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Abstract

The “nearest neighbor” relation, or more generally the “k nearest neighbors’ relation, defined
for a set of points in a metric space, has found many uses in computational geometry and clus-
tering analysis, yet surprisingly little is known about some of its basic properties. In this paper,
we consider some natural questions that are motivated by geometric embedding problems. We de-
rive bounds on the relationship between size and depth for the components of a nearest-neighbor
graph and prove some probabilistic properties of the k-nearest-neighbors graph for a random set
of points.

1 Introduction

Neighborhood-preserving mappings from a set of pointsin space to aregular data array are useful for
speeding up many computations in physical simulation. For example, complicated many-body inter-
actions between particles can often be approximated by the dominant forces exerted by near neighbors.
If the data for nearby particlesis stored with close address indices in an array, one can take advantage
of fast vectorized operations in contiguous memory to perform such computations. The question is,
therefore, whether such neighborhood-preserving mappings from a point set to aregular array always
exist. Inthis paper, we attempt to answer this question by first studying the performance of a known
mapping scheme, called the monotone logical grid (MLG), and then establishing some combinatorial
properties of the nearest-neighbor graph that are relevant to geometric embedding.

The outline of the paper is as follows. In Section 2, we introduce some basic concepts and nota-
tion. In Section 3, we describe the MLG mapping and analyze its performance. We give in Section
4 some examples of point sets which are hard to embed in agrid. In Sections 5, 6, and 7 we prove a
polynomial upper bound on the size of a component of the NNG in terms of its diameter. We discuss
higher dimensional generalizations of our boundsin Section 8. In Section 9 we give some concluding
remarks and open problems.

A preliminary version of this paper was presented at ICALP 92 [14].
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2 Prdiminaries

Let V = {vy, v, ..., vy} beaset of pointsin R’. The nearest neighbor of v; is a point vj, | # 1,
with minimum Euclidean distance from v;. To make the nearest neighbor unique we choose the point
vj with maximum index in case of ties, and denote it by nn(v;). For any v, we define the directed
edgee(v) = (v, Nnn(v)). The nearest-neighbor graph of V, denoted by NNG(V), isthe directed graph
(V, E) where E = {e(v)|v € V}. Itiseasy to verify that the graph NNG(V) has the following prop-
erties:

1. Along any directed path in NNG(V), the edges have non-increasing lengths.

2. Theonly cyclesinNNG(V) are 2-cycles. For |V | > 2, each weakly connected component C of
NNG(V) contains exactly one 2-cycle. This pair of verticesis called the bi-root of C.

3. Forapoint set V intwo dimensions, NNG(V) isaplanar graph. Furthermore, two edgesincident
at avertex v must meet at an angle of at least 60°, hence the degree of a vertex is at most six.
For point setsin general position, this degree bound can be reduced to five.

4. NNG(V), when considered as an undirected graph with the biroot treated as a single edge, isa
subgraph of DT(V) (the Delaunay triangulation of V) and of MST (V) (the minimum spanning
tree of V).

The degree bound in (3) aso holds for minimum spanning trees. Monma and Suri [13] showed
that, conversely, any tree with vertex degree at most five is the minimum spanning tree of some point
set; thus minimum spanning tree topologies of general position point sets are exactly characterized
by their degrees. (See [10] for complications arising from special position.) We show that a similar
degree-based characterization does not work for nearest neighbor graphs: if NNG(V) has atree with
many vertices, it must contain along path.

By (4), the nearest-neighbor graph in two dimensions can be constructed in asymptotically the
sametimeasDT(V), i.e, O(nlogn) for n points (see [11]). For general dimension ¢, O(nlogn) is
also possible, but with a constant depending exponentially on the dimension [6, 16].

We can generalize NNG(V) to k-NNG(V), the k-nearest-neighbors graph of V, by introducing
k edges from a vertex to its k nearest neighbors. In any constant dimension ¢, one can compute k-
NNG(V) intime O(knlogn) [16] or even O(kn+nlogn) [4, 5, 9]. Thek-nearest-neighborsgraphsare
useful for certain clustering problems[12]. However at present they have not been studied extensively,
and few of their combinatorial properties are known.

3 MonotoneLogical Grid

Boris [3] proposed a data structure, called the Monotone Logical Grid (MLG), as a way of storing
and indexing a set of pointsin R’ for n-body simulation. (For an alternate approach to n-body sim-
ulation based on hierarchical clustering, see [4 5].) The MLG maps a set Sof n pointsin R¢ to an
¢-dimensiona array A of size Nt x - x n« we assume for simplicity that nt isan integer. When



¢ = 1, the MLG is simply a sorted linear array. For ¢ > 2, we first sort the points into n? buck-
ets of equal size by the values of their x;-coordinates. Then the i ! bucket is stored recursively as an
(¢ — 1)-dimensional MLG in the subarray of A correspondingto x; = .

It was observed in [3] that, on average, the ML G seems to preserve near-neighbor relations rather
well. In other words, points that are close in real space tend to have close addresses in the MLG ar-
ray. However, these claims were based on experimental data and no precise statements or proofs were
given. By analyzing the performance of ML G for arandom point set, we can indeed make the follow-
ing statement in support of the empirical results.

Theorem 1. Let V bea set of m? points chosen independently and uniformly within a square of size
m x m. Let k be a positive integer and e a positive real number. For any v € V, with probability at
least 1 — ¢, all k nearest neighbors of v lie within x-offset O(+/k) and y-offset O(,/mTogk) fromthe
address of v inthe MLG for V.

Proof: Let (a, b) bethe coordinates of v with respect to them x m square M in R?, and let (A, B) be
the address assigned to v inthe MLG, wherel < A, B <m.

We will choose z such that with high probability all k nearest neighbors of v lie within the region
Q defined by the intersection of M with the 2z x 2z square centered at (a, b). (See Figure 1.) Let S
be the set of points assigned to the j™ column of the ML G. We choose also an integer w sufficiently
large that with high probability the set of pointsin Q is contained in the set UA_ijSAer Sj,i.e, the
2w + 1 columns of the ML G centered about v.

Let T; bethesubset of Sj consisting of those points lower than Q, i.e., with y-coordinatein M less
than b — z. We will show that, with high probability, there are at least b — z — ® (,/mIlogk) pointsin
T; and so any pointin Q in the j™ column of the ML G has y-address at least this large.

Thefollowing Chernoff-typeresult isused to justify each of our probability claims. (See, e.g., [1].)

Proposition 1. Let X be a sum of n independent random variables and let X be the expectation of

X. Then for any a > O:
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Choose § > 0. (The € in the statement of the Theorem will be a small multiple of §.) The part of
M within distance z of (a, b) has area at least %1”22 and is contained in Q. By Proposition 1(1) the
probability that this part of M containsat least k points other than v is more than 1 — é for some choice
of z= O (k). Hence, with at least this probability, Q contains the k nearest neighbors of v.

The vertical strip of M defined by a < X < a + zhasareaat most zmand so, with probability at
least 1 — §, contains at most wm points where, by Proposition 1(2), wemay choose w = z+ 0 (4/2) =
O (v/K). If this strip contains at most wm points then these are contained in at most w + 1 columns of
the MLG. The same argument holds for asimilar strip to the left of v. Thus, with probability at least
1 — 35, every k-neighbor of v has x-address differing by at most w = ® (vk) from A.
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Figure 1. Mapping the neighborhood of v to the MLG.

To prove the bound on the y-offsets of k-neighbors we make use of the fact that the y-coordinates
of the m points corresponding to any column of the ML G are uniformly and independently distributed
over thereal interval [0, m].

We want to find some suitable d such that the probability isat least 1 — /(2w + 1) that |T;| >
b —z— d. Wemay assumethat b > z since otherwise theresult istrivial. The height of the part-strip
defining the set Tj isb—z. By simple estimation from Proposition 1(1), wecantaked = © (y/mTlogk).

Thisresult holdsforal A— w < j < A+ w and so, with probability at least 1 — §, al pointsin
Q have y-address greater thanb — z — d. A similar bound for the region above Q showsthat with the
same probability all pointsin Q have y-addresslessthan b + z+ d. To complete the estimation of the
maximal y-offset we need only show that |B — b is probably small. Indeed, Proposition 1(1) and (3)
confirm that, with probability at least 1 — 8, |B — b| < d’ for somed’ = ©(,/m).

Combining all these probabilities, we find that, with probability at least 1 — 68, our choices of
g,w,d and d’ al have the desired properties and guarantee that the y-offsets of all k-neighbors of v are
at most ©(y/mlogk). O

In spite of this good expected performance, it is not hard to construct examples where the pairs of
endpoints of almost all edgesin NNG(V) are placed far apart in the MLG.



Figure 2. Monotone Logical Grid with large dilation.

Example1l. (SeeFigure?2.) LetV consist of 2msubsets Vi, Vs, .. ., Vo, where each subset hasm/2
points, and let € be chosen suchthat 1/(2m) > ¢ > 0. For i > 1, the points of V5 are equally spaced
onthevertical segment (i —e) x [i — % i], and the points of V5 ;1 are equally spaced on the adjacent
vertical segment (i +¢) x [i — % i]. For V1, we placeits points uniformly on theinterval € x [0, %]).
Thus, for 1 < i < m — 1, the points of V5 and V5,1 are matched pairwise as nearest neighbors.
However, under the MLG mapping, the points of Vy; will have y-addressesm/2+1, m/2+2,..., m,
whilethe pointsof V5,1 will have y-addresses 1, 2, ..., m/2. Thusthe y-offset inthe MLG for nearest
neighborsis m/2 for all points except thosein V; and Vaon,.

One natural strategy for embedding NNG(V) into agrid isto embed the individual components of
NNG(V) separately. This could certainly work well if al components of NNG(V) were small. Some
experimental results[15] on pseudo-random sets of 10,000 and 25,000 pointsyield the distributions of
component size shown in Table 1. We may therefore expect that arandom set will have very few large
components, though we have, at present, little exact knowledge regarding the distribution of compo-
nent size for arandom NNG(V). We can however prove the following result on the expected number

Number of components of indicated size
V| 2 3 4 5 6 7 8 9 10 11 | Total number
10000 | 1159 873 563 250 145 60 21 9 1 1 308
25000 | 2887 2336 1360 688 310 126 57 11 3 1 7779

Table 1. Distributions of component sizein NNG’s

of componentsin NNG(V) (cf [2], Lemma1). Notethat thisresult agrees closely with the experimen-
tal results shown in the Table. Our proof involves counting the number of repeated edgesin NNG(V);
several similar problems of counting edges in geometric graphs have been studied by Devroye [8].



Theorem 2. The expected number of components in NNG(V) for a uniform random point set V in
the unit square is asymptotic to approximately 0.31 x |V/].

Proof: The expected number of components is half the expected number of elements which are in
a bi-root of some component. In the following lemma we calculate the latter quantity for a Poisson
distribution in the plane. If we consider the restriction of such a distribution to the unit square, the
expected number of elementsin the square whose nearest neighbor is altered by the restriction isonly
O(/|V]). The Theorem therefore follows directly. O

Lemmal. For aPoisson distribution of pointsin the plane, the probability that a given pointisina
2-cycle of the NNG, i.e., isin the bi-root of its component, is

6
87 + 33

Proof: For such a distribution, the probability that any given region with area A is empty is k” for
some fixed k. A point pisina2-cycleif and only if the nearest neighbor q of p has p asits nearest
neighbor, i.e., C, U Cq contains only the points p and g, where C, and Cq are the circles with radius
r =||p—ql| centered a p and q respectively. Let E(x) = k™% pe the probability that agiven circle
of radius x is empty. Since the random variabler isthe maximum value such that the interior of C
is empty (except for p), the density distribution of r is —% E(r). The probability that g has p asits
nearest neighbor is the probability that Cq \ C, is empty. By simple geometry, the area of this region
iscrr?, wherec = 1/3 + +/3/(2r), so the probability is kerr? — E(r)¢ asafunction of r. Hence the
required probability is
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~ 0.6215.

O

This proof generalizesimmediately to any fixed dimension d. The constant obtained depends only
on the corresponding ratio ck arising from the intersection of two unit balls. We havecy; = 1/2, ¢, ~
0.61, c3 = 0.6875, and c4 ~ 0.75,and ¢y — 1lask — oo.

4 Dilation of Embeddingsfor the NNG

The dilation of an embedding of ak-NNG in a graph G is the maximum over all edges (u, v) in the
k-NNG of the path length in G between the images of u and v. It is easy to see that any embedding
of arapidly branching tree in afinite-dimensional array must have alarge dilation. We begin by con-
structing a 2-NNG which contains such atree.

Example 2. Consider Figure 3, where a recursively constructed tree layout is shown. Definethe tree
To to be a single vertex. For r > 0, thetree T, is constructed as follows. The root of T, has two
children, w1 and wy, placed with y-offset —2" and x-offsets 2" and —2" respectively from the root.
Each w; isthe root of a copy of T, _1. It is clear from the diagram that the edges from any vertex v
of T, go to the nearest q neighbors of v for someq < 2. Thus T; is a subgraph of the 2-NNG for the
underlying point set.



Figure 3. Embedding of thetree T, (r = 4) ina2-NNG.

Theorem 3. For all n, thereexistsa planar set V of n vertices such that any embedding of 2-NNG(V)
inan Z—dimengional array has dilation (n/¢/logn). In particular, for ¢ = 2 any embedding must
have dilation Q(n%/?). 1

Proof: For the2-NNG in Example 2, the maximum (undirected) path length in the graph between any
two verticesis O(logn). For any set of n elements of a ¢-dimensiona array, Q (n?) pairs of elements
are Manhattan-distance € (n*/*) apart; some edge on the path connecting any such distant pair then
givesthe stated dilation. O

For an NNG, we define the depth d(v) of avertex v to be the path length in the NNG from v to a
vertex in abi-root. The depth of an NNG is the maximum depth of any vertex of the graph.

In order to show that a 1-NNG may require considerable dilation, we construct an example with
depth O(D) and Q (D) vertices.

Example 3. The graph is constructed using D3 grids of D? vertices. Each grid is approximately
square but the grids are of widely differing size. One such grid is shown within a dashed box in Fig-
ure 4. The construction proceeds in three further stages. In the first, we connect D of these grids to
forma chain, asillustrated in Figure 4. The geometric sizes of the grids increase exponentially from
left to right in this chain, with a ratio of D between successive grids. The edges within one grid are
all approximately the same size, and each grid is connected into the chain by a path of D downward
(270° to the x-axis) edges of about this same size. The next two edges to the | eft from the point of entry
of this path are also of about this same size.

After thefirst stage, if the exact layout is chosen with care, the result isan NNG of © (D3) vertices,
in the form of a chain of length ® (D) with ® (D) grids hanging fromit. The depthisonly ®(D) at
this point, but we now need the second stage.

The leftmost vertices of D chains as constructed in thefirst stage are connected using 90° edgesto
form an upward chain, as shown in Figure 5. The scales of successive members of the upward chain

1The tilde accent indicates the suppression of a polylogarithmic factor.



D2vertices

Figure 4. Chain of D D?-vertex grids with connections via 180° edges.

differ extremely widely, each is about DP times as large as its successor. This difference makes it
impossible to give compl ete and accurate pictures of the construction. Our figures attempt to illustrate
the ideas of the construction.

After this second stage, we have an NNG of © (D#) vertices, consisting of a path of 90° edges, from
which hang D subtrees, each of which isa chain of grids. The depth is still only ©®(D).

Each chain of the second stage ends with an upward edge to a final vertex. In the third stage, the
final vertices of D of these chains are connected into a rightward chain using 0° edges, as shown in
Figure 6. Note that each smaller second-stage chainfitsinto a“ socket” provided at the end of the next
larger chain. This completes the construction.

Lemma2. Thereisa connected 1-NNG with depth D and ©2(D®) vertices.

Proof: The number of verticesin the above constructionisclearly €2 (D®). The depth within each grid
is O(D). Each chain of each of the three types has length O(D) and so the total depthis O(D). By
choosing constant factors in the construction appropriately we can make the depth exactly D.

To show that it is a 1-NNG one needs to verify that each vertex can be placed so that the edge
depicted for it isto the actual nearest neighbor of the vertex. Note that, whenever thereisavery long
edge connecting to a smaller-scale structure, all the vertices in this structure are on the far side of a
perpendicular line to the edge through its opposite endpoint. O

Theorem 4. For any n, thereexistsa planar set V of n vertices such that any embedding of NNG(V)
in an £-dimensional array has dilation Q(n%‘%). In particular, for £ = 2 we obtain a dilation of
Q(n3/10).

Proof: The proof issimilar to the proof of the previoustheorem. Inthe NNG we constructed, the max-
imum (undirected) path length in the graph between any two vertices is O(n'/°). The result follows
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Figure 5. Chain of D ®(D?)-vertex chains connected using 90° edges.

from comparing thislength with the Q (n'/¢) distance achieved by almost all pairsof pointsinthearray.
O

5 Sizeand Depth of the NNG

In the following three sections we show that the Q (D®) size for an NNG of depth D proved aboveis
tight: any connected NNG of depth D has O(D?®) vertices. Such aresult, while interesting on its own,
could also be afirst step towards an algorithm for embedding NNG's in arrays with low dilation.

As the proof islong and complicated, we split it into three parts which build on each other. We
first outline asimplified version of the argument which suffices to prove an upper bound of O(D?). In
the next section we improve this bound to O(D®), and finally we prove the O(D®) bound.

It is convenient to define the depth d(e) of an edge e = e(v) to be d(v). The length of an edge
e = (u, v) isdenoted ||€|| or ||[u — v]||. For any v € V, define C(v) to be the open circle with center v
and radius ||e(v)||/2.

Lemma3. For all vi, vj, C(vi) NC(vj) = 0.
Proof: If C(vi) N C(vj) # 9, then

i —vjll < llell/2+ lle(j)ll/2 = max{|e(vi)ll, [le())Il}-

9
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Figure 6. Chain of D ®(D*)-vertex chains connected using 0° edges.

Thisinequality contradicts the nearest-neighbor property. O
Theorem 5. 1f G = (V, E) isa connected plane NNG with depth D then |V | = O(D9).

Proof: Let R = {z1, z»} be the bi-root of G. We will normalize distances by taking ||z; — z|| = 1.
Let O bethe midpoint of the edge (z1, z»). Fori > 0, define B; to be the open disk with radius 8 and
center O. For any vertex v, defineb(v) to betheminimal i suchthat B; containsall vertices (including
v) onthedirected pathfromv to R, andlet § = {v|b(v) = i}. The proof continueswith threelemmas.

Lemmad4. |S| = O(D?.

Proof: Supposev € §. Since v or some vertex on the path from v to R is at a distance at least 8 1
from the origin, and each edge on this path is of length at most ||e(v)||, we have ||e(v)|| > (81 —
1/2)/d(v) > (81 — 1/2)/D. Thedisk C(v) is contained within acircle of radius 8 + ||e(v)||/2
centered at O, and ||e(v)|| < min{||v — z]||, [lv — 22|} < 8 + 87'~1. By Lemma 3 the disks C(v)
aredigoint for all v € § and so a comparison of areas yields the inequality

(871 —-1/2)/2D)?-|S| < (8 + (8 +8'1/22
Hence, |S| = O(D?). O

Lemma5. Foralli > 0, there are at most six directed edgesfrom;.; Sj to U, _; .

10



Figure 7. At most six edges crossfrom{J,_; SjtolJ,_; .

Proof: Any such edge comes from outside B; to inside B; _1 (Figure 7). Consider any pair of edges
(v1, wi), (v2, wp) suchthat verticesvy, vy areoutside B;, whilewq, wy arewithin Bj_1, and Zv1Ovy =
Y say. Without loss of generality wecan assumethat [|[v1— OJ| > ||v2— O]|. Supposethat ||[v1—Ol| =
ot and ||[vo — OJ| =t whered > 1.

As wj isanearest neighbor of v1, we have

_ v — vl ty/1+4 62 — 20 cosyr - V1462 — 20 cosyr
< -
~ v — wa| ot — 81 - 0—1/8 ’

sincet > 8. Therefore

0>6—1/8—/1+62—29cosy > 7/8—/2(1— cosy),

since the middle expression is monotonically increasing in 6. Hence cosyr < 79/128 and so ¢ >
27 /7. The lemma follows since, if there were seven or more edges from | J;; Sj to J;_; Sj, then
there would be two outer vertices v, v2 subtending an angle of 27 /7 or less at the origin. O

The extension operation on a set E of edges consists of deleting one edge e € E and replacing
it by the set of predecessor edges of e. We associate with any set E of edges the characteristic of E,
denoted yx (E), whichisthe 7-tuple (ds, . . ., d7) whered; isthe depth of the edge with thei " smallest
depth among edges of E. If E has fewer than seven edges then some of the last components of x (E)
take the value co. A simple property of extensionsis stated in the following lemma.

Lemma6. Iftheset E’ istheresult of applying one or more extension operationsto E then x (E') >
x (E), where*>" denotes |exicographic order. O

Define Ej = {(v, v)|b(v) > i, b(v) < i}. Since Ej,1 can be obtained by applying a sequence of
extension operationsto E;j, we have x (Eij11) = x(E)).

If x(Ei+1) = x (E;) then every edge represented in x (E;_1) must also have been amember of E;.
By Lemma 5 there can be at most six edgesin E; N E;, 1, and so in this case the characteristic of E;j 1
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has at most six finite components. Hence each edge of E; 1 isrepresented in x (Ej11). The equality
of the characteristics therefore impliesthat E; = E; 1. Hence there can be no edge from § to §; for
any j <i,andso § = @ inthiscase.

Thus at each step in the sequence x (E1), x (E>), .. ., either the characteristic increases in the lex-
icographic order, or else remains the same in which case § isempty. Since the characteristic can take
at most O(D7) values, by Lemma 4 the total number of verticesin G is O(D’ - D?), and the Theorem
isproved. O

6 Improved NNG Depth Bounds

Our proof that there are at most O(D®) points in a nearest neighbor graph with depth D follows the
same general outline as the simpler proof of the O(D®) bound above. In the previous section, we de-
fined disks B; as having radius 8'. Here we let the radius of B; be K' for some larger parameter K to
be determined later. We defineb(v) and S asbefore, and Lemma4 holds as before. Let A; refer to the
annulus B; \ Bi_;. Wetighten Lemmas 5 and 6 to show that in fact only O(D?%) of the sets § can be
non-empty. Note that § can be non-empty only if annulus A; contains at least one point v for which
nn(v) isin Bj_;.

By the angle between two line segments we refer to one of the two anglesformed at the crossing of
the lines containing the segments. Wewill use thisterm only when each segment hasitstwo endpoints
intwo different annuli A;, so that the‘outer’ and ‘inner’ endpoints of the segments are unambiguously
defined. Of the two possible angles, we choose the one between the rays that contain the two outer
endpoints. If the two lines containing the segments are parallel we say that the segments have angle
either 0° or 180° as appropriate.

The following lemma tightens Lemma 5, which proved a 27 /7 bound on the angle between seg-
ments crossing the annuli.

Lemma7. Letedgeseand f of NNG(V) pass entirely across a given annulus A; (so that one end-
point is outside B; and the other isinside B;_;). Then angle ef must be at least 60° — O(1/K).

Proof: Define the two parale infinite wedges Wi and W5, with an opening angle of 120°, so that the
outer endpoint of eison the centerline of the two wedges, and the sides of W aretangent to B; _; while
W; is separated from B;_1 by far enough so that the apex of W, isnearer than B;_1 to any point within
W, (Figure 8).

Note that for both e and f, the outer endpoint must have the inner endpoint as nearest neighbor
(rather than vice versa) since by assumption there are at least two pointsin ball By C Bj_; and any
pair of pointsin Bj_1 iscloser to each other than to all points outside B; for sufficiently large K.

If the outer endpoint of f isoutsidewedge Wi, then (sincetheinner endpoint isinsidethewedge) e
must form an angle of at least 60° with f. If the outer endpoint of f isinsidewedge W, then the outer
endpointsof eand f would be nearer to each other than the distance from the further of the two to the
apex of W», and hence the edge between those endpoints would have been chosen as part of NNG(V),
contradicting the assumption that eand f arein NNG(V).

12



Figure 8. If eand f both cross A;, then the smallest angle between them isformed when f isin astrip between
two 120° wedges.

Theremaining possibility isthat f isin Wy \ W>. Thisregion takes the form of two semi-infinite
strips, with width proportional to theradiusof Bj_;. Since f haslength Q (K) timesthat width, it must
form an angle with e that iswithin O(1/K) of 60°. O

Lemma8. Leteand f passentirely acrossa given annulus A;, and let the outer endpoints of e and
f bein two non-adjacent annuli Aj and A, k > j 4+ 1. Thenangleef isat least 90° — O(1/K).

Proof: Let the outer endpoint of f be farther from O than the outer endpoint of e, and suppose the
radius of Bi_1 isr. Then ||f|| = r’ = Q(K?3) and the circle of radiusr’ centered on the outer
endpoint of f meets B;_1 but excludesthe outer endpoint of e. Now the inner endpoint of eisin B _1,
and ||e|]| = Q(Kr) but ||e]| = O(r’/K). Hencethe angle between e and f isat least 90° — O(1/K).
O

If we choose K large enough, the angles in the previous two lemmas will “look like” 60° and 90°,
in that the following inequalities hold:

e 7(60° — O(1/K)) > 360°, so that no annulus can be crossed by seven edges.

e 5(60° — O(1/K)) + (90° — O(1/K)) > 360°, so that if six edges cross an annulus, al angles
are smaller than 90° — Q(1/K).

e 3(90° — O(1/K)) + 2(60° — O(1/K)) > 360°, so that if there are five crossing edges, al but
perhaps two angles are smaller than 90° — Q(1/K).
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Theorem 6. If G = (V, E) isa connected plane NNG with depth D then |V | = O(D®).

Proof: We consider two types of edge for each annulus A: those that cross the inner but not the outer
boundary of A, and those that cross both boundaries. Two edges of the second type arerelated in A if
they have an angle lessthan 90° — Q2 (1/K) or if there is a sequence of related edges from one to the
other. There can be at most three equiva ence classes of related edges, except for the single case that
four edges cross the annulus at approximate right angles.

Asin the proof of our weaker bound, we label each annulus A by a characteristic x (A). Herewe
modify x (A) to consist of the 4-tuple of the four smallest depths of edges crossing the inner bound-
ary of A, only allowing a single depth from each equivalence class of related edges. If there are not
enough depthsto fill out the tuple, wefill the remaining positions with the value co. Unlike the char-
acteristics used in Lemma 6, these need not increase in lexicographic order. However we show that
we can find a subsequence of the characteristic sequence, covering a constant fraction of the annuli A
for which § # @, in which the characteristics do increase. Only O(D#) characteristics are possiblein
this subsequence, and therefore the entire sequence consists of O(D#) annuli.

Suppose we have constructed some such sequence out to some annulus A;. Let X be the set of
edges that cross both boundaries of A;. We choose the next annulus to be the smallest annulus A,
j > i, forwhich §; # ¢, A; does not contain an edgein X, and A; is not crossed by four unrelated
edges.

We now show that this sel ection process discards at most some constant number of the A; for which
Sj # 9. Suppose we discard an annulus crossed by four unrelated edges, which must by Lemma 8 be
at approximate right angles. No point can be within four circles having those edges as radii, which
together cover all of the annulus except for a small region near the center. By an argument similar
to that of Lemma 7, any edge crossing the outer annulus boundary would have angles greater than
60° — O(1/K) with all four crossing edges. But no such angles, and hence no such edges, can exist.
Thusthe next larger annulus for which S # ¢ contains the endpoint of one of the four crossing edges.
Such an annulus cannot itself be crossed by four unrelated edges, and so is not of this special form.
So, aswe search from A; for the next annulus A, at least every alternate annulus we encounter is not
of thisform.

Theremaining annuli discarded in the search from A; for the next annulus A; in the sequence each
contain an endpoint of an edgein X, so there can be at most six such annuli. Thus after we try O(1)
annuli we will have run out of edgesin X, and one of the next two annuli we encounter will be chosen
as next in the sequence.

Finally, we show that the characteristic of the chosen A; islarger than that of A;. Let E(A;) denote
the set of edges corresponding to the characteristic x (Ai). Let X’ € X bethe set of edges that cross
theinner boundaries of both A; and A;. Asthe next step in our proof, we show that there is some edge
einE(Aj)\ X'. Since A; contains no endpoint of an edgein X, each edgein X’ crosses also the outer
boundary of A;j. All itsrelativesin X are aso in X', and are related in X'. But | X" N E(Aj)| < 3
since we excluded from the sequence annuli with four unrelated crossing edges. If E(Aj) contains
four unrelated edges, there is at least one such edge e not in X'. If E(Aj) contains fewer than four
unrelated edges, every edge crossing the inner boundary of Aj must be in E(A;), and in particular
(since by assumption S; is nonempty) there must be an edge e = e(v), for v in Sj, which cannot bein
X' since every edgein X’ crosses the outer boundary of A;.

14



In any case we have shown that some edge in E(A;j) isnot alsoin X'. Let e be such an edge with
the smallest depth. Aswe follow the path from e to the bi-root, we will eventually encounter an edge
€ crossing the inner boundary of A;. The depth of € is strictly smaller than that of e. We form a
characteristic x’ froman edge set E' constructed by adding € totheset X'NE(A;). Wefill al remaining
positionsin the 4-tuple by oo. Then since € has lower depth than all edgesin E(Aj) \ X', it follows
that x" < x(Aj) inthe lexicographic order. On the other hand, all edgesin E' \ {€'} are unrelated in
Aj, and no relative of € can bein X’ or hencein E'. Thus x’ is a potential label for A; and the true
label x (Aj) isno higher in lexicographic order.

We have shownthat x (Ai) < x (Aj). The subsequence we construct, and thus the entire sequence
of annuli A; for which § # ¢, has at most O(D*#) members. Each set § contains O(D?) points by
Lemma 4, and the theorem is proved. O

7 Tight NNG Depth Bounds

We now add further complications to the argument above, to remove afina factor of D and arrive at
an O(D®) bound on the size of a depth-D NNG, matching the lower bound of Theorem 4.

Recal| that we defined a sequence of O(D#) annuli A;, each of which could contain O(D?) points.
Both of these bounds are tight individually. However we can improve our bounds by proving that it is
not possible for all annuli to contain many points.

We define anew characteristic £(A) of an annulus A to be the 3-tuple of the three smallest depths
of edges crossing the inner boundary of A, asin the definition of x (A;) alowing a single depth from
each equivalence class of related edges. We define a sequence of special annuli as follows.

Suppose we have constructed such a sequence out to some annulus A;. Let X be the set of edges
chosen for £(Aj). Let A; be the next annulus for which some edge in X and all relatives of this edge
do not cross A;j. We choose A; as the next special annulus.

Lemma9. Thereare O(D?) special annuli.

Proof: Thereare O(D?3) possiblevaluesfor &(A). Aswe progress from smaller to larger annuli in the
specia sequence, £ (A) can only decrease or remain constant in two circumstances: (1) It can decrease
if some edge e, one of the three edges of £ (A), with depth x less than that of some other edgein £(A),
has a relative that terminates, producing new unrelated edges of depth x + 1. But then, by Lemma 8,
edge eitself will terminate within O(1) annuli, leading either to an overall increasein £(A) or to case
(2) below. (2) It can remain constant if some edge, one of the three edges of & (A), with depth at |east
that of the other edgesin £(A), terminates, but some unrelated edge has the same depth. Then x (A)
must be of the form (a, b, ¢, ¢) but because of the monotonic sequence shown to exist in Theorem 6,
this can only happen O(1) timesfor each such value. O

Lemma10. For any annulus A, thereare O(D) annuli A; with § # @ separating A from a special
annulus.

Proof: Thisfollowsfrom thefact that we can go through at most O (D) different valuesof x (A) before
&(A) dsochanges. O
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We say that i isaspecial index if A; isaspecial annulus. By Lemma 9 there are O(D3) special
indices.

We make one further distinction among our annuli: we say that an annulus A is bad if some two
of the three edges defining & (A) terminate within D levels of each other, and that Aisgood if itisnot
bad. A dight extension of Lemma 8 shows that the three edges defining & (A) for agood annulusform
anglesthat are at least 90° — cP for somec < 1.

Lemma1l. Thereare O(D?®) bad annuli.

Proof: Let A be abad annulus. By Lemma 10, A iswithin O(D) annuli of the next larger specia
annulus.

Assumefirst that the two edgesin £ (A) with endpoints at similar levelsinclude the shortest of the
threeedgesin £(A). Then within O(D) annuli from the next special annulus larger than A, two of the
three edges of £(A) change. By asimilar argument to that of Lemma 9, this can happen O(D?) times,

In the remaining case, the two edges with endpoints at similar levels are the longest two edgesin
£(A). After O(D) special annuli (and hence O(D?) total levels), these edges will both terminate, and
hence al three edgesin £(A) will have terminated. But this can only happen O(D) times. O

Lemmal2. Let Aj be agood annulus, and let the closest special indextoi be j. Then thereisa
constant ¢ < 1 such that A; contains O(D + ¢! ~11D?) points.

Proof: Letk = |i — j|. Then there must be three edges of NNG(V) with inner vertices within an
annulus at least k levels smaller than A;, and outer vertices within an annulus at least k levels larger
than A.

Since these edges are in NNG(V), the circles with these edges as radii cannot contain any points.
However these circles cover al but an exponentially small fraction of A;. Since their outer vertices
are far from A, the circle boundaries are close to straight lines perpendicular to the edges through
their centers. they differ from those straight lines in the area they cut from A; by an exponentialy
small amount (c'{ for somec; < 1). Asnoted above, the angles between these three lines are at least
90° — c2 for somec, < 1. Theinner vertices of these edges are (relative to the size of A)) within
distance c& of each other for somecz < 1.

Therefore the uncovered area of A is c'{ plus a trapezoid-shaped region with base at most c‘é and
angle at most ZCE. We simplify this remaining region of A; in which points may be contained, to a
rectangle with side lengths (measured relative to the radius of A;) O(1) and O(c™"k D)y for ¢ chosen
as some appropriate function of ¢;, ¢, and cs.

AsinLemma4, we canfind acollection of digjoint circles, centered on each pointin A;, with radius
O(1/D) relativetotheradiusof A;. If ¢ > 1/D, each circlecovers1/D? unitsof therectangle€'sarea,
and thereare O(c¥D?) circles. If ck < 1/D, each circle coversa1/D fraction of the rectangle’s area,
and thereare O(D) circles. O

Theorem 7. 1f G = (V, E) isa connected plane NNG with depth D then |V | = O(DY).

Proof: By Lemma 11 the number of pointsin bad annuli is O(D®). Asin Theorem 6 there are O(D%)
annuli, so the O(D) terms of Lemma 12 add to O(D®). The O(c*D?) terms can be charged to the
nearest specia annulus; they add in a geometric seriesto O(D?) per special annulus for O(D) total.
O
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8 NNG in Higher Dimensions

We can generalize Theorems 4 and 6 to prove that in any fixed dimension ¢, the size of a connected
NNG is bounded above and below by a polynomial in its depth D.

We first consider generalizations of the lower bound construction of Theorem 4. Recall that we
connected a sequence of points, each containing asquare grid of  (D?) points, using edgesin three of
thefour directions parallel to coordinate axes. The fourth direction was reserved for edges connecting
each level to its grid in such away that the grid did not interfere with the other edges.

Theorem 8. Inany constant dimension ¢, and for any D, thereisa connected NNG with depth D and
Q(D%*1) vertices.

Proof: We again form a sequence of levels, each containing a grid of Q(D*) points in the positive
orthant. The levels are connected by edgesin ¢ + 1 directions parallel to coordinate axes, namely
the directions of the negative orthant together with a single positive-orthant direction. The placement
of the grid to avoid interfering with other edges and the details of the connections between levels are
essentially the same asthose in Figures 4, 5, and 6. O

We next consider upper bounds on the size of adepth-D NNG. The bound of Theorem 5 general-
izesto O(D 7 (O+1) where 7 (¢) isthe number of digoint unit hyperspheres which can touch a given
unit hypersphere, i.e., the so-called kissing number in dimension ¢£. Conway and Sloane[7] give afas-
cinating history of the kissing number question. Currently, the exact value of t(¢£) is known only for
dimensions ¢ = 1, 2, 3, 8, 24. For general ¢, there are exponential upper bounds and lower bounds
ol < () < Bt wherea ~ 2927 gnd g ~ 20401,

For the purpose of proving upper bounds on NNG component size, it is more convenient to use
the following equivalent definition of the kissing number: = (£) is the number of points that can be
placed on the surface of spherein ¢ dimensions so that the angular separation between any two points
isat least 60°. The corresponding quantity for angular separation at least 90° issimply 2¢, and we can
use this quantity in place of 7 (¢) to generalize Theorem 6 and prove a bound of O(D3¢) on the size
of a connected NNG, giving a bound only singly exponentia in £ in place of the doubly exponential
generalization of Theorem 5. The example of Theorem 8 shows that we are at |east within a constant
factor of the right exponent.

Theorem 9. In any constant dimension ¢, if G = (V, E) is a connected NNG with depth D then
V| = O(D3).

Proof: Thediscussionsin Sections5 and 6 generalize from dimension two to higher dimensions with-
out any difficulty, once we change “circles’ to “hyperspheres’, “disks’ to “balls’, and the “ character-
istic” of an edge set from a4-tupleto a2¢-tuple. Lemma8 can be used to show that at most 2¢ subsets
of crossing edges can be separated by angles of 90° — ¢, and that this number is further reduced to
2l — 1 except in the single case of 2¢ approximately orthogonal edges. The constant K used in Sec-
tion 6 for the definition of B; must be enlarged so that the O(1/K) term in Lemma 8 is small enough
for the definition of “approximately orthogonal” above. Lemma 4 generalizes to a bound of O(D?)
points per higher-dimensiona annulus. The proofs of the lemmas go through with little modification.
O
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9 Conclusion and Open Problems

We have explored some of the combinatorial propertiesof k-NNG's. Whereasfor k > 2, ak-NNG can
have components of size exponential in the depth, for k = 1 the sizeis limited by a polynomial. We
have aso constructed NNG's which require dilation n®™® for embeddings into an array of any finite
dimension.

For uniform random distributions of points in the plane, Theorem 2 gives the expected number
of connected components of the NNG. It would be of interest to estimate some further properties of
the NNG, such as the distribution of component sizes and the expected size of the largest component.
Similar questions arise for the k-NNG and, in particular, we would like to know the minimum value
of k (asafunction of n) for which the k-NNG can be expected to have a‘giant’ component. An un-
derstanding of the probabilistic properties of the k-NNG might be exploited in designing embeddings
with improved computational characteristics.

Our knowledge of the combinatorial properties of NNG's is still very limited. We know of no
graph-theoretic characterization of NNG's and suspect that deciding, for agiven graph, whether or not
itisthe NNG for some set of points may be a hard problem. So far we know even less about k-NNG's
fork > 1.

In Theorem 4 we proved a bound of Q(n%‘%) on the dilation of a 1-NNG embedded in an ¢-
dimensional array. When ¢ > 5 this bound becomes trivial, and in fact the example used to prove
this bound can be embedded in a 5-dimensional array with constant dilation. It remains open whether
such good embeddings are possible in general, or more generally whether Theorem 4 istight even for
¢ = 2. Perhapsthetechniquesused in our upper bounds can be used to provide good array embeddings
of 1-NNG's.

The gap between the lower bound of € (D) in Theorem 8 and the upper bound of O(D3) in
Theorem 9 isrelatively small but still remains open. It seems likely that some of the ideas from the
tight bound of Theorem 7 could be extended to the higher dimensional case.

An understanding of the relationship between the dimension of a space and the combinatorial or
statistical properties of the k-NNG’s would be of use in classification theory. For example, if a set of
pointswererepresentable asafairly well-behaved distribution over amanifold of unknown dimension,
could we estimate the dimension of the manifold from statistical properties of the K-NNG?
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