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Abstract

The “nearest neighbor” relation, or more generally the “k nearest neighbors” relation, defined
for a set of points in a metric space, has found many uses in computational geometry and clus-
tering analysis, yet surprisingly little is known about some of its basic properties. In this paper,
we consider some natural questions that are motivated by geometric embedding problems. We de-
rive bounds on the relationship between size and depth for the components of a nearest-neighbor
graph and prove some probabilistic properties of the k-nearest-neighbors graph for a random set
of points.

1 Introduction

Neighborhood-preserving mappings from a set of points in space to a regular data array are useful for
speeding up many computations in physical simulation. For example, complicated many-body inter-
actions between particles can often be approximated by the dominant forces exerted by near neighbors.
If the data for nearby particles is stored with close address indices in an array, one can take advantage
of fast vectorized operations in contiguous memory to perform such computations. The question is,
therefore, whether such neighborhood-preserving mappings from a point set to a regular array always
exist. In this paper, we attempt to answer this question by first studying the performance of a known
mapping scheme, called the monotone logical grid (MLG), and then establishing some combinatorial
properties of the nearest-neighbor graph that are relevant to geometric embedding.

The outline of the paper is as follows. In Section 2, we introduce some basic concepts and nota-
tion. In Section 3, we describe the MLG mapping and analyze its performance. We give in Section
4 some examples of point sets which are hard to embed in a grid. In Sections 5, 6, and 7 we prove a
polynomial upper bound on the size of a component of the NNG in terms of its diameter. We discuss
higher dimensional generalizations of our bounds in Section 8. In Section 9 we give some concluding
remarks and open problems.

A preliminary version of this paper was presented at ICALP’92 [14].
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2 Preliminaries

Let V = {v1, v2, . . . , vn} be a set of points in R`. The nearest neighbor of vi is a point v j , j 6= i ,
with minimum Euclidean distance from vi . To make the nearest neighbor unique we choose the point
v j with maximum index in case of ties, and denote it by nn(vi ). For any v, we define the directed
edge e(v) = 〈v, nn(v)〉. The nearest-neighbor graph of V , denoted by NNG(V), is the directed graph
〈V, E〉 where E = {e(v)|v ∈ V}. It is easy to verify that the graph NNG(V) has the following prop-
erties:

1. Along any directed path in NNG(V), the edges have non-increasing lengths.

2. The only cycles in NNG(V) are 2-cycles. For |V | ≥ 2, each weakly connected component C of
NNG(V) contains exactly one 2-cycle. This pair of vertices is called the bi-root of C.

3. For a point set V in two dimensions, NNG(V) is a planar graph. Furthermore, two edges incident
at a vertex v must meet at an angle of at least 60◦, hence the degree of a vertex is at most six.
For point sets in general position, this degree bound can be reduced to five.

4. NNG(V), when considered as an undirected graph with the biroot treated as a single edge, is a
subgraph of DT(V) (the Delaunay triangulation of V) and of MST(V) (the minimum spanning
tree of V).

The degree bound in (3) also holds for minimum spanning trees. Monma and Suri [13] showed
that, conversely, any tree with vertex degree at most five is the minimum spanning tree of some point
set; thus minimum spanning tree topologies of general position point sets are exactly characterized
by their degrees. (See [10] for complications arising from special position.) We show that a similar
degree-based characterization does not work for nearest neighbor graphs: if NNG(V) has a tree with
many vertices, it must contain a long path.

By (4), the nearest-neighbor graph in two dimensions can be constructed in asymptotically the
same time as DT(V), i.e., O(n log n) for n points (see [11]). For general dimension `, O(n log n) is
also possible, but with a constant depending exponentially on the dimension [6, 16].

We can generalize NNG(V) to k-NNG(V), the k-nearest-neighbors graph of V , by introducing
k edges from a vertex to its k nearest neighbors. In any constant dimension `, one can compute k-
NNG(V) in time O(kn log n) [16] or even O(kn+n log n) [4, 5, 9]. The k-nearest-neighbors graphs are
useful for certain clustering problems [12]. However at present they have not been studied extensively,
and few of their combinatorial properties are known.

3 Monotone Logical Grid

Boris [3] proposed a data structure, called the Monotone Logical Grid (MLG), as a way of storing
and indexing a set of points in R` for n-body simulation. (For an alternate approach to n-body sim-
ulation based on hierarchical clustering, see [4, 5].) The MLG maps a set S of n points in R` to an
`-dimensional array A of size n

1
` × · · · × n

1
` ; we assume for simplicity that n

1
` is an integer. When
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` = 1, the MLG is simply a sorted linear array. For ` ≥ 2, we first sort the points into n
1
` buck-

ets of equal size by the values of their x1-coordinates. Then the i th bucket is stored recursively as an
(`− 1)-dimensional MLG in the subarray of A corresponding to x1 = i .

It was observed in [3] that, on average, the MLG seems to preserve near-neighbor relations rather
well. In other words, points that are close in real space tend to have close addresses in the MLG ar-
ray. However, these claims were based on experimental data and no precise statements or proofs were
given. By analyzing the performance of MLG for a random point set, we can indeed make the follow-
ing statement in support of the empirical results.

Theorem 1. Let V be a set of m2 points chosen independently and uniformly within a square of size
m×m. Let k be a positive integer and ε a positive real number. For any v ∈ V, with probability at
least 1− ε, all k nearest neighbors of v lie within x-offset O(

√
k) and y-offset O(

√
m log k) from the

address of v in the MLG for V.

Proof: Let (a,b) be the coordinates of v with respect to the m×m square M in R2, and let (A, B) be
the address assigned to v in the MLG, where 1 ≤ A, B ≤ m.

We will choose z such that with high probability all k nearest neighbors of v lie within the region
Q defined by the intersection of M with the 2z× 2z square centered at (a,b). (See Figure 1.) Let Sj

be the set of points assigned to the j th column of the MLG. We choose also an integer w sufficiently
large that with high probability the set of points in Q is contained in the set

⋃
A−w≤ j≤A+w Sj , i.e., the

2w + 1 columns of the MLG centered about v.
Let Tj be the subset of Sj consisting of those points lower than Q, i.e., with y-coordinate in M less

than b− z. We will show that, with high probability, there are at least b− z−2(√m log k) points in
Tj and so any point in Q in the j th column of the MLG has y-address at least this large.

The following Chernoff-type result is used to justify each of our probability claims. (See, e.g., [1].)

Proposition 1. Let X be a sum of n independent random variables and let X0 be the expectation of
X. Then for any a > 0:

Pr[X < X0 − a] < e
−a2
2X0 , (1)

Pr[X > X0 + a] < e
−a2
2X0
+ a3

2X2
0 , (2)

Pr[X > X0 + a] < e
−2a2

n . (3)

Choose δ > 0. (The ε in the statement of the Theorem will be a small multiple of δ.) The part of
M within distance z of (a,b) has area at least 1

4πz2 and is contained in Q. By Proposition 1(1) the
probability that this part of M contains at least k points other than v is more than 1−δ for some choice
of z= 2(√k). Hence, with at least this probability, Q contains the k nearest neighbors of v.

The vertical strip of M defined by a ≤ x ≤ a+ z has area at most zmand so, with probability at
least 1−δ, contains at mostwm points where, by Proposition 1(2), we may choosew = z+2(√z) =
2(
√

k). If this strip contains at most wm points then these are contained in at most w+ 1 columns of
the MLG. The same argument holds for a similar strip to the left of v. Thus, with probability at least
1− 3δ, every k-neighbor of v has x-address differing by at most w = 2(√k) from A.
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Figure 1. Mapping the neighborhood of v to the MLG.

To prove the bound on the y-offsets of k-neighbors we make use of the fact that the y-coordinates
of the m points corresponding to any column of the MLG are uniformly and independently distributed
over the real interval [0,m].

We want to find some suitable d such that the probability is at least 1 − δ/(2w + 1) that |Tj | >
b− z− d. We may assume that b ≥ z since otherwise the result is trivial. The height of the part-strip
defining the set Tj is b−z. By simple estimation from Proposition 1(1), we can take d = 2(√m log k).

This result holds for all A− w ≤ j ≤ A+ w and so, with probability at least 1− δ, all points in
Q have y-address greater than b− z− d. A similar bound for the region above Q shows that with the
same probability all points in Q have y-address less than b+ z+d. To complete the estimation of the
maximal y-offset we need only show that |B− b| is probably small. Indeed, Proposition 1(1) and (3)
confirm that, with probability at least 1− δ, |B− b| < d′ for some d′ = 2(√m).

Combining all these probabilities, we find that, with probability at least 1 − 6δ, our choices of
q,w,d and d′ all have the desired properties and guarantee that the y-offsets of all k-neighbors of v are
at most 2(

√
m log k). 2

In spite of this good expected performance, it is not hard to construct examples where the pairs of
endpoints of almost all edges in NNG(V) are placed far apart in the MLG.
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Figure 2. Monotone Logical Grid with large dilation.

Example 1. (See Figure 2.) Let V consist of 2m subsets V1,V2, . . . ,V2m, where each subset has m/2
points, and let ε be chosen such that 1/(2m) > ε > 0. For i ≥ 1, the points of V2i are equally spaced
on the vertical segment (i − ε)× [i − 1

2 , i ], and the points of V2i+1 are equally spaced on the adjacent
vertical segment (i + ε)× [i − 1

2 , i ]. For V1, we place its points uniformly on the interval ε × [0, 1
2 ]).

Thus, for 1 ≤ i ≤ m − 1, the points of V2i and V2i+1 are matched pairwise as nearest neighbors.
However, under the MLG mapping, the points of V2i will have y-addresses m/2+ 1,m/2+ 2, . . . ,m,
while the points of V2i+1 will have y-addresses 1, 2, . . . ,m/2. Thus the y-offset in the MLG for nearest
neighbors is m/2 for all points except those in V1 and V2m.

One natural strategy for embedding NNG(V) into a grid is to embed the individual components of
NNG(V) separately. This could certainly work well if all components of NNG(V) were small. Some
experimental results [15] on pseudo-random sets of 10,000 and 25,000 points yield the distributions of
component size shown in Table 1. We may therefore expect that a random set will have very few large
components, though we have, at present, little exact knowledge regarding the distribution of compo-
nent size for a random NNG(V). We can however prove the following result on the expected number

Number of components of indicated size
|V | 2 3 4 5 6 7 8 9 10 11 Total number

10000 1159 873 563 250 145 60 21 9 1 1 308
25000 2887 2336 1360 688 310 126 57 11 3 1 7779

Table 1. Distributions of component size in NNG’s

of components in NNG(V) (cf [2], Lemma 1). Note that this result agrees closely with the experimen-
tal results shown in the Table. Our proof involves counting the number of repeated edges in NNG(V);
several similar problems of counting edges in geometric graphs have been studied by Devroye [8].
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Theorem 2. The expected number of components in NNG(V) for a uniform random point set V in
the unit square is asymptotic to approximately 0.31× |V |.
Proof: The expected number of components is half the expected number of elements which are in
a bi-root of some component. In the following lemma we calculate the latter quantity for a Poisson
distribution in the plane. If we consider the restriction of such a distribution to the unit square, the
expected number of elements in the square whose nearest neighbor is altered by the restriction is only
O(
√|V |). The Theorem therefore follows directly. 2

Lemma 1. For a Poisson distribution of points in the plane, the probability that a given point is in a
2-cycle of the NNG, i.e., is in the bi-root of its component, is

6π

8π + 3
√

3
≈ 0.6215.

Proof: For such a distribution, the probability that any given region with area A is empty is kA for
some fixed k. A point p is in a 2-cycle if and only if the nearest neighbor q of p has p as its nearest
neighbor, i.e., Cp ∪ Cq contains only the points p and q, where Cp and Cq are the circles with radius
r = ||p− q|| centered at p and q respectively. Let E(x) = kπx2

be the probability that a given circle
of radius x is empty. Since the random variable r is the maximum value such that the interior of Cp

is empty (except for p), the density distribution of r is − d
dr E(r ). The probability that q has p as its

nearest neighbor is the probability that Cq \ Cp is empty. By simple geometry, the area of this region
is cπr 2, where c = 1/3+√3/(2π), so the probability is kcπr 2 = E(r )c as a function of r . Hence the
required probability is

−
∫ ∞

r=0
E(r )c

d

dr
E(r )dr = −

∫ ∞
r=0

E(r )cd E(r ) = −1

1+ c

[
E(r )1+c]∞

r=0 =
1

1+ c
= 6π

8π + 3
√

3
.

2

This proof generalizes immediately to any fixed dimension d. The constant obtained depends only
on the corresponding ratio ck arising from the intersection of two unit balls. We have c1 = 1/2, c2 ≈
0.61, c3 = 0.6875, and c4 ≈ 0.75, and ck → 1 as k→∞.

4 Dilation of Embeddings for the NNG

The dilation of an embedding of a k-NNG in a graph G is the maximum over all edges 〈u, v〉 in the
k-NNG of the path length in G between the images of u and v. It is easy to see that any embedding
of a rapidly branching tree in a finite-dimensional array must have a large dilation. We begin by con-
structing a 2-NNG which contains such a tree.

Example 2. Consider Figure 3, where a recursively constructed tree layout is shown. Define the tree
T0 to be a single vertex. For r > 0, the tree Tr is constructed as follows. The root of Tr has two
children, w1 and w2, placed with y-offset −2r and x-offsets 2r and −2r respectively from the root.
Each wi is the root of a copy of Tr−1. It is clear from the diagram that the edges from any vertex v
of Tr go to the nearest q neighbors of v for some q ≤ 2. Thus Tr is a subgraph of the 2-NNG for the
underlying point set.
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Figure 3. Embedding of the tree Tr (r = 4) in a 2-NNG.

Theorem 3. For all n, there exists a planar set V of n vertices such that any embedding of 2-NNG(V)
in an `-dimensional array has dilation Ä(n1/`/ log n). In particular, for ` = 2 any embedding must
have dilation Ä̃(n1/2). 1

Proof: For the 2-NNG in Example 2, the maximum (undirected) path length in the graph between any
two vertices is O(log n). For any set of n elements of a `-dimensional array, Ä(n2) pairs of elements
are Manhattan-distance Ä(n1/`) apart; some edge on the path connecting any such distant pair then
gives the stated dilation. 2

For an NNG, we define the depth d(v) of a vertex v to be the path length in the NNG from v to a
vertex in a bi-root. The depth of an NNG is the maximum depth of any vertex of the graph.

In order to show that a 1-NNG may require considerable dilation, we construct an example with
depth O(D) and Ä(D5) vertices.

Example 3. The graph is constructed using D3 grids of D2 vertices. Each grid is approximately
square but the grids are of widely differing size. One such grid is shown within a dashed box in Fig-
ure 4. The construction proceeds in three further stages. In the first, we connect D of these grids to
form a chain, as illustrated in Figure 4. The geometric sizes of the grids increase exponentially from
left to right in this chain, with a ratio of D between successive grids. The edges within one grid are
all approximately the same size, and each grid is connected into the chain by a path of D downward
(270◦ to the x-axis) edges of about this same size. The next two edges to the left from the point of entry
of this path are also of about this same size.

After the first stage, if the exact layout is chosen with care, the result is an NNG of2(D3) vertices,
in the form of a chain of length 2(D) with 2(D) grids hanging from it. The depth is only 2(D) at
this point, but we now need the second stage.

The leftmost vertices of D chains as constructed in the first stage are connected using 90◦ edges to
form an upward chain, as shown in Figure 5. The scales of successive members of the upward chain

1The tilde accent indicates the suppression of a polylogarithmic factor.
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D 2 vertices

Figure 4. Chain of D D2-vertex grids with connections via 180◦ edges.

differ extremely widely, each is about DD times as large as its successor. This difference makes it
impossible to give complete and accurate pictures of the construction. Our figures attempt to illustrate
the ideas of the construction.

After this second stage, we have an NNG of2(D4) vertices, consisting of a path of 90◦ edges, from
which hang D subtrees, each of which is a chain of grids. The depth is still only 2(D).

Each chain of the second stage ends with an upward edge to a final vertex. In the third stage, the
final vertices of D of these chains are connected into a rightward chain using 0◦ edges, as shown in
Figure 6. Note that each smaller second-stage chain fits into a “socket” provided at the end of the next
larger chain. This completes the construction.

Lemma 2. There is a connected 1-NNG with depth D and Ä(D5) vertices.

Proof: The number of vertices in the above construction is clearlyÄ(D5). The depth within each grid
is O(D). Each chain of each of the three types has length O(D) and so the total depth is O(D). By
choosing constant factors in the construction appropriately we can make the depth exactly D.

To show that it is a 1-NNG one needs to verify that each vertex can be placed so that the edge
depicted for it is to the actual nearest neighbor of the vertex. Note that, whenever there is a very long
edge connecting to a smaller-scale structure, all the vertices in this structure are on the far side of a
perpendicular line to the edge through its opposite endpoint. 2

Theorem 4. For any n, there exists a planar set V of n vertices such that any embedding of NNG(V)
in an `-dimensional array has dilation Ä(n

1
`
− 1

5 ). In particular, for ` = 2 we obtain a dilation of
Ä(n3/10).

Proof: The proof is similar to the proof of the previous theorem. In the NNG we constructed, the max-
imum (undirected) path length in the graph between any two vertices is O(n1/5). The result follows
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D vertices3Θ(    )

Figure 5. Chain of D 2(D3)-vertex chains connected using 90◦ edges.

from comparing this length with theÄ(n1/`) distance achieved by almost all pairs of points in the array.
2

5 Size and Depth of the NNG

In the following three sections we show that the Ä(D5) size for an NNG of depth D proved above is
tight: any connected NNG of depth D has O(D5) vertices. Such a result, while interesting on its own,
could also be a first step towards an algorithm for embedding NNG’s in arrays with low dilation.

As the proof is long and complicated, we split it into three parts which build on each other. We
first outline a simplified version of the argument which suffices to prove an upper bound of O(D9). In
the next section we improve this bound to O(D6), and finally we prove the O(D5) bound.

It is convenient to define the depth d(e) of an edge e = e(v) to be d(v). The length of an edge
e= 〈u, v〉 is denoted ||e|| or ||u− v||. For any v ∈ V , define C(v) to be the open circle with center v
and radius ||e(v)||/2.

Lemma 3. For all vi , v j , C(vi ) ∩ C(v j ) = ∅.

Proof: If C(vi ) ∩ C(v j ) 6= ∅, then

||vi − v j || < ||e(vi )||/2+ ||e(v j )||/2 ≤ max{||e(vi )||, ||e(v j )||}.
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Θ(D  ) vertices4

Θ(D  ) vertices4

Figure 6. Chain of D 2(D4)-vertex chains connected using 0◦ edges.

This inequality contradicts the nearest-neighbor property. 2

Theorem 5. If G = 〈V, E〉 is a connected plane NNG with depth D then |V | = O(D9).

Proof: Let R = {z1, z2} be the bi-root of G. We will normalize distances by taking ||z1 − z2|| = 1.
Let O be the midpoint of the edge (z1, z2). For i ≥ 0, define Bi to be the open disk with radius 8i and
center O. For any vertex v, define b(v) to be the minimal i such that Bi contains all vertices (including
v) on the directed path from v to R, and let Si = {v|b(v) = i }. The proof continues with three lemmas.

Lemma 4. |Si | = O(D2).

Proof: Suppose v ∈ Si . Since v or some vertex on the path from v to R is at a distance at least 8i−1

from the origin, and each edge on this path is of length at most ||e(v)||, we have ||e(v)|| ≥ (8i−1 −
1/2)/d(v) ≥ (8i−1 − 1/2)/D. The disk C(v) is contained within a circle of radius 8i + ||e(v)||/2
centered at O, and ||e(v)|| ≤ min{||v − z1||, ||v − z2||} < 8i + 8−i−1. By Lemma 3 the disks C(v)
are disjoint for all v ∈ Si and so a comparison of areas yields the inequality

((8i−1 − 1/2)/2D)2 · |Si | ≤ (8i + (8i + 8−i−1)/2)2.

Hence, |Si | = O(D2). 2

Lemma 5. For all i > 0, there are at most six directed edges from
⋃

j>i Sj to
⋃

j<i Sj .
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Figure 7. At most six edges cross from
⋃

j>i Sj to
⋃

j<i Sj .

Proof: Any such edge comes from outside Bi to inside Bi−1 (Figure 7). Consider any pair of edges
〈v1, w1〉, 〈v2, w2〉 such that vertices v1, v2 are outside Bi , whilew1, w2 are within Bi−1, and 6 v1Ov2 =
ψ say. Without loss of generality we can assume that ||v1−O|| ≥ ||v2−O||. Suppose that ||v1−O|| =
θ t and ||v2 − O|| = t where θ ≥ 1.

As w1 is a nearest neighbor of v1, we have

1 ≤ ||v1 − v2||
||v1 − w1|| <

t
√

1+ θ2 − 2θ cosψ

θ t − 8i−1
≤
√

1+ θ2 − 2θ cosψ

θ − 1/8
,

since t ≥ 8i . Therefore

0 > θ − 1/8−
√

1+ θ2 − 2θ cosψ ≥ 7/8−
√

2(1− cosψ),

since the middle expression is monotonically increasing in θ. Hence cosψ < 79/128 and so ψ >

2π/7. The lemma follows since, if there were seven or more edges from
⋃

j>i Sj to
⋃

j<i Sj , then
there would be two outer vertices v1, v2 subtending an angle of 2π/7 or less at the origin. 2

The extension operation on a set E of edges consists of deleting one edge e ∈ E and replacing
it by the set of predecessor edges of e. We associate with any set E of edges the characteristic of E,
denoted χ(E), which is the 7-tuple 〈d1, . . . ,d7〉 where di is the depth of the edge with the i th smallest
depth among edges of E. If E has fewer than seven edges then some of the last components of χ(E)
take the value∞. A simple property of extensions is stated in the following lemma.

Lemma 6. If the set E′ is the result of applying one or more extension operations to E then χ(E′) º
χ(E), where ‘º’ denotes lexicographic order. 2

Define Ei = {〈v, v′〉|b(v) ≥ i,b(v′) < i }. Since Ei+1 can be obtained by applying a sequence of
extension operations to Ei , we have χ(Ei+1) º χ(Ei ).

If χ(Ei+1) = χ(Ei ) then every edge represented in χ(Ei+1)must also have been a member of Ei .
By Lemma 5 there can be at most six edges in Ei ∩ Ei+1, and so in this case the characteristic of Ei+1
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has at most six finite components. Hence each edge of Ei+1 is represented in χ(Ei+1). The equality
of the characteristics therefore implies that Ei = Ei+1. Hence there can be no edge from Si to Sj for
any j < i , and so Si = ∅ in this case.

Thus at each step in the sequence χ(E1), χ(E2), . . ., either the characteristic increases in the lex-
icographic order, or else remains the same in which case Si is empty. Since the characteristic can take
at most O(D7) values, by Lemma 4 the total number of vertices in G is O(D7 · D2), and the Theorem
is proved. 2

6 Improved NNG Depth Bounds

Our proof that there are at most O(D6) points in a nearest neighbor graph with depth D follows the
same general outline as the simpler proof of the O(D9) bound above. In the previous section, we de-
fined disks Bi as having radius 8i . Here we let the radius of Bi be K i for some larger parameter K to
be determined later. We define b(v) and Si as before, and Lemma 4 holds as before. Let Ai refer to the
annulus Bi \ Bi−1. We tighten Lemmas 5 and 6 to show that in fact only O(D4) of the sets Si can be
non-empty. Note that Si can be non-empty only if annulus Ai contains at least one point v for which
nn(v) is in Bi−1.

By the angle between two line segments we refer to one of the two angles formed at the crossing of
the lines containing the segments. We will use this term only when each segment has its two endpoints
in two different annuli Ai , so that the ‘outer’ and ‘inner’ endpoints of the segments are unambiguously
defined. Of the two possible angles, we choose the one between the rays that contain the two outer
endpoints. If the two lines containing the segments are parallel we say that the segments have angle
either 0◦ or 180◦ as appropriate.

The following lemma tightens Lemma 5, which proved a 2π/7 bound on the angle between seg-
ments crossing the annuli.

Lemma 7. Let edges e and f of NNG(V) pass entirely across a given annulus Ai (so that one end-
point is outside Bi and the other is inside Bi−1). Then angle e f must be at least 60◦ − O(1/K ).

Proof: Define the two parallel infinite wedges W1 and W2, with an opening angle of 120◦, so that the
outer endpoint of e is on the centerline of the two wedges, and the sides of W1 are tangent to Bi−1 while
W2 is separated from Bi−1 by far enough so that the apex of W2 is nearer than Bi−1 to any point within
W2 (Figure 8).

Note that for both e and f , the outer endpoint must have the inner endpoint as nearest neighbor
(rather than vice versa) since by assumption there are at least two points in ball B1 ⊂ Bi−1 and any
pair of points in Bi−1 is closer to each other than to all points outside Bi for sufficiently large K .

If the outer endpoint of f is outside wedge W1, then (since the inner endpoint is inside the wedge) e
must form an angle of at least 60◦ with f . If the outer endpoint of f is inside wedge W2, then the outer
endpoints of e and f would be nearer to each other than the distance from the further of the two to the
apex of W2, and hence the edge between those endpoints would have been chosen as part of NNG(V),
contradicting the assumption that e and f are in NNG(V).

12
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Figure 8. If e and f both cross Ai , then the smallest angle between them is formed when f is in a strip between
two 120◦ wedges.

The remaining possibility is that f is in W1 \W2. This region takes the form of two semi-infinite
strips, with width proportional to the radius of Bi−1. Since f has lengthÄ(K ) times that width, it must
form an angle with e that is within O(1/K ) of 60◦. 2

Lemma 8. Let e and f pass entirely across a given annulus Ai , and let the outer endpoints of e and
f be in two non-adjacent annuli Aj and Ak, k > j + 1. Then angle e f is at least 90◦ − O(1/K ).

Proof: Let the outer endpoint of f be farther from O than the outer endpoint of e, and suppose the
radius of Bi−1 is r . Then || f || = r ′ = Ä(K 3r ) and the circle of radius r ′ centered on the outer
endpoint of f meets Bi−1 but excludes the outer endpoint of e. Now the inner endpoint of e is in Bi−1,
and ||e|| = Ä(Kr ) but ||e|| = O(r ′/K ). Hence the angle between e and f is at least 90◦ − O(1/K ).
2

If we choose K large enough, the angles in the previous two lemmas will “look like” 60◦ and 90◦,
in that the following inequalities hold:

• 7(60◦ − O(1/K )) > 360◦, so that no annulus can be crossed by seven edges.

• 5(60◦ − O(1/K ))+ (90◦ − O(1/K )) > 360◦, so that if six edges cross an annulus, all angles
are smaller than 90◦ −Ä(1/K ).

• 3(90◦ − O(1/K ))+ 2(60◦ − O(1/K )) > 360◦, so that if there are five crossing edges, all but
perhaps two angles are smaller than 90◦ −Ä(1/K ).
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Theorem 6. If G = 〈V, E〉 is a connected plane NNG with depth D then |V | = O(D6).

Proof: We consider two types of edge for each annulus A: those that cross the inner but not the outer
boundary of A, and those that cross both boundaries. Two edges of the second type are related in A if
they have an angle less than 90◦ − Ä(1/K ) or if there is a sequence of related edges from one to the
other. There can be at most three equivalence classes of related edges, except for the single case that
four edges cross the annulus at approximate right angles.

As in the proof of our weaker bound, we label each annulus A by a characteristic χ(A). Here we
modify χ(A) to consist of the 4-tuple of the four smallest depths of edges crossing the inner bound-
ary of A, only allowing a single depth from each equivalence class of related edges. If there are not
enough depths to fill out the tuple, we fill the remaining positions with the value∞. Unlike the char-
acteristics used in Lemma 6, these need not increase in lexicographic order. However we show that
we can find a subsequence of the characteristic sequence, covering a constant fraction of the annuli Ai

for which Si 6= ∅, in which the characteristics do increase. Only O(D4) characteristics are possible in
this subsequence, and therefore the entire sequence consists of O(D4) annuli.

Suppose we have constructed some such sequence out to some annulus Ai . Let X be the set of
edges that cross both boundaries of Ai . We choose the next annulus to be the smallest annulus Aj ,
j > i , for which Sj 6= ∅, Aj does not contain an edge in X, and Aj is not crossed by four unrelated
edges.

We now show that this selection process discards at most some constant number of the Aj for which
Sj 6= ∅. Suppose we discard an annulus crossed by four unrelated edges, which must by Lemma 8 be
at approximate right angles. No point can be within four circles having those edges as radii, which
together cover all of the annulus except for a small region near the center. By an argument similar
to that of Lemma 7, any edge crossing the outer annulus boundary would have angles greater than
60◦ − O(1/K ) with all four crossing edges. But no such angles, and hence no such edges, can exist.
Thus the next larger annulus for which Sj 6= ∅ contains the endpoint of one of the four crossing edges.
Such an annulus cannot itself be crossed by four unrelated edges, and so is not of this special form.
So, as we search from Ai for the next annulus Aj , at least every alternate annulus we encounter is not
of this form.

The remaining annuli discarded in the search from Ai for the next annulus Aj in the sequence each
contain an endpoint of an edge in X, so there can be at most six such annuli. Thus after we try O(1)
annuli we will have run out of edges in X, and one of the next two annuli we encounter will be chosen
as next in the sequence.

Finally, we show that the characteristic of the chosen Aj is larger than that of Ai . Let E(Ai ) denote
the set of edges corresponding to the characteristic χ(Ai ). Let X′ ⊆ X be the set of edges that cross
the inner boundaries of both Ai and Aj . As the next step in our proof, we show that there is some edge
e in E(Aj ) \ X′. Since Aj contains no endpoint of an edge in X, each edge in X′ crosses also the outer
boundary of Aj . All its relatives in X are also in X′, and are related in X′. But |X′ ∩ E(Aj )| ≤ 3
since we excluded from the sequence annuli with four unrelated crossing edges. If E(Aj ) contains
four unrelated edges, there is at least one such edge e not in X′. If E(Aj ) contains fewer than four
unrelated edges, every edge crossing the inner boundary of Aj must be in E(Aj ), and in particular
(since by assumption Sj is nonempty) there must be an edge e= e(v), for v in Sj , which cannot be in
X′ since every edge in X′ crosses the outer boundary of Aj .

14



In any case we have shown that some edge in E(Aj ) is not also in X′. Let e be such an edge with
the smallest depth. As we follow the path from e to the bi-root, we will eventually encounter an edge
e′ crossing the inner boundary of Ai . The depth of e′ is strictly smaller than that of e. We form a
characteristic χ ′ from an edge set E′ constructed by adding e′ to the set X′∩E(Aj ). We fill all remaining
positions in the 4-tuple by∞. Then since e′ has lower depth than all edges in E(Aj ) \ X′, it follows
that χ ′ < χ(Aj ) in the lexicographic order. On the other hand, all edges in E′ \ {e′} are unrelated in
Ai , and no relative of e′ can be in X′ or hence in E′. Thus χ ′ is a potential label for Ai and the true
label χ(Ai ) is no higher in lexicographic order.

We have shown that χ(Ai ) < χ(Aj ). The subsequence we construct, and thus the entire sequence
of annuli Ai for which Si 6= ∅, has at most O(D4) members. Each set Si contains O(D2) points by
Lemma 4, and the theorem is proved. 2

7 Tight NNG Depth Bounds

We now add further complications to the argument above, to remove a final factor of D and arrive at
an O(D5) bound on the size of a depth-D NNG, matching the lower bound of Theorem 4.

Recall that we defined a sequence of O(D4) annuli Ai , each of which could contain O(D2) points.
Both of these bounds are tight individually. However we can improve our bounds by proving that it is
not possible for all annuli to contain many points.

We define a new characteristic ξ(A) of an annulus A to be the 3-tuple of the three smallest depths
of edges crossing the inner boundary of A, as in the definition of χ(Ai ) allowing a single depth from
each equivalence class of related edges. We define a sequence of special annuli as follows.

Suppose we have constructed such a sequence out to some annulus Ai . Let X be the set of edges
chosen for ξ(Ai ). Let Aj be the next annulus for which some edge in X and all relatives of this edge
do not cross Aj . We choose Aj as the next special annulus.

Lemma 9. There are O(D3) special annuli.

Proof: There are O(D3) possible values for ξ(A). As we progress from smaller to larger annuli in the
special sequence, ξ(A) can only decrease or remain constant in two circumstances: (1) It can decrease
if some edge e, one of the three edges of ξ(A), with depth x less than that of some other edge in ξ(A),
has a relative that terminates, producing new unrelated edges of depth x + 1. But then, by Lemma 8,
edge e itself will terminate within O(1) annuli, leading either to an overall increase in ξ(A) or to case
(2) below. (2) It can remain constant if some edge, one of the three edges of ξ(A), with depth at least
that of the other edges in ξ(A), terminates, but some unrelated edge has the same depth. Then χ(A)
must be of the form (a,b, c, c) but because of the monotonic sequence shown to exist in Theorem 6,
this can only happen O(1) times for each such value. 2

Lemma 10. For any annulus A, there are O(D) annuli Ai with Si 6= ∅ separating A from a special
annulus.

Proof: This follows from the fact that we can go through at most O(D) different values of χ(A) before
ξ(A) also changes. 2
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We say that i is a special index if Ai is a special annulus. By Lemma 9 there are O(D3) special
indices.

We make one further distinction among our annuli: we say that an annulus A is bad if some two
of the three edges defining ξ(A) terminate within D levels of each other, and that A is good if it is not
bad. A slight extension of Lemma 8 shows that the three edges defining ξ(A) for a good annulus form
angles that are at least 90◦ − cD for some c < 1.

Lemma 11. There are O(D3) bad annuli.

Proof: Let A be a bad annulus. By Lemma 10, A is within O(D) annuli of the next larger special
annulus.

Assume first that the two edges in ξ(A) with endpoints at similar levels include the shortest of the
three edges in ξ(A). Then within O(D) annuli from the next special annulus larger than A, two of the
three edges of ξ(A) change. By a similar argument to that of Lemma 9, this can happen O(D2) times.

In the remaining case, the two edges with endpoints at similar levels are the longest two edges in
ξ(A). After O(D) special annuli (and hence O(D2) total levels), these edges will both terminate, and
hence all three edges in ξ(A) will have terminated. But this can only happen O(D) times. 2

Lemma 12. Let Ai be a good annulus, and let the closest special index to i be j . Then there is a
constant c < 1 such that Ai contains O(D + c|i− j |D2) points.

Proof: Let k = |i − j |. Then there must be three edges of NNG(V) with inner vertices within an
annulus at least k levels smaller than Ai , and outer vertices within an annulus at least k levels larger
than Ai .

Since these edges are in NNG(V), the circles with these edges as radii cannot contain any points.
However these circles cover all but an exponentially small fraction of Ai . Since their outer vertices
are far from Ai , the circle boundaries are close to straight lines perpendicular to the edges through
their centers: they differ from those straight lines in the area they cut from Ai by an exponentially
small amount (ck

1 for some c1 < 1). As noted above, the angles between these three lines are at least
90◦ − cD

2 for some c2 < 1. The inner vertices of these edges are (relative to the size of Ai ) within
distance ck

3 of each other for some c3 < 1.
Therefore the uncovered area of Ai is ck

1 plus a trapezoid-shaped region with base at most ck
3 and

angle at most 2cD
2 . We simplify this remaining region of Ai in which points may be contained, to a

rectangle with side lengths (measured relative to the radius of Ai ) O(1) and O(cmin(k,D)) for c chosen
as some appropriate function of c1, c2, and c3.

As in Lemma 4, we can find a collection of disjoint circles, centered on each point in Ai , with radius
O(1/D) relative to the radius of Ai . If ck > 1/D, each circle covers 1/D2 units of the rectangle’s area,
and there are O(ck D2) circles. If ck ≤ 1/D, each circle covers a 1/D fraction of the rectangle’s area,
and there are O(D) circles. 2

Theorem 7. If G = 〈V, E〉 is a connected plane NNG with depth D then |V | = O(D5).

Proof: By Lemma 11 the number of points in bad annuli is O(D5). As in Theorem 6 there are O(D4)

annuli, so the O(D) terms of Lemma 12 add to O(D5). The O(ck D2) terms can be charged to the
nearest special annulus; they add in a geometric series to O(D2) per special annulus for O(D5) total.
2
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8 NNG in Higher Dimensions

We can generalize Theorems 4 and 6 to prove that in any fixed dimension `, the size of a connected
NNG is bounded above and below by a polynomial in its depth D.

We first consider generalizations of the lower bound construction of Theorem 4. Recall that we
connected a sequence of points, each containing a square grid ofÄ(D2) points, using edges in three of
the four directions parallel to coordinate axes. The fourth direction was reserved for edges connecting
each level to its grid in such a way that the grid did not interfere with the other edges.

Theorem 8. In any constant dimension `, and for any D, there is a connected NNG with depth D and
Ä(D2`+1) vertices.

Proof: We again form a sequence of levels, each containing a grid of Ä(D`) points in the positive
orthant. The levels are connected by edges in ` + 1 directions parallel to coordinate axes, namely
the directions of the negative orthant together with a single positive-orthant direction. The placement
of the grid to avoid interfering with other edges and the details of the connections between levels are
essentially the same as those in Figures 4, 5, and 6. 2

We next consider upper bounds on the size of a depth-D NNG. The bound of Theorem 5 general-
izes to O(D`+τ(`)+1) where τ(`) is the number of disjoint unit hyperspheres which can touch a given
unit hypersphere, i.e., the so-called kissing number in dimension `. Conway and Sloane [7] give a fas-
cinating history of the kissing number question. Currently, the exact value of τ(`) is known only for
dimensions ` = 1, 2, 3, 8, 24. For general `, there are exponential upper bounds and lower bounds
α` ≤ τ(`) ≤ β` where α ≈ 20.207 and β ≈ 20.401.

For the purpose of proving upper bounds on NNG component size, it is more convenient to use
the following equivalent definition of the kissing number: τ(`) is the number of points that can be
placed on the surface of sphere in ` dimensions so that the angular separation between any two points
is at least 60◦. The corresponding quantity for angular separation at least 90◦ is simply 2`, and we can
use this quantity in place of τ(`) to generalize Theorem 6 and prove a bound of O(D3`) on the size
of a connected NNG, giving a bound only singly exponential in ` in place of the doubly exponential
generalization of Theorem 5. The example of Theorem 8 shows that we are at least within a constant
factor of the right exponent.

Theorem 9. In any constant dimension `, if G = 〈V, E〉 is a connected NNG with depth D then
|V | = O(D3`).

Proof: The discussions in Sections 5 and 6 generalize from dimension two to higher dimensions with-
out any difficulty, once we change “circles” to “hyperspheres”, “disks” to “balls”, and the “character-
istic” of an edge set from a 4-tuple to a 2`-tuple. Lemma 8 can be used to show that at most 2` subsets
of crossing edges can be separated by angles of 90◦ − ε, and that this number is further reduced to
2l − 1 except in the single case of 2` approximately orthogonal edges. The constant K used in Sec-
tion 6 for the definition of Bi must be enlarged so that the O(1/K ) term in Lemma 8 is small enough
for the definition of “approximately orthogonal” above. Lemma 4 generalizes to a bound of O(D`)

points per higher-dimensional annulus. The proofs of the lemmas go through with little modification.
2
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9 Conclusion and Open Problems

We have explored some of the combinatorial properties of k-NNG’s. Whereas for k ≥ 2, a k-NNG can
have components of size exponential in the depth, for k = 1 the size is limited by a polynomial. We
have also constructed NNG’s which require dilation nÄ(1) for embeddings into an array of any finite
dimension.

For uniform random distributions of points in the plane, Theorem 2 gives the expected number
of connected components of the NNG. It would be of interest to estimate some further properties of
the NNG, such as the distribution of component sizes and the expected size of the largest component.
Similar questions arise for the k-NNG and, in particular, we would like to know the minimum value
of k (as a function of n) for which the k-NNG can be expected to have a ‘giant’ component. An un-
derstanding of the probabilistic properties of the k-NNG might be exploited in designing embeddings
with improved computational characteristics.

Our knowledge of the combinatorial properties of NNG’s is still very limited. We know of no
graph-theoretic characterization of NNG’s and suspect that deciding, for a given graph, whether or not
it is the NNG for some set of points may be a hard problem. So far we know even less about k-NNG’s
for k > 1.

In Theorem 4 we proved a bound of Ä(n
1
`
− 1

5 ) on the dilation of a 1-NNG embedded in an `-
dimensional array. When ` ≥ 5 this bound becomes trivial, and in fact the example used to prove
this bound can be embedded in a 5-dimensional array with constant dilation. It remains open whether
such good embeddings are possible in general, or more generally whether Theorem 4 is tight even for
` = 2. Perhaps the techniques used in our upper bounds can be used to provide good array embeddings
of 1-NNG’s.

The gap between the lower bound of Ä(D2`+1) in Theorem 8 and the upper bound of O(D3`) in
Theorem 9 is relatively small but still remains open. It seems likely that some of the ideas from the
tight bound of Theorem 7 could be extended to the higher dimensional case.

An understanding of the relationship between the dimension of a space and the combinatorial or
statistical properties of the k-NNG’s would be of use in classification theory. For example, if a set of
points were representable as a fairly well-behaved distribution over a manifold of unknown dimension,
could we estimate the dimension of the manifold from statistical properties of the k-NNG?
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