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On nearby cycles and D-modules of log schemes

in characteristic p > 0

Takeshi Tsuji

Abstract

Let K be a complete discrete valuation field of mixed characteristic (0, p) with a perfect
residue field k. For a semi-stable scheme over the ring of integers OK of K or, more
generally, for a log smooth scheme of semi-stable type over k, we define nearby cycles as
a single D-module endowed with a monodromy ∂log

t , whose cohomology should give the
log crystalline cohomology. We also explicitly describe the monodromy filtration of
the D-module with respect to the endomorphism ∂log

t , and construct a weight spectral
sequence for the cohomology of the nearby cycles.

1. Introduction

Let K be a complete discrete valuation field of mixed characteristic (0, p) with a perfect residue
field k and let XK be a proper smooth scheme over K. If XK has semi-stable reduction, i.e. there
exists a proper regular model X flat over the ring of integers OK of K such that the special
fiber X0 is a reduced divisor with normal crossings on X, then the p-adic nearby cycles, which
compute the p-adic étale cohomology of the generic fiber, are known to be described in terms of
the syntomic complexes originated from certain de Rham complexes ‘with log poles along X0’.
For a prime l different from p, we often understand the l-adic étale cohomology through a local
analysis of the l-adic nearby cycles even when XK has worse reduction. Therefore, it is natural
to ask whether we have a corresponding p-adic theory which still works for X with reduction
worse than semi-stable. A natural framework in which we work on this problem would be the
category of D-modules (without log poles). However, even in the semi-stable reduction case,
p-adic theory has been studied by adding log poles and eliminating singularities, and is not
yet well understood from the viewpoint of D-modules except for the local results by Gros and
Narváez-Macarro in [GN00] and [Gro04]. Note that we have a complete theory of nearby cycles
for D-modules on complex analytic varieties (cf. [Kas83, Mal83, MS89, Sab87, Sai88]).

When X is semi-stable, we define, in this paper, nearby cycles as a single D-module which
should compute the log crystalline cohomology (Hyodo–Kato cohomology, cf. [Hyo91, HK94])
of X0; more explicitly, we assume that p > 2 and there exists a closed immersion of X0 into a
smooth scheme Y over Spec(WN ), where WN =WN (k), and define nearby cycles as a DY/WN

-

module endowed with a monodromy ∂log
t . We also explicitly describe the monodromy filtration

of the nearby cycles and its graded quotients, and construct a weight spectral sequence for the
cohomology of the nearby cycles (cf. [Sai88] for the case of complex analytic varieties). The main
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On nearby cycles and D-modules of log schemes in characteristic p > 0

differences from the results of Gros and Narváez-Macarro mentioned above are that we work with
torsion coefficients, i.e. over WN , and that the nearby cycles are defined globally. The weight
spectral sequence was already constructed by Mokrane for the log crystalline cohomology [Mok93]
(see also [Nak05]), and recently by Nakkajima for the relative log crystalline cohomology.
However, our method may have an advantage, for example, in studying functoriality of the weight
spectral sequences because we use filtrations of sheaves: D-modules, whereas their methods use
filtrations of complexes: de Rham–Witt complexes and de Rham complexes, respectively. The
author plans to study the functoriality in a subsequent paper (cf. [Sai03] for the l-adic case).
The coincidence of the cohomology of our nearby cycles with the log crystalline cohomology
is left as a question (Question 4.5.3) in this paper. After the first version of this paper was
written, Berthelot proved the coincidence by using his new theory interpreting direct images of
D-modules in terms of crystalline topos.

This paper is organized as follows. In § 2, we summarize basic facts on D-modules for log
schemes which will be used in the following sections. Since we need to consider D-modules also
for a certain kind of non-smooth morphisms of log schemes, we try to give the details although
most of the arguments are found in the literature: [Ber90, Ber96, Ber00, Ber02, Mon02]. In § 3,
we define and study nearby cycles when a lifting of the log scheme X0 over the scheme Spec(WN )
endowed with the log structure associated to N→WN ; 1 7→ 0 is given. In § 4, we glue the nearby
cycles constructed in § 3 and study their properties under the assumption that p > 2.

Notation. A log scheme is denoted by a single letter such as X, Y, . . . and the log structures
(respectively the structure sheaves of the underlying schemes, respectively the underlying
schemes) of log schemes X, Y, . . . are denoted by MX , MY , . . . (respectively OX , OY , . . . ,
respectively X̊, Y̊ , . . .). Fiber products of fine log schemes are always considered in the
category of fine log schemes (cf. [Kat89, (2.8)]). Unless we consider log structures, sheaves
are always considered in the Zariski topology. Let k be a perfect field of characteristic p > 0,
and let S0 (respectively T0) be Spec(k) with the trivial log structure (respectively the log
structure associated to N→ k; 1 7→ 0). Let N be a positive integer and let S (respectively T )
be Spec(WN (k)) with the trivial log structure (respectively the log structure associated to
N→WN (k); 1 7→ 0). Let t denote the image of 1 ∈ N in Γ(T, MT ).

2. Preliminaries on the rings of differential operators for log schemes

Let X be a fine log scheme smooth over T . In this section, we define the rings of differential
operators DX/T and DX/S , give interpretations of left DX/B-modules and right DX/B-modules
(B = S, T ) in terms of stratifications and costratifications, and discuss a natural right action of
DX/B on ∧dΩX/T when X is purely of dimension d and satisfies certain conditions. We also define
and study tensor products, inverse images, and direct images. We have a natural homomorphism
of rings DX/T →DX/S (2.1.8) and we also discuss the compatibility of the restriction of scalars

by this homomorphism with stratifications, costratifications, right actions on ∧dΩX/T , tensor
products, inverse images, and direct images (cf. Lemma 2.2.9, the second paragraph of § 2.3,
Lemma 2.4.7, (2.5.1), and Corollary 2.6.10). See Montagnon’s thesis [Mon02] for the case B = T ,
where the rings of differential operators for log smooth morphisms of fine log schemes were
studied. Note thatX → S is not log smooth so that we need to slightly generalize the construction
in [Mon02] to define DX/S . See also [Ber90, Ber96, Ber00, Ber02], where the case without log

structures is discussed. If we follow the notation in the above references, we should write D
(0)
X/B for

DX/B. However, since we consider only D
(0)
X/B throughout this paper, we omit the superscript (0).
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2.1 Rings of differential operators

For an integer r, let Xr+1
/B be the fiber product over B of r + 1 copies of X and let PX/B(r) be the

PD envelope of the diagonal immersion X →֒Xr+1
/B compatible with the canonical PD structure

of pWN . Let PX/B(r) be the structure sheaf of the underlying scheme of PX/B(r) and let JX/B(r)
be its PD ideal. We define PnX/B(r) →֒ PX/B(r) to be the exact closed immersion defined by the

(n+ 1)th divided power JX/B(r)[n+1]. We have a sequence of exact closed immersions:

X = P 0
X/B(r) →֒ P 1

X/B(r) →֒ P 2
X/B(r) →֒ · · · →֒ PnX/B(r) →֒ Pn+1

X/B(r) →֒ · · · →֒ PX/B(r).

Let PnX/B(r) denote the structure sheaf PX/B(r)/JX/B(r)[n+1] of PnX/B(r) and let J nX/B(r)

denote its ideal JX/B(r)/JX/B(r)[n+1], which is endowed with the PD structure induced by
that of JX/B(r). We omit (r) from the notation when r = 1. We have natural PD morphisms
PX/T (r)→ PX/S(r) and PnX/T (r)→ PnX/S(r) compatible with the above sequence of exact closed
immersions.

First we give a local explicit description of PX/B. Let pB,i denote the projection to the ith
component PX/B →X for i= 1, 2.

Proposition 2.1.1. Assume that we are given t1, . . . , td ∈ Γ(X,MX) such that {d log tν} is
a basis of Ω1

X/T . Then, since X →֒ PX/B is an exact nilimmersion, there exists a unique

uB,ν ∈ 1 + JX/B such that uB,ν · p
∗
B,1(tν) = p∗B,2(tν) in Γ(PX/B, MPX/B

) for 1 6 ν 6 d. The image
of uS,ν in PX/T is uT,ν , so that we abbreviate uB,ν to uν if there is no risk of confusion. In the
case B = S, there exists a unique u ∈ 1 + JX/S such that u · p∗S,1(t) = p∗S,2(t) in Γ(PX/S , MPX/S

).
Let i be 1 or 2, and regard PX/B as a sheaf of OX -algebras via p∗B,i. Then:

(1) the PD homomorphism of sheaves of OX -algebras

OX〈V1, . . . , Vd〉 −→PX/T

defined by Vν 7→ uν − 1 is an isomorphism;

(2) the PD homomorphism of sheaves of OX -algebras

OX〈V, V1, . . . , Vd〉 −→PX/S

defined by V 7→ u− 1 and Vν 7→ uν − 1 is an isomorphism.

Proof. (1) is a special case of [Kat89, Proposition 6.5]. We prove (2) for i= 1. Consider the
following commutative diagram, whose left square is cartesian.

T� _

��

Xoo � s

&&M
M

M
M

M
M

M
M

M
M

M� _

��
T ×S T X ×S Too X ×S Xoo

Put T (1) = T ×S T . The chart NT →MT induces a chart (N⊕ N)T (1)→MT (1). We define T̃ (1) to
be T (1)×Spec(Z)[N⊕N] Spec(Z)[N⊕ Z], where Spec(Z)[P ] denotes Spec(Z[P ]) with the log struc-
ture associated to P →֒ Z[P ]. The morphism Spec(Z)[N⊕ Z]→ Spec(Z)[N⊕ N] is defined by N⊕
N→ N⊕ Z; (n, m) 7→ (n+m, m). Then the morphism T̃ (1)→ T (1) is étale and the closed im-
mersion T → T (1) factors through the exact closed immersion T → T̃ (1) induced by N⊕ Z→ N;
(n, m) 7→ n. If we denote by v the image of (0, 1) ∈ N⊕ Z in Γ(T̃ (1), M

T̃ (1)
), then we have an

isomorphism WN [V ]∼= Γ(T̃ (1),O
T̃ (1)

) sending V to v − 1. By the construction of PD envelopes
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in [Kat89, Proposition 5.3], we see that the PD envelope PT/S of T in T ×S T is Spec(WN 〈v − 1〉)
endowed with the log structure defined by N⊕ Z→WN 〈v − 1〉; (n, m) 7→ vm (if n= 0), 0
(if n > 0). Since the morphismX → T is smooth and integral [Kat89, Corollary 4.4], the lower left
horizontal morphism is smooth and integral; especially, it is flat in the underlying schemes [Kat89,
Corollary 4.5]. Hence, the PD envelope of X in X ×S T is isomorphic to X ×T, pT,1

PT/S ,
where pT,1 denotes the projection to the first component PT/S → T . Especially, the structure sheaf
of rings of the PD envelope is OX〈v − 1〉. Since the morphism X ×S X →X ×S T is smooth,
the claim follows from [Tsu00, Proposition 1.8]. (Use the inverse images of tν by the second
projection X ×S X →X and the projection X ×S T →X.) Note that the image of v in PX/S
is u. ✷

Corollary 2.1.2 (cf. [Ber96, Proposition 2.1.3]).

(1) There exists a unique PD structure on the ideal of the structure sheaf of PnX/B ×X Pn
′

X/B

defining the exact closed immersion X →֒ PnX/B ×X Pn
′

X/B such that the two projections

PnX/B ×X Pn
′

X/B → PnX/B, P
n′

X/B are PD morphisms. Furthermore, the (n+ n′ + 1)th divided

power of the PD ideal is 0. Here we regard the left PnX/B (respectively the right Pn
′

X/B) as

an X-scheme by the second (respectively the first) projection to X.

(2) There exists a unique PD structure on the ideal of the structure sheaf of PnX/B ×X Pn
′

X/B ×X

Pn
′′

X/B defining the exact closed immersion X →֒ PnX/B ×X Pn
′

X/B ×X Pn
′′

X/B such that the
three projections

PnX/B ×X Pn
′

X/B ×X Pn
′′

X/B → PnX/B, P
n′

X/B, P
n′′

X/B

are PD morphisms. Furthermore, the (n+ n′ + n′′ + 1)th divided power of the PD ideal
is 0.

Proof. We write Pm and Jm for PmX/B and JmX/B to simplify the notation.

(1) By Proposition 2.1.1, we see that p∗i : OX →P
n is flat for i= 1, 2. Hence, the PD structure

on J n (respectively J n
′
) induces a PD structure of J n ⊗OX

Pn
′

(respectively Pn ⊗OX
J n
′
).

Since Pm = p−1
i (OX)⊕ Jm, the intersection of the above PD ideal is J n ⊗OX

J n
′
, on which the

two PD structures coincide:

γm(a)⊗ bm =m!γm(a)⊗ γm(b) = am ⊗ γm(b) for a ∈ J n and b ∈ J n
′
.

The second claim follows from the formula

γm(c+ d) =
∑

m=m1+m2

γm1(c)γm2(d)

for c ∈ J n ⊗OX
Pn
′
and d ∈ Pn ⊗OX

J n
′
.

(2) By (1) and the flatness of p∗i : OX →P
n, we can define PD structures on

(J n ⊗OX
Pn
′
+ Pn ⊗OX

J n
′
)⊗OX

Pn
′′

and (Pn ⊗OX
Pn
′
)⊗OX

J n
′′
.

We can verify that they coincide on the intersection

(J n ⊗OX
Pn
′
+ Pn ⊗OX

J n
′
)⊗OX

J n
′′

in the same way as (1) and obtain the desired PD structure. ✷

By Corollary 2.1.2, the morphism

PnX/B ×X Pn
′

X/B →֒ (X ×B X)×X (X ×B X) =X ×B X ×B X
p13
−−−→X ×B X
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induces a PD homomorphism

δn,n
′
: Pn+n′

X/B →P
n
X/B ⊗OX

Pn
′

X/B. (2.1.3)

Here p13 denotes the projection to the first and third components. The homomorphism (2.1.3)
is compatible with n and n′ in the obvious sense.

Corollary 2.1.4. The following diagram is commutative.

Pn+n′+n′′

X/B
δn+n′,n

//

δn,n′+n′′

��

Pn+n′

X/B ⊗OX
Pn
′′

X/B

δn,n′⊗id
��

PnX/B ⊗OX
Pn
′+n′′

X/B

id⊗δn′,n′′

// PnX/B ⊗OX
Pn
′

X/B ⊗OX
Pn
′′

X/B

Proof. We see that every homomorphism in the diagram is a PD homomorphism for the PD
structures defined in Corollary 2.1.2. Furthermore, by the definition of δn,n

′
, we see that the two

PD homomorphisms Pn+n′+n′′

X/B ⇒ PnX/B ⊗OX
Pn
′

X/B ⊗OX
Pn
′′

X/B give commutative diagrams

PnX/B ×X Pn
′

X/B ×X Pn
′′

X/B
� � //

����

X2
/B ×X X2

/B ×X X2
/B X4

/B

p14

��
Pn+n′+n′′

X/B
� � // X2

/B

where p14 denotes the projection to the first and fourth components. By the universality of the
PD envelope of X in X2

/B, we see that the two left vertical morphisms coincide. ✷

Following [Ber96, Mon02], we define DX/B,n by

DX/B,n =HomOX
(PnX/S ,OX),

where we regard PnX/S as an OX -module via p∗1. By Proposition 2.1.1, DX/B,n is a locally free

sheaf of OX -modules locally of finite type and the surjection Pn
′

X/S →P
n
X/S induces an injection

DX/S,n→DX/B,n′ for n′ > n. We define DX/B by

DX/B = lim−→
n

DX/B,n.

For P ∈ DX/B and P ′ ∈ DX/B, if P ∈ DX/B,n and P ′ ∈ DX/B,n′ , then we define the product P · P ′

to be the composite:

Pn+n′

X/B

δn,n′

−−−−→PnX/B ⊗OX
Pn
′

X/B
id⊗P ′
−−−−−→PnX/B

P
−−→OX .

By the compatibility of δn,n
′

for n and n′, this is well defined. By Corollary 2.1.4, the
multiplication defined above is associative, and we see easily that DX/B with this product
structure becomes a sheaf of rings. The homomorphism

OX
∼=
−−→DX/B,0 ⊂DX/B

is a ring homomorphism.

We define the action of P ∈ DX/B,n on OX to be the composite of

OX
p∗2−−→PnX/B

P
−−→OX .
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We can verify that this defines an action of the ring DX/B by using the following commutative
diagram.

Pn+n′

X/B
δn,n′

// PnX/B ⊗OX
Pn
′

X/B

OX

p∗2

OO

p∗2 // Pn
′

X/B

OO

Proposition 2.1.5 (cf. [Mon02, § 2.3.2, C]). Let tν and uν (1 6 ν 6 d) be as in Proposition 2.1.1.
We put t0 = t and u0 = u. Let ν0 be 0 (respectively 1) if B = S (respectively B = T ). For n> 0,
the elements{ ∏

ν06ν6d

(uν − 1)[nν ] | n= (nν0 , . . . , nd) ∈ N
d+1−ν0 , |n| := nν0 + · · ·+ nd 6 n

}

are a basis of PnX/B as a left OX -module (Proposition 2.1.1) and we define ∂〈n〉 ∈ DX/B,n to be
its dual basis. We denote by ∂ν the dual of uν − 1. This definition is consistent with respect to
the inclusion DX/B,n →֒ DX/B,n+1. We have the following formulae in DX/B:

(1) ∂ν∂µ = ∂µ∂ν for ν0 6 ν, µ6 d;

(2) ∂〈n〉 =
∏d
ν=ν0

∏nν−1
j=0 (∂ν − j) for n ∈ N

d+1−ν0 ;

(3) ∂ν · f = ∂ν(f) + f · ∂ν for f ∈ OX .

We also have the following equality for d : OX → Ω1
X/B:

(4) d(f) =
∑d

ν=ν0
∂ν(f) d log(tν).

Proof. Put τν = uν − 1. Then (4) follows from the fact that d is given by

p∗2 − p
∗
1 : OX →Ker(P1

X/B →OX) = Ω1
X/B

and d log(tν) = τν in P1
X/B.

(1) and (2) For n ∈ N
d+1−ν0 and n= |n|, the image of

∏

ν06ν6d

τ [mν ]
ν (m ∈ N

d+1−ν0 , |m|6 n+ 1)

by the homomorphism δn,1 : Pn+1
X/B −→P

n
X/B ⊗OX

P1
X/B is

∏

ν06ν6d

(uν ⊗ uν − 1)[mν ] =
∏

ν06ν6d

((τν + 1)⊗ τν + τν ⊗ 1)[mν ]

=
∏

ν06ν6d

(τ [mν ]
ν ⊗ 1 +mντ

[mν ]
ν ⊗ τν + τ [mν−1]

ν ⊗ τν).

For ν0 6 ν 6 d, the image of this element by

PnX/B ⊗OX
P1
X/B

∂ν−−→PnX/B
∂〈n〉
−−−−→OX

is nν if m= n, 1 if m= n+ ǫν , and 0 otherwise. Here ǫν denotes the element of N
d+1−ν0 whose

νth component is 1 and other components are 0. Hence, we have

∂〈n〉∂ν = nν∂
〈n〉 + ∂〈n+ǫν〉⇐⇒ ∂〈n+ǫν〉 = ∂〈n〉(∂ν − nν).

This implies that ∂ν∂µ = ∂〈ǫν+ǫµ〉 = ∂µ∂ν if ν 6= µ. We obtain (2) by induction on |n| using the
above formula.
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(3) In P1
X/B, we have

p∗2(f) = p∗1(f) +
∑

ν06ν6d

p∗1(∂ν(f))τν

by (4). Hence, the images of 1, τν , and τµ (µ 6= ν) by

P1
X/B

p∗2(f)
−−−−→P1

X/B
∂ν−−→OX

are ∂ν(f), f , and 0, respectively. Hence, ∂ν · f = ∂ν(f) + f · ∂ν . ✷

Corollary 2.1.6. Let the notation and assumptions be the same as in Proposition 2.1.5. For
either of the left OX -action or the right OX -action on DX/B,n, DX/B,n is a free OX -module with
a basis {

∏
ν06ν6d ∂

nν
ν | nν ∈ N,

∑
ν06ν6d nν 6 n}.

Proof. For the left action, the claim immediately follows from Proposition 2.1.5. The proposition
also implies that the two actions of OX on DX/B,n/DX/B,n−1 coincide. Hence, the claim also
holds for the right action. ✷

We define the increasing filtration FnDX/B (n ∈ Z) of DX/B by FnDX/B =DX/B,n (n> 0) and

FnDX/B = 0 (n < 0). Since FnDX/B · FmDX/B ⊂ Fn+mDX/B for n, m ∈ Z, grF DX/B becomes a
sheaf of rings. Put TX/B =HomOX

(Ω1
X/B,OX).

Corollary 2.1.7. The sheaf of rings grF DX/B is commutative and the isomorphism of

OX -modules grF1 DX/B
∼=HomOX

(Ker(p1∗P
1
X/B →OX),OX)∼= TX/B induces an isomorphism

of graded OX -algebras: SymOX
TX/B

∼=
−−→ grF DX/B.

Proof. The map

FnDX/B × FmDX/B → grFn+m DX/B; (P, Q) 7→ PQ−QP

is bilinear for the left actions of OX since the two actions of OX on grF DX/B coincide, as is
mentioned in the proof of Corollary 2.1.6. Hence, by Proposition 2.1.5(1) and (2), we see that the
above map is 0 and grF DX/B is commutative. The latter claim follows from Corollary 2.1.6. ✷

The morphism X ×T X →X ×S X induces PD morphisms PX/T → PX/S and PnX/T → PnX/S .
By taking the dual of the homomorphisms between the structure sheaves, we obtain a
homomorphism of sheaves of OX -modules:

DX/T →DX/S . (2.1.8)

Proposition 2.1.9. The homomorphism (2.1.8) is a ring homomorphism.

Proof. It suffices to prove the compatibility of δn,n
′

with the homomorphisms PmX/S →P
m
X/T

(m= n, n′, n+ n′). The morphism PnX/T ×X Pn
′

X/T → PnX/S ×X Pn
′

X/S is a PD morphism. Hence,
the commutative diagram

X ×T X ×T X //

p13
��

X ×S X ×S X

p13
��

X ×T X // X ×S X
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induces the following commutative diagram.

PnX/T ×X Pn
′

X/T
//

��

PnX/S ×X Pn
′

X/S

��

Pn+n′

X/T
// Pn+n′

X/S ✷

Assume that the underlying scheme X̊ of X is smooth over S and X = X̊ ×S T . Then the
diagonal immersion X →֒X ×T X is an exact closed immersion. Hence, the underlying scheme
of PX/T is the PD envelope of X̊ →֒ X̊ ×S X̊ endowed with the inverse image of MT . This implies
that we have a canonical isomorphism of sheaves of OX -algebras:

DX/T
∼=
−−→DX̊/S . (2.1.10)

On the other hand, we have

Ω1
X/S
∼= Ω1

X̊/S
⊕ (OX ⊗OT

Ω1
T/S) and Ω1

T/S =OT d log(t).

By taking the dual of d log(t), we obtain a canonical element ∂log
t of

HomOX
(OX ⊗OT

Ω1
T/S ,OX)⊂HomOX

(Ω1
X/S ,OX)⊂DX/S,1.

Proposition 2.1.11. Under the notation and assumptions as above, the differential
operator ∂log

t is contained in the center of DX/S and the homomorphism (2.1.8) induces an
isomorphism of sheaves of rings:

DX/T [V ]
∼=
−−→DX/S ; V 7→ ∂log

t .

Proof. Since the question is étale local, we may assume that there exist t1, . . . , td ∈ Γ(X,O×X)
such that {dtν} is a basis of Ω1

X̊/S
. Since the image of d : OX → Ω1

X/S is contained in Ω1
X̊/S

,

Proposition 2.1.5(4) implies that ∂log
t (f) = 0 for f ∈ OX . By Proposition 2.1.5(1), (2), and (3), we

see that ∂log
t is contained in the center of DX/S . The second claim follows from Corollary 2.1.6. ✷

2.2 DX/B-modules and stratifications

For n ∈ N, let pni (i= 1, 2) denote the morphism PnX/B →X induced by the projection to the

ith component X2
/B →X and let qnj (j = 1, 2, 3) denote the morphism PnX/B(2)→X induced

by the projection to the jth component X3
/B →X. Let qnij ((i, j) = (1, 2), (2, 3), (1, 3)) be the

morphism PnX/B(2)→ PnX/B induced by the morphismX3
/B →X2

/B whose composite with the first

(respectively second) projection X2
/B →X is the ith (respectively jth) projection X3

/B →X.

Let ιn denote the exact closed immersion PnX/B → Pn+1
X/B.

Theorem 2.2.1 (cf. [Ber96, Proposition 2.3.2] and [Mon02, Proposition 2.6.1]). The category
of left DX/B-modules is canonically equivalent to the following category.

Object: an OX -module E endowed with a family of isomorphisms {εn : pn∗2 E
∼=
−−→ pn∗1 E}n∈N of

PnX/B-modules satisfying the following properties.

(i) ε0 = idE .

(ii) For every n ∈ N, εn = ι∗n(εn+1).
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(iii) For every n ∈ N, the following diagram is commutative.

qn∗3 E
qn∗
23 (εn)

//

qn∗
13 (εn) ''OOOOOOOOOOOOO

qn∗2 E

qn∗
12 (εn)

��
qn∗1 E

Morphism: a morphism (E , {εn})→ (E ′, {ε′n}) is a OX -linear homomorphism α : E → E ′ such
that ε′n ◦ p

n∗
2 (α) = pn∗1 (α) ◦ εn for every n ∈ N.

Definition 2.2.2 (cf. [Ber96, Définition 2.3.1] and [Mon02, Définition 2.6.1]). Let E be an

OX -module. A PD stratification on E relative to B is a family of isomorphisms {εn : pn∗2 E
∼=
−−→

pn∗1 E}n∈N of PnX/B-modules satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.1.

Proposition 2.2.3 (cf. [Ber96, Proposition 2.3.2] and [Mon02, Proposition 2.6.1]). The
category of left DX/B-modules is canonically equivalent to the following category.

Object: an OX -module E endowed with a family of homomorphisms {θn : E → E ⊗OX

PnX/B}n∈N OX -linear for the right OX -module structures of the targets satisfying the following
properties.

(i) θ0 = idE .

(ii) For every n ∈ N, the composite of θn+1 with the homomorphism

E ⊗OX
Pn+1
X/B −→ E ⊗OX

PnX/B

coincides with θn.

(iii) For every n, n′ ∈ N, the following diagram is commutative.

E
θn′ //

θn+n′

��

E ⊗OX
Pn
′

X/B

θn⊗id
Pn′

X/B
��

E ⊗OX
Pn+n′

X/B

idE⊗δ
n,n′

// E ⊗OX
PnX/B ⊗OX

Pn
′

X/B

Morphism: a morphism (E , {θn}n∈N)→ (E ′, {θ′n}n∈N) is an OX -linear homomorphism
α : E → E ′ such that θ′n ◦ α= (α⊗ idPn

X/B
) ◦ θn for every n ∈ N.

Lemma 2.2.4. We regard an OX -module as a left OX -module. For OX -modules or OX -
bimodules, letHomlr(−,−) denote the sheaf of OX -linear homomorphisms for the left OX -action
on the source and the right OX -action on the target. We define Homll, Homrl, and Homrr in
the same way.

Let E , F , and G be OX -modules, and letM and N be OX -bimodules locally free of finite type
as left OX -modules. Note thatM⊗OX

N is locally free of finite type as a left OX -module. For an
OX -bimodule L locally free of finite type as a left OX -module, let L∨ denote the OX -bimodules
Homll(L,OX). We have a natural isomorphism of OX -bimodules (L∨)∨ ∼= L.

(1) There exists a canonical OX -bilinear isomorphism:

Homll(M⊗OX
E , F)∼= Homlr(E , F ⊗OX

M∨)

functorial on E and F . Here we regard the left-hand side (LHS) (respectively the right-
hand side (RHS)) as an OX -bimodule through the actions of OX onM⊗OX

E (respectively
F ⊗OX

M∨).

1560

https://doi.org/10.1112/S0010437X10004768 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004768


On nearby cycles and D-modules of log schemes in characteristic p > 0

(2) The canonical isomorphism:

(M⊗OX
N )∨ ∼=M∨ ⊗OX

N∨

given by (1) is an isomorphism of OX -bimodules. For f ∈M∨ and g ∈N∨, f ⊗ g of the
RHS corresponds to h= f ◦ (idM ⊗ g) of the LHS. Furthermore,

M⊗OX
N ∼= ((M⊗OX

N )∨)∨ ∼= (M∨ ⊗OX
N∨)∨ ∼= (M∨)∨ ⊗OX

(N∨)∨ ∼=M⊗OX
N

is the identity map.

(3) For f ∈Homll(N ⊗OX
E , F) and g ∈Homll(M⊗OX

F , G), let f∨ ∈Homlr(E , F ⊗OX
N∨)

and g∨ ∈Homlr(F , G ⊗OX
M∨) be the homomorphisms corresponding to f and g by (1).

Then the composite of

E
f∨
−−−→F ⊗OX

N∨
g∨⊗idN∨−−−−−−−→G ⊗OX

M∨ ⊗OX
N∨

(2)
∼= G ⊗OX

(M⊗OX
N )∨

corresponds to the composite of

M⊗OX
N ⊗OX

E
idM⊗f−−−−−−→M⊗OX

F
g
−−→ G

by (1).

(3)′ For f ∈Homll(N
∨ ⊗OX

E , F) and g ∈Homll(M
∨ ⊗OX

F , G), let f∨ ∈Homlr(E , F ⊗OX
N )

and g∨ ∈Homlr(F , G ⊗OX
M) be the homomorphisms corresponding to f and g by (1).

Then the composite of

E
f∨
−−−→F ⊗OX

N
g∨⊗idN−−−−−−→G ⊗OX

M⊗OX
N

corresponds to the composite of

(M⊗OX
N )∨ ⊗OX

E
(2)
∼=M∨ ⊗OX

N∨ ⊗OX
E

idM∨⊗f−−−−−−→M∨ ⊗OX
F

g
−−→ G

by (1).

(4) Let f : M→N be a homomorphism of OX -bimodules and let f∨ : N∨→M∨ be its dual.
Then the following diagram is commutative.

Homll(M⊗OX
E , F)

∼=

(1)
// Homlr(E , F ⊗OX

M∨)

Homll(N ⊗OX
E , F)

−◦(f⊗idE)

OO

∼=

(1)
// Homlr(E , F ⊗OX

N∨)

(idF⊗f
∨)◦−

OO

Proof. (1) The map from the LHS to the RHS is defined as follows. We identify F ⊗OX
M∨

with Homll(M, F). Note that M is locally free of finite type as a left OX -module by
assumption. For a local section of the LHS f :M⊗OX

E →F , we define the corresponding map
g : E →Homll(M, F) by g(e) = fe, fe(m) = f(m⊗ e). One can verify that fe ∈Homll(M, F),
g ∈Homlr(E ,Homll(M, F)) and the map thus obtained is a homomorphism of OX -bimodules.
The map from the RHS to the LHS is defined as follows. For a local section of the RHS
g : E →Homll(M, F), we define f : M⊗OX

E →F by f(m⊗ e) = {g(e)}(m). One can verify
that f is well defined and contained in the LHS. It is straightforward to see that these two maps
are the inverse of each other.

(2) The natural isomorphism

M∨ ⊗OX
N∨ ∼=Homlr(N ,Homll(M,OX))
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sends f ⊗ g to ϕ defined by ϕ(n) = f · g(n). Hence, the image h of f ⊗ g in Homll(M⊗OX

N ,OX) is given by

h(m⊗ n) = {ϕ(n)}(m) = {f · g(n)}(m) = f(m · g(n)) = f ◦ (idM ⊗ g)(m⊗ n).

This implies that the isomorphism is compatible with the left and right actions of OX . For the
last claim, using the above description, one can verify that the images of m⊗ n ∈M⊗OX

N in

(M∨ ⊗OX
N∨)∨ = Homll(M

∨ ⊗OX
N∨,OX)

by the two maps (the composite of the left two isomorphisms and that of the right two) are the
same and given by f ⊗ g 7→ f(m · g(n)).

(3) The homomorphisms f∨ : E →Homll(N , F) and g∨ : F →Homll(M, G) are given by
{f∨(x)}(n) = f(n⊗ x) and {g∨(y)}(m) = g(m⊗ y). This implies that the homomorphism

(g∨ ⊗ idN∨) ◦ f
∨ : E 7→ Homlr(N ,Homll(M, G))

is given by

ϕ : x 7→ {n 7→ [m 7→ g(m⊗ f(n⊗ x))]}.

On the other hand, the homomorphism E →Homll(M⊗OX
N , G) corresponding to g ◦ (idM ⊗

f) is given by ψ : x 7→ {m⊗ n 7→ g(m⊗ f(n⊗ x))}. Hence, the claim follows from the following
commutative diagram.

Homll(M⊗OX
N , G)

∼=

(1)
//

∼=
��

Homlr(N ,Homll(M, G))

∼=
��

G ⊗OX
Homll(M⊗OX

N ,OX)
∼=

idG⊗(1)
// G ⊗OX

Homlr(N ,Homll(M,OX))

Note that the upper horizontal map sends ψ(x) to ϕ(x) for x ∈ E .

(3)′ By (3), we are reduced to the following commutative diagram.

Homll(M
∨ ⊗OX

N∨ ⊗OX
E , G)

∼=

(1)
//

∼=
��

Homlr(E , G ⊗OX
(M∨ ⊗OX

N∨)∨)

∼=
��

Homll((M⊗N )∨ ⊗OX
E , G)

∼=

(1)
// Homlr(E , G ⊗OX

((M⊗OX
N )∨)∨)

where the left (respectively right) vertical map is induced by α : (M⊗N )∨
(2)
∼=M∨ ⊗M∨

(respectively β : (M∨ ⊗N∨)∨
(2)
∼= (M∨)∨ ⊗ (N∨)∨ ∼=M⊗N ∼= ((M⊗N )∨)∨). By (2), we see

that β is the dual of α, and the commutativity is reduced to (4).

(4) Straightforward computation. ✷

Proof of Proposition 2.2.3. Let E be an OX -module. By Lemma 2.2.4(1) and (4), giving a system
{θn} satisfying (i) and (ii) is equivalent to giving a system of homomorphisms {ηn : DX/B,n ⊗OX

E → E}n∈N linear for the left OX -module structures of the sources such that η0 = idE and the
composite of ηn+1 with DX/B,n ⊗OX

E →DX/B,n+1 ⊗OX
E coincides with ηn for every n ∈ N.

By Lemma 2.2.4(3)′ and (4), the condition (iii) is equivalent to the commutativity of the
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following diagram.

(DX/B,n ⊗OX DX/B,n′ ) ⊗OX E
∼=

Lemma 2.2.4(2)
//

idDX/B,n
⊗ηn′

��

(P n
X/B ⊗OX P n′

X/B)∨ ⊗OX E
(δn,n′

)∨⊗idE // DX/B,n+n′ ⊗OX E

ηn+n′

��
DX/B,n ⊗OX E

ηn // E

Since the composite of the isomorphism DX/B,n ⊗OX
DX/B,n′ ∼= (PnX/B ⊗OX

Pn
′

X/B)∨ with (δn,n
′
)∨

is the ring product by the description of the isomorphism in Lemma 2.2.4(2), this is equivalent to
saying that the homomorphism DX/B ⊗OX

E → E induced by {ηn} makes E a left DX/B-module.
By the functoriality of the isomorphism in Lemma 2.2.4(1), we see that the above correspondence
gives the desired equivalence of categories. ✷

Proof of Theorem 2.2.1. Let E be an OX -module, let {θn : E → E ⊗OX
PnX/B}n∈N be a family of

homomorphisms OX -linear for the right OX -module structures of the targets, and let

{εn : pn∗2 E = PnX/B ⊗OX
E → E ⊗OX

PnX/B = pn∗1 E}n∈N

be the family of homomorphisms of PX/B,n-modules associated to {θn}. By Proposition 2.2.3,
it suffices to prove that the conditions (i), (ii), and (iii) in the theorem are equivalent to those
in Proposition 2.2.3 and that εn is an isomorphism. The equivalence for (i) and (ii) is trivial.

Assume that the conditions (i) and (ii) are satisfied. Let pn,n
′

12 and pn,n
′

23 denote the projections

from PnX/B ×X Pn
′

X/B to PnX/B and Pn
′

X/B, respectively, and let pn,n
′

13 denote the PD morphism

PnX/B ×X Pn
′

X/B → Pn+n′

X/B considered after Corollary 2.1.2. For j = 1, 2, 3, let rn,n
′

j denote the

composite of PnX/B ×X Pn
′

X/B →X3
/B with the jth projection X3

/B →X. Then we have PD
morphisms

P
min{n,n′}
X/B (2)→ PnX/B ×X Pn

′

X/B → Pn+n′+1
X/B (2)

compatible with q•ij , q
•
j and pn,n

′

ij , rn,n
′

j in the obvious sense. Hence, the condition (iii) in the
theorem is equivalent to

pn,n
′∗

12 (εn) ◦ p
n,n′∗
23 (εn′) = pn,n

′∗
13 (εn+n′)

for every n, n′ ∈ N. Noting that δn,n
′

is the homomorphism induced by pn,n
′

13 , we see that the
above equality is equivalent to

(θn ⊗ idPn′
X/B

) ◦ θn′ = (idE ⊗ δ
n,n′) ◦ θn+n′ .

It remains to prove that εn is an isomorphism. Let τ be the PD morphism PnX/B → PnX/B(2)

induced by the morphism (p1, p2, p1) : X2
/B →X3

/B and let ς be the PD isomorphism PnX/B →

PnX/B induced by the isomorphism (p2, p1) : X2
/B →X2

/B exchanging the two components. Then

by pulling back the commutative diagram of the condition (iii) in the theorem by τ and τ ◦ ς,
we obtain εn ◦ ς

∗(εn) = idpn∗
1 (E) and ς∗(εn) ◦ εn = idpn∗

2 (E). ✷

Let α : A→B be a homomorphism of sheaves of commutative rings on a topological space.
We define functors α∗ and α♮ from the category of A-modules to that of B-modules by
α∗(M) = B ⊗AM and α♮(M) =HomA(B,M). Let α∗ denote the functor from the category
of B-modules to that of A-modules obtained by regarding B-modules as A-modules via α. The
functor α∗ is a left adjoint of α∗. The functor α♮ is a right adjoint of α∗; for an A-module M
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and a B-module N , we have a canonical isomorphism

HomA(N ,M)∼= HomB(N ,HomA(B,M)).

An element ϕ of the LHS and an element ψ of the RHS correspond to each other by the
following formulae: {ψ(n)}(b) = ϕ(bn) and ϕ(n) = {ψ(n)}(1). By the above property, we have a
canonical isomorphism β♮ ◦ α♮ ∼= (β ◦ α)♮ for another homomorphism of sheaves of commutative
rings β : B → C; for an A-moduleM, we have a canonical isomorphism

HomB(C,HomA(B,M))∼=HomA(C,M).

A local section ϕ of the LHS and a local section ψ of the RHS correspond to each other by
the following formulae: ψ(c) = {ϕ(c)}(1) and {ϕ(c)}(b) = ψ(cb). For an A-module M and a
B-module N , the adjunction maps α∗α

♮M→M and N → α♮α∗N are explicitly given by

HomA(B,M)→M; ϕ 7→ ϕ(1) and N →HomA(B,N ); n 7→ {b 7→ b · n}.

For a morphism of schemes f : U ′→ U such that the underlying morphism of topological
spaces is a homeomorphism, we define a functor f ♮ from the category of OU -modules to that of
OU ′-modules by

f ♮(M) =Homf−1(OU )(OU ′ , f
−1(M)).

Then f ♮ is a right adjoint of the direct image functor f∗. We have a canonical isomorphism
g♮ ◦ f ♮ ∼= (f ◦ g)♮ for another morphism of schemes g : U ′′→ U ′ satisfying the same condition
as f .

For n ∈ N, let

pni : PnX/B →X (i= 1, 2), qj : PnX/B(1)→X (j = 1, 2, 3),

and ιn : PnX/B → Pn+1
X/B be the same as before Theorem 2.2.1.

Theorem 2.2.5 (cf. [Ber00, Proposition 1.1.4]). The category of right DX/B-modules is
canonically equivalent to the following category.

Object: an OX -moduleM endowed with a family of isomorphisms {εn : pn♮1 M
∼=
−−→ pn♮2 M}n∈N

of PnX/B-modules satisfying the following properties.

(i) ε0 = idM.

(ii) For n ∈ N, εn = ιn♮(εn+1).

(iii) For n ∈ N, the following diagram is commutative.

qn♮1 M
qn♮
12 (εn)

//

qn♮
13 (εn) ''O

O
O

O
O

O
O

O
O

O
O

O
O

qn♮2 M

qn♮
23 (εn)

��

qn♮3 M

Morphism: a morphism (M, {εn})→ (M′, {ε′n}) is anOX -linear homomorphism α :M→M′

such that ε′n ◦ p
n♮
1 (α) = pn♮2 (α) ◦ εn.

Definition 2.2.6 (cf. [Ber00, Définition 1.1.3]). LetM be an OX -module. A PD costratification

on M relative to B is a family of isomorphisms {εn : pn♮1 M
∼=
−−→ pn♮2 M}n∈N of PnX/B-modules

satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.5.
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For n, n′ ∈ N, let pn,n
′

ij ((i, j) = (1, 2), (2, 3), (1, 3)), and rn,n
′

j (j = 1, 2, 3) be the same as in
the proof of Theorem 2.2.1. We have

rn,n
′

1 = pn1 ◦ p
n,n′

12 = pn+n′

1 ◦ pn,n
′

13 , rn,n
′

2 = pn2 ◦ p
n,n′

12 = pn
′

1 ◦ p
n,n′

23 ,

and

rn,n
′

3 = pn+n′

2 ◦ pn,n
′

13 = pn
′

2 ◦ p
n,n′

23 .

Proposition 2.2.7 (cf. [Ber00, Proposition 1.1.4]). The category of right DX/B-modules is
canonically equivalent to the following category.

Object: an OX -module M endowed with a family of homomorphisms {µn : pn2∗p
n♮
1 M→

M}n∈N of OX -modules satisfying the following properties.

(i) µ0 = idM.

(ii) The composite of µn+1 with

pn2∗p
n♮
1 M

∼= pn+1
2∗ ιn∗ ι

n♮pn+1♮
1 M

pn+1
2∗ (adj)
−−−−−−−→ pn+1

2∗ pn+1♮
1 M

coincides with µn for every n ∈ N.

(iii) For n, n′ ∈ N, the following diagram is commutative.

rn,n
′

3∗ rn,n
′♮

1 M //

��

pn
′

2∗p
n′♮
1 M

µn′

��
pn+n′

2∗ pn+n′♮
1 M

µn+n′ //M

Here the upper horizontal homomorphism is induced by µn as follows. The composite of µn
with the homomorphism

pn
′

1∗p
n,n′

23∗ p
n,n′♮
12 pn♮1 M= pn2∗p

n,n′

12∗ p
n,n′♮
12 pn♮1 M

pn
2∗(adj)
−−−−−−→ pn2∗p

n♮
1 M

induces

pn,n
′

23∗ p
n,n′♮
12 pn♮1 M−→ pn

′♮
1 M.

Taking pn
′

2∗, we obtain the desired homomorphism. The left vertical homomorphism is

induced by the adjunction pn,n
′

13∗ p
n,n′♮
13 → id.

Proof. Let M be an OX -module. The homomorphism

p2∗p
n♮
1 M→ pn+1

2∗ pn+1♮
1 M

is the homomorphism

HomOX
(pn1∗P

n
X/B,M)→HomOX

(pn+1
1∗ P

n+1
X/BM)

defined by the composition with ιn∗ : Pn+1
X/B →P

n
X/B. Hence, giving a system {µn} satisfying

(i) and (ii) is equivalent to giving a system of homomorphisms {κn : M⊗OX
DX/B,n→M}n∈N

linear for the right OX -module structures of the sources such that κ0 = id and compatible with
respect to the injection

M⊗OX
DX/B,n →֒M⊗OX

DX/B,n+1 for n ∈ N.
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Hence, it suffices to prove that the condition (iii) is equivalent to the commutativity of the
following diagram.

M⊗OX
DX/B,n ⊗OX

DX/B,n′
κn⊗idDX/B,n′ //

idM⊗prod
��

M⊗OX
DX/B,n′

κn′

��
M⊗OX

DX/B,n+n′
κn+n′ //M

The upper horizontal homomorphism of the diagram in (iii) is the homomorphism

HomOX
(r1∗(P

n
X/B ⊗OX

Pn
′

X/B),M)−→HomOX
(pn

′

1∗P
n′

X/B,M)

sending ϕ to ψ defined by

ψ(b) = µn({p
n
1∗P

n
X/B →M; a 7→ ϕ(a⊗ b)}).

The left vertical homomorphism is

HomOX
(r1∗(P

n
X/B ⊗OX

Pn
′

X/B),M)−→HomOX
(pn+n′

1∗ Pn+n′

X/B ,M)

defined by the composition with δn,n
′
. Hence, via the isomorphism

M⊗OX
DX/B,n ⊗OX

DX/B,n′
∼=

−−−−−−−−−−−−−→
Lemma 2.2.4(2)

M⊗OX
(PnX/B ⊗OX

Pn
′

X/B)∨

∼=
−−→HomOX

(r1∗(P
n
X/B ⊗OX

Pn
′

X/B),M)

sending m⊗ P ⊗Q to (P ◦ idPn
X/B
⊗Q) ·m, the two diagrams in question coincide. ✷

Proof of Theorem 2.2.5. Let M be an OX -module. Let {µn : pn2∗p
n♮
1 (M)→M}n∈N be a

family of homomorphisms of OX -modules, and let {εn : pn♮1 M→ pn♮2 M}n∈N be the family of
homomorphisms of PnX/B-modules associated to µn. By Proposition 2.2.7, it suffices to prove

that the conditions (i), (ii), and (iii) in the theorem are equivalent to those in Proposition 2.2.7
and that εn is an isomorphism. The equivalence for (i) is trivial. By taking the adjoints of the
condition (ii) in Proposition 2.2.7 with respect to pn+1

2 and then to ιn, we obtain the condition
(ii) in the theorem. Now we assume that the conditions (i) and (ii) are satisfied. To simplify the

notation, we abbreviate pn,n
′

i,j and rn,n
′

j to pij and rj in the following. By the same argument
as in the proof of Theorem 2.2.1, we see that the condition (iii) in the theorem is equivalent

to saying that we have p♮23(εn′) ◦ p
♮
12(εn) = p♮13(εn+n′) on PnX/B ×X Pn

′

X/B′ for every n, n′ ∈ N. On

the other hand, the condition (iii) in Proposition 2.2.7 is equivalent to saying that the following

diagram obtained by taking r♮3 of the diagram in Proposition 2.2.7(iii) and composing with

r♮1M→ r♮3r3∗r
♮
1M is commutative.

r♮1M
//

��

r♮3p
n′
2∗p

n′♮
1 M

��

r♮3p
n+n′

2∗ pn+n′♮
1 M // r♮3M

The composite of the right vertical homomorphism with

ϕ : p♮23p
n′♮
1 M→ p♮23p

n′♮
2 pn

′

2∗p
n′♮
1 M= r♮3p

n′

2∗p
n′♮
1 M
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is p♮23(εn′). The upper horizontal homomorphism of the diagram in Proposition 2.2.7(iii) is defined

to be pn
′

2∗(ψ) for a morphism ψ : p23∗r
♮
1M→ pn

′♮
1 M. This implies that the upper horizontal

homomorphism of the above diagram is the composite of

r♮1M
adj
−−−→ p♮23p23∗r

♮
1M

p♮
23(ψ)
−−−−−→ p♮23p

n′♮
1 M= r♮2M

with the homomorphism ϕ. The former homomorphism is obtained by taking the adjoint of

pn2∗p12∗p
♮
12p

n♮
1 M

pn
2∗(adj)
−−−−−−→ pn2∗p

n♮
1 M

µn
−−−→M

with respect to r2 = pn2 ◦ p12 = pn
′

1 ◦ p23, and it coincides with p♮12(εn) by Lemma 2.2.8 below.
Similarly, the composite of the left vertical homomorphism with the bottom horizontal one is
the adjoint of

pn+n′

2∗ p13∗p
♮
13p

n+n′♮
1 M

pn+n′

2∗ (adj)
−−−−−−−−→ pn+n′

2∗ pn+n′♮
1 M

µn+n′

−−−−−→M

with respect to r3 = pn+n′

2 ◦ p13, and it coincides with p♮13(εn+n′) by Lemma 2.2.8 below. Thus, we
obtain the desired equivalence for (iii). By the same argument as in the proof of Theorem 2.2.1,
we see that the conditions (i), (ii), and (iii) of the theorem imply that εn is an isomorphism. ✷

Lemma 2.2.8. Let A
α1

⇒
α2

B
β
−−→ C be morphisms of sheaves of commutative rings on a

topological space. Let F and G be sheaves of A-modules and let ϕ : α2∗α
♮
1F → G be an A-

linear homomorphism, which induces a B-linear homomorphism ψ : α♮1F → α♮2G. Then the

homomorphism β♮(ψ) : β♮α♮1F → β♮α♮2G coincides with that induced by the composite of ϕ with

α2∗(adj) : α2∗β∗β
♮α♮1F → α2∗α

♮
1G.

Proof. Exercise. ✷

The equivalence of categories in Theorems 2.2.1 and 2.2.5 for the two bases S and T is
compatible with the change of base T → S as follows.

Lemma 2.2.9. Let rn denote the natural morphism PnX/T → PnX/S .

(1) Let E be a left DX/S-module and let E ′ be the OX -module E regarded as a left DX/T -module
via the ring homomorphism DX/T →DX/S (2.1.8). Then the PD stratification of E ′ relative
to T is obtained by taking rn∗ of the PD stratification of E relative to S.

(2) LetM be a right DX/S-module and letM′ be the OX -moduleM regarded as a right DX/T -
module via the ring homomorphism DX/T →DX/S (2.1.8). Then the PD costratification

ofM′ relative to T is obtained by taking rn♮ of the PD costratification ofM relative to S.

Proof. Straightforward. ✷

2.3 The right DX/B-module Ωd
X/T

For a noetherian scheme Y , let D(Y ) denote the derived category of the category of OY -modules
and let D+

c (Y ) denote the full subcategory of D(Y ) consisting of complexes bounded below
with coherent cohomology. Then, for a morphism of noetherian schemes g : Y → Z which is of
finite type, we have a functor g! : D+

c (Z)→D+
c (Y ) with the trace map Trg : Rg∗g

!→ 1 [Har66].
If g is finite, then the functor g! is canonically isomorphic to the functor g∗RHomOZ

(g∗OY ,−),
where g denotes the morphism of ringed spaces (Y,OY )→ (Z, g∗OY ). Especially, if the underlying
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morphism of topological spaces of g is a homeomorphism and g is flat, then, for a coherent
sheaf E of OZ-modules M, we have a canonical isomorphism g♮M∼= g!M in D+

c (Y ). If g is
smooth and Ω1

Y/Z has constant rank d, then the functor g! is canonically isomorphic to the

functor Lg∗(−)⊗L

OY
Ωd
Y/Z [d].

Assume that MX is saturated, the morphism f : X → T is universally saturated (see [Tsu99,
Definition 2.17] for example), Ω1

X/T has constant rank d, and f̊ is of finite type. We define the

ideal If of MX as in [Tsu99, § 2]. Then we have a canonical isomorphism f !(OT )∼= IfΩ
d
X/T [d]

by [Tsu99, Theorem 2.21(ii)]. The underlying morphisms of schemes of the composite of f with
the two projections pni : PnX/B →X (i= 1, 2) coincide. Hence, we have a canonical isomorphism

pn♮1 (IfΩ
d
X/T )∼= pn♮2 (IfΩ

d
X/T ) satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.5. Hence,

IfΩ
d
X/T is canonically regarded as a right DX/B-module. By Lemma 2.2.9(2), we see that

the action of DX/T on IfΩ
d
X/T coincides with that induced by the action of DX/S on IfΩ

d
X/S

through the homomorphism (2.1.8).

First assume that the underlying scheme X̊ of X is smooth over S and X = X̊ ×S T .
Then the morphism X ×S X → X̊ ×S X̊ induces PD morphisms PnX/S → Pn

X̊/S
. Here we define

Pn
X̊/S

in the same way as PnX/S using the PD envelope of the diagonal immersion X̊ →֒

X̊ ×S X̊. By taking the dual of the homomorphisms between the structure sheaves, we obtain a
homomorphism of sheaves of OX -modules:

DX/S →DX̊/S . (2.3.1)

By a similar argument as in the proof of Proposition 2.1.9, we obtain the following proposition.

Proposition 2.3.2. The homomorphism (2.3.1) is a ring homomorphism.

The composite of (2.3.1) with (2.1.8) coincides with the isomorphism (2.1.10).

Lemma 2.3.3. Let ∂log
t be as before Proposition 2.1.11. Then the image of ∂log

t under the
homomorphism (2.3.1) is 0.

Proof. This immediately follows from the definition of ∂log
t and the isomorphisms P1

X/S
∼=

OX ⊕ Ω1
X/S and P1

X̊/S
∼=OX ⊕ Ω1

X̊/S
, where the LHS’s are regarded as OX -modules via p∗1. ✷

Since X = X̊ ×S T , we have a canonical isomorphism Ωd
X̊/S

∼=
−−→ Ωd

X/T and If =MX .

Proposition 2.3.4. If we identify Ωd
X̊/S

with Ωd
X/T by the above isomorphism, then

the natural action of DX/S on Ωd
X/T coincides with the action of DX/S on Ωd

X̊/S
through the

homomorphism (2.3.1).

Proof. We have a commutative diagram of fine log schemes.

PnX/S
πn

//

pn
1

��

pn
2

��

Pn
X̊/S

pn
1

��
pn
2

��
X // X̊

Hence, the isomorphism pn♭1 Ωd
X/T
∼= pn♭2 Ωd

X/T on PnX/S is obtained by applying the functor π♭n to

1568

https://doi.org/10.1112/S0010437X10004768 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004768


On nearby cycles and D-modules of log schemes in characteristic p > 0

the isomorphism pn♭1 Ωd
X̊/S
∼= pn♭2 Ωd

X̊/S
on Pn

X̊/S
. Hence, by Lemma 2.2.8,

Ωd
X/T ⊗OX

DX/S ∼= pn2∗p
n♭
1 Ωd

X/T → Ωd
X/T

coincides with the composite

pn2∗π
n
∗π

n♮pn♮1 Ωd
X̊/S

pn
2∗(adj)
−−−−−−→ pn2∗p

n♮
1∗Ω

d
X̊/S
→ Ωd

X̊/S
.

The first homomorphism coincides with the homomorphism

Ωd
X̊/S
⊗OX

DX/S → Ωd
X̊/S
⊗OX

DX̊/S

induced by (2.3.1). ✷

We again consider a smooth and universally saturated morphism f : X → T of fine and
saturated log schemes such that Ω1

X/T has constant rank d and f̊ is of finite type. Assume that
If =MX . We give an explicit local description of the action of DX/B. Since the action of DX/T
coincides with the action of DX/T via the homomorphism (2.1.8), it suffices to consider the case
B = S. Assume that we are given t1, . . . , td ∈ Γ(X,MX) as in the beginning of Proposition 2.1.1.
We define ∂ν ∈ DX/S (0 6 ν 6 d) as in Proposition 2.1.5.

Proposition 2.3.5. Let the notation and assumptions be as above. Then, for 0 6 ν 6 d and
x ∈ OX , we have

(x d log t1 ∧ d log t2 ∧ · · · ∧ d log td)∂ν =−∂ν(x)d log t1 ∧ d log t2 ∧ · · · ∧ d log td.

Especially, the action of ∂0 on Ωd
X/T is 0.

Proof. Put ω = d log t1 ∧ · · · ∧ d log td. By Proposition 2.1.5(3), it suffices to prove that ω · ∂ν =

0. Let X ′ be the open subscheme {x ∈ X̊|MT,s/O
×
T,s

∼=
−−→MX,x/O

×
X,x} of X̊ endowed with the

inverse image ofMX . Then X̊ ′ is dense in X̊ [Tsu99, Lemma 2.18 and its proof] and the morphism
X̊ ′→ S is smooth [Kat89, Proposition 3.8]. Let j denote the morphism X ′→X, and let X0, X

′
0,

and j0 denote the reductions mod p of X, X ′, and j, respectively. Since k[P ] is Cohen–Macaulay
for a finitely generated, saturated and integral monoid P [Hoc72], X̊0 is Cohen–Macaulay by
[Kat89, Theorem 3.5]. Hence, X̊0 is reduced and the homomorphism Ωd

X0/T0
→ j0∗Ω

d
X′0/T0

is

injective. Since X̊ → S is flat [Kat89, Corollaries 4.4, 4.5], this implies that Ωd
X/T → j∗Ω

d
X′/T

is also injective. Hence, we may replace X with X ′ and assume that MX = f∗(MT ). We may
also assume that X̊ is connected. Then we have Γ(X,MX) = tN × Γ(X,O×X) and tν (1 6 ν 6 d)
is written in the form tnνuν for some nν ∈ N and uν ∈ Γ(X,O×X). We have d log tν = d log uν
in Ω1

X/T . If we define Dν ∈ DX̊/S (1 6 ν 6 d) to be the differential operators corresponding to

the dual basis of du1, . . . , dud ∈ Ω1
X̊/S

, then the images of ∂0 and ∂ν (1 6 ν 6 d) in DX̊/S are 0

and uνDν . By Proposition 2.3.4 and [Ber00, Théorème 1.2.3], we obtain ω · ∂0 = 0 and

ω · ∂ν = (d log u1 ∧ · · · ∧ d log ud) · uνDν =−Dν

( ∏

16µ6d,µ6=ν

u−1
ν

)
(du1 ∧ · · · ∧ dud) = 0

for 1 6 ν 6 d. ✷

2.4 Tensor products of DX/B-modules

Proposition 2.4.1 (cf. [Ber96, Corollaire 2.3.3], [Ber00, Proposition 1.1.7] and [Mon02, Coro-
llaire 2.6.1(i)]). Let E and F be left DX/B-modules and let M and N be right DX/B-modules.
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Then E ⊗OX
F and HomOX

(M,N ) have natural left DX/B-module structures and M⊗OX
E

has a natural right DX/B-module structure.

Let α : A→B be a homomorphism of sheaves of commutative rings on a topological space,
and let F and G be sheaves of A-modules. The composite of

α∗(α
♮F ⊗B α

∗(G))
∼=
←−− α∗α

♮F ⊗A G
adj⊗id
−−−−−→F ⊗A G

induces a homomorphism

α♮(F)⊗B α
∗(G)−→ α♮(F ⊗A G), (2.4.2)

and the composite of

HomA(F , G)→HomA(α∗α
♮F , G)

∼=
←−− α∗HomB(α

♮F , α♮G)

induces a homomorphism

α∗(HomA(F , G))−→HomB(α
♮F , α♮G). (2.4.3)

Lemma 2.4.4. Let α, F , and G be as above.

(1) If B is locally free of finite type as a sheaf of A-modules, then the homomorphisms (2.4.2)
and (2.4.3) are isomorphisms.

(2) Let β : B → C be another homomorphism of sheaves of commutative rings and put γ = β ◦ α.
Then the homomorphism (2.4.2) for γ: γ♮(F)⊗C γ

∗(G)→ γ♮(F ⊗A G) coincides with the
following composite of the homomorphisms (2.4.2) for α and

β : β♮α♮(F)⊗C β
∗α∗(G)−→ β♮(α♮(F)⊗B α

∗(G))−→ β♮α♮(F ⊗A G).

The same holds for (2.4.3).

Proof. (1) The homomorphism (2.4.2) is given by

HomA(B, F)⊗B α
∗(G)−→HomA(B, F ⊗A G); ϕ⊗ α∗(x) 7→ ψ, ψ(b) = ϕ(b)⊗ x.

The RHS of (2.4.3) is canonically isomorphic to HomA(HomA(B, F), G), and the homo-
morphism (2.4.3) is given by

HomA(F , G)⊗A B −→HomA(HomA(B, F), G); ϕ⊗ b 7→ ψ, ψ(κ) = ϕ(κ(b)).

By taking a basis of B over A locally, we see that these are isomorphisms.

(2) For (2.4.2), by using HomC(−, β
♮(∼)) = HomB(β∗(−),∼) and then HomB(−, α

♮(∼)) =
HomA(α∗(−),∼), we are reduced to the commutativity of the following diagram.

γ∗(γ
♮F ⊗C γ

∗(G)) α∗β∗(β
♮α♮F ⊗C β

∗α∗G)

α∗(β∗β
♮α♮F ⊗B α

∗G)
++WWWWWW

∼=llXXXXXX

γ∗γ
♮F ⊗A G

((RRRRRRRRRRRRRRRR

∼=

OO

(α∗β∗β
♮α♮F)⊗A G

,,YYYYYYYYY

∼= 22ffffff

α∗(α
♮F ⊗B α

∗G)

α∗α
♮F ⊗A G

rreeeeeeeeeeeee

∼= 33ggggggg

F ⊗A G

Similarly, for (2.4.3), by using

HomC(β
∗(−),∼) = HomB(−, β∗(∼))
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and then

HomB(α
∗(−),∼) = HomA(−, α∗(∼)),

we are reduced to the commutativity of the following diagram.

HomA(F , G)

vvllllllllllllllll ,,YYYYYYYYYYY

HomA(α∗α
♮F , G)

rreeeeeeee

HomA(γ∗γ
♮F , G) HomA(α∗β∗β

♮α♮F , G) α∗HomB(α♮F , α♮G)

∼=llXXXXXX

rrffffff

α∗HomB(β∗β
♮α♮F , α♮G)

∼=llYYYYYYY

γ∗HomC (γ♮F , γ♮G)

∼=

OO

α∗β∗HomC (β♮α♮F , β♮α♮G)

∼= 22eeeeeee

Proof of Proposition 2.4.1. By Theorem 2.2.1 (respectively Theorem 2.2.5), there exist

isomorphisms pn∗2 E
∼=
−−→ pn∗1 E and pn∗2 F

∼=
−−→ pn∗1 F (respectively pn♮1 M

∼=
−−→ pn♮2 M and pn♮1 N

∼=
−−→

pn♮2 N ) satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.1 (respectively Theorem 2.2.5).
By Lemma 2.4.4(1), these isomorphisms induce isomorphisms

pn∗2 (E ⊗OX
F)∼= pn∗1 (E ⊗OX

F), pn∗2 HomOX
(M,N )∼= pn∗1 HomOX

(M,N )

and

pn♮1 (M⊗OX
E)∼= pn♮2 (M⊗OX

E).

Using Lemma 2.4.4, we can verify that the first and the second (respectively the third)
isomorphisms satisfy the conditions (i), (ii), and (iii) in Theorem 2.2.1 (respectively
Theorem 2.2.5). ✷

Proposition 2.4.5 (cf. [Ber96, Corollaire 2.3.3], [Ber00, Proposition 1.1.7] and [Mon02,
Corollaire 2.6.1(i)]). Let E and F be left DX/B-modules, and let M and N be right DX/B-
modules. Let t1, . . . , td be as in Proposition 2.1.1 and let ∂ν ∈ DX/B (ν0 6 ν 6 d) be as in
Proposition 2.1.5. Then the actions of ∂ν on the left DX/B-modules E ⊗OX

F , HomOX
(M,N )

and the right DX/B-modules M⊗OX
E are described as follows:

∂ν(e⊗ f) = (∂νe)⊗ f + e⊗ (∂νf), e ∈ E , f ∈ F ,

(∂νϕ)(m) = ϕ(m∂ν)− ϕ(m)∂ν , ϕ ∈HomOX
(M,N ), m ∈M,

(m⊗ e)∂ν = (m∂ν)⊗ e−m⊗ (∂νe), m ∈M, e ∈ E .

Proof. For a left DX/B-module G, the associated P1
X/B-linear isomorphism

p1∗
2 G = P1

X/B ⊗OX
G
∼=
−−→G ⊗OX

P1
X/B = p1∗

1 G

is given by 1⊗ x 7→ x⊗ 1 +
∑

ν ∂ν(x)⊗ (uν − 1). Its inverse coincides with the pull-back by

the isomorphism inv: P 1
X/B

∼=
−−→ P 1

X/B induced by the isomorphism X ×B X
∼=
−−→X ×B X

exchanging the two components (cf. the proof of Theorem 2.2.1). Since the pull-back of uν
is u−1

ν = (1 + uν − 1)−1 = 1− (uν − 1), we see that the inverse is given by x⊗ 1 7→ 1⊗ x−∑
ν(uν − 1)⊗ ∂ν(x). Put D′X/B,1 :=HomOX

(p2∗P
1
X/B,OX). Let 1, ∂′ν ∈ D

′
X/B,1 denote the dual

basis of the basis 1, u−1
ν − 1 =−(uν − 1) of p2∗P

1
X/B. Then, for a right DX/B-module L, the

associated isomorphism

p♮1L
∼= L ⊗OX

DX/B,1
∼=
−−→D′X/B,1 ⊗OX

L ∼= p♮2L
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is given by y ⊗ 1 7→ 1⊗ y and y ⊗ ∂ν 7→ 1⊗ (y∂ν)− ∂
′
ν ⊗ y. Its inverse coincides with the pull-

back by the isomorphism inv above, which is given by 1⊗ y 7→ y ⊗ 1 and ∂′ν ⊗ y 7→ (y∂ν)⊗ 1−
y ⊗ ∂ν .

Now the image of p∗2(m⊗ n) by the isomorphism

p∗2(M⊗N )∼= p∗1(M)⊗P1
X/B

p∗1(N )

is (
1⊗m+

∑

ν

(uν − 1)⊗ ∂νm

)
⊗

(
1⊗ n+

∑

ν

(uν − 1)⊗ ∂νn

)
,

whose image in p∗1(M⊗N ) is

p∗1(m⊗ n) +
∑

ν

(uν − 1)p∗1((∂νm)⊗ n+m⊗ (∂νm)).

This implies the first equality. The image of p∗2(ϕ) by the isomorphism

p∗2(HomOX
(M,N ))∼=HomP1

X/B
(p♮2M, p♮2N )

is given by

κ 7→ {p2∗P
1
X/B →N ; a 7→ ϕ(κ(a))}

(cf. the proof of Lemma 2.4.4). Its image under the isomorphism

HomP1
X/B

(p♮2M, p♮2N )
∼=
−−→HomP1

X/B
(p♮1M, p♮1N )

is given by

M⊗OX
DX/B,1

∼=
−−→D′X/B,1 ⊗OX

M−→D′X/B,1 ⊗OX
N

∼=
←−−N ⊗OX

DX/B,1

m⊗ 1 7→ 1⊗m 7→ 1⊗ ϕ(m) 7→ ϕ(m)⊗ 1

m⊗ ∂ν 7→ 1⊗ (m∂ν) 7→ 1⊗ ϕ(m∂ν) 7→ (ϕ(m∂ν)− ϕ(m)∂ν)⊗ 1

− ∂′ν ⊗m − ∂′ν ⊗ ϕ(m) + ϕ(m)⊗ ∂ν

This coincides with the image of

ϕ⊗ 1 +
∑

ν

ϕν ⊗ (uν − 1) ∈HomOX
(M,N )⊗OX

P 1
X/B,

where ϕν(m) = ϕ(m∂ν)− ϕ(m)∂ν . Thus, we obtain the second equality. The image of

m⊗ e⊗ ∂ν ∈M⊗OX
E ⊗OX

DX/B,1 = p♮1(M⊗OX
E)

in

(D′X/B,1 ⊗OX
E)⊗P1

X/B
(p2∗P

1
X/B ⊗OX

E) = p♮2M⊗P1
X/B

p∗2E

is

(1⊗m∂ν − ∂
′
ν ⊗m)⊗

(
1⊗ e−

∑

µ

(uµ − 1)⊗ ∂µe

)
,

whose image in D′X/B,1 ⊗OX
M⊗OX

E is given by 1⊗ (m∂ν ⊗ e−m⊗ ∂νe)− ∂
′
ν ⊗m⊗ e. This

implies the third equality. ✷

Proposition 2.4.6. Assume that there exists a right DX/B-module L such that L is invertible
as an OX -module. Then the functor from the category of left DX/B-modules to the category of
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right DX/B-modules defined by E 7→ L ⊗OX
E is an equivalence of categories. A quasi-inverse is

given byM 7→L−1 ⊗OX
M∼=HomOX

(L,M).

Proof. It suffices to prove that the natural isomorphisms L−1 ⊗OX
L ⊗OX

E ∼= E and L ⊗OX

L−1 ⊗OX
M∼=M are compatible with the actions of DX/B. By a straightforward computation,

one can verify that the composites of the following sequences of homomorphisms are the identity
maps for i= 1 and 2, which implies the desired compatibility:

pn∗i E → [pn♮i L, p
n♮
i L ⊗Pn pn∗i E ]Pn ∼= [pn♮i L, p

n♮
i (L ⊗OX

E)]Pn ∼= pn∗i [L, L ⊗OX
E ]OX

∼= pn∗i E ,

pn♮i M
∼= pn♮i (L ⊗OX

[L,M]OX
)∼= pn♮i L ⊗Pn pn∗i [L,M]OX

∼= pn♮i L ⊗Pn [pn♮i L, p
n♮
i M]Pn → pn♮i M.

Here Pn denotes PnX/B, and [−,∼]A denotes HomA(−,∼) for A=OX , Pn. ✷

If MX is saturated, f : X → T is universally saturated, f̊ is of finite type, If =MX , and Ω1
X/T

has a constant rank d, then one can apply Proposition 2.4.6 above to L= Ωd
X/T .

Lemma 2.4.7. Let E and F (respectivelyM and N ) be left (respectively right) DX/S-modules.
Let E ′ and F ′ (respectively M′ and N ′) be E and F (respectively M and N ) regarded as left
(respectively right) DX/T -modules via DX/T →DX/S (2.1.8). Then the natural isomorphisms
E ⊗OX

F ∼= E ′ ⊗OX
F ′, HomOX

(M,N )∼=HomOX
(M′,N ′), and M⊗OX

E ∼=M′ ⊗OX
E ′ are

compatible with the actions of DX/S and DX/T via (2.1.8).

Proof. This follows from the proof of Proposition 2.4.1, Lemmas 2.2.9 and 2.4.4, and the
functoriality of (2.4.2) and (2.4.3) with respect to F and G. ✷

2.5 Inverse images

Let X ′ be another fine log scheme smooth over T and let g : X ′→X be a morphism over T .
Then g induces PD morphisms PnX′/B(r)→ PnX/B(r) (r, n ∈ N) compatible with the projections.

By pulling back stratifications by the above PD morphisms for r = 1 (cf. Theorem 2.2.1), we
see that, for a left DX/B-module F , the inverse image g∗/B(F) =OX′ ⊗g−1(OX) g

−1(F) as an
OX -module is canonically regarded as a left DX′/B-module. Thus, we obtain a functor g∗/B
from the category DX/B-Mod of left DX/B-modules to the category DX′/B-Mod of left DX′/B-
modules. For another morphism h : X ′′→X ′ of smooth fine log schemes over T , we have a natural
isomorphism of functors (g ◦ h)∗/B

∼= h∗/B ◦ g
∗
/B. By Lemma 2.2.9(1), the following diagram is

commutative up to canonical isomorphisms.

DX/S-Mod
rX //

g∗
/S

��

DX/T -Mod

g∗
/T

��
DX′/S-Mod

rX′ // DX′/T -Mod

(2.5.1)

Here the horizontal arrows are the functors induced by the ring homomorphisms (2.1.8) for X
and X ′.

The functor g∗/B is determined by the reduction mod p of g up to canonical isomorphisms as
follows.

Proposition 2.5.2 (cf. [Ber00, Proposition 2.1.5]). Assume that p > 2. Let X and X ′ be as
above. Then, for two morphisms g, g′ :X ′→X over T which coincide modulo p, there exists a
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canonical isomorphism c∗g,g′/B : g′∗/B
∼=
−−→ g∗/B of functors from DX/B-Mod to DX′/B-Mod. This

isomorphism satisfies the following properties.

(1) For three morphisms g, g′, g′′ : X ′→X which coincide modulo p, we have

c∗g,g′/B ◦ c
∗
g′,g′′/B = c∗g,g′′/B.

(2) For two morphisms g, g′ : X ′→X over T which coincide modulo p and a morphism
h : X →X ′′ over T , the following diagram is commutative.

(h ◦ g′)∗/B
∼=

c∗
h◦g,h◦g′/B

//

∼=
��

(h ◦ g)∗/B

∼=
��

g′∗/B ◦ h
∗
/B

∼=

c∗
g,g′/B

◦h∗
/B

// g∗/B ◦ h
∗
/B

(3) For two morphisms g, g′ : X ′→X over T which coincide modulo p and a morphism
h : X ′′→X ′ over T , the following diagram is commutative.

(g′ ◦ h)∗/B
∼=

c∗
g◦h,g′◦h/B

//

∼=
��

(g ◦ h)∗/B

∼=
��

h∗/B ◦ g
′∗
/B

∼=

h∗
/B
◦c∗

g,g′/B

// h∗/B ◦ g
∗
/B

Proof. By the assumption thatp > 2, the canonical PD structure of the ideal pOX is nilpotent.
Hence, the morphism (g, g′) : X ′→X ×B X factors through a unique PD morphism ρ : X ′→
PnX/B for a sufficiently large n. Hence, for any left DX/S-module E , pulling back the

associated isomorphism εn : pn∗2 E
∼=
−−→ pn∗1 E (Theorem 2.2.1) by ρ, we obtain an isomorphism

c∗g,g′/B(E) : g′∗/B(E)
∼=
−−→ g∗/B(E) as OX′-modules, which is obviously independent of the choice of

n and is functorial on E . The property (iii) in Theorem 2.2.1 implies the property (1). The
property (3) is obvious and the property (2) follows from the fact that the functor h∗/B is defined
by pulling back PD stratifications by the PD morphism PnX/B → PnX′′/B induced by h. It remains

to prove that the isomorphism c∗g,g′/B(E) is DX′/B-linear. For each n, there exists an n′ > n for
which we have a commutative diagram for i= 1, 2 and j = 1, 2.

PnX′/B
ρ̃ //

pi

��

Pn
′

X/B(3)

qi
��

p̃j // Pn
′

X/B

pi

��
X ′

ρ // Pn
′

X/B

pj // X

Here the morphism qi (respectively p̃j) is the PD morphism induced by the projection to the ith

componentX4
/B =X2

/B ×B X
2
/B →X2

/B (respectivelyX4
/B =X2

/B ×B X
2
/B

pi×pi−−−−−→X ×B X), and

the morphism ρ̃ is induced by (g, g′)× (g, g′) : X ×B X 7→X2
/B ×B X

2
/B. We obtain the desired
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compatibility by pulling back by ρ̃ the diagram

q∗2p
∗
2E

∼= q∗2(ε)

��

p̃∗2p
∗
2E

∼=

p̃∗2(ε)
// p̃∗2p

∗
1E q∗1p

∗
2E

∼= q∗1(ε)

��
q∗2p
∗
1E p̃∗1p

∗
2E

∼=

p̃∗1(ε)
// p̃∗1p

∗
1E q∗1p

∗
1E

which is proven to be commutative by using the property (iii) in Theorem 2.2.1. ✷

The isomorphisms c∗g,g′/S and c∗g,g′/T are compatible with (2.5.1) as follows.

Lemma 2.5.3. Assume that p > 2 and let X, X ′, g, and g′ be the same as in the beginning of
Proposition 2.5.2. Let rX and rX′ be as in the diagram (2.5.1). Then the following diagram
of functors is commutative.

rX′ ◦ g
′∗
/S

∼=

rX′◦c
∗
g,g′/S

//

∼= (2.5.1)

��

rX′ ◦ g
∗
/S

∼= (2.5.1)

��
g′∗/T ◦ rX

∼=

c∗
g,g′/T

◦rX
// g∗/T ◦ rX

Proof. This immediately follows from the construction of c∗g,g′/B in Proposition 2.5.2 and

Lemma 2.2.9(1). ✷

2.6 Direct images

Throughout this subsection, let f : X → T denote a smooth and universally saturated morphism
of fine and saturated log schemes such that f̊ is of finite type, Ω1

X/T has constant rank d, and

If =MX (cf. § 2.3). Similarly for f ′ : X ′→ T , d′ and f ′′ : X ′′→ T , d′′.

Let g be a morphism X ′→X over T . We define the direct image functor

g+/B : D−(DX′/B-Mod)→D−(DX/B-Mod)

and study its properties. We also prove that the direct image functors g+/S and g+/T are
compatible with the restriction of scalars by the homomorphisms (2.1.8) for X and X ′

(Corollary 2.6.10). Put ωX := Ωd
X/T and ωX′ := Ωd′

X′/T . We define DX←X′/B to be g∗/B(DX/B ⊗OX

ω−1
X )⊗OX′

ωX′ , which is a (g−1(DX/B),DX′/B)-bimodule (Proposition 2.4.1). Here g∗/B denotes

the inverse image with respect to the left action of DX/B on DX/B ⊗OX
ω−1
X induced by the

right action of DX/B on DX/B. The left action of DX/B on DX/B, which commutes with its right
action, induces the left action of g−1(DX/B) on DX←X′/B. We define the direct image functor
g+/B by

g+/B(K) := Rg∗(DX←X′/B ⊗
L

DX′/B
K).

Note that any complex of (g−1(DX/B),DX′/B)-bimodules bounded above has a resolution by
(g−1(DX/B),DX′/B)-bimodules flat over both g−1(DX/B) and DX′/B, since DX/B and DX′/B are
flat over WN .

Assume that the morphism g is smooth. For a leftDX′/B-module E , let dE : E → E ⊗OX′
Ω1
X′/X

be the composite of

E → E ⊗OX′
P1
X′/B

∼= E ⊗OX′
(p−1

1 OX′ ⊕ Ω1
X′/B)

proj
−−−−→ E ⊗OX′

Ω1
X′/B →E ⊗OX′

Ω1
X′/X .
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Then we have dE(ae) = e⊗ da+ a dE(e) for a ∈ OX′ and e ∈ E , and obtain the de Rham complex
E ⊗OX′

Ω•X′/X whose differential maps are defined by dq(e⊗ ω) = dE(e) ∧ ω + e⊗ dqω for e ∈ E

and ω ∈ Ωq
X′/X (cf. Proposition 2.1.5(1)). Note that we have a canonical isomorphism

Ωd′−d
X′/X

∼= g−1(ω−1
X )⊗g−1(OX) ωX′ .

Proposition 2.6.1. Assume that g is smooth. Then the de Rham complex Ω•X′/X ⊗OX′
DX′/B

of DX′/B regarded as a left DX′/B-module gives a resolution

(Ω•X′/X ⊗OX′
DX′/B)[d′ − d]

ε
−−→DX←X′/B

of DX←X′/B as a right DX′/B-module. Here the right DX′/B-linear homomorphism

ε : Ωd′−d
X′/X ⊗OX′

DX′/B −→DX←X′/B ∼= g−1(DX/B)⊗g−1(OX) Ωd′−d
X′/X

is defined by ω ⊗ 1 7→ 1⊗ ω for ω ∈ Ωd′−d
X′/X .

Proof. Let C• denote the de Rham complex. Note that the differential maps of C• are right
DX′/B-linear because the right and left actions of DX′/B on DX′/B commute. Since the question
is étale local on X and X ′, we may assume that there exist t1, . . . , td ∈ Γ(X,MX) and
td+1, . . . , td′ ∈ Γ(X ′, MX′) such that {d log tν ; 1 6 ν 6 d} is a basis of Ωd

X/T and {d log tν ; d+ 1

6 ν 6 d′} is a basis of Ωd′−d
X′/X . We define ∂ν ∈ DX/B (ν0 6 ν 6 d) (respectively ∂′ν ∈ DX′/B (ν0 6

ν 6 d′)) as in Proposition 2.1.5 using t1, . . . , td (respectively g∗(t1), . . . , g
∗(td), td+1, . . . , td′).

Let ξν ∈ TX/B :=HomOX
(Ω1

X/B,OX) (respectively ξ′ν ∈ TX′/B :=HomOX′
(Ω1

X′/B,OX′)) be the

corresponding sections. Then the differential maps of C• are given by dq(ω ⊗ P ) = dω ⊗ P +∑
d+16ν6d′ d log tν ∧ ω ⊗ ∂

′
νP for ω ∈ Ωq

X′/X and P ∈ DX′/B. For d+ 1 6 ν 6 d′, the direct

image of ξ′ν in g∗(TX/B) is 0. Hence, by using Propositions 2.3.5 and 2.4.5, we see that the

composite of ε with dd
′−d−1 is 0. We can define the increasing filtration FnC

• of the complex C• by
putting FnC

q = Ωq
X′/X ⊗OX′

DX′/B,n+q−(d′−d). Its graded quotient is Ω•X′/X ⊗OX′
Sym•OX′

TX′/B

with differential maps ω ⊗ x 7→
∑

d+16ν6d′ d log tν ∧ ω ⊗ ξ
′
νx. Hence, grF• C

• is isomorphic to the
Koszul complex of Sym•OX′

TX′/B with respect to the regular sequence ξ′d+1, . . . , ξ
′
d′ . Put

FnDX←X′/B := g−1(DX/B,n ⊗OX
ω−1
X )⊗g−1(OX) ωX′ .

Then, by Propositions 2.3.5 and 2.4.5, we see that the homomorphism ε is compatible
with the filtrations, grF• DX←X′/B

∼= Sym•OX′
g∗(TX/B)⊗OX′

Ωd′−d
X′/X , and grF• ε is induced by

the homomorphism Sym•OX′
TX′/B → SymOX′

g∗(TX/B) associated to g∗ : TX′/B → g∗(TX/B).

Hence, gr•F ε : gr•F C
•[d′ − d]→ gr•F (DX←X′/B) is a resolution. By induction on n, we see that

Fnε : FnC
•[d′ − d]→ FnDX←X′/B is also a resolution. By taking the inductive limit with respect

to n, we obtain the proposition. ✷

Corollary 2.6.2. Assume that g is smooth. Then, for a left DX′/B-module E , we have a
canonical isomorphism

g+/B(E)∼= Rg∗(E ⊗OX′
Ω•X′/X)[d′ − d]

in D−(OX -Mod).

The direct image functors are compatible with compositions as follows. Let h : X ′′→X ′

be another morphism over T . Using Propositions 2.3.5 and 2.4.5, we see that the natural
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isomorphism

h−1(DX←X′/B)⊗h−1(DX′/B) DX′←X′′/B = h−1(g−1(DX/B ⊗OX
ω−1
X )⊗g−1(OX) ωX′)

⊗h−1(DX′/B) h
−1(DX′/B ⊗OX′

ω−1
X′ )⊗h−1(OX′ )

ωX′′

∼= h−1g−1(DX/B ⊗OX
ω−1
X )⊗h−1g−1(OX) ωX′′

∼= DX←X′′/B (2.6.3)

is ((g ◦ h)−1(DX/B),DX′′/B)-bilinear.

Lemma 2.6.4. Under the notation and assumptions as above, the homomorphism in the derived
category of sheaves of ((g ◦ h)−1(DX/B),DX′′/B)-bimodules:

h−1(DX←X′/B)⊗L

h−1(DX′/B) DX′←X′′/B −→DX←X′′/B,

induced by the isomorphism (2.6.3), is an isomorphism.

Proof. It suffices to prove thatHq of the LHS is 0 for q 6= 0. LetK• be a flat resolution ofDX←X′/B
as a right DX′/B-module. Then the LHS of the homomorphism in the lemma is isomorphic to

h−1(K•)⊗h−1(DX′/B) DX′←X′′/B ∼= h−1(K•)⊗h−1(OX′ )
(h−1(ω−1

X′ )⊗h−1(OX′ )
ωX′′)

∼=
−−→ h−1(DX←X′/B)⊗h−1(OX′ )

(h−1(ω−1
X′ )⊗h−1(OX′ )

ωX′′).

For the second isomorphisms, note that Kq and DX←X′/B are flat as right OX′-modules. ✷

Proposition 2.6.5. Under the notation and assumptions as before Lemma 2.6.4, we have a
canonical isomorphism g+/B ◦ h+/B

∼= (g ◦ h)+/B.

Proof. Since DX←X′/B is quasi-coherent as a right OX′-module and DX′/B is a quasi-coherent
OX′-algebra, there exists a free resolution of DX←X′/B as a right DX′/B-module Zariski locally
on X ′. Since X ′′ is noetherian, this implies that we have an isomorphism

DX←X′/B ⊗
L

DX′/B
Rh∗(DX′←X′′/B ⊗

L

DX′′/B
E)

∼=
−−→ Rh∗(h

−1(DX←X′/B)⊗L

h−1(DX′/B) DX′←X′′/B ⊗
L

DX′′/B
E)

for E ∈D−(DX′′/B-Mod). By taking Rg∗, and using Lemma 2.6.4, we obtain the desired
isomorphism. ✷

Proposition 2.6.6. For three morphisms g : X ′→X, h : X ′′→X ′, and i : X ′′′→X ′′ over T ,
the following diagram is commutative.

g+/B ◦ h+/B ◦ i+/B
∼= //

∼=
��

(g ◦ h)+/B ◦ i+/B

∼=
��

g+/B ◦ (h ◦ i)+/B
∼= // (g ◦ h ◦ i)+/B

Proof. Exercise. ✷

By using Proposition 2.5.2, we see that the direct image functor g+/B is determined by the
reduction mod p of g up to canonical isomorphisms as follows.
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Proposition 2.6.7 (cf. [Ber00, 3.4.1(b), 3.4.3]). Assume that p > 2. For any two morphisms
g, g′ : X ′→X over T which coincide modulo p, there exists a canonical isomorphism

cg,g′,+/B : g′+/B
∼= g+/B

of functors from D−(DX′/B-Mod) to D−(DX/B-Mod). This isomorphism satisfies the following
properties.

(1) For three morphisms g, g′, g′′ : X ′→X over T which coincide modulo p, we have

cg,g′,+/B ◦ cg′,g′′,+/B = cg,g′′,+/B.

(2) For two morphisms g, g′ : X ′→X over T which coincide modulo p and a morphism
h : X →X ′′ over T , the following diagram is commutative.

(h ◦ g′)+/B
∼=

ch◦g,h◦g′,+/B

//

Proposition 2.6.5 ∼=
��

(h ◦ g)+/B

Proposition 2.6.5∼=
��

h+/B ◦ g
′
+/B

∼=

h+/B◦cg,g′,+/B

// h+/B ◦ g+/B

(3) For two morphisms g, g′ : X ′→X over T which coincide modulo p and a morphism
h : X ′′→X ′ over T , the following diagram is commutative.

(g′ ◦ h)+/B
∼=

cg◦h,g′◦h,+/B

//

Proposition 2.6.5 ∼=
��

(g ◦ h)+/B

Proposition 2.6.5∼=
��

g′+/B ◦ h+/B
∼=

cg,g′,+/B◦h+/B

// g+/B ◦ h+/B

Proof. By Proposition 2.5.2, we have an isomorphism

c∗g,g′/B(DX/B ⊗OX
ω−1
X )⊗ idωX′

: D
X

g′

←−−X′/B

∼=
−−→D

X
g
←−−X′/B

as right DX′/B-modules, which we denote by cg,g′,D/B. By the functoriality of c∗g,g′/B, it is also

compatible with the left action of g−1(DX/B) = g′−1(DX/B) and induces the desired isomorphism
cg,g′,+/B. The property (1) follows from Proposition 2.5.2(1). The property (2) is reduced to
showing that the following diagram is commutative.

g′−1(DX′′←X/B)⊗g′−1(DX/B) D
X

g′
← X′/B (2.6.3)

∼= //

id⊗cg,g′,D/B ∼=
��

D
X′′

h◦g′
← X/B

ch◦g,h◦g′,D/B ∼=
��

g−1(DX′′←X/B)⊗g−1(DX/B) DX g
←X′/B (2.6.3)

∼= // D
X′′

h◦g
← X/B

which is verified by using Proposition 2.5.2(2). One can prove the property (3) similarly by using
Proposition 2.5.2(3). ✷

Finally, we will show that the direct image functors for B = T and B = S are compatible. By
definition, we have a natural homomorphism DX←X′/T →DX←X′/S induced by (2.1.8). Since
the right action of DX/T on ωX is induced by that of DX/S via (2.1.8), the commutativity
of (2.5.1) and Lemma 2.4.7 imply that the above homomorphism is compatible with the right
actions of DX′/T →DX′/S and the left actions of g−1(DX/T )→ g−1(DX/S). Hence, it induces a
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homomorphism of (g−1(DX/T ),DX′/S)-bimodules:

DX←X′/T ⊗DX′/T
DX′/S −→DX←X′/S . (2.6.8)

Proposition 2.6.9. The homomorphism (2.6.8) is an isomorphism.

Corollary 2.6.10. The following diagram is commutative up to canonical isomorphisms.

D−(DX′/S-Mod)
rX′ //

g+/S

��

D−(DX′/T -Mod)

g+/T

��
D−(DX/S-Mod)

rX // D−(DX/T -Mod)

Here the horizontal arrows are the functors induced by (2.1.8) for X and X ′.

Proof. By Proposition 2.6.9, the following diagram is commutative up to a canonical
isomorphism.

DX′/S-Mod //

DX←X′/S⊗DX′/S
−

��

DX′/T -Mod

DX←X′/T⊗DX′/T
−

��
g−1(DX/S)-Mod // g−1(DX/T )-Mod

Furthermore, the two horizontal functors are exact and preserve flat modules because DX′/S
(respectively DX/S) is flat as a left DX′/T (respectively DX/T )-module. Hence, for K ∈
D−(DX′/S-Mod), we have

DX←X′/S ⊗
L

DX′/S
K ∼=DX←X′/T ⊗

L

DX/T
K

in D−(g−1(DX/T )). By taking Rg∗, we obtain the desired commutative diagram. ✷

The isomorphisms in Proposition 2.6.5 are compatible with the diagram in Corollary 2.6.10
as follows.

Lemma 2.6.11. Under the notation and assumptions as before Lemma 2.6.4, the following
diagram of functors is commutative.

rX ◦ g+/S ◦ h+/S
Corollary 2.6.10

∼=
//

Proposition 2.6.5∼=
��

g+/T ◦ rX′ ◦ h+/S
Corollary 2.6.10

∼=
// g+/T ◦ h+/T ◦ rX′′

Proposition 2.6.5∼=
��

rX ◦ (g ◦ h)+/S
Corollary 2.6.10

∼=
// (g ◦ h)+/T ◦ rX′′

Here rX denotes the functor D−(DX/S-Mod)→D−(DX/T -Mod) induced by (2.1.8), and rX′

and rX′′ are defined similarly using X ′ and X ′′ instead of X.

Proof. This follows from the following commutative diagram.

h−1(DX←X′/S)⊗h−1(DX′/S) DX′←X′′/S
(2.6.3)

∼=
// DX←X′′/S

h−1(DX←X′/T )⊗h−1(DX′/T ) DX′←X′′/T

(2.6.8)

OO

(2.6.3)

∼=
// DX←X′′/T

(2.6.8)

OO

✷
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The isomorphisms cg,g′,+/S and cg,g′,+/T in Proposition 2.6.7 are compatible with the diagram
in Corollary 2.6.10 as follows.

Lemma 2.6.12. Assume that p > 2 and let X, X ′, g, and g′ be the same as in the beginning
of Proposition 2.6.7. Let rX and rX′ be as in Corollary 2.6.10. Then the following diagram of
functors is commutative.

rX ◦ g
′
+/S

∼=
rX◦cg,g′,+/S

//

∼= Corollary 2.6.10
��

rX ◦ g+/S

∼= Corollary 2.6.10

��
g′+/T ◦ rX′

∼=
cg,g′,+/T ◦rX′

// g+/T ◦ rX′

Proof. We are reduced to the following commutative diagram, which follows from Lemma 2.5.3.

D
X

g′
← X′/S

∼=
cg,g′,D/S

// D
X

g
←X′/S

D
X

g′
← X′/T

OO

∼=
cg,g′,D/T

// D
X

g
←X′/T

OO

Here cg,g′,D/B is the isomorphism defined in the proof of Proposition 2.6.7. ✷

In the rest of § 2.6, we prove Proposition 2.6.9. Since the question is étale local on X̊, we may
assume that there exist t1, . . . , td as in Proposition 2.1.1. Choose such tν and define ∂ν ∈ DX/T
(1 6 ν 6 d) and ∂0 ∈ DX/S as in Proposition 2.1.5.

Lemma 2.6.13. For n ∈ N, we have
∑

r6n DX/T∂
r
0 =

∑
r6n ∂

r
0DX/T in DX/S .

Proof. Let In (respectively I ′n) denote the LHS (respectively RHS). We prove that In = I ′n by
induction on n. The claim is trivial for n= 0. Let n be a positive integer and assume that
In−1 = I ′n−1. It suffices to prove that DX/T∂

n
0 ⊂ I

′
n and ∂n0DX/T ⊂ In. Since In (respectively I ′n)

are stable under the left (respectively right) action of DX/T and ∂ν∂0 = ∂0∂ν (1 6 ν 6 d), the

claim is reduced to x∂n0 = [x, ∂0]∂
n−1
0 + ∂0x∂

n−1
0 =−∂0(x)∂

n−1
0 + ∂0x∂

n−1
0 ∈ In−1 + ∂0In−1 =

I ′n−1 + ∂0I
′
n−1 ⊂ I

′
n (respectively ∂n0 x= ∂n−1

0 [∂0, x] + ∂n−1
0 x∂0 = ∂n−1

0 ∂0(x) + ∂n−1
0 x∂0 ∈ I

′
n−1 +

I ′n−1∂0 = In−1 + In−1∂0 ⊂ In) for x ∈ OX . ✷

Put

In =
∑

r6n

DX/T∂
r
0 =

∑

r6n

∂r0DX/T .

Note that these are stable under both the left and right actions of DX/T . Put I−1 = 0.

Lemma 2.6.14. For n ∈ N, the homomorphism In→In+1; P 7→ P∂0 induces an isomorphism

In/In−1
∼=
−−→ In+1/In. Furthermore, it is OX -linear for the right OX -action.

Proof. The homomorphism DX/T →Im; P 7→ P∂m0 induces an isomorphism

DX/T
∼=
−−→ Im/Im−1 for m ∈ N.

This implies the first claim. The second claim follows from P∂0x− Px∂0 = P∂0(x) ∈ In for
P ∈ In and x ∈ OX . ✷
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Since DX/S = In ⊕ (
∑

r>n ∂
r
0DX/T ), we see that the homomorphism g∗(In ⊗OX

ω−1
X )⊗OX′

ωX′ →DX←X′/S is injective. Let Jn denote the LHS of the above homomorphism.

Since the question is étale local also on X̊ ′, we assume that there exist t′1, . . . , t
′
d′ ∈ Γ(X ′, MX′)

such that {d log(t′µ)}16µ6d′ is a basis of Ω1
X′/T . Choose such t′µ and define ∂′µ ∈ DX′/T and

∂′0 ∈ DX′/S in the same way as in Proposition 2.1.5.

Lemma 2.6.15.

(1) For n ∈ N, we have Jn · ∂
′
0 ⊂ Jn+1.

(2) For n ∈ N, the homomorphism Jn→Jn+1; P
′ 7→ P ′ · ∂′0 induces an isomorphism

Jn/Jn−1
∼=
−−→Jn+1/Jn.

Proof. Put

g∗(d log(tν)) =
∑

06µ6d′

aνµ d log(t′µ)

in Ω1
X′/S for 1 6 ν 6 d. For P ∈ In and local bases ω ∈ ωX , ω′ ∈ ωX′ , we have

(g∗(P ⊗ ω−1)⊗ ω′)∂′0 = g∗(P ⊗ ω−1)⊗ (ω′∂′0)− {∂
′
0(g
∗(P ⊗ ω−1))} ⊗ ω′

by Proposition 2.4.5. The first term of the RHS is contained in Jn. For the second term, by
Proposition 2.4.5 again, we have

∂′0(g
∗(P ⊗ ω−1)) = g∗(∂0(P ⊗ ω

−1)) +
∑

16ν6d

aν0 · g
∗(∂ν(P ⊗ ω

−1))

= g∗((Pb0 − P∂0)⊗ ω
−1) +

∑

16ν6d

aν0 · g
∗(P (bν − ∂ν)⊗ ω

−1),

where bν ∈ OX (0 6 ν 6 d) is defined by ω∂ν = bνω. Since P (bν − ∂ν) ∈ In for 1 6 ν 6 d, Pb0 ∈ In,
and P∂0 ∈ In+1, the above computation implies that Jn · ∂

′
0 ⊂ Jn+1 and the homomorphism

Jn/Jn−1→Jn+1/Jn in question coincides with the isomorphism

g∗(In/In−1 ⊗OX
ωX)⊗OX′

ωX′
∼=
−−→ g∗(In+1/In ⊗OX

ωX)⊗OX′
ωX′

induced by the isomorphism in Lemma 2.6.14. ✷

Proof of Proposition 2.6.9. By Lemma 2.6.15, the homomorphism J0→Jn/Jn+1; P
′ 7→ P ′ · ∂′n0

is an isomorphism for n ∈ N. This implies, by induction on n, that the homomorphism
⊕

06r6n

J0→Jn; (xr) 7→
∑

06r6n

xr(∂
′
0)
r

is an isomorphism for n ∈ N. By taking the inductive limit with respect to n, we obtain an
isomorphism

⊕

r∈N

DX←X′/T
∼=
−−→DX←X′/S ; (P ′r) 7→

∑

r∈N

P ′r∂
′r
0 .

Since DX′/S is a free left DX′/T -module whose basis is given by {∂′r0 }r∈N, this implies that (2.6.8)
is an isomorphism. ✷
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3. Nearby cycles: local case

Let X be a fine log scheme smooth over T such that X̊ is of finite type over S and Ω1
X/T

has constant rank d. Throughout this section, we assume that, étale local on X̊, there exist
t1, . . . , td+1 ∈ Γ(X,MX) and an integer c, 1 6 c6 d+ 1, such that tc · · · td+1 is the image of
t ∈ Γ(T, MT ), t1, . . . , tc−1 is invertible,

N
d+1
X →MX ; (n1, . . . , nd+1) 7→ tn1

1 · · · t
nd+1

d+1

is a chart, and the morphism

X̊ → Spec(WN [s1, . . . , sd+1]/(sc · · · sd+1))

defined by the WN -homomorphism

WN [s1, . . . , sd+1]/(sc · · · sd+1)→ Γ(X,OX)

sending si to ti is étale. By replacing td+1 with td+1(t1 · · · tc−1)
−1 if c> 2, we always consider

t1, . . . , td as above with c= 1 in the following. The assumption implies that MX is saturated,
the structure morphism f : X → T is universally saturated, and If =MX (cf. § 2.3).

We also assume that we are given a morphism α : X → Y of fine log schemes over T such
that the underlying morphism of schemes α̊ : X̊ → Y̊ is a closed immersion, Y̊ is smooth over S,
the log structure MY is the inverse image of MT , and Ω1

Y/T has constant rank e.

3.1 Definition of nearby cycles: local case

Definition 3.1.1. For a left DX/S-module E such that the underlying OX -module is locally
free of finite type, we call the direct image α+/S(E) ∈D−(DY/S-Mod) of E under α (cf. § 2.6)
the nearby cycles of E realized on Y .

Note that, by Proposition 2.1.11 and (2.1.10), a left DY̊ /S-module endowed with an

endomorphism ∂log
t is interpreted as a left DY/S-module. If we regard the nearby cycles α+/S(E)

as an object of D−(DY̊ /S-Mod) =D−(DY/T -Mod) by forgetting the action of ∂log
t , then it is

canonically isomorphic to α+/T (E ′) by Corollary 2.6.10. Here E ′ denotes E with the action of
DX/T via (2.1.8).

By Theorem 3.1.2 below, α+/S(E) (respectively α+/T (E ′)) may be regarded as a DY/S-module
(respectively DY̊ /S =DY/T -module). In §§ 3.4 and 3.5, we will also apply Theorem 3.1.2 for B = T
to the intersections of ‘smooth components of X’ endowed with the inverse images of MT .

As in § 2, let B be S or T .

Theorem 3.1.2. Let E be a left DX/B-module E such that the underlying OX -module is locally
free of finite type. Then:

(1) the natural homomorphism α∗(DY←X/B ⊗DX/B
E)← α+/B(E) is an isomorphism; i.e. we

have Hq(α+/B(E)) = 0 for q 6= 0;

(2) the object α+/B(E) of D(DY/S-Mod) is perfect (cf. [Ill71, Définition 4.7 and Exemple 4.8]).

We need some lemmas. For a left DX/B-module F , we can construct a de Rham complex
F ⊗OX

Ω•X/B in the same way as before Proposition 2.6.1. Applying this to DX/B regarded as
a left DX/B-module, we obtain a complex Ω•X/B ⊗OX

DX/B, whose differential maps are right
DX/B-linear because the right and left actions of DX/B on DX/B mutually commute.
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Let E be as in Theorem 3.1.2. Since DX/B is a (DX/B,DX/B)-bimodule, we may
regard DX/B ⊗OX

E as a (DX/B,DX/B)-bimodule by Proposition 2.4.1. Let TX/B denote
HomOX

(Ω1
X/B,OX). Then, by applying HomDX/B ,r(−,DX/B ⊗OX

E) to the complex of right
DX/B-modules Ω•X/B ⊗OX

DX/B and using isomorphisms

HomDX/B ,r(Ω
q
X/B ⊗OX

DX/B,DX/B ⊗OX
E)∼= (DX/B ⊗OX

E)⊗OX
∧qTX/B

of left DX/B-modules, we obtain a complex of left DX/B-modules:

· · · → DX/B ⊗OX
E ⊗OX

∧2TX/B →DX/B ⊗OX
E ⊗OX

TX/B →DX/B ⊗OX
E → 0→ · · · .

Here HomDX/B ,r denotes Hom with respect to right DX/B-actions.

Lemma 3.1.3. Put C−q =DX/B ⊗OX
E ⊗OX

∧qTX/B for q ∈ N and let C• denote the complex
constructed above.

(1) Suppose that there exist t1, . . . , td+1 ∈ Γ(X,MX) as in the beginning of § 3 and define the
differential operators ∂ν ∈ DX/B (ν0 6 ν 6 d) using t0 = t, t1, . . . , td as in Proposition 2.1.5.
Let ξν denote the image of ∂ν in DX/B,1/DX/B,0 ∼= TX/B. Then, for q ∈ N, q > 0, the

differential map d−qC : C−q→C−q+1 is given by the formula

d−qC (x⊗ ξν1 ∧ · · · ∧ ξνq) =

q∑

r=1

(−1)r−1x · ∂νr ⊗ ξν1 ∧ · · · ∧
ˆξνr ∧ · · · ∧ ξνq

for x ∈ DX/B ⊗OX
E and ν0 6 ν1 < ν2 < · · ·< νq 6 d.

(2) The morphism C0 =DX/B ⊗OX
E → E : P ⊗ e 7→ P · e defines a resolution C•→E of the left

DX/B-module E by locally free left DX/B-modules of finite type.

Proof. (1) The connection DX/B → Ω1
X/B ⊗OX

DX/B induced by the left DX/B-action on DX/B

maps P to
∑d

ν=ν0
d log(tν)⊗ ∂νP . Hence, the differential map

Ωq−1
X/B ⊗OX

DX/B → Ωq
X/B ⊗OX

DX/B

maps

(d log tµ1 ∧ · · · ∧ d log tµq−1)⊗ 1

to
d∑

ν=ν0

(d log tν ∧ d log tµ1 ∧ · · · ∧ d log tµq−1)⊗ ∂ν

for ν0 6 µ1 < · · ·< µq−1 6 d. This immediately implies the formula in (1).

(2) The question is étale local on X̊ and we may assume that there exist t1, . . . , td+1 ∈
Γ(X,MX) as in the beginning of § 3. Let ∂ν and ξν be as in (1). We put C1 = E and
Cq = 0 for q > 1, and define d0 : C0→C1 to be the morphism P ⊗ e 7→ P · e. By using the
formula (P ⊗ e)∂ν = P∂ν ⊗ e− P ⊗ ∂νe for P ∈ DX/B and e ∈ E (Proposition 2.4.5), we see that
d0 ◦ d−1 = 0. Now it remains to show that the complex C• is acyclic. We define an increasing
filtration Fn (n ∈ Z) of C• by FnC

−q =DX/B,n−q ⊗OX
E ⊗OX

∧qTX/B for q ∈ N and FnC
1 = E (if

n> 0), 0 (if n < 0). Here we put DX/B,m = 0 for m< 0. Note that F−1C
• = 0. Using the above

explicit description of the right action of ∂ν on DX/B ⊗OX
E , one can verify that this filtration
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is compatible with the differential maps and its graded quotients are as follows:

grF C−q = (Sym•OX
TX/B ⊗OX

E)⊗OX
∧qTX/B, grF C1 = E ,

grF d−q(y ⊗ ξν1 ∧ · · · ∧ ξνq) =

q∑

r=1

(−1)r−1ξνr · y ⊗ ξν1 ∧ · · · ∧ ξ̂νr ∧ · · · ∧ ξνq ,

and grF• d
0 is the homomorphism induced by the projection Sym•OX

TX/B → Sym0
OX
TX/B =

OX . Hence, the non-positive degree part of grF C• is isomorphic to the Koszul complex
of the Sym•OX

TX/B-module Sym•OX
TX/B ⊗OX

E with respect to the sequence ξν0 , . . . , ξd ∈

Sym•OX
TX/B, which is a regular sequence on the module. Thus, we see that grF C• is acyclic,

and that FnC
• is also acyclic by induction on n. Taking the inductive limit with respect to n, we

obtain the desired acyclicity. ✷

Let TY/B denote HomOY
(Ω1

Y/B,OY ) and let α∗ : TX/B →OX ⊗OY
TY/B denote the the dual

of the morphism α∗ : OX ⊗OY
Ω1
Y/B → Ω1

X/B induced by α.

Lemma 3.1.4. Let the notation and assumptions be the same as in Lemma 3.1.3(1). Then the
sequence α∗(ξν0), α∗(ξν0+1), . . . , α∗(ξd) in the sheaf of commutative rings Sym•OX

(OX ⊗OY
TY/B)

is a regular sequence.

Proof. Let α′ : X → Y ′ be another morphism of fine log schemes over T satisfying
the same conditions as α. We first prove that the lemma holds for Y if and only
if it holds for Y ′. By considering α′′ : X → Y ×T Y

′ induced by α and α′, we are
reduced to the case where there exists a smooth morphism h : Y ′→ Y such that α=
h ◦ α′. Since the question is Zariski local, we may assume that there exist w1, . . . , we ∈
Γ(Y,OY ) (respectively we+1, . . . , we′ ∈ Γ(Y ′,OY ′)) such that dwµ (1 6 µ6 e) (respectively dwµ
(e+ 1 6 µ6 e′)) is a basis of Ω1

Y/T (respectively Ω1
Y ′/Y ). By subtracting a lifting of α′∗(wµ)

in Γ(Y,OY ) from wµ, we may assume that α′∗(wµ) = 0 for e+ 1 6 µ6 e′. When B = S, let
η0, η1, . . . , ηe ∈ TY/S (respectively η′0, η

′
1, . . . , η

′
e′ ∈ TY ′/S) be the dual basis of d log t, dw1, . . . ,

dwe ∈ Ω1
Y/S (respectively d log t, dh∗(w1), . . . , dh

∗(we), dwe+1, . . . , dwe′ ∈ Ω1
Y ′/S). When B = T ,

let η1, . . . , ηe ∈ TY/T (respectively η′1, . . . , η
′
e′ ∈ TY ′/T ) be the dual basis of dw1, . . . , dwe ∈ Ω1

Y/T

(respectively dh∗(w1), . . . , dh
∗(we), dwe+1, . . . , dwe′ ∈ Ω1

Y ′/T ). Then, for ν0 6 ν 6 d, we have

α∗(ξν) =
∑

ν06µ6e

aνµ ⊗ ηµ and α′∗(ξν) =
∑

ν06µ6e

aνµ ⊗ η
′
µ.

Here aνµ ∈ Γ(X,OX) for µ> 1 is given by aνµ = ∂ν(α
∗(wµ)). When B = S, a00 = 1 and aν0 = 0

for ν > 1. This implies the desired claim.

Since the question is Zariski local on X, we may assume that there exists an étale lifting
Z̊→ Spec(WN [s1, . . . , sd+1]) of the étale morphism X̊ → Spec(WN [s1, . . . , sd+1]/(s1 · · · sd+1))
defined by t1, . . . , td+1 ∈ Γ(X,MX). Choose such a Z̊, and let Z be Z̊ with the inverse
image of MT . Then the natural morphism β : X → Z satisfies the conditions on α. We prove
the lemma for β. Let θν0 , . . . , θd+1 ∈ TZ/B be the dual basis of d log t, ds1, . . . , dsd+1 ∈ Ω1

Z/S

(respectively ds1, . . . , dsd+1 ∈ Ω1
Z/T ) when B = S (respectively B = T ). Then we have β∗(ξν) =

tν ⊗ θν − td+1 ⊗ θd+1 for 1 6 ν 6 d. When B = S, we have β∗(ξ0) = td+1 ⊗ θd+1 + 1⊗ θ0. Hence,
it suffices to prove that the sequence

s1 · · · sd+1, s1V1 − sd+1Vd+1, . . . , sdVd − sd+1Vd+1
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is a regular sequence in WN [s1, . . . , sd+1, V1, . . . , Vd+1]. Put fν := sνVν − sd+1Vd+1 for 1 6 ν 6 d.
Since fν and s1, . . . sd+1 are homogeneous of positive degrees, it is equivalent to saying that
the sequence f1 . . . , fd+1, s1 · · · sd+1 is regular [Mat80, (15.B) Theorem 27 and Remark].
Since the WN homomorphism

WN [U1, . . . , Ud+1]→WN [s1, . . . , sd+1, V1, . . . , Vd+1]

defined by Uν 7→ sνVν is flat, the last claim follows from the regularity of the sequence
U1 − Ud+1, . . . , Ud − Ud+1, U1 · · · Ud+1 in WN [U1, . . . , Ud+1]. ✷

We assume that there exist t1, . . . , td+1 ∈ Γ(X,MX) as in the beginning of § 3 and define ∂ν
and ξµ as in Lemma 3.1.3(1). We also assume that Y̊ is affine and there exist z1, . . . , ze ∈
Γ(Y,O×Y ) such that {d log(zµ) = z−1

µ dzµ} is a basis of Ω1
Y/T . We define the differential operator

∂Yµ ∈ DY/B (ν0 6 µ6 e) using t, z1, . . . , ze as in Proposition 2.1.5. Let ξYµ denote the image

of ∂Yµ in TY/B ∼=DY/B,1/DY/B,0. The image of d log(zµ)⊗ 1 (1 6 µ6 e) under the homomorphism
α∗ : Ω1

Y/B ⊗OY
OX → Ω1

X/B is
∑

ν06ν6d ∂ν log(α∗(zµ)) d log tν , where ∂ν log(f) = f−1∂ν(f) for

f ∈ O×X . When B = S, we have α∗(d log t) = d log t. Hence, the images of ξν (1 6 ν 6 d) under
the homomorphism α∗ : TX/B → TY/B ⊗OY

OX are
∑

16µ6e ξ
Y
µ ⊗ ∂ν log(α∗(zµ)). When B = S,

we have

α∗(ξ0) = ξY0 ⊗ 1 +
∑

16µ6e

ξYµ ⊗ ∂0 log(α∗(zµ)).

For ν0 6 ν 6 d and 1 6 µ6 e, choose aνµ ∈ Γ(Y,OY ) such that α∗(aνµ) = ∂ν log(α∗(zµ)). Put

d log t := d log t1 ∧ · · · ∧ d log td ∈ ωX , d log z := d log z1 ∧ · · · ∧ d log ze ∈ ωY ,

and Pν :=
∑

16µ6e ∂
Y
µ · aνµ ∈ DY/B for 1 6 ν 6 d. When B = S, put P0 := ∂Y0 +

∑
16µ6e ∂

Y
µ ·

a0µ ∈ DY/S .

Lemma 3.1.5. Under the notation and assumptions as above, the action of ∂ν ∈ DX/B (ν0 6

ν 6 d) on DY←X/B = (DY/B ⊗OY
ω−1
Y )⊗OY

ωX is given by the following formula:

((P ⊗ (d log z)−1)⊗ d log t) · ∂ν = (P · Pν ⊗ (d log z)−1)⊗ d log t, P ∈ DY/B.

Proof. We have the following equalities in α∗(DY/B ⊗OY
ω−1
Y )⊗OX

ωX :

α∗(P ⊗ (d log z)−1)⊗ d log t) · ∂ν = −∂να
∗(P ⊗ (d log z)−1)⊗ d log t

= −α∗(Qν(P ⊗ (d log z)−1))⊗ d log t

= α∗(P · Pν ⊗ (d log z)−1)⊗ d log t,

where Qν :=
∑

16µ6e aνµ∂
Y
µ ∈ DY/B (1 6 ν 6 d) and, when B = S, Q0 := ∂Y0 +

∑
16µ6e a0µ∂

Y
µ ∈

DY/S . The first equality follows from (d log t)∂ν = 0 (Proposition 2.3.5) and the third formula

in Proposition 2.4.5. The third equality follows from (d log z)∂Yµ = 0 and the second formula in
Proposition 2.4.5. ✷

Proof of Theorem 3.1.2. (1) Let C• be the complex as in Lemma 3.1.3. Then what we want
to prove is H−q(DY←X/B ⊗DX/B

C•) = 0 for q > 1. Since the question is étale local on Y̊ , we
may assume that the assumption before Lemma 3.1.5 is satisfied. Then the isomorphisms
OX ∼= ωX ; a 7→ a d log t and OY ∼= ωY : b 7→ b d log z induce isomorphisms of left DY/B-modules:

DY←X/B ⊗DX/B
C−q ∼=DY←X/B ⊗OX

E ⊗OX
∧qTX/B ∼=DY/B ⊗OY

E ⊗OX
∧qTX/B.
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By Lemma 3.1.5, the differential maps are explicitly described as

DY/B ⊗OY
E ⊗OX

∧qTX/B −→ DY/B ⊗OY
E ⊗OX

∧q−1TX/B

P ⊗ e⊗ ξν1 ∧ · · · ∧ ξνq 7→

q∑

r=1

(−1)r−1(P · Pνr ⊗ e− P ⊗ ∂νre)⊗ ξν1 ∧ · · · ∧ ξ̂νr ∧ · · · ∧ ξνq .

Similarly as the proof of Lemma 3.1.3(2), we can define an increasing filtration Fn (n ∈ Z) of the
complex by putting

Fn(DY/B ⊗OY
E ⊗OX

∧qTX/B) =DY/B,n−q ⊗OY
E ⊗OX

∧qTX/B for q ∈ N.

Its graded quotient is Sym•OX
α∗(TY/B)⊗OX

E ⊗OX
∧qTX/B with the differential maps

Sym•OX
α∗(TY/B)⊗OX

E ⊗OX
∧qTX/B −→ Sym•OX

α∗(TY/B)⊗OX
E ⊗OX

∧q−1TX/B

x⊗ e⊗ ξν1 ∧ · · · ∧ ξνq 7→

q∑

r=1

(−1)r−1α∗(ξνr) · x⊗ e⊗ ξν1 ∧ · · · ∧ ξ̂νr ∧ · · · ∧ ξνq ,

which is isomorphic to the Koszul complex of the locally free Sym•OX
α∗(TY/B)-module of finite

type Sym•OX
α∗(TY/B)⊗OX

E with respect to the sequence α∗(ξν0), . . . , α∗(ξd). Hence, from
Lemma 3.1.4, we obtain H−q(DY←X/B ⊗DX/B

C•) = 0 for q > 0 in the same way as the last
argument of the proof of Lemma 3.1.3(2).

(2) It suffices to prove that

DY←X/B ⊗DX/B
C−q ∼= (DY/B ⊗OY

ω−1
Y )⊗OY

ωX ⊗OX
E ⊗OX

∧qTX/B

is perfect as an object of D(DY/B-Mod) (cf. [Ill71, Proposition 4.10]). Since ωX ⊗OX
E ⊗OX

∧qTX/B is a locally freeOX -module of finite type and DY/B ⊗OY
ω−1
Y is flat as a rightOY -module,

it suffices to prove that OX is perfect as an object ofD(OY -Mod). Since X̊ → S is flat and locally
a complete intersection and Y̊ → S is smooth, the closed immersion α̊ : X̊ → Y̊ is regular. Hence,
the Koszul complex associated to a regular system of generators of the ideal defining α̊, which
exists Zariski locally, gives a resolution of OX of finite length by locally free OY -modules of finite
type. ✷

We define the increasing filtration FnDY←X/B (n ∈ Z) of DY←X/B by

FnDY←X/B := α∗(DY/B,n ⊗OY
ω−1
Y )⊗OX

ωX .

We have

α−1(DY/B,m) · FnDY←X/B ⊂ Fn+mDY←X/B.

For a left DX/B-module E such that the underlying OX -module is locally free of finite type, we
define the increasing filtration Fnα+/B(E) of α+/B(E) to be the image of α∗(FnDY←X/B ⊗OX

E).
We have

DY/B,n · Fm(α+/B(E))⊂ Fn+m(α+/B(E)).

Hence, grF• (α+/B(E)) is a graded gr• DY/B = Sym•OY
TY/B-module.

We have an isomorphism

grF• DY←X/B
∼= α∗(Sym•OY

TY/B ⊗OY
ω−1
Y )⊗OX

ωX .

Hence, by definition, we have a natural epimorphism of Sym•OY
TY/B-modules:

α∗(α
∗(Sym•OY

TY/B ⊗OY
ω−1
Y )⊗OX

ωX ⊗OX
E)−→ grF• (α+/B(E)). (3.1.6)
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Proposition 3.1.7. Under the notation and assumptions as above, the homomorphism (3.1.6)
induces an isomorphism

α∗((α
∗(Sym•OY

TY/B ⊗OY
ω−1
Y )⊗OX

ωX)⊗Sym•OX
TX/B

E)
∼=
−−→ grF• (α+/B(E)).

Here we regard α∗(Sym•OY
TY/B ⊗OY

ω−1
Y )⊗OX

ωX (respectively E) as a Sym•OX
TX/B-module

via the homomorphism α∗ : Sym•OX
TX/B → α∗(Sym•OY

TY/B) (respectively the projection
Sym•OX

TX/B →OX).

Proof. The question is étale local on Y̊ . Let C• be the complex defined in Lemma 3.1.3 and define
the filtration Fn of the complex C•Y :=DY←X/B ⊗DX/B

C• as in the proof of Theorem 3.1.2(1). The

vanishing of H−1(grFm C
•
Y ) shown in the proof of Theorem 3.1.2(1) implies that H0(Fm−1C

•
Y ))→

H0(FmC
•
Y ) is injective. Hence,

H0(FnC
•
Y )→ lim−→

m

H0(FmC
•
Y ) =H0(C•Y ) = α+/B(E)

is injective. Since Fn(α+/B(E)) is the image of FnC
0
Y , this implies that

H0(FnC
•
Y )

∼=
−−→ Fn(α+/B(E)) and H0(grFn C

•
Y )

∼=
−−→ grFn (α+/B(E)).

From the explicit description of the differential map of grF C•Y in the proof of Theorem 3.1.2(1),
we obtain the desired isomorphism. ✷

Example 3.1.8. Let X be a scheme Spec(WN [t1, t2, . . . , td+1]/(t1t2 · · · td+1)) endowed with the
fine log structure associated to

N
d+1→WN [t1, t2, . . . , td+1]/(t1t2 · · · td+1); (n1, n2, . . . , nd+1) 7→ tn1

1 tn2
2 · · · t

nd+1

d+1

and define a smooth morphism of fine log schemes X → T by N→ N
d+1; n 7→ (n, n, . . . , n). Let Y

be Spec(WN [s1, s2, . . . , sd+1]) endowed with the inverse image of MT and define a T -morphism
α : X → Y by si 7→ ti (1 6 i6 d+ 1). Then X and α satisfy the condition in the beginning of § 3.

Let d log(t) (respectively ds) denote the basis d log t1 ∧ d log t2 ∧ · · · ∧ d log td (respectively
ds1 ∧ ds2 ∧ · · · ∧ dsd+1) of ωX = Ωd

X/T (respectively ωY = Ωd+1
Y/T ). Let ξ0, ξ1, . . . , ξd ∈ TX/S

(respectively ξY,logt , ξY1 , . . . , ξ
Y
d+1 ∈ TY/S) be the dual basis of d log t, d log t1, . . . , d log td ∈

Ω1
X/S (respectively d log t, ds1, . . . , dsd+1 ∈ Ω1

Y/S) and let ∂0, ∂1, . . . , ∂d ∈ DX/S (respectively

∂Y,log
t , ∂Y1 , . . . , ∂

Y
d+1 ∈ DY/S) denote the corresponding elements. Note that ∂1, . . . , ∂d ∈

DX/T (respectively ∂Y1 , . . . , ∂
Y
d+1 ∈ DY/T ) and ∂Y,logt coincides with ∂log

t considered in
Proposition 2.1.11.

We have an isomorphism

DX/S

/ d∑

i=0

DX/S∂i
∼=
−−→OX ; P 7→ P · 1,

DX/T

/ d∑

i=1

DX/T∂i
∼=
−−→OX ; P 7→ P · 1.

Hence, we have

α+/SOX =DY←X/S

/ d∑

i=0

DY←X/S∂i, α+/TOX =DY←X/T

/ d∑

i=1

DY←X/T∂i.
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Since the images of ξ0, ξi (1 6 i6 d) under the homomorphism α∗ : TX/S → TY/S ⊗OY
OX are

ξY,logt ⊗ 1 + sd+1ξ
Y
d+1 ⊗ 1, siξ

Y
i ⊗ 1− sd+1ξ

Y
d+1 ⊗ 1,

the isomorphism of left DY/B-modules

DY/B ⊗OY
OX ∼=DY←X/B =DY/B ⊗OY

ω−1
Y ⊗OY

ωX ; P ⊗ 1 7→ P ⊗ (ds)−1 ⊗ d log t

induces isomorphisms (cf. Lemma 3.1.5)

α+/SOX ∼=DY/S

/(
DY/Ss1 · · · sd+1 +DY/S(∂log

t + ∂Yd+1sd+1) +
d∑

i=1

DY/S(∂Yi si − ∂
Y
d+1sd+1)

)
,

α+/TOX ∼=DY/T

/(
DY/T s1 · · · sd+1 +

d∑

i=1

DY/T (∂Yi si − ∂
Y
d+1sd+1)

)
.

The natural isomorphism α+/TOX ∼= α+/SOX as DY/T -modules (Corollary 2.6.10) corresponds
to the morphism induced by the canonical morphism DY/T →DY/S (cf. (2.1.8)).

The description of α+/TOX above is of the same form as the case of complex analytic varieties.

The description of α+/SOX implies that the action of ∂log
t on the class [P ] of P ∈ DY/T =DY̊ /S

is given by

∂log
t ([P ]) =−[P∂Yd+1sd+1] (=−[P∂Yi si], 1 6 i6 d).

3.2 Another local explicit description of DX/S

In this subsection, we assume that there exist t1, . . . , td+1 ∈ Γ(X,MX) as in the beginning of
§ 3. Define ∂ν (0 6 ν 6 d) as in Proposition 2.1.5.

Since d log(t) =
∑

16ν6d+1 d log(td), the set

{d log(tν) | 1 6 ν 6 d+ 1}

is a basis of Ω1
X/S . Let

ξ̃ν ∈ TX/S =HomOX
(Ω1

X/S ,OX) (1 6 ν 6 d+ 1)

be its dual basis, and let ∂̃ν ∈ DX/S,1 be the composite of

PX/S,1 = p−1
1 (OX)⊕ Ω1

X/S

proj
−−−−→ Ω1

X/S

ξ̃ν
−−→OX .

From the equality d log(t) =
∑

16ν6d+1 d log(tν), we obtain
{
∂̃ν = ∂ν + ∂0 (1 6 ν 6 d)

∂̃d+1 = ∂0,

{
∂0 = ∂̃d+1

∂ν = ∂̃ν − ∂̃d+1 (1 6 ν 6 d).
(3.2.1)

Hence, Proposition 2.1.5 and Corollary 2.1.6 imply the following analogues for ∂̃ν .

Proposition 3.2.2. Let the notation and assumptions be as above.

(1) We have ∂̃ν ∂̃µ = ∂̃µ∂̃ν for 1 6 ν, µ6 d+ 1.

(2) We have ∂̃ν · x= ∂̃ν(x) + x · ∂̃ν for x ∈ OX .

(3) For d : OX → Ω1
X/S and x ∈ OX , we have d(x) =

∑
16ν6d+1 ∂̃ν(x) d log(tν).
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(4) For either of the left OX -action or the right OX -action on DX/S,n, DX/S,n is a free
OX -module with a basis

{ ∏

16ν6d+1

∂̃nν
ν

∣∣∣∣ nν ∈ N,
∑

16ν6d+1

nν 6 n

}
.

We can also derive the following analogues from Propositions 2.3.5 and 2.4.5.

Proposition 3.2.3. Under the notation and assumptions as above, we have

(x d log t1 ∧ d log t2 ∧ · · · ∧ d log td)∂̃ν =−∂̃ν(x) d log t1 ∧ d log t2 ∧ · · · ∧ d log td

for x ∈ OX and 1 6 ν 6 d+ 1.

Proposition 3.2.4. Under the notation and assumptions as above, Proposition 2.4.5 still holds
for B = S and ∂̃ν (1 6 ν 6 d+ 1).

3.3 Weight filtration

We define the increasing filtration PnωX (n ∈ Z) of ωX = Ωd
X/T by

PnωX := {ω ∧ ω1 ∧ · · · ∧ ωd−n | ω ∈ Ωn
X/T , ω1, . . . , ωd−n ∈ Ω1

X̊/S
} (0 6 n6 d)

and P−1ωX = 0. For a local coordinate t1, . . . , td+1 ∈ Γ(X,MX) as in the beginning of § 3, we
have

PnωX =
∑

J⊂{1,2,...,d+1}
|J |=d−n

tJ · ωX (3.3.1)

for −1 6 n6 d. Here tJ =
∏
µ∈J tµ if J 6= ∅ and t∅ = 1.

Since DY/S is locally free for the right action of OY , the natural homomorphism

DY/S ⊗OY
ω−1
Y ⊗OY

PnωX −→DY←X/S

is injective. We define QnDY←X/S to be its image. Using (3.3.1) and the formula tµ · ∂̃ν =

(∂̃ν − δνµ) · tµ, where δνν = 1 and δνµ = 0 for ν 6= µ, we see that QnDY←X/S (n ∈ Z) is an
increasing filtration of DY←X/S by (DY/S ,DX/S)-subbimodules.

Let E be a left DX/S-module such that the underlying OX -module is locally free of
finite type, and let F denote its nearby cycles realized on Y : α+/S(E) =DY←X/S ⊗DX/S

E
(cf. Theorem 3.1.2(1)). We define the increasing filtration QnF (n ∈ Z) of F by left DY/S-
submodules to be the image of QnDY←X/S ⊗DX/S

E . We have Q−1F = 0 and QdF = F . We
define the increasing filtration FnF (n ∈ Z) of F = α+/S(E) as before Proposition 3.1.7 and the

increasing filtration Qn grF• F of grF• F by graded Sym•OY
TY/S-submodules to be the image of

α∗((α
∗(Sym•OY

TY/S ⊗OY
ω−1
Y )⊗OX

PnωX)⊗Sym•OX
TX/S

E).

Definition 3.3.2. We say that E has trivial monodromy if the composite

E
θ1−−→ E ⊗OX

P1
X/S
∼= E ⊗OX

(p−1
1 (OX)⊕ Ω1

X/S)
proj
−−−−→ E ⊗OX

Ω1
X/S

factors through the image of E ⊗OX
Ω1
X̊/S

. Here θ1 denotes the homomorphism associated to the

left DX/S-action on E (Proposition 2.2.3).
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Let ∂log
t ∈ DY/S be the differential operator obtained by applying to Y/S the construction

before Proposition 2.1.11 and let ξlogt be the corresponding section of TY/S .

Proposition 3.3.3. Assume that E has trivial monodromy.

(1) We have ∂log
t (QnF)⊂Qn−1F for n ∈ Z. Especially, (∂log

t )d+1(F) = 0.

(2) We have ξlogt ·Qn grF• F ⊂Qn−1 grF• F for n ∈ Z. Especially, (ξlogt )d+1 grF• F = 0.

Proof. Since the question is étale local on Y̊ , we may assume that there exist t1, . . . , td+1 as in
the beginning of § 3, Y̊ is affine, and there exist z1, . . . , ze ∈ Γ(Y,O×Y ) as before Lemma 3.1.5. We

define ∂̃ν , ξ̃ν (1 6 ν 6 d+ 1) as in § 3.2 and ∂Yµ , ξYµ (0 6 µ6 e) as before Lemma 3.1.5

for B = S. Note that ∂Y0 = ∂log
t and ξY0 = ξlogt . Using α∗(d log t) = d log t1 + · · ·+ d log td+1,

we obtain α∗(ξ̃ν) = 1⊗ ξY0 +
∑

16µ6e ∂̃ν log(α∗(zµ))⊗ ξ
Y
µ . Choose ãνµ ∈ Γ(Y,OY ) such that

∂̃ν log(α∗(zµ)) = α∗(ãνµ) for 1 6 ν 6 d+ 1 and 1 6 µ6 e, and put P̃ν := ∂Y0 +
∑

16µ6e ∂
Y
µ · ãνµ.

Let d log t and d log z be as before Lemma 3.1.5 and put ωt/z := (d log z)−1 ⊗ d log t ∈ ω−1
Y ⊗OY

ωX to simplify the notation.

(1) By using Propositions 3.2.3 and 3.2.4, we see that the action of ∂̃ν on DY←X/S is given

by the formulae (P ⊗ ωt/z)∂̃ν = P · P̃ν ⊗ ωt/z, P ∈ DY/S (cf. Lemma 3.1.5). By (3.3.1), QnF
(−1 6 n6 d) coincides with the sum of the images of the submodules DY←X/S ⊗OX

tJE of
DY←X/S ⊗OX

E for J ⊂ {1, 2, . . . , d+ 1} such that |J |= d− n. For 0 6 n6 d, J ⊂ {1, 2, . . . ,
d+ 1} such that |J |= d− n, P ∈ DY/S , and ν ∈ {1, . . . , d+ 1}\J , we have the following
equalities in F :

∂log
t (P ⊗ ωt/z ⊗ tJe) = P∂0

Y ⊗ ωt/z ⊗ tJe

= P

(
P̃ν −

∑

16µ6e

∂Yµ ãνµ

)
⊗ ωt/z ⊗ tJe

= −
∑

16µ6e

P∂Yµ ⊗ ωt/z ⊗ ∂̃ν log(α∗(zµ)) · tJe+ P ⊗ ωt/z ⊗ ∂̃ν(tJe).

Since d : OX → Ω1
X/S (respectively d : E → E ⊗OX

Ω1
X/S) factors through the image of

Ω1
X̊/S

(respectively E ⊗OX
Ω1
X̊/S

) and Ω1
X̊/S

is generated by dt1, . . . , dtd+1, we have ∂̃ν(OX)⊂

tνOX (respectively ∂̃ν(E)⊂ tνE). Hence, ∂log
t (P ⊗ ωt/z ⊗ tJe) is contained in the image of

DY←X ⊗OX
tJ · tνE . Note that ∂̃ν · tJ = tJ · ∂̃ν .

(2) By (3.3.1), Qn grF• E (−1 6 n6 d) is the sum of the images of Sym•OY
TY/S ⊗OY

ω−1
Y ⊗OY

ωX ⊗OX
tJE for J ⊂ {1, 2, . . . , d+ 1} such that |J |= d− n. For 0 6 n6 d, J ⊂ {1, 2, . . . , d+ 1}

such that |J |= d− n, x ∈ Sym•OY
TY/S , and ν ∈ {1, . . . , d+ 1}\J , we have the following equalities

in grF• F by Proposition 3.1.7:

0 = (α∗(ξ̃ν)(x⊗ ωt/z))⊗ tJe= (ξY0 x⊗ ωt/z)⊗ tJe+
∑

16µ6e

(ξYµ x⊗ ωt/z)⊗ ∂̃ν log(α∗(zµ)) · tJe.

Hence, ∂̃ν(OX)⊂ tνOX implies that ξlogt (x⊗ ωt/z ⊗ tJe) is contained in the image of

Sym•OY
TY/S ⊗OY

ω−1
Y ⊗OY

ωX ⊗OX
tJ · tνE . ✷
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We define the DY/S-submodules WnF (−d6 n6 d) of F by

WnF =
∑

b−2a=n
06a6b6d

(∂log
t )aQbF . (3.3.4)

We have WdF =QdF = F . We put WnF = 0 for n6−d− 1 and WnF = F for n> d+ 1.
Similarly, we define the graded Sym•OY

TY/S-submodules Wn grF• F (−d6 n6 d) of grF• F by

Wn grF• F =
∑

b−2a=n
06a6b6d

(ξlogt )aQb grF• F . (3.3.5)

We haveWd grF• F =Qd grF• F = grF• F . We putWn grF• F = 0 for n6−d− 1 andWn grF• F = F
for n> d+ 1.

Lemma 3.3.6. Assume that E has trivial monodromy.

(1) We have Wn−1F ⊂WnF and ∂log
t (WnF)⊂Wn−2F for n ∈ Z.

(2) We have Wn−1 grF• F ⊂Wn grF• F and ξlogt (Wn grF• F)⊂Wn−2 grF• F for n ∈ Z.

Proof. (1) For the first claim, we may assume that −d+ 1 6 n6 d. Let a and b be integers such
that b− 2a= n− 1 and 0 6 a6 b6 d. If a> 1, we have

(b− 1)− 2(a− 1) = n, 0 6 a− 1 6 b− 1 6 d

and

(∂log
t )aQbF ⊂ (∂log

t )a−1Qb−1F ⊂WnF

by Proposition 3.3.3(1). If a= 0, we have 0 6 b+ 1 = n6 d and QbF ⊂Qb+1F ⊂WnF . Hence,
Wn−1F ⊂WnF . For the second claim, we may assume that −d6 n6 d. Let a and b be
integers such that b− 2a= n and 0 6 a6 b6 d. If a+ 1 6 b, then 0 6 a+ 1 6 b6 d, n− 2 =
b− 2(a+ 1)(>−d), and

∂log
t ((∂log

t )aQbF) = (∂log
t )a+1QbF ⊂Wn−2F .

If a= b, then ∂log
t ((∂log

t )aQbF) = 0 by Proposition 3.3.3(1). Hence, ∂log
t (WnF)⊂Wn−2F .

(2) Just replace ∂log
t , F , and Proposition 3.3.3(1) with ξlogt , grF• F , and Proposition 3.3.3(2)

respectively in the proof of (1) above. ✷

3.4 The graded quotient of the weight filtration

Let X0,λ (λ ∈ Λ) be the irreducible components of X̊ ×S S0. We choose and fix a total order
of the finite set Λ. We assume that X0,λ are smooth over S0 for all λ ∈ Λ. We define the sheaf of
ideals Iλ ofMX to be the inverse image of 0 under the morphism MX →OX →OX0,λ

.

Lemma 3.4.1. Let U → X̊ be an étale morphism and assume that there exist t1, . . . , td+1 ∈
Γ(U, MX) satisfying the conditions in the beginning of § 3 for (U, MX |U ) such that U0,λ =
X0,λ ×X̊ U is defined by the ideal t1OU0 , where U0 = U ×S S0. Then Iλ|U = t1 ·MX |U .

Proof. The inclusion t1 ·MX |U ⊂ Iλ is trivial. Let x be an element of Γ(U, Iλ).
Choose an étale covering {Uα→ U} of U such that a|Uα is written in the form
tn1α
1 · · · t

nd+1α

d+1 uα, nνα ∈ N, uα ∈ Γ(Uα,O
×
Uα

). Put Uα,0,λ := Uα ×U U0,λ. Since Uα,0,λ is étale over
Spec(k[s1, . . . , sd+1]/(s1 · · · sd+1, s1)) = Spec(k[s2, . . . , sd+1]), we have n1α > 0 (respectively
t1 ∈ Γ(Uα,O

×
Uα

)) if Uα,0,λ 6= ∅ (respectively Uα,0,λ = ∅). Hence, a|Uα ∈ t1 · Γ(Uα, MX). ✷
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By Lemma 3.4.1, Iλ · OX is a coherent ideal of OX and the closed subscheme Xλ of X̊
defined by Iλ · OX is a smooth lifting of X0,λ over S. For a non-empty subset I of Λ,

we define X0,I (respectively XI) to be the fiber product of X0,λ (respectively Xλ) (λ ∈ I) over X̊0

(respectively X̊) endowed with the inverse image of MT0 (respectively MT ). By Lemma 3.4.1,
we see that XI/T is a smooth lifting of X0,I/T0. Let ιI denote the closed immersion X̊I → X̊.

We define the increasing filtration PnΩ
d+1
X/S (n ∈ Z) of Ωd+1

X/S by

PnΩ
d+1
X/S := {ω ∧ ω1 ∧ · · · ∧ ωd+1−n | ω ∈ Ωn

X/S , ω1, . . . , ωd+1−n ∈ Ω1
X̊/S
} (0 6 n6 d+ 1).

We have Pd+1Ω
d+1
X/S = Ωd+1

X/S and P0Ω
d+1
X/S = 0.

Proposition 3.4.2. We have the following canonical isomorphism of OX -modules for an integer
1 6 n6 d+ 1:

⊕

I⊂Λ,|I|=n

Ωd+1−n
X̊I/S

∼=
−−→ grPn Ωd+1

X/S .

For a non-empty finite subset I of Λ, we define X log
I to be X̊I endowed with the inverse image

of the log structure MX . Since the ideal of OX defining the closed subscheme X̊I of X̊ is locally

generated by elements of MX , we have an isomorphism Ω1
X/S ⊗OX

OXI

∼=
−−→ Ω1

Xlog
I /S

. Especially,

Ω1
Xlog

I /S
is a locally free OXI

-module of rank d+ 1. We define Ωq

Xlog
I /S

to be ∧qΩ1
Xlog

I /S
. We define

P0Ω
q
X/S to be the OX -submodule of Ωq

X/S generated by ω1 ∧ · · · ∧ ωq (ωi ∈ Ω1
X̊/S

).

Lemma 3.4.3. Let I be a non-empty subset of Λ of cardinality 6 d+ 1 and put r = dimXI

(= d+ 1− |I|). The homomorphism Ωr
X̊I/S

→ Ωr
Xlog

I /S
is injective, and the homomorphism

Ωr
X/S → Ωr

Xlog
I /S

induces an epimorphism P0Ω
r
X/S → Ωr

X̊I/S
.

Proof. The question is étale local on X̊ and we may assume that there exist t1, . . . , td+1 ∈
Γ(X,MX) as in the beginning of § 3, and X̊I is defined by the ideal of OX generated by the
images of tr+1, . . . , td+1. Then {d log tν1 ∧ · · · ∧ d log tνr | 1 6 ν1 < · · ·< νr 6 d+ 1} is a basis of
Ωr
Xlog

I /S
and dt1 ∧ · · · ∧ dtr is a basis of Ωr

X̊I/S
. Hence, the first claim follows from the fact that

t1 · · · tr is not a zero divisor on OXI
. Note that X̊I is étale over

Spec(WN [s1, . . . , sd+1]/(s1 · · · sd+1, sr+1, . . . , sd+1)).

The second claim follows from the fact that the composite of Ω1
X̊/S
→ Ω1

X/S → Ω1
Xlog

I /S
coincides

with the composite of Ω1
X̊/S
→ Ω1

X̊I/S
→ Ω1

Xlog
I /S

. ✷

For a non-empty subset I = {i(1), i(2), . . . , i(n)}, i(1)< i(2)< · · ·< i(n) of Λ such that
n6 d+ 1, we can verify that an OX -linear homomorphism

P0Ω
d+1−n
X/S −→ grPn Ωd+1

X/S (3.4.4)

is well defined by the correspondence ω 7→ d log ti(1) ∧ · · · ∧ d log ti(n) ∧ ω, where ti(m) is a local
section of MX such that Ii(m) = ti(m)MX .

Proof of Proposition 3.4.2. We prove that the homomorphism (3.4.4) factors through
the epimorphism P0Ω

d+1−n
X/S → Ωd+1−n

X̊I/S
in Lemma 3.4.3 and induces the isomorphism in the
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proposition. Since the question is étale local on X̊, we may assume that there exist t1, . . . , td+1 ∈
Γ(X,MX) as in the beginning of § 3, Λ = {1, . . . , d+ 1}, and Iλ = tλMX for λ ∈ Λ. For a
subset J = {j(1), j(2), . . . , j(m)}, j(1)< j(2)< · · ·< j(m) of Λ, we define d log tJ := d log tj(1) ∧

d log tj(2) ∧ · · · ∧ d log tj(m), tJ := tj(1)tj(2) · · · tj(m) and Jc := Λ\J . The OX -module P0Ω
d+1−n
X/S is

the direct sum of the submodules tJcOX d log tJc for J ⊂ Λ such that |J |= n, whose images in
Ωd+1−n
X̊I/S

and grPn Ωd+1
X/S are 0 unless J = I. Since Ωd+1−n

X̊I/S
= tIcOXI

d log tIc , the kernel of

tIcOX d log tIc −→ Ωd+1−n
X̊I/S

is
∑

i∈I titIcOX d log tIc , whose image in grPn Ωd+1
X/S is 0. Note that we have an étale morphism

X̊ → Spec(WN [s1, . . . , sd+1]/(s1 · · · sd+1)) defined by tν . Thus, we obtain the first claim. We
have

PmΩd+1
X/S =

∑

I⊂Λ,|I|=m

tIcOX d log tΛ for 0 6m6 d+ 1.

Hence, for the second claim, it is enough to show that the kernel of the epimorphism

⊕

I⊂Λ,|I|=n

OX −→

∑
I⊂Λ,|I|=n tIcOX∑

I′⊂Λ,|I′|=n−1 t
I′cOX

; (aI)I 7→
∑

I

tIcaI

is
⊕

I⊂Λ,|I|=n(
∑

i∈I tiOX). This is obvious when n= d+ 1. When n6 d, this follows from the fact
that the kernel of OX 7→ OX/(

∑
Ĩ⊂Λ,Ĩ 6=I,|Ĩ|=n tĨcOX); a 7→ tIca is

∑
i∈I tiOX , which is verified

being reduced to the case X = Spec(WN [t1, . . . , td+1]/(t1 · · · td+1)). ✷

Let E be a crystal of OX̊/S-modules locally free of finite type on the nilpotent crystalline

site (X̊/S)Ncrys. Since the PD thickenings X → PnX/S(r) and the projections among them are

objects and morphisms of the site (X/S)Ncrys, the inverse image of E to (X/S)Ncrys defines
a left DX/S-action on its evaluation EX on id: X →X via the equivalence of categories in
Theorem 2.2.1. The homomorphism EX → EX ⊗OX

Ω1
X/S considered in Definition 3.3.2 is nothing

but the connection associated to the crystal. Let D be the PD envelope of X̊ → Y̊ , and let ED be
the evaluation of E on X̊ →D. Then the above connection of EX is the pull-back of the connection
ED→ ED ⊗OY

Ω1
Y̊ /S

associated to the crystal E . This implies that the left DX/S-module EX has

trivial monodromy (Definition 3.3.2). Similarly, the inverse image of E to (XI/T )Ncrys defines a
left DXI/T -action on its evaluation EXI

= ι∗I(EX) on id: XI →XI .

Let αI denote the exact closed immersion XI → Y over T induced by the composite of

X̊I
ιI−−→ X̊

α̊
−−→ Y̊ . We define the left DY/S =DY/T [∂log

t ]-module F to be α+/S(EX) and the left

DY/T -module FI to be αI+/T (EXI
) (cf. Theorem 3.1.2(1)). Since X̊I and Y̊ are smooth over S,

we may regard EXI
and FI as a DX̊I/S

-module and a DY̊ /S-module respectively by (2.1.10). Then

FI is canonically isomorphic to the direct image α̊I+(EXI
) by Proposition 2.3.4 and the proofs

of Proposition 2.4.1, [Ber96, Corollaire 2.3.3], and [Ber00, Proposition 1.1.7]. We define the
increasing filtration FnF (respectively FnFI) of F (respectively FI) as before Proposition 3.1.7.
Let WnF and Wn grF• F be the filtrations defined in § 3.3. In the rest of § 3.4, we will prove the
following theorem.

Theorem 3.4.5.

(1) There exists a canonical homomorphism of DY/T -modules κI : FI → grW|I|−1 F for each non-
empty subset I ⊂ Λ of cardinality 6d+ 1, and they induce the following isomorphism
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for −d6 n6 d:
⊕

b−2a=n
06a6b6d

⊕

I⊂Λ
|I|=b+1

FI
∼=
−−→ grWn F ; (xI)a,b,I 7→

∑

a,b,I

(∂log
t )a(κI(xI)).

(2) There exists a canonical homomorphism of graded Sym•OY
TY/T -modules τI : grF• FI →

grW|I|−1 grF• F for each non-empty subset I ⊂ Λ of cardinality 6d+ 1, and they induce the
following isomorphism for −d6 n6 d:

⊕

b−2a=n
06a6b6d

⊕

I⊂Λ
|I|=b+1

grF•−a FI
∼=
−−→ grWn grF• F ; (yI)a,b,I 7→

∑

a,b,I

(ξlogt )a(τI(xI)).

Corollary 3.4.6. For 0 6 n6 d, the homomorphism (∂log
t )n : grWn F → grW−n F is an

isomorphism.

Proof. We have a bijective map from

{(a, b) ∈ N
2 | b− 2a= n, 0 6 a6 b6 d} to {(a, b) ∈ N

2 | b− 2a=−n, 0 6 a6 b6 d}

defined by (a, b) 7→ (a+ n, b). Hence, the claim follows from Theorem 3.4.5(1). ✷

Let I be a non-empty subset of Λ such that |I|6 d+ 1. Put n= |I| − 1. We have

an isomorphism ωX
∼=
−−→ Ωd+1

X/S ; ω 7→ ω̃ ∧ d log t, which induces an isomorphism PmωX
∼=
−−→

Pm+1Ω
d+1
X/S . Here ω̃ denotes a lifting of ω to Ωd

X/S . Hence, the homomorphism DY/T →

DY/S (cf. Proposition 2.1.9), the isomorphism Ω1
X̊I/S

∼=
−−→ Ω1

XI/T
, and the isomorphism in

Proposition 3.4.2 induce a homomorphism of (DY/T ,OX)-bimodules DY←XI/T → grQn DY←X/S .
By taking ⊗OX

EX and composing with the natural homomorphisms

grQn DY←X/S ⊗OX
EX → grQn F → grWn F ,

we obtain a homomorphism of left DY/T -modules:

DY←XI/T ⊗OXI
EXI
−→ grWn F . (3.4.7)

Similarly, we have a homomorphism of (Sym•OY
TY/T ,OX)-bimodules:

Sym•OY
TY/T ⊗OY

ω−1
Y ⊗OY

ωXI
→ Sym•OY

TY/S ⊗OY
ω−1
Y ⊗OY

grPn ωX .

By taking ⊗OX
EX and composing with the natural homomorphisms

Sym•OY
TY/S ⊗OY

ω−1
Y ⊗OY

grPn ωX ⊗OX
EX → grQn grF• F → grWn grF• F ,

we obtain a homomorphism of graded Sym•OY
TY/T -modules:

Sym•OY
TY/T ⊗OY

ω−1
Y ⊗OY

ωXI
⊗OXI

EXI
−→ grWn grF• F . (3.4.8)

Lemma 3.4.9.

(1) The homomorphism (3.4.7) factors through the natural epimorphismDY←XI/T ⊗OXI
EXI
→

FI and defines a homomorphism of left DY/T -modules FI → grWn F .

(2) The homomorphism (3.4.8) factors through the natural epimorphism

Sym•OY
TY/T ⊗OY

ω−1
Y ⊗OY

ωXI
⊗OXI

EXI
→ grF• FI

and defines a homomorphism of graded Sym•OY
TY/T -modules grF• FI → grWn grF• F .
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We define the homomorphism κI (respectively τI) in Theorem 3.4.5(1) (respectively (2)) to
be the homomorphism constructed in Lemma 3.4.9(1) (respectively (2)) above.

Proof. Since the question is étale local on Y̊ , we may assume that Y̊ is affine and there exist
t1, . . . , td+1 as in the beginning of § 3, z1, . . . , ze as before Lemma 3.1.5, and Λ = {1, 2, . . . ,
d+ 1}. We define ∂Yµ ∈ DY/S , ξYµ ∈ TY/S (0 6 µ6 e), d log z, and d log t as before Lemma 3.1.5

for B = S, and ∂̃ν ∈ DX/S and ξ̃ν ∈ TX/S (1 6 ν 6 d+ 1) as in § 3.2. For a subset J of Λ, we
define d log tJ , tJ , and Jc as in the proof of Proposition 3.4.2. We define the basis dtIc of ωXI

to
be dtj(1) ∧ · · · ∧ dtj(d−n), where 1 6 j(1)< · · ·< j(d− n) 6 d+ 1 and Ic = {j(r) | 1 6 r 6 d− n}.
We regard TY/T (respectively DY/T ) as an OY -submodule (respectively a sheaf of subrings) of
TY/S (respectively DY/S) by the canonical injective homomorphism TY/T → TY/S (respectively

DY/T →DY/S). Then we have ∂Yµ ∈ DY/T and ξYµ ∈ TY/T for 1 6 µ6 e. Let θIν ∈ TXI/T (ν ∈ Ic)

be the dual basis of dtν ∈ Ω1
XI/T

(ν ∈ Ic) and let DI
ν ∈ DXI/T (ν ∈ Ic) be the corresponding

differential operators.

(1) It is enough to prove that, for P ∈ DY/T , e ∈ EX , and ν ∈ Ic, the images of the two
elements

x1 := (P ⊗ (d log z)−1 ⊗ dtIc)DI
ν ⊗ ι

∗
I(e)

and

x2 := (P ⊗ (d log z)−1 ⊗ dtIc)⊗DI
ν(ι
∗
I(e))

of DY←XI/T ⊗OXI
EXI

under the homomorphism (3.4.7) coincide. For 1 6 µ6 e, put

α̊∗(dzµ) =
∑

16ν6d+1

bνµ dtν , bνµ ∈ OX .

Then we have ∂̃ν(α
∗(zµ)) = tνbνµ for 1 6 ν 6 d+ 1 and DI

ν(α
∗
I(zµ)) = ι∗I(bνµ) for ν ∈ Ic. We

define aνµ (respectively åνµ) to be a lifting of tνbνµ (respectively bνµ) to Γ(Y,OY ) multiplied

by z−1
µ , and define P̃ν ∈ DY/S (respectively P̊ν ∈ DY/T ) to be ∂Y0 +

∑
16µ6e ∂

Y
µ aνµ (respectively

∑
16µ6e ∂

Y
µ åνµ). Then the right action of ∂̃ν ∈ DX/S (1 6 ν 6 d+ 1) (respectively DI

ν ∈ DXI/T

(ν ∈ Ic)) on DY←X/S (respectively DY←XI/T ) is given by (Q⊗ (d log z)−1 ⊗ d log t)∂̃ν =Q ·

P̃ν ⊗ (d log z)−1 ⊗ d log t (respectively (P ⊗ (d log z)−1 ⊗ dtIc)DI
ν = P · P̊ν ⊗ (d log z)−1 ⊗ dtIc)

(cf. Lemma 3.1.5). Note that we have dtIc ·DI
ν = 0 by Proposition 2.3.4 and [Ber00,

Théorème 1.2.3]. Choose a lifting eD ∈ ED of e and let
∑

16ν6d+1 eν dtν be the image of

eD by ED→ ED ⊗OY
Ω1
Y̊ /S
→ EX ⊗OX

Ω1
X̊/S

. Then we have ∂̃ν(e) = tνeν for 1 6 ν 6 d+ 1 and

DI
ν(ι
∗
I(e)) = ι∗I(eν) for ν ∈ Ic. Hence, the images of the elements x1 and x2 in grWn F are

represented by the elements εI(P · P̊ν ⊗ (d log z)−1 ⊗ tIc d log t)⊗ e and εI(P ⊗ (d log z)−1 ⊗
tIc d log t)⊗ eν of QnF . Here εI ∈ {±1} is defined by εId log tΛ = d log tI ∧ d log tIc in Ωd+1

X/S .
The latter element coincides with

εI(P ⊗ (d log z)−1 ⊗ tIc\{ν} d log t)⊗ ∂̃ν(e) = εI(P ⊗ (d log z)−1 ⊗ tIc\{ν} d log t)∂̃ν ⊗ e

= εI(P · P̃ν ⊗ (d log z)−1 ⊗ tIc\{ν} d log t)⊗ e.

For the second equality, note that ∂̃ν(tIc\{ν}) = 0. Now, using α∗(aνµ) = tνα
∗(åνµ), we see that

the difference of the two elements of QnF is

εIP∂
Y
0 ⊗ (d log z)−1 ⊗ tIc\{ν} d log t⊗ e= ∂log

0 (εIP ⊗ (d log z)−1 ⊗ tIc\{ν} d log t⊗ e),

which is contained in ∂log
0 (Qn+1F)⊂Wn−1F .
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(2) By Proposition 3.1.7 for B = T , it is enough to prove that, for a non-empty subset I of Λ,
x ∈ Sym•OY

TY/T , e ∈ EX , and ν ∈ Ic, the image of the element (x⊗ (d log z)−1 ⊗ dtIc)θIν ⊗ ι
∗
I(e)

under the homomorphism (3.4.8) is 0. Let bνµ and εI be as in the proof of (1). Then we have

(x⊗ (d log z)−1 ⊗ dtIc)θIν =
∑

16µ6e

xξYµ ⊗ (d log z)−1 ⊗ α∗I(zµ)
−1ι∗I(bνµ) dtIc

and the image in question is represented by the element

εI
∑

16µ6e

xξYµ ⊗ (d log z)−1 ⊗ α∗(zµ)
−1bνµtIc d log t⊗ e ∈Qn grF• F .

Since

α∗(ξ̃ν) = 1⊗ ξY0 +
∑

16µ6e

tνα
∗(zµ)

−1bνµ ⊗ ξ
Y
µ ∈ OX ⊗OY

TY/S ,

Proposition 3.1.7 for B = S implies that the above element coincides with−εIxξ
Y
0 ⊗ (d log z)−1 ⊗

t(I∪{ν})c d log t⊗ e, which is contained in ξlogt Qn+1 grF• F ⊂Wn−1 grF• F . ✷

Proof of Theorem 3.4.5(2). Since the question is étale local on X̊, we may assume that there
exist t1, . . . , td+1 as in the beginning of § 3 and Λ = {1, 2, . . . , d+ 1}. Let ξ̃ν ∈ TX/S be the dual
basis of d log tν ∈ Ω1

X/S as in § 3.2. For a subset I of Λ, we define d log tI , tI , and Ic as in the

proof of Proposition 3.4.2 and, for a non-empty I, we define dtIc ∈ ωXI
and θIν ∈ TXI/T (ν ∈ Ic)

as in the proof of Lemma 3.4.9. We may also assume that there exist w1, . . . , we ∈ Γ(Y,OY )
such that dwµ (1 6 µ6 e) is a basis of Ω1

Y/T . We define η0, η1, . . . , ηe ∈ TY/S to be the dual basis
of d log t, dw1, . . . , dwe. By trivializing ωY , ωX , and ωXI

by their bases dw1 ∧ · · · ∧ dwe, d log t,
and dtIc , we obtain the following isomorphisms from Proposition 3.1.7:

grF• F
∼=OX [η0, η1, . . . , ηe]/(α∗(ξ̃ν), 1 6 ν 6 d+ 1)⊗OX

EX ,

grF• FI
∼=OXI

[η1, . . . , ηe]/(αI∗(θ
I
ν), ν ∈ I

c)⊗OXI
EXI

.

We have

Qn grF• F =
∑

I⊂Λ,|I|=n+1

tIc grF• F for 0 6 n6 d,

Wn grF• F =
∑

b−2a=n,06a6b6d

(η0)
a ·Qb grF• F for − d6 n6 d,

and the homomorphism grF• FI → grW|I|−1 grF• F in Lemma 3.4.9(2) sends ι∗I(f)⊗ ι∗I(e) to

εIf ⊗ tIce for f ∈ OX [η1, . . . , ηe] and e ∈ EX . Here εI is defined as in the proof of Lemma 3.4.9.
Hence, we may assume that E =OX̊/S .

Let α′ : X → Y be another morphism of fine log schemes over T satisfying the same conditions
as α. We first prove that the claim holds for α if and only if it holds for α′. As in the proof
of Lemma 3.1.4, we are reduced to the case where there exists a smooth morphism h : Y ′→ Y
such that α= h ◦ α′ and we+1, . . . , we′ ∈ Γ(Y ′,OY ′) such that dwµ (e+ 1 6 µ6 e′) is a basis
of Ω1

Y ′/Y and (α′)∗(wµ) = 0 (e+ 1 6 µ6 e′). Let η′0, η
′
1, . . . , η

′
e′ ∈ TY ′/S be the dual basis of the

basis d log t, dh∗(w1), . . . , dh
∗(we), dwe+1, . . . , dwe′ of Ω1

Y ′/S . Then we have

α∗(ξ̃ν) =
∑

06µ6e

aνµ ⊗ ηµ, α′∗(ξ̃ν) =
∑

06µ6e

aνµ ⊗ η
′
µ
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and

αI∗(θ
I
ν) =

∑

16µ6e

aIνµ ⊗ ηµ, α′I∗(θ
I
ν) =

∑

16µ6e

aIνµ ⊗ η
′
µ

for the same aνµ ∈ OX and aIνµ ∈ OXI
. Hence, we have the following isomorphisms compatible

with the homomorphisms constructed in Lemma 3.4.9(2) in the obvious sense:

grF• F ⊗OX
OX [η′e+1, . . . , η

′
e′ ]

∼=
−−→ grF• F

′,

grF• FI ⊗OXI
OXI

[η′e+1, . . . , η
′
e′ ]

∼=
−−→ grF• F

′
I .

Here F ′ = α′+/SOX and F ′I = α′I+/TOXI
. This implies the desired claim.

Since the question is étale local on X, we may assume that

X̊ = Spec(WN [t1, . . . , td+1]/(t1 · · · td+1)).

Let Y be Spec(WN [t1, . . . , td]) endowed with the inverse image of MT . We will prove the
isomorphism for the natural morphism of fine log schemes α : X → Y . Let θ0, θ1, . . . , θd+1 ∈ TY/S
be the dual basis of the basis d log t, dt1, . . . , dtd+1 of Ω1

Y/S . Since

α∗(ξ̃ν) = tν ⊗ θν + 1⊗ θ0 ∈ OX ⊗OY
TY/S for 1 6 ν 6 d+ 1

and

αI∗(θ
I
ν) = 1⊗ θν ∈ OXI

⊗OY
TY/T for ν ∈ Ic,

we have isomorphisms

Γ(Y, grF• F) ∼= WN [t1, . . . , td+1, θ0, θ1, . . . , θd+1]/(t1 · · · td+1, t1θ1 + θ0, . . . , td+1θd+1 + θ0),

Γ(Y, grF• FI)
∼= WN [t1, . . . , td+1, θ1, . . . , θd+1]/(tν , ν ∈ I, θν , ν ∈ I

c)
∼= WN [tν , ν ∈ I

c, θν , ν ∈ I].

The homomorphism in question has a lifting
⊕

b−2a=n
06a6b6d

⊕

I⊂Λ
|I|=b+1

WN [tν , ν ∈ I
c, θν , ν ∈ I]−→ Γ(Y, Wn grF• F); (fa,b,I) 7→

∑
fa,b,ItIcθa0

for −d6 n6 d, and the sum of them gives an isomorphism by Lemma 3.4.10 below. On the other
hand, Γ(Y, grWn grF• F) is generated by tIcθa0 for b− 2a= n, 0 6 a6 b6 d, I ⊂ Λ, and |I|= b+ 1
as a WN [t1, . . . , td+1, θ1, . . . , θd+1]-module since θ0 · grWn grF• F = 0 by Lemma 3.3.6(2). Hence,
the homomorphism in question is surjective. Combining with the above isomorphism, we see
that it is an isomorphism by induction on n. ✷

Lemma 3.4.10. The following set is a basis of

WN [t1, . . . , td+1, θ0, . . . , θd+1]/(t1 · · · td, θ0 + tνθν , 1 6 ν 6 d+ 1)

as a WN -module:
{
θa0 · tIc

∏

ν∈Ic

tnν
ν

∏

ν∈I

θnν
ν

∣∣∣∣ 0 6 a6 b6 d, I ⊂ {1, . . . , d+ 1}, |I|= b+ 1, nν ∈ N for 1 6 ν 6 d+ 1

}
.

Proof. For each 1 6 ν 6 d+ 1,

WN [θ0, tν , θν ]/(θ0 + tνθν)∼=WN [tν , θν ]

is a free Wn[θ0]-module with a basis {tnνθ
m
ν | n, m ∈ N, nm= 0}. Hence,

WN [t1, . . . , td+1, θ0, . . . , θd+1]/(θ0 + tνθν , 1 6 ν 6 d+ 1)
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is a free WN -module with a basis
{
θa0tIc

∏

ν∈Ic

tnν
ν

∏

ν∈I

θnν
ν

∣∣∣∣ a ∈ N, I ⊂ {1, . . . , d+ 1}, nν ∈ N for 1 6 ν 6 d+ 1

}
.

For a, I, and nν as above, we have

t1 · · · td · θ
a
0tIc

∏

ν∈Ic

tnν
ν

∏

ν∈I

θnν
ν = (−1)|I1|θ

a+|I1|
0 tIc

1

∏

ν∈Ic

tnν+1
ν

∏

ν∈I1

θnν−1
ν ,

where I1 = {ν ∈ I | nν 6= 0}. Conversely, if a> |I|, then we have

θa0tIc

∏

ν∈Ic

tnν
ν

∏

ν∈I

θnν
ν = (−1)|I|t1 · · · td · θ

a−|I|
0

∏

ν∈Ic

tnν
ν

∏

ν∈I

θnν+1
ν .

Hence, θa0tIc

∏
ν∈Ic tnν

ν

∏
ν∈I θ

nν
ν for a < |I| give a basis of the quotient by the ideal generated by

t1 · · · td+1. ✷

For n ∈ Z, we define the filtration Fr(WnF) (r ∈ Z) of WnF to be FrF ∩WnF and the
filtration Fr(grWn F) of grWn F to be the image of Fr(WnF). The graded quotients grF• (WnF)
and grF• (grWn F) are graded gr• DY/S = Sym•OY

TY/S-modules and we have a short exact sequence
of graded Sym•OY

TY/S-modules:

0−→ grF• (Wn−1F)−→ grF• (WnF)−→ grF• (grWn F)−→ 0. (3.4.11)

On the other hand, grF• (WnF) is naturally regarded as a graded Sym•OY
TY/S-submodule of

grF• F .

By the construction of κI in Lemma 3.4.9, we see that κI is compatible with the filtrations Fr
and induces a homomorphism of Sym•OY

TY/T -modules grF• κI : grF• FI → grF• grW|I|−1 F . On

the other hand, the homomorphism grWn F → grWn−2 F defined by the multiplication by ∂log
t

sends Fr to Fr+1 and induces a homomorphism grFr (grWn F)→ grFr+1(grWn−2 F). Hence, to prove
Theorem 3.4.5(1), it suffices to show that the following homomorphism is an isomorphism for
−d6 n6 d:

⊕

b−2a=n
06a6b6d

⊕

I⊂Λ
|I|=b+1

grF•−a FI −→ grF• grWn F ; (yI)a,b,I 7→
∑

a,b,I

(∂log
t )a · grF•−a κI(yI). (3.4.12)

Lemma 3.4.13. Let n be an integer.

(1) As Sym•OY
TY/S-submodules of grF• F , Wn(grF• F) is contained in grF• (WnF).

(2) For I ⊂ Λ such that |I|6 d+ 1, the following two diagrams are commutative.

grF• FI
grF
• κI //

τI &&M
M

M
M

M
M

M
M

M
M

M

grF• (grW|I|−1 F) grF•−1(grWn F)
∂log

t // grF• (grWn−2 F)

grW|I|−1(grF• F)

OO

grWn (grF•−1 F)
ξlogt //

OO

grWn−2(grF• F)

OO

Here the three vertical maps are induced by the exact sequence (3.4.11) and (1) above.

Proof. The questions are étale local on Y̊ and we keep the notation and assumptions in the proof
of Lemma 3.4.9.

(1) By definition, the Sym•OY
TY/S-module Wn grF• F is generated by (ξlogt )a ⊗ (d log z)−1 ⊗

tIc d log t⊗ e for 0 6 a6 d, I ⊂ Λ, and e ∈ EX such that a6 |I| − 1 and |I| − 1− 2a= n. They are
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the images of the sections (∂log
t )a ⊗ (d log z)−1 ⊗ tIc d log t⊗ e of Fa(WnF) in grFa F and hence

contained in grFa (WnF).

(2) Every homomorphism in the left-hand diagram is Sym•OY
TY/T -linear. Hence, its

commutativity can be verified by looking at the images of the sections 1⊗ (d log z)−1 ⊗
dtIc ⊗ ι∗I(e), e ∈ EX of grF• FI . The commutativity of the right-hand diagram is reduced to

the coincidence of the homomorphism grF•−1 WnF → grF• Wn−2F induced by ∂log
t with the

multiplication by ξlogt . ✷

Lemma 3.4.14. For −d6 n6 d, the homomorphism in Theorem 3.4.5(1) is an epimorphism.

Proof. The question is étale local on Y̊ and we keep the notation and assumptions as in the
proof of Lemma 3.4.9. Then the DY/S-module WnF is generated by (∂log

t )a ⊗ (d log z)−1 ⊗
tIc d log t⊗ e for 0 6 a6 d, I ⊂ Λ, and e ∈ EX such that a6 |I| − 1 and |I| − 1− 2a= n. Since

∂log
t ·WnF ⊂Wn−2F , their images in grWn F generate grWn F regarded as a DY/T -module. Hence,

the claim follows from the fact that the image of the section 1⊗ (d log z)−1 ⊗ dtIc ⊗ ι∗I(e) of FI
by the DY/T -linear homomorphism (∂log

t )aκI is εI(∂
log
t )a ⊗ (d log z)−1 ⊗ tIc d log t⊗ e. ✷

Proof of Theorem 3.4.5(1). By Lemma 3.4.13 and Theorem 3.4.5(2), it suffices to prove that
the injective homomorphism Wn(grF• F) →֒ grF• (WnF) is an isomorphism for n ∈ Z. The claim is
obvious for n6−d− 1; both sides are 0. For −d6 n6 d, suppose that the claim is true for n− 1.
Then the homomorphism grWn (grF• F)→ grF• (grWn F) is injective. Hence, by Theorem 3.4.5(2) and
Lemma 3.4.13(2), the homomorphism (3.4.12) is injective. Combining with Lemma 3.4.14, we see
that the homomorphism (3.4.12) is an isomorphism. It implies that grWn (grF• F)→ grF• (grWn F)
is an isomorphism. Hence, Wn(grF• F) = grF• (WnF). ✷

Remark 3.4.15. By applying Proposition 3.4.16 below to Fx, ∂
log
t , QbFx, and WnFx for x ∈ X̊

and using Corollary 3.4.6, we obtain

QrF = Ker(∂log)r+1 (0 6 r 6 d).

Proposition 3.4.16. Let d be a positive integer. Let M be a module, let N : M →M be
a nilpotent endomorphism of M , and let QbM (b ∈ Z) be an increasing filtration of M by
submodules such thatQ−1M = 0,QdM =M , andN (QbM)⊂Qb−1M . We define the submodules
WnM (−d6 n6 d) by

WnM =
∑

b−2a=n
06a6b6d

N a(QbM).

We put WnM = 0 for n6−d− 1 and WnM =M for n> d+ 1.

(1) We have Wn−1M ⊂WnM and N (WnM)⊂Wn−2M for n ∈ Z.

(2) Assume that, for 0 6 r 6 d, N r : WrM →W−rM induces an isomorphism grWr M
∼=
−−→

grW−r M . Then we have KerN r+1 =QrM for 0 6 r 6 d.

Proof. (1) The same as in Lemma 3.3.6.

(2) Note that QrM ⊂KerN r+1 since N r+1(QrM)⊂Q−1M = 0. The claim is true for r = d
since QdM =M . Let r be an integer such that 0 6 r 6 d− 1 and assume that KerN r+2 =
Qr+1M . Let x be an element of M such that N r+1(x) = 0. By assumption, x ∈Qr+1M ⊂

Wr+1M . Since N r+1 induces an isomorphism grWr+1 M
∼=
−−→ grW−r−1 M , we have x ∈WrM . By

the definition of WrM , x is written in the form x= y +N (z), where y ∈QrM and z ∈M .
Since N r+1(y) = 0 by the remark in the beginning of the proof, we have N r+1(N (z)) = 0.
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This implies that z ∈KerN r+2 =Qr+1M by assumption andN (z) ∈N (Qr+1M)⊂QrM . Hence,
x= y +N (z) ∈QrM . ✷

3.5 Independence on Y

Let α′ : X → Y ′ be another morphism of fine log schemes over T satisfying the same conditions
as α and let g : Y ′→ Y be a morphism over T such that g ◦ α′ = α. Let E , EX , EXI

, αI , F ,
and FI be as before Theorem 3.4.5. We define α′I : XI → Y ′, F ′, and F ′I in the same way as αI ,
F , and FI using α′ instead of α. Then, by Proposition 2.6.5, we have

g+/SF
′ ∼= F , g+/TF

′
I
∼= FI . (3.5.1)

We obtain Hi(g+/SF
′) = 0 and Hi(g+/TF

′
I) = 0 for i 6= 0. We regard g+/SF

′ (respectively
g+/TF

′
I) as a leftDY/S-module (respectively DY/T -module) in the following. Since F ′ is supported

on X, the above vanishing implies that

g+/SF
′ ∼= g∗(DY←Y ′/S ⊗DY ′/S

F ′), g+/TF
′
I
∼= g∗(DY←Y ′/T ⊗DY ′/T

F ′I). (3.5.2)

Suppose that we have α′′ : X → Y ′′ and g′ : Y ′′→ Y ′ such that α′ = g′ ◦ α′′ and define F ′′ and F ′′I
using α′′. Then, by Proposition 2.6.6, the isomorphism (g ◦ g′)+/SF

′′ ∼= F coincides with the
composite of

(g ◦ g′)+/SF
′′ ∼= g+/S(g′+/SF

′′)∼= g+/SF
′ ∼= F ,

and similarly for FI , F
′
I , and F ′′I .

The isomorphisms (3.5.1) are compatible with the weight filtrations and the isomorphisms in
Theorem 3.4.5(1) as follows.

Proposition 3.5.3. Let the notation and assumptions be as above.

(1) The homomorphism g+/SF
′→ g+/SF

′ induced by the DY ′/S-linear homomorphism

∂log
t : F ′→F ′ coincides with the action of ∂log

t ∈ DY/S on g+/SF
′.

(2) For n ∈ Z, we have Hi(g+/S(grWn F
′)) = 0 and Hi(g+/SWnF

′) = 0 for i 6= 0.

(3) For n ∈ Z, the image of g+/SWnF
′ (regarded as a left DY/S-submodule of g+/SF

′) under

g+/SF
′
∼=
−−→F coincides with WnF .

(4) For a non-empty set I ⊂ Λ of cardinality 6d+ 1, the following diagram is commutative in
the category of DY/T -modules.

g+/TF
′
I

g+/T (κI)
//

∼=

��

g+/T (grW|I|−1 F
′)

∼=

Corollary 2.6.10
// g+/S(grW|I|−1 F

′)

∼=
��

FI
κI // grW|I|−1 F

Here the right vertical isomorphism is induced by (2) and (3).

Proof. (1) By (3.5.2), it suffices to prove that ∂log
t P = P∂log

t for P ∈ DY←Y ′/S . By

Proposition 2.3.4, the actions of ∂log
t on ωY and ωY ′ are 0. Since g∗ : TY ′/S → TY/S sends ∂log

t

to ∂log
t , this together with Propositions 2.4.5 and 2.1.11 implies the desired claim.

(2) By Theorem 3.4.5(1) and Corollary 2.6.10, Hi(g+/TF
′
I) = 0 implies that

Hi(g+/S(grWn F
′)) = 0 for i 6= 0.

Since W−d−1F
′ = 0, we obtain Hi(g+/SWnF

′) = 0 by induction on n.
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(3) By (1) and the definition of the weight filtration, it suffices to prove that the image of

H0(g+/SQnF
′)−→ g+/SF

′ ∼= F

coincides with QnF . Note that, for any surjective homomorphism F1→F2 of DY ′/S-modules
supported in X, the homomorphism H0(g+/SF1)→H

0(g+/SF2) is surjective. By the definition
of QnF

′, the image in question coincides with the image of

g∗(DY←Y ′/S ⊗DY ′/S
α′∗(QnDY ′←X/S ⊗DX/S

EX))−→ g+/SF
′ ∼= F .

Note that g∗ is exact for sheaves supported in X. Hence, the claim follows from the fact that
the natural homomorphism

α′−1(DY←Y ′/S)⊗α′−1(DY ′/S) QnDY ′←X/S −→ α′−1(DY←Y ′/S)⊗α′−1(DY ′/S) DY ′←X/S
∼=

−−−−→
(2.6.3)

DY←X/S

is injective and its image is QnDY←X/S .

(4) Put n= |I| − 1. The composite of the epimorphism

H0(g+/T (α′I∗(DY ′←XI/T ⊗OXI
EXI

)))−→ g+/TF
′
I

with

g+/T (κI) : g+/TF
′
I −→ g+/T (grWn F

′)∼= grWn F

is the same as the composite of

H0(g+/T (α′I∗(DY ′←XI/T ⊗OXI
EXI

)))−→H0(g+/T (α′∗(grQn DY ′←X/S ⊗OX
EX)))

∼=
−−→H0(g+/S(α′∗(grQn DY ′←X/S ⊗OX

EX)))−→H0(g+/S(grQn F
′))−→ grQn F −→ grWn F .

On the other hand, the composite of the epimorphism αI∗(DY←XI/T ⊗OXI
EXI

)→FI
with κI : FI → grWn F is the same as the composite of

αI∗(DY←XI/T ⊗OXI
EXI

)−→ α∗(grQn DY←X/S ⊗OX
EX)−→ grQn F −→ grWn F .

Hence, the claim follows from the following two commutative diagrams.

α′−1
I (DY←Y ′/T )⊗α′−1

I (DY ′/T ) DY ′←XI/T
//

(2.6.3)∼=

��

α′−1(DY←Y ′/S)⊗α′−1(DY ′/S) grQn DY ′←X/S

∼=
��

DY←XI/T
// grQn DY←X/S

H0(g+/S(α′∗(QnDY ′←X/S ⊗OX
EX))) //

∼=
��

H0(g+/S(QnF
′))

��
α∗(QnDY←X/S ⊗OX

EX) // QnF

Here the right vertical isomorphism of the first diagram and the left vertical isomorphism of the
second diagram are induced by the canonical isomorphism

α′−1(DY←Y ′/S)⊗α′−1(DY ′/S) QnDY ′←X/S
∼=
−−→QnDY←X/S

mentioned in the proof of (3). ✷
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4. Nearby cycles: global case

Let X0 be a fine and saturated log scheme smooth over T0 such that X̊0 is separated of finite type
over S0 and Ω1

X0/T0
has constant rank d. Throughout this section, we assume that X0 satisfies

the condition on X for the case N = 1 in the beginning of § 3. We also assume that we are given a
morphism α0 : X0→ Y of fine log schemes over T such that the underlying morphism of schemes
α̊0 : X̊0→ Y̊ is a closed immersion, Y̊ is smooth and separated of finite type over S, the log
structure MY is the inverse image of MT , and Ω1

Y/T has constant rank e. We assume that p > 2.
In this section, we will define and study nearby cycles of a crystal E of OX̊0/S

-modules locally

free of finite type on (X̊0/S)Ncrys.

4.1 Preliminaries

Let X and X ′ denote fine and saturated log schemes over T satisfying the same conditions as

in the beginning of § 2.6. Assume that we are given an isomorphism g : X ′
∼=
−−→X over T . Let B

be S or T .

For a left DX/B-module E , the natural isomorphism g−1(E)
∼=
−−→ g∗/B(E) is compatible with

the left actions of g−1(DX/B)∼=DX′/B. Since the natural isomorphism g−1(ωX)
∼=
−−→ ωX′ is

compatible with the right actions of g−1(DX/B)∼=DX′/B, we see that the natural isomorphism

g−1(E ⊗OX
ωX)

∼=
−−→ g∗/B(E)⊗OX′

ωX′

is compatible with the right actions of g−1(DX/B)∼=DX′/B.

For a right DX/B-module M, by applying the above argument to the left DX/B-module
HomOX

(ωX ,M) and using Proposition 2.4.6, we see that the natural isomorphisms

g−1(M)
∼=
−−→ g−1(HomOX

(ωX ,M)⊗OX
ωX)

∼=
−−→ g∗/B(HomOX

(ωX ,M))⊗OX′
ωX′ (4.1.1)

are compatible with the right actions of g−1(DX/B)∼=DX′/B.

We have isomorphisms

g♮(ωX)∼= g!(ωX)∼= g!f !(OS)[−d]∼= (f ′)!(OS)[−d]∼= ωX′ (4.1.2)

(see § 2.3). Here f (respectively f ′) denotes the structure morphismX → T (respectivelyX ′→ T )
and d= rankOX

Ω1
X/T . By [Har66, Remark after Corollary 8.3 in ch. III] and an argument similar

to the proof of Proposition 2.3.5, we see that the composite of the above isomorphisms is explicitly
given by

g♮(ωX)∼=Homg−1(OX)(OX′ , g
−1(ωX))

∼=
−−→ ωX′ ; ϕ 7→ g∗(ϕ(1)). (4.1.3)

Using this isomorphism and Lemma 2.4.4(1), we see that the last term of (4.1.1) is canonically
isomorphic to g♮(M) as follows:

g∗(HomOX
(ωX ,M))⊗OX′

ωX′ ∼= HomOX′
(g♮(ωX), g♮(M))⊗OX′

ωX′

∼= HomOX′
(ωX′ , g

♮(M))⊗OX′
ωX′

∼= g♮(M). (4.1.4)

Here we used Lemma 2.4.4(1) for the first isomorphism.

Lemma 4.1.5. For a right DX/B-moduleM, the homomorphism

g−1(M)
∼=
−−→ g♮(M) =Homg−1(OX)(OX′ , g

−1(M))
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obtained by composing (4.1.1) with (4.1.4) sends m ∈ g−1(M) to ϕm : OX′ → g−1(M) defined

by ϕm(a) = (g∗)−1(a) ·m. Here g∗ denotes the isomorphism g−1(OX)
∼=
−−→OX′ .

Proof. Straightforward computation using the explicit description of the homomorphism (2.4.3)
in the proof of Lemma 2.4.4(1). ✷

If we apply (4.1.1) to DX/B, we obtain an isomorphism

g−1(DX/B)
∼=
−−→DX←X′/B (4.1.6)

compatible with the left actions of g−1(DX/B) and the right actions of g−1(DX/B)∼=DX′/B.

Hence, for a leftDX/B-module E , by taking the tensor product of the isomorphism g−1E
∼=
−−→ g∗/BE

with (4.1.6) over g−1(DX/B)∼=DX′/B and applying g∗, we obtain a DX/B-linear isomorphism

E
∼=
−−→ g+/Bg

∗
/B(E). (4.1.7)

Lemma 4.1.8. For a left DX/S-module E , the following diagram is commutative.

rX(E)
(4.1.7)

∼=
//

(4.1.7) ∼=
��

rX(g+/Sg
∗
/S(E))

Corollary 2.6.10 ∼=
��

g+/T g
∗
+/T rX(E)

(2.5.1)

∼=
// g+/T rX′g

∗
+/S(E)

Here rX and rX′ denote the functors in (2.5.1).

Proof. This follows from the following commutative diagram.

g−1(DX/S)
(4.1.6)

∼=
// DX←X′/S

g−1(DX/T )

(2.1.8)

OO

(4.1.6)

∼=
// DX←X′/T

(2.6.8)

OO

✷

We will need the following compatibility of c∗g,g′/B and cg,g′,+/B defined in Propositions 2.5.2

and 2.6.7 for two isomorphisms g, g′ : X ′
∼=
−−→X.

Proposition 4.1.9. For any two isomorphisms g, g′ : X ′
∼=
−−→X over T which coincide

modulo p, the following diagram is commutative.

E
∼=

(4.1.7)
//

(4.1.7) ∼=
��

g′+/Bg
′∗
/B(E)

∼= cg,g′,+/B(g′∗
/B

(E))

��
g+/Bg

∗
/B(E)

∼=

g+/B◦c
∗
g,g′/B

(E)
// g+/Bg

′∗
/B(E)

This proposition is obtained by applying the following more general proposition toM=DX/B
and taking g∗.

Proposition 4.1.10. Let g, g′ : X ′
∼=
−−→X be two isomorphisms over T which coincide

modulo p. Then, for a right DX/B-moduleM and a left DX/B-module E , the following diagram
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is commutative.

g′−1(M⊗DX/B
E)

∼= // (g′∗/B(HomOX
(ωX ,M))⊗OX′

ωX′)⊗DX′/B
g′∗/B(E)

∼=
��

g−1(M⊗DX/B
E)

∼= // (g∗/B(HomOX
(ωX ,M))⊗OX′

ωX′)⊗DX′/B
g∗/B(E)

Here the lower horizontal homomorphism is defined by taking the tensor product of (4.1.1) and

g−1(E)
∼=
−−→ g∗/B(E) over g−1(DX/B)∼=DX′/B, and similarly for the upper one. The right vertical

one is defined by applying c∗g,g′/B (Proposition 2.5.2) to the left DX/B-modules HomOX
(ωX ,M)

and E .

In the rest of this subsection, we will prove Proposition 4.1.10. To prove it, we give another
description of the right vertical isomorphism via (4.1.4). Let g, g′ be as in Proposition 4.1.10. Since
the canonical PD structure on pOX′ is nilpotent by the assumption that p > 2, the morphism
(g, g′) : X ′→X ×B X induces a PD morphism h : X ′→ PnX/B for a sufficiently large n. Hence,
for a right DX/B-moduleM, we have an isomorphism

g♮(M)∼= h♮pn♮1 (M)
∼=

−−−−−−→
h♮(εn)

h♮pn♮2 (M)∼= g′♮(M). (4.1.11)

Here

εn : pn♮1 (M)
∼=
−−→ pn♮2 (M)

is the isomorphism associated to the right action of DX/B onM by Theorem 2.2.5. For the right
DX/B-module ωX , the definition of the right action in § 2.3 implies that the above isomorphism
coincides with the composite of

g♮(ωX)
∼=
−−→ ωX′

∼=
←−− g′♮(ωX)

obtained from (4.1.2) and (4.1.3).

Proposition 4.1.12. Let g, g′ be the same as in Proposition 4.1.10. Then, for a right DX/B-
moduleM, the following diagram is commutative.

g′∗/B(HomOX
(ωX ,M))⊗OX′

ωX′
∼= //

(4.1.4) ∼=
��

g∗/B(HomOX
(ωX ,M))⊗OX′

ωX′

∼= (4.1.4)

��
g′♮(M) g♮(M)

∼=

(4.1.11)
oo

Here the upper horizontal isomorphism is defined by applying c∗g,g′/B (Proposition 2.5.2) to

HomOX
(ωX ,M).

Proof. By the proof of Proposition 2.4.1, the left action of DX/B onHomOX
(ωX ,M) corresponds

to the system of isomorphisms defined in the following way:

pn∗2 (HomOX
(ωX ,M))

(2.4.3)
∼= HomPn

X/B
(pn♮2 (ωX), pn♮2 (M))

∼=HomPn
X/B

(pn♮1 (ωX), pn♮1 (M))
(2.4.3)
∼= pn∗1 (HomOX

(ωX ,M)).
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Let h be as before (4.1.11). Then, by taking h∗ and using Lemma 2.4.4(2) for (2.4.3), we see that
c∗g,g′/B(HomOX

(ωX ,M)) is the composite of

g′∗(HomOX
(ωX ,M))

(2.4.3)
∼= HomOX′

(g′♮(ωX), g′♮(M))

∼=HomOX′
(g♮(ωX), g♮(M))

(2.4.3)
∼= g∗(HomOX

(ωX ,M)),

where the second isomorphism is induced by (4.1.11) for ωX andM. By the remark after (4.1.11),
we see that the diagram in the proposition is commutative. ✷

Proof of Proposition 4.1.10. Let h be as before (4.1.11) and let θn : E → E ⊗OX
PnX/B be the

homomorphism corresponding to the left action of DX/B on E (Proposition 2.2.3). Then, for
e ∈ E , the image of g′−1(e) under the composite of

g′−1(E)
∼=
−−→ g′∗/B(E)

∼=
−−−−−−−−→
c∗
g,g′/B

(E)
g∗/B(E)

∼=
←−− g−1(E)

is the image of h−1(θn(e)) by

h−1(pn∗1 (E))
h∗
−−−→ g∗(E)

∼=
−−→ g−1E ,

which is g−1(P · e), where P denotes the section PnX/B
h∗
−−−→OX′

g∗
←−−
∼=
OX ofDX/B,n. On the other

hand, by the construction of the isomorphism (4.1.11) and Lemma 4.1.5, we see that the image
of g−1(m) (m ∈M) under the composite of

g−1(M)
∼=
−−→ g♮(M)

∼=
−−−→
(4.1.11)

g′♮(M)
∼=
←−− g′−1(M)

is the image of the section g−1({b 7→ (g∗)−1 ◦ h∗(b) ·m}) of g−1(HomOX
(pn1∗P

n
X/B,M)) by

g−1(HomOX
(pn1∗P

n
X/B,M))

∼=
−−−−−−−→
h−1(εn)

g′−1(HomOX
(pn2∗P

n
X/B,M))−→ g′−1(M),

where the second map is the evaluation at 1. The latter image is g′−1(m · P ) for P ∈ DX/B,n as
above. By Proposition 4.1.12, we see that the diagram of the proposition is commutative. ✷

4.2 Affine case

Let α0 : X0→ Y be as in the beginning of § 4 and assume that the underlying scheme of X0 is
affine in this subsection. We consider both T and S as a base and apply the result for T to the
intersections of smooth components of X0 (cf. (4.2.5)).

LetB denote S or T as in § 2, and let G be a crystal ofOX0/B-modules locally free of finite type
on the nilpotent crystalline site (X0/B)Ncrys. By assumption, there exists a smooth lifting X → T
of X0→ T0, which is unique up to (non-canonical) isomorphisms [Kat89, Proposition 3.14(1)].
By the uniqueness and the assumption on X0, we see that X/T satisfies the conditions in the
beginning of § 3. For such an X, the PD thickenings X0→ PnX/B(r) and the projections among

them are objects and morphisms of the site (X0/B)Ncrys. Hence, the evaluation GX of G on
X0→X is regarded as a left DX/B-module by Theorem 2.2.1. For an X as above, there exists
also a morphism α : X → Y whose composite with X0→X is α0 [Kat89, Corollary 3.11]. The
underlying morphism of schemes of such an α is always a closed immersion. By Theorem 3.1.2(1),
we haveHi(α+/B(GX)) = 0 for i 6= 0. We regard α+/B(GX) as a left DY/B-module in the following.
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Now suppose that we are given two such pairs (X, α) and (X ′, α′). If we choose

an isomorphism ι : X ′
∼=
−−→X over T inducing the identity on X0, then we have the following

isomorphisms:

α+/BGX
∼=
−−−→
(4.1.7)

α+/Bι+/Bι
∗
/BGX

∼=
−−→ α+/Bι+/BGX′

∼=
−−−−−−−−−−−→

Proposition 2.6.5
(α ◦ ι)+/BGX′

∼=
−−−−−−−−−−→
Proposition 2.6.7

α′+/BGX′ . (4.2.1)

Proposition 4.2.2.

(1) The composite of the isomorphism (4.2.1) is independent of the choice of the isomorphism ι.
Let c(X′,α′),(X,α)/B denote the composite.

(2) If X =X ′, the isomorphism c(X′,α′),(X,α)/B coincides with cα′,α,+/B in Proposition 2.6.7.

(3) For three pairs (X, α), (X ′, α′), and (X ′′, α′′), we have

c(X′′,α′′),(X,α)/B = c(X′′,α′′),(X′,α′)/B ◦ c(X′,α′),(X,α)/B.

(4) Let G be a crystal of OX0/S-modules locally free of finite type on (X0/S)Ncrys and let G ′

denote the inverse image of G on (X0/T )Ncrys. Let rX denote the functor DX/S-Mod→
DX/T -Mod induced by (2.1.8), and define rX′ and rY similarly. Then the following diagram
is commutative.

rY ◦ α+/S(GX)

rY ◦c(X′ ,α′),(X,α)/S ∼=

��

Corollary 2.6.10

∼=
// α+/T ◦ rX(GX)

∼=
// α+/T (G ′

X)

c(X′ ,α′),(X,α)/T∼=

��
rY ◦ α

′

+/S(GX′ )
Corollary 2.6.10

∼=
// α′

+/T ◦ rX′ (GX′ )
∼=

// α′

+/T (G ′
X′ )

Proof. (1) Let ι′ : X ′
∼=
−−→X be another isomorphism. The claim follows from the following

commutative diagram.

α+/BGX

∼= //

∼= ((RRRRRRRRRRRRR

α+/Bι+/Bι
∗
/BGX

∼= // α+/Bι+/BGX′

∼= // (α ◦ ι)+/BGX′

∼=

cα′ ,α◦ι,+/B

((QQQQQQQQQQQQQ

α+/Bι
′
+/Bι

′∗
/BGX

∼= // α+/Bι
′
+/BGX′

∼= //

∼=α+/B(cι,ι′ ,+/B)

OO

(α ◦ ι
′)+/BGX′

∼=

cα′ ,α◦ι′ ,+/B

//

∼=cα◦ι,α◦ι′ ,+/B

OO

α
′
+/BGX′

The left-hand square is (respectively the middle square and the right-hand triangle are)
commutative by Proposition 4.1.9 (respectively Proposition 2.6.7).

(2) We are reduced to the fact that the composite of

DY←X/B
∼=

−−−−−−−−−−−−→
DY←X/B⊗(4.1.6)

DY←X/B ⊗DX/B
D
X

id
← X/B

∼=
−−−→
(2.6.3)

DY←X/B

is the identity map, which is verified by a straightforward computation.

(3) Choose isomorphisms ι : X ′
∼=
−−→X and ι′ : X ′′

∼=
−−→X ′. By using Propositions 2.6.7

and 2.6.6, we are reduced to showing that the composite of the isomorphisms

GX
∼=
−−→ ι+/Bι

∗
/BGX

∼=
−−→ ι+/Bι

′
+/Bι

′∗
/Bι
∗
/BGX

coincides with the isomorphism

GX
∼=
−−→ (ι ◦ ι′)+/B(ι ◦ ι′)∗/BGX

∼= ι+/Bι
′
+/Bι

′∗
/Bι
∗
/BGX .
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This follows from the following commutative diagram

DX/B
(4.1.6)

∼= //

∼=(4.1.6)

��

DX←X′/B

∼= DX←X′/B⊗(4.1.6)

��
DX←X′′/B DX←X′/B ⊗DX′/B

DX′←X′′/B
∼=

(2.6.3)
oo

which is verified by a direct computation. Here we regard sheaves on X ′Zar (respectively X ′′Zar)
as sheaves on XZar via ι (respectively ι ◦ ι′).

(4) The claim follows from Lemmas 2.6.11, 2.6.12, and 4.1.8. ✷

Definition 4.2.3. Let B be S or T , and let G be a crystal of OX0/B-modules locally free of
finite type on (X0/B)Ncrys. We define the left DY/B-module α0,+/B(G ) to be α+/B(GX), which
is independent of the choice of (X, α) up to canonical isomorphisms by Proposition 4.2.2. When
B = S, we call α0,+/S(G ) the nearby cycles of G realized on Y .

For a crystal G of OX0/S-modules locally free of finite type on (X0/S)Ncrys, α0,+/S(G )
regarded as a left DY/T -module via (2.1.8) is canonically isomorphic to α0,+/T (G ′) by
Proposition 4.2.2(4), where G ′ denotes the inverse image of G on (X0/T )Ncrys.

Let E be a crystal of OX̊0/S
-modules locally free of finite type on (X̊0/S)Ncrys and let G be

the inverse image of E on (X0/S)Ncrys. Then GX has trivial monodromy (Definition 3.3.2) and
we may apply the construction in § 3.3 and obtain the weight filtration Wn(α+/S(GX)) (n ∈ Z)
of α+/S(GX). See before Theorem 3.4.5.

Proposition 4.2.4. For E and G as above, the isomorphism

c(X′,α′),(X,α)/S : α+/S(GX)
∼=
−−→ α′+/S(GX′)

induces an isomorphism between the weight filtrations:

Wn(α+/S(GX))
∼=
−−→Wn(α

′
+/S(GX′)) (n ∈ Z).

Proof. Since c(X′,α′),(X,α)/S is an isomorphism of DX/S-modules, it suffices to prove that
c(X′,α′),(X,α)/S induces an isomorphism between the filtrations Q• (cf. § 3.3). Choose an

isomorphism ι : X ′
∼=
−−→X. By Proposition 4.2.2, we may assume that α′ = α ◦ ι or X =X ′.

In the first (respectively the second) case, the claim follows from the fact that the composite of

ι−1(DY←X/S)
∼=

−−−−−−−−−−−−−−−−→
ι−1(DY←X/S)⊗(4.1.6)

ι−1(DY←X/S)⊗ι−1(DX/S) DX←X′/S

∼=
−−−−→
(2.6.3)

DY←X′/S

(respectively the isomorphism D
Y

α
←X/S

∼=D
Y

α′
← X/S

used in the construction of α+/S
∼= α′+/S)

is a filtered isomorphism for the filtrations Q•. ✷

By Proposition 4.2.4, the nearby cycles α0,+/S(G ) of G realized on Y are canonically endowed
with the weight filtration Wn(α0,+/S(G )) (n ∈ Z).

In the following, we assume that all irreducible components of X̊0 are smooth over S0 and
define X0,λ (λ ∈ Λ) and X0,I , XI , and αI : XI → Y (I ⊂ Λ) as in § 3.4. Let α0,I denote the exact

closed immersion X0,I → Y over T induced by X̊0,I → X̊0
α̊0−−−→ Y̊ . Let GI denote the inverse
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image of E on (X0,I/T )Ncrys and let GI,XI
denote the DXI/T -module obtained by evaluating GI

on X0,I →XI . By applying Proposition 4.2.2 to B = T , (X0,I , α0,I), and GI , we obtain an
isomorphism

c(X′I ,α
′
I),(XI ,αI)/T : αI,+/T (GI,XI

)
∼=
−−→ α′I,+/T (GI,X′I ) (4.2.5)

for two pairs (X, α) and (X ′, α′), which satisfies the cocycle condition as in Proposition 4.2.2(3).

Proposition 4.2.6. For two pairs (X, α), (X ′, α′) and a non-empty subset I of Λ of cardinality
6d+ 1, the following diagram is commutative.

αI,+/T (GI,XI
)

κI //

c(X′
I

,α′
I
),(XI,αI )/T ∼=

��

grW|I|−1(α+/S(GX))

∼= c(X′,α′),(X,α)/S

��
α′I,+/T (GI,X′I )

κI // grW|I|−1(α
′
+/S(GX′))

Proof. Since the two vertical isomorphisms satisfy the cocycle condition, it suffices to prove the

claim when X =X ′ or α′ = α ◦ ι for an isomorphism ι : X ′
∼=
−−→X of liftings of X0. In the case

X =X ′, the claim is reduced to the commutativity of the diagram

D
Y

αI← XI/T
//

∼=
��

grQ|I|−1 DY α
←X/S

∼=
��

D
Y

α′
I← XI/T

// grQ|I|−1 DY α′
← X/S

where the left (respectively right) vertical isomorphism is the isomorphism (respectively is
induced by the isomorphism D

Y
α
←X/S

∼=D
Y

α′
← X/S

) used in the construction of αI,+/T ∼= α′I,+/T

(respectively α+/S
∼= α′+/S). Let X be X̊ with the inverse image of MT . Then the morphisms α

and αI factor through the same morphism α : X → Y , and the upper horizontal homomorphism
of the above diagram is written as follows:

α∗(DY/T ⊗OY
ω−1
Y )⊗OX

ωXI
−→ α∗(DY/S ⊗OY

ω−1
Y )⊗OX

grP|I|−1 ωX .

Here we take α∗ with respect to the action of OY through ω−1
Y . Hence, the commutativity

follows from (2.5.1) and Lemma 2.4.7 applied toM=DY/S and N = ωY . In the case α′ = α ◦ ι, ι

induces an isomorphism ιI : X ′I
∼=
−−→XI and we have α′I = αI ◦ ιI . The right vertical isomorphism

is induced by

id⊗ ι∗ : (DY/S ⊗OY
ω−1
Y )⊗OY

ωX
∼=
−−→ (DY/S ⊗OY

ω−1
Y )⊗OY

ωX′ ,

and the left one is induced by the isomorphism obtained by replacing DY/S , ωX , ωX′ , and ι with
DY/T , ωXI

, ωX′I , and ιI . Hence, the claim follows from the compatibility of the homomorphisms

ω
X

(′)
I

→ grP|I|−1 ωX(′) with ι∗I and ι∗. ✷

Let EX0/S (respectively EX0,I/T ) denote the inverse image G (respectively GI) of E on
(X0/S)Ncrys (respectively (X0,I/T )Ncrys). Then, by Proposition 4.2.6, we have a canonical
morphism of DY/T -modules:

κI : α0,I,+/T (EX0,I/T )−→ grW|I|−1(α0,+/S(EX0/S)) (4.2.7)

for each non-empty subset I of Λ of cardinality 6d+ 1.
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4.3 General case

Let α0 : X0→ Y be as in the beginning of § 4. Let B be S or T , and let G be a crystal of
OX0/B-modules locally free of finite type on (X0/B)Ncrys. Let V be an open log subscheme

of Y (i.e. an open subscheme of Y̊ endowed with the inverse image of MY ) such that the
underlying scheme of U0 :=X0 ×Y V is affine. Choose a smooth lifting U of U0 over T , and
a morphism αU : U → V over T whose composite with U0→ U is α0|U0 . Let V ′ be an open
log subscheme of V such that the underlying scheme of U ′0 :=X0 ×Y V

′ is affine, and put
U ′ = U ×V V

′ and αU ′ = αU |U ′ . Then we have a natural isomorphism (αU+/BGU )|V ′ ∼= αU ′+/BGU ′

of DV ′/B-modules, where GU denotes the DU/B-module obtained by evaluating G on U0 →֒ U and

similarly for GU ′ (cf. the beginning of § 4.2). If we are given another pair (Ũ , α
Ũ
), then the above

isomorphisms for (U, αU ) and (Ũ , α
Ũ
) are compatible with the isomorphisms c

(U,αU ),(Ũ ,α
Ũ

)/B
and

c
(U ′,αU′ ),(Ũ

′,α
Ũ′ )/B

(cf. Proposition 4.2.2), since the isomorphisms in Propositions 2.6.5 and 2.6.7

and the isomorphism (4.1.7) are compatible with the restrictions to Zariski open subschemes.
Hence, we have a canonical isomorphism of DV ′/B-modules

ρV ′,V : (αU0,+/B(GU0/B))|V ′
∼=
−−→ αU ′0,+/B(GU ′0/B).

Here GU0/B denotes the inverse image of G on (U0/B)Ncrys, αU0 = α0|U0 , and similarly for GU ′0/B
,

αU ′0 . See also Definition 4.2.3. For an open log subscheme V ′′ of V ′ such that the underlying
scheme of U ′′0 :=X0 ×Y V

′′ is affine, we have

ρV ′′,V = ρV ′′,V ′ ◦ ρV ′,V |V ′′ .

Lemma 4.3.1. Let the notation and assumptions be as above. There exists a left DY/B-module F

with an isomorphism ofDV/B-modules ρV : F|V
∼=
−−→ αU0,+/B(GU0/B) for each open log subscheme

V of Y with affine U0 =X0 ×Y V such that the following diagram is commutative for every two
open log subschemes V ′ ⊂ V of Y with affine inverse images U ′0 and U0 on X0.

F|V ′
∼=

ρV |V ′
//

∼=
ρV ′ ,,

(αU0,+/B(GU0/B))|V ′

∼=ρV ′,V

��
αU ′0,+/B(GU ′0/B)

Furthermore, (F , {ρV }) is unique up to unique isomorphisms.

Proof. Put FV := αU0,+/B(GU0/B) for simplicity. For two open log subschemes V , V ′ of Y with
affine inverse images on X0, define the isomorphism ρV ′,V to be the composite

ρ−1
V ∩V ′,V ′ ◦ ρV ∩V ′,V : FV |V ∩V ′

∼=
−−→FV ∩V ′

∼=
←−−FV ′ |V ∩V ′ .

Then ρV ′,V satisfies the cocycle condition for three V , V ′, and V ′′, and there exists a unique F

with ρV : F|V
∼=
−−→FV compatible with the isomorphism ρV ′,V . Since the compatibility with ρV ′,V

for every V , V ′ is equivalent to that for every V , V ′ satisfying V ′ ⊂ V , this implies the claim. ✷
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Definition 4.3.2. Let the notation and assumptions be as above. We define the left DY/B-
module α0,+/B(G ) to be F considered in Lemma 4.3.1. When B = S, we call α0,+/S(G ) the
nearby cycles of G realized on Y .

Let G be a crystal of OX0/S-modules locally free of finite type on (X0/S)Ncrys and let G ′

denote the inverse image of G on (X0/T )Ncrys. Then we have a canonical isomorphism as DY/T -
modules

α0,+/S(G )∼= α0,+/T (G ′) (4.3.3)

such that the following diagram is commutative for every open log subscheme of Y with affine
U0 :=X0 ×Y V .

α0,+/S(G )|V
ρV

∼=
//

∼=
��

αU0,+/S(GU0/S)

∼=
��

α0,+/T (G ′)|V
ρV

∼=
// αU0,+/T (G ′U0/T

)

Here the right vertical isomorphism is the one mentioned after Definition 4.2.3.

Let E be a crystal of OX̊0/S
-modules locally free of finite type on (X̊0/S)Ncrys, and let G be

the inverse image of E on (X0/S)Ncrys. Then the isomorphism ρV ′,V is a filtered isomorphism
with respect to the weight filtrations. Hence, the weight filtration on αU0,+/S(GU0/S) glues and
gives the weight filtration Wn(α0,+/S(G )) (n ∈ Z) on the nearby cycles α0,+/S(G ) of G realized
on Y .

As in the beginning of § 3.4, let X0,λ (λ ∈ Λ) be the irreducible components of X̊0 and assume
that X0,λ is smooth over S0 for every λ ∈ Λ. We choose and fix a total order of the finite set Λ.

For a non-empty subset I of Λ, we define X0,I to be the fiber product of X0,λ (λ ∈ I) over X̊0

endowed with the inverse image of MT , and α0,I to be the T -morphism X0,I → Y induced by

X̊0,I → X̊0
α̊0−−−→ Y̊ .

For two open log subschemes V ′ ⊂ V with affine U0 :=X0 ×Y V and U ′0 :=X0 ×Y V
′, the

following diagram is commutative.

(αU0,I,+/T (EU0,I/T ))|V ′
κI |V ′

(4.2.7)
//

ρV ′,V ∼=
��

(grW|I|−1(αU0,+/S(EU0/S)))|V ′

ρV ′,V ∼=
��

αU ′0,I,+/T (EU ′0,I/T
) κI

(4.2.7)
// grW|I|−1(αU ′0,+/S(EU ′0/S))

Here U0,I =X0,I ×Y V , αU0,I = α0,I |U0,I
, and EU0,I/T (respectively EU0/S) denotes the inverse

image of E on (U0,I/T )Ncrys (respectively (U0/S)Ncrys). Similarly for U ′0,I , etc.

Let EX0/S (respectively EX0,I/T ) denote the inverse image of E on (X0/S)Ncrys (respectively
(X0,I/T )Ncrys). Then we can glue κI and obtain a canonical morphism of DY/T -modules:

κI : α0,I,+/T (EX0,I/T )−→ grW|I|−1(α0,+/S(EX0/S)). (4.3.4)

From Theorem 3.4.5 and Corollary 3.4.6, we obtain the isomorphisms
⊕

b−2a=n
06a6b6d

⊕

I⊂Λ
|I|=b+1

α0,I,+/T (EX0,I/T )
∼=
−−→ grWn (α0,+/S(EX0/S)); (xI)a,b,I 7→

∑

a,b,I

(∂log
t )a(κI(xI))

(4.3.5)
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for −d6 n6 d and the isomorphisms

(∂log
t )n : grWn (α0,+/S(EX0/S))

∼=
−−→ grW−n(α0,+/S(EX0/S)) (4.3.6)

for 0 6 n6 d.

4.4 Independence on Y

Let α0 : X0→ Y be as in the beginning of § 4. Let α′0 : X0→ Y ′ be another morphism satisfying
the same conditions as α0 and let g : Y ′→ Y be a morphism over T such that g ◦ α′0 = α0.

We first assume that X̊0 is affine. Let B be S or T , and let G be a crystal of OX0/B-
modules locally free of finite type on (X0/B)Ncrys. Let X → T be a smooth lifting of X0 over T
and let α′ : X → Y ′ be a morphism over T such that the composite with X0→X is α′0. Put
α= g ◦ α′. Let GX be the DX/B-module associated to G as in the beginning of § 4.2. Then,
by Proposition 2.6.5, we have a canonical isomorphism g+/Bα

′
+/BGX

∼= α+/BGX . For another

pair (X̃, α̃′) and α̃= g ◦ α̃′, we see that the above isomorphisms for (X, α′) and (X̃, α̃′) are
compatible with the isomorphisms c

(X,α′),(X̃,α̃′)/B
and c

(X,α),(X̃,α̃)/B
(cf. Proposition 4.2.2) by

Propositions 2.6.6 and 2.6.7(2). Hence, we have a canonical isomorphism of DY/B-modules:

g+/Bα
′
0,+/BG ∼= α0,+/BG . (4.4.1)

By Lemma 2.6.11, we see that the following diagram is commutative for a crystal G of OX0/S-
modules locally free of finite type on (X0/S)Ncrys.

rY g+/Sα
′
0,+/S(G ) Lemma 2.6.12

∼=
//

(4.4.1)∼=
��

g+/T rY ′α
′
0,+/S(G )

∼= // g+/Tα
′
0,+/T (G ′)

(4.4.1)∼=
��

rY α0,+/S(G )
∼= // α0,+/T (G ′)

(4.4.2)
where rY and rY ′ are defined as in (2.5.1) and G ′ denotes the inverse image of G on (X0/T )Ncrys.

Suppose that we have α′′0 : X → Y ′′ and g′ : Y ′′→ Y ′ such that α′0 = g′ ◦ α′′0. Then, by
Proposition 2.6.6, we see that the isomorphism

(g ◦ g′)+/Bα
′′
0,+/BG ∼= α0,+/BG

coincides with

(g ◦ g′)+/Bα
′′
0,+/BG ∼= g+/B(g′+/Bα

′′
0,+/BG )∼= g+/Bα

′
0,+/BG ∼= α0,+/BG .

In the following, we consider a general X0 and do not assume that X̊ is affine. Let Ṽ ⊂ V
be two open log subschemes of Y such that the underlying schemes of U0 :=X0 ×Y V and
Ũ0 :=X0 ×Y Ṽ are affine. Put V ′ = V ×Y Y

′ and Ṽ ′ = Ṽ ×Y Y
′. Then, since the isomorphism in

Proposition 2.6.5 is compatible with the restrictions to Zariski open subschemes, we see that the
following diagram is commutative.

(gV ′,+/Bα
′
U0,+/B

GU0/B)|
Ṽ

∼=

(4.4.1)
//

g
Ṽ ′,+/B

(ρ
Ṽ ′,V ′ ) ∼=

��

(αU0,+/BGU0/B)|
Ṽ

ρ
Ṽ ,V ∼=

��
g
Ṽ ′,+/B

α′
Ũ0,+/B

G
Ũ0/B

∼=

(4.4.1)
// α
Ũ0,+/B

G
Ũ0/B
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Here

gV ′ = g|V ′ , α′U0
= α′0|U0 , αU0 = α0|U0 , GU0/B = G |(U0/B)Ncrys

and similarly for Ṽ ′ and Ũ0. Hence, by gluing the isomorphism (4.4.1) for αU0 , α
′
U0

, gV ′ , and
GU0/B, we obtain a canonical isomorphism of DY/B-modules:

g+/Bα
′
0,+/BG ∼= α0,+/BG . (4.4.3)

The diagram (4.4.2) is still commutative for a general X0, since the question is Zariski local
on Y̊ . We also have the compatibility with respect to compositions of the g.

Next let us consider a crystal E of OX̊/S-modules locally free of finite type on (X̊/S)Ncrys. We

assume that every irreducible component of X0 is smooth and define X0,λ (λ ∈ Λ), X0,I (I ⊂ Λ),
α0,I : X0,I → Y , EX0/S , and EX0,I/T in the same way as in § 4.3. We define α′0,I : X0,I → Y ′ in the
same way as α0,I using α′0 instead of α0. Then, from Proposition 3.5.3, we obtain the following
proposition.

Proposition 4.4.4.

(1) The homomorphism g+/Sα
′
0,+/SEX0/S → g+/Sα

′
0,+/SEX0/S induced by the DY ′/S-linear

homomorphism ∂log
t : α′0,+/SEX0/S → α′0,+/SEX0/S coincides with the action of ∂log

t ∈ DY/S
on g+/Sα

′
0,+/SEX0/S .

(2) For n ∈ Z, we have

Hi(g+/S(grWn (α′0,+/SEX0/S))) = 0

and

Hi(g+/S(Wn(α
′
0,+/SEX0/S))) = 0 for i 6= 0.

(3) For n ∈ Z, the image of g+/S(Wn(α
′
0,+/SEX0/S)) under

g+/Sα
′
0,+/SEX0/S

∼=
−−→ α0,+/SEX0/S

coincides with Wn(α0,+/SEX0/S).

(4) For a non-empty set I ⊂ Λ of cardinality 6 d+ 1, the following diagram is commutative in
the category of DY/T -modules, where rY and rY ′ are defined as in (2.5.1).

g+/Tα
′
0,I,+/T

EX0,I/T

g+/T (κI )

(4.3.4)
//

∼=

��

g+/T rY ′ (grW
|I|−1

(α′
0,+/S

EX0/S))
Corollary 2.6.10

∼=
// rY g+/S(grW

|I|−1
(α′

0,+/S
EX0/S))

∼=

��
α0,I,+/T EX0,I/T

κI

(4.3.4)
// rY (grW

|I|−1
(α0,+/SEX0/S)).

4.5 Cohomology and weight spectral sequence

Let α0 : X0→ Y be as in the beginning of § 4 and let h : Y → T be the structure morphism. Let B
be S or T and let G be a crystal of OX0/B-modules locally free of finite type on (X0/B)Ncrys.
Then we see that the object h+/Bα0,+/BG of D−(DT/B-Mod) is independent of the choice of
α0 as follows. Let α′0 : X0→ Y ′ be another morphism satisfying the same conditions as α0. Put
Z = Y ×T Y

′ and let β0 be the morphism X0→ Z induced by α0 and α′0, which also satisfies
the same conditions as α0. Let h′ (respectively h′′) denote the structure morphism Y ′→ T
(respectively Z→ T ). Then, by using (4.4.3) for two projections pY : Z→ Y and pY ′ : Z→ Y ′
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and Proposition 2.6.5, we obtain

cα′0,α0/B : h+/Bα0,+/BG ∼= h+/BpY+/Bβ0,+/BG ∼= h′′+/Bβ0,+/BG

∼= h′+/BpY ′+/Bβ0,+/BG ∼= h′+/Bα
′
0,+/BG .

Let α′′0 be a morphismX0→ Y ′′ satisfying the same conditions as α0. Put Z̃ = Y ×T Y
′ ×T Y

′′, let

β̃0 : X0→ Z̃ be the morphism induced by α0, α
′
0, and α′′0, let qY : Z̃→ Y be the projection to Y ,

and define qY ′ and qY ′′ similarly. Then, by using (4.4.3) for Z̃→ Y ×T Y
′ and Proposition 2.6.6,

we see that cα′0,α0/B is also given as the composite of

h+/Bα0,+/BG ∼= h+/BqY+/Bβ̃0,+/BG ∼= (h ◦ qY )+/Bβ̃0,+/BG

= (h′ ◦ qY ′)+/Bβ̃0,+/BG ∼= h′+/BqY ′+/Bβ̃0,+/BG ∼= h′+/Bα
′
0,+/BG .

Here we also used the compatibility of (4.4.3) with compositions of the g. We have similar
descriptions for cα′′0 ,α0/B, and cα′′0 ,α′0/B. Hence, we have cα′′0 ,α0/B = cα′′0 ,α′0/B ◦ cα′0,α0/B. Thus, we
see that h+/Bα0,+/BG is independent of the choice of α0 up to canonical isomorphisms.

Definition 4.5.1. Let X0 be as in the beginning of § 4 and assume that there exists α0 : X0→
Y . (For example, such an α0 exists when X̊0 is projective.) Let B be S or T , and let f0 denote the
morphism X0→ T . For a crystal G of OX0/B-modules locally free of finite type on (X0/B)Ncrys,
we define the object f0,+/BG of D−(DB/S-Mod) to be h+/Bα0,+/BG .

Lemma 4.5.2. Let G be a crystal of OX0/S-modules locally free of finite type on (X0/S)Ncrys.
Then we have a canonical isomorphism rT f0,+/SG ∼= f0,+/TG ′, where rT denotes the functor
D−(DT/S-Mod)→D−(OT -Mod) and G ′ denotes the inverse image of G on (X0/T )Ncrys.

Proof. It suffices to show that the following diagram is commutative.

rTh+/Sα0,+/S(G )
Corollary 2.6.10

∼=
//

cα′0,α0/S∼=
��

h+/T rY α0,+/S(G )
(4.3.3)

∼=
// h+/Tα0,+/T (G ′)

∼=
��
cα′0,α0/T∼=

��
rTh

′
+/Sα

′
0,+/S(G )

Corollary 2.6.10

∼=
// h′+/T rY ′α

′
0,+/S(G )

(4.3.3)

∼=
// h′+/Tα

′
0,+/T (G ′)

This follows from Lemma 2.6.11 and the commutative diagram (4.4.2), which holds for
general X0. ✷

If N = 1 (i.e. T = T0), then, by Proposition 2.6.5 and Corollary 2.6.2, we see that
h+/Bα0,+/BG is canonically isomorphic to Rf0,∗(GX0 ⊗OX0

Ω•X0/T0
)[d] as an object of

D−(k-Vect). If X̊0 is proper over S0, then we can prove that H i(f0,+/BG ) is a finitely generated
WN -module by reducing to the case N = 1 and using the above comparison with the de Rham
cohomology. With these observations, it is natural to ask the following question.

Question 4.5.3. Let X0, B, and f0 be as in Definition 4.5.1. Then, for a crystal G of OX0/B-
modules locally free of finite type on (X0/B)crys, is there a canonical isomorphism

H i(f0,+/BG )∼=H i+d((X0/T )crys, G )

of WN -modules?

When B = S, it is also natural to ask whether the endomorphism ∂log
t on the left-hand side

corresponds to the monodromy operator N on the right-hand side defined in the same way as
in [HK94, 3.5].
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Now let us consider a crystal E ofOX̊0/S
-modules locally free of finite type on (X̊0/S)Ncrys. We

assume that every irreducible component of X0 is smooth and define X0,λ (λ ∈ Λ), X0,I (I ⊂ Λ),
α0,I : X0,I → Y , EX0/S , and EX0,I/T in the same way as in § 4.3. Let f0,I denote the morphism
X0,I → T . Then, from the isomorphism (4.3.5), Proposition 4.4.4, and Corollary 2.6.10, we obtain
the following theorem.

Theorem 4.5.4. Let the notation and assumptions be as above. Then there exists a canonical
spectral sequence:

Ei,j1 =
⊕

b−2a=−i
06a6b6d

⊕

I⊂Λ
|I|=b+1

H i+j(f0,I,+/TEX0,I/T ) =⇒ Ei+j∞ =H i+j(f0,+/SEX0/S).

Furthermore, there exists a morphism of spectral sequences of degree (2,−2):

Ei,j1 =
⊕

b−2a=−i
06a6b6d

⊕
I⊂Λ
|I|=b+1

H i+j(f0,I,+/TEX0,I/T ) +3

��

Ei+j∞ =H i+j(f0,+/SEX0/S)

∂log
t

��
Ei+2,j−2

1 =
⊕

b−2a=−i−2
06a6b6d

⊕
I⊂Λ
|I|=b+1

H i+j(f0,I,+/TEX0,I/T ) +3 Ei+j∞ =H i+j(f0,+/SEX0/S)

The homomorphism Ei,j1 → Ei+2,j−2
1 of the E1 term is defined by 0 on the component of Ei,j1 for

a= b and the identity map from the component of Ei,j1 for (a, b, I) with a < b to that of Ei+2,j−2
1

for (a+ 1, b, I).

Proof. We will prove the existence of the morphism of spectral sequences. Let I be a subset
of Λ of cardinality 6d+ 1 and put b= |I| − 1. By the construction of κI in Lemma 3.4.9 and
Proposition 3.3.3(1), we see that the composite of

α0,I,+/TEX0,I/T
κI−−−−→

(4.3.4)
grWb (α0,+/SEX0/S)

(∂log
t )b+1

−−−−−−−−→ grW−b−2(α0,+/SEX0/S)

is 0. Hence, we have the following commutative diagram:
⊕

b−2a=n
06a6b6d

⊕
I⊂Λ
|I|=b+1

α0,I,+/TEX0,I/T
∼= //

��

grWn (α0,+/SEX0/S)

∂log
t

��⊕
b−2a=n−2
06a6b6d

⊕
I⊂Λ
|I|=b+1

α0,I,+/TEX0,I/T
∼= // grWn−2(α0,+/SEX0/S)

for −d+ 2 6 n6 d. Here the left vertical homomorphism is defined by 0 on the component of the
source for a= b and the identity map from the component of the source for (a, b, I) with a < b to
that of the target for (a+ 1, b, I). On the other hand, by the same argument as in the proof of
Proposition 3.5.3(1), we see that the endomorphism of h+/Sα0,+/SEX0/S induced by the action

of ∂log
t ∈ DY/S on α0,+/SEX0/S coincides with the action of ∂log

t ∈ DT/S on h+/Sα0,+/SEX0/S .
Hence, by taking h+/T of the above commutative diagram and using Corollary 2.6.10, we obtain
the desired morphism of spectral sequences. ✷
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Ber90 P. Berthelot, Cohomologie rigide et théorie des D-modules, in p-adic analysis (Trento, 1989),
Lecture Notes in Mathematics, vol. 1454 (Springer, Berlin, 1990), 80–124.

Ber96 P. Berthelot, D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. École
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