we need two quantities. The first one is a function η:
[0,H ] → [0, 1] such that

η(t) =




1 for 0 � t � ,e−1/ε = R,

−εln t
,

for R < t � ,,
0 for , < t � H,

(4.1)

where , < h. By definition (4.1) we see that

η′(t) =




0 for 0 � t � ,e−1/ε = R,
−ε
t

for R < t � ,,
0 for , < t � H.

(4.2)
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The function η defines

ξ(x2) = m ∗ ∂x2η(H − x2), (4.3)

where m is a standard mollifier such that

‖(m ∗ ∂x2η(H − x2))
2 − (∂x2η(H − x2))

2‖L1(0,H) � ε2/H. (4.4)

Thus definition (4.3) implies the smoothness of the function ξ(·).
The second quantity is a vector field b: [0,D] × [0,H ],
b1(x1, x2) = ξ(x2)+ (1/H − ξ(x2))π(x1), (4.5)

b2(x1, x2) = π ′(x1)

∫ x2

0
(ξ(x′

2)− 1/H) dx′
2, (4.6)

where D will be specified later and π(·) is a smooth increasing function such that

π(0) = π ′(0) = π ′(D) = 0, π(D) = 1 and

‖π ′‖L∞(0,D) � 2/D. (4.7)

We see that a field b given by (4.5)–(4.6) satisfies

div b = 0, b ∈ C1([0,D] × [0,H ]),
b|x1=0 = (ξ(x2), 0), b|x1=D = (1/H, 0).

Having a function ξ and a vector field b, we define a field a in the following way:

a(x1, x2) = Hv∞ ·




(ξ(x2), 0), for x1 ∈ [−D,D],
b(x1 −D, x2), for x1 ∈ (D, 2D],
b(−x1 −D, x2), for x1 ∈ [−2D,−D),
(1/H, 0), for x1 ∈ (−∞,−2D) ∪ (2D,+∞).

(4.8)

This construction guarantees that conditions (1.8) are satisfied (by (4.3) and defin-
ition (4.1), we get

∫ H
0 (ξ(x2)− 1/H) dx2 = 0).

Now we consider the main difficulty of Theorem B – estimation for
∫
�
u ·

∇au dx. We have∫
�

u · ∇au dx =
∫
�

u · ∇a1u1 dx +
∫
�

u · ∇a2u2 dx = I1 + I2

and

I1 =
∫
�

u1a1
,1u

1 dx +
∫
�

u2a1
,2u

1 dx = I11 + I12.

As we see, I12 is a more complex term. By definition (4.8), the first component of
a reads

a1(x1, x2) = Hv∞{ξ(x2)(1 − π̃ (x1))+ 1/H π̃(x1)}, (4.9)
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where π̃(·) is a smooth function such that

π̃ (x1) = 0 for x1 ∈ [−D,D],
π̃ (x1) = π(x1 −D) for x1 ∈ (D, 2D],
π̃ (x1) = π(−x1 −D) for x1 = [−2D,D)

and

π̃ (x1) = 1 for x1 ∈ (−∞, 2D) ∪ (2D,+∞).
It then follows that

I12 = −Hv∞
∫
�

ξ(x2)(1 − π̃ )u2u1
,2 dx −Hv∞

∫
�

ξ(x2)(1 − π̃ )u2
,2u

1 dx

= I121 + I122.

For I121, one can see that

|I121| �
(
H 2v2

∞

∫
�

(ξ(x)2)(1 − π̃)2(u2)2 dx

)1/2

‖u1
,2‖L2(�). (4.10)

We have to find an estimate for the first integral in the right-hand side of (4.10). By
the Sobolev imbedding theorem, (4.4) and (4.2), we have

H 2v2
∞

∫
�

(ξ(x2)(1 − π̃ ))2(u2)2 dx

� H 2v2
∞ε

2

(
‖u2
,2‖2

L2(I (x1))
+

∫ +∞

−∞

∫ H

H−,
(u2)2 dx2

(H − x2)2
dx1

)
. (4.11)

To find a bound for the last term of the right-hand side of (4.11) we note that∫ H

H−,
(u2)2 dx2

(H − x2)2
=

∫ H

H−,

(
1

H − x2

)
,2

(u2)2 dx2

=
(
(u2)2(x1, x2)

H − x2

∣∣∣∣
H

H−,

)
−

∫ H

H−,

2u2u2
,2 dx2

H − x2

� −(u
2)2(x1,H − ,)

,
−

∫ H

H−,

2u2u2
,2 dx2

H − x2
�

∣∣∣∣
∫ H

H−,

2u2u2
,2

H − x2

∣∣∣∣
� 2

(∫ H

H−,
(u2)2 dx2

(H − x2)2

)1/2

‖u2
,2‖L2(I (x1)). (4.12)

Therefore we conclude that∫ H

H−,
(u2)2 dx2

(H − x2)2
� 4‖u2

,2‖2
L2(I (x1))

. (4.13)

Estimation (4.13) can be found in [4]. Inserting (4.13) to (4.11), we obtain

|I121| �
√

5Hv∞ε‖∇u‖2
L2(�)

. (4.14)
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We take ε to be so small that
√

5Hv∞ε � 1
4 ν̃. (4.15)

If , and ε are chosen, we can define parameter D. To estimate I122 we note that,
since div u = 0,

I122 = −
∫
�

a1u1
,1u

1 dx = 1

2

∫
�

a1
,1(u

1)2 dx, (4.16)

where we used the fact that field a vanishes near the obstacle, hence the boundary
terms in the integration by parts are zero. By the definition of a field a – see (4.8)
|a1
,1| � c‖ξ‖L∞/D. (Note that ‖ξ‖L∞ → ∞ as ε → 0.) By definition (4.2), we see

that ‖ξ‖L∞ ∼ ev∞ . But a parameter ε has already been fixed, hence we can choose
D so large that

|a1
,1| � 1

16
ν̃ and |I122| � ν̃

16
‖u‖2

H 1(�)
.

For I11 we have the same estimate, |I11| � ν̃/16‖u‖2
H 1(�)

. Finally to estimate I2,

we note that for the same reason as for (4.16), |∇a2| � c‖ξ‖L∞/D. Thus, |I2| �
ν̃/16‖u‖2

H 1(�)
.

Summing up,∣∣∣∣
∫
�

u · ∇au dx

∣∣∣∣ � ν̃

2
‖u‖2

H 1(�)
. (4.17)

Since ν̃ can be chosen as small, we get (1.18) for any δ, but in the proof of
Theorem A, we need (4.17).

5. Proof of Theorem C

To obtain regularity of the solutions obtained by Theorem A, we use extra proper-
ties of problem (1.1). We want to apply the equations on the vorticity of the velocity
of the fluid. Since, on this level of our considerations, we have only weak solutions,
we use formulation (1.14).

Introduce a subclass of test functions defined in the following way:

φ = (∂x2ϕ,−∂x1ϕ), n · φ|∂� = 0, ϕ|∂� = 0, (5.1)

where ϕ ∈ H 2(�).
Inserting such functions into the weak formulation (1.14), we get

ν

∫
�

α�ϕ dx − 2ν
∫
∂�

χu · τ ∂ϕ
∂n

dσ =
∫
�

(v∇)ϕα dx −
∫
�

rotFϕ dx, (5.2)

where F = (u∇)a+(a∇)a−ν�a. As we see, problem (5.2) is a weak formulation
of (1.19) to obtain the vorticity in L2(�).
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Introduce a function d:� → R which is an extension of the boundary datum
such that

d|∂� = 2(u · τ)χ and ‖d‖H 1(�) � c‖u‖H 1(�). (5.3)

Moreover we require that supp d ⊂ [−L,L] × [0,H ].
Thus, the vorticity can be searched for in the form of

α = β + d, (5.4)

where β satisfies the following problem:

ν

∫
�

∇β · ∇ϕ dx = −ν
∫
�

∇d · ∇ϕ dx −
∫
�

(v∇)ϕβ dx −

−
∫
�

(v∇)ϕd dx +
∫
�

rot Fϕ dx (5.5)

for all ϕ ∈ H 1
0 (�). But Theorems A and B guarantee F ∈ L2(�), thus by the Lax–

Milgram theorem, having (5.3), we can note that β ∈ H 1
0 (�) with the following

estimate

‖β‖H 1(�) � c(v∞). (5.6)

Hence, we conclude that the vorticity given by (5.4) also satisfies (5.2), thus α ∈
H 1(�) with a suitable estimate which follows from (5.3) and (5.6).

To obtain the information about the regularity of the velocity, we use the fol-
lowing elliptic problem:

rot u = α, in �,
div u = 0, in �,
n · u = 0, on ∂�,
u → 0 as x1 → ±∞.

(5.7)

Since � cannot be a simply connected domain, the vector field can be represented
as a gradient of a scalar function (div u = 0) only locally, but the L2-norm is
known, hence we can localize problem (5.7) and get u ∈ H 2(�)with the following
estimate

‖u‖H 2(�) � c(v∞). (5.8)

Moreover, from (1.12)1 we also get the information about the gradient of the pres-
sure

‖∇p‖L2(�) � c(v∞). (5.9)

Thus we get (1.20).
To get the full smoothness, it is enough to note that, since u ∈ H 2(�), then

(u∇)u ∈ H 1(�). (5.10)
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Using the standard technique, we can easily increase regularity up to Hm(�) for
any m ∈ N and, by the Sobolev imbedding theorem, we get the finiteness of
Cm(�̄)-norms of u and ∇p for all m ∈ N. Theorem C has been proved. ✷
6. Appendix

Proof of Lemma 2.1. The proof is based on the results from [9, Lemma 4]. First we
prove that if u ∈ V – see definition (1.15), then

‖∇u‖L2(�) � c‖u‖H 1(�). (6.1)

To show it, first we note that, since

u · n|∂� = 0, u→ 0 as x1 → ±∞ and div u = 0, (6.2)

we have∫
I (x1)

u1 dx2 = 0, for all x1 and u2|x2=H = 0. (6.3)

This implies the Poincaré inequality for a domain

Q = � \ ([−L,L] × (0,H)) , i.e. ‖∇u‖L2(Q) � c‖u‖H 1(Q). (6.4)

Since � \Q is connected and bounded by the trace theorem, we conclude (6.1).
Prove estimate (2.2).

∫
�

(D(u))2 dx = 1

2

∫
�

2∑
i,j=1

(ui,j + uj,i)2 dx

=
∫
�

2∑
i,j=1

(
(ui,j )

2 + ui,juj,i
)

dx

= ‖∇u‖2
L2(�)

+
∫
∂�

2∑
i,j=1

ui,ju
j

,i dx. (6.5)

Let us examine the last term of (6.5). Without loss of generality, we can assume
that u ∈ C2(�) and, by integration by parts, we get

∫
�

2∑
i,j=1

ui,j u
j

,i dx = −
∫
�

uiu
j

,ij dx +
∫
∂�

2∑
i,j=1

uiu
j

,inj dσ

=
∫
�

2∑
i,j=1

ui,iu
j

,j dx −
∫
∂�

2∑
i,j=1

uiniu
j

,j dσ +

+
∫
∂�

2∑
i,j=1

uiu
j

,inj dσ. (6.6)
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The first term of the right-hand side of (6.6) is equal to
∫
(div u)2 dx = 0 and the

second one also vanishes, since u·n|∂� = 0. But condition u·n|∂� = 0 also implies
that, at the boundary,

(u · n),i = 0 or
2∑
j=1

u
j

,inj = −
2∑
j=1

ujnj,i . (6.7)

Using (6.7) to (6.6), we get

∫
�

2∑
i,j=1

ui,j u
j

,i dx = −
∫
∂�

2∑
i,j=1

uiujni,j dσ. (6.8)

Of course |ni,j | � c‖∂�‖C2 , in particular by definition of �, we have ni,j ≡ 0 for
|x1| > L, which guarantees that∫

∂�

uiujni,j dσ =
∫
∂O

uiujni,j dσ, (6.9)

where ∂O = ∂� ∩ ([−L,L] × [0,H ]), and it is obvious that ∂O is the finite
measure giving the compactness of this set.

These considerations ((6.5), (6.8) and (6.9)) lead us to the conclusion that

‖u‖2
H 1(�)

� A1

(∫
�

(D(u))2 dx + ‖u‖2
L2(∂O)

)
. (6.10)

To finish the proof, we have to show that

‖u‖2
L2(∂O)

� 1

2A1
‖u‖2

H 1(�)
+ A2

∫
�

(D(u))2 dx. (6.11)

We prove (6.11) by the contradiction. If a number A2 does not exist, then there
exists a bounded sequence {um}∞

m=0 ⊂ V such that

‖um‖2
L2(∂O)

� 1

2A1
‖um‖2

H 1(�)
+m

∫
�

(D(um))2 dx, (6.12)

and if we introduce vm = um/‖um‖L2(∂O), then

‖vm‖L2(∂O) = 1 and m

∫
�

(D(vm))2 dx � 1. (6.13)

Since by (6.12), the sequence {vm} is bounded in V , we can choose a subsequence
{vmk}∞

k=0 which is weakly convergent in V and strongly in L2(∂O) to a vector
v∗ ∈ V and by (6.13)∫

�

(D(vmk))2 dx � 1

mk
→ 0. (6.14)
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These relations, together with (6.5) and (6.8), imply that ‖vmk‖V → ‖v∗‖V which
causes vmk → v∗ strongly in V which gives, in particular,∫

�

(D(v∗))2 dx = 0. (6.15)

But functions satisfying (6.15) have the form: v1∗ = ax2 and v2∗ = −ax1 for a ∈ R.
Hence, since v∗ ∈ V , we deduce that v∗ = 0, which does not agree with (6.13).
This shows the existence of a number A2. To find the estimate for this constant it
is necessary to have precise information about the boundary, but this construction
is quite complex. Thus, we conclude estimate (2.2) from (6.11) and (6.1).
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