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ON NEARLY ABSOLUTELY ISOLATED

HYPERSURFACE SINGULARITIES OF DIMENSION 2

JIN-GEN YANG

Abstract. A formula for the geometric genus of a nearly absolutely isolated

hypersurface singularitiy of dimension 2 is found by using the canonical resolution.

An upper bound for the fundamental cycle of such singularity is also given.

Introduction. Let m: M -» F be a resolution of an isolated singularity of dimen-

sion 2. The number dim//°(F, Rl"n*(0M)) is defined to be the geometric genus of

the singularity. We study the case in which V can be embeded in C3. Our major

result is a formula (Theorem 2) for the geometric genus when the singularity is

nearly absolutely isolated (see §2 for definition). Our proof is based on the canonical

resolution of an w-tuple point, which is developed in the first section. The case

m = 2 is well-known (cf. [2, pp. 47-48]). Finally we give a bound for the fundamen-

tal cycle of that kind of singularity as well as for its self-intersection number

(Theorem 3).

The base field is the complex number field C. A singular point p always means a

hypersurface point of dimension 2. Sometimes we use the same notation for a line

bundle and its corresponding divisor if it will not cause confusion.

1. w-tuple covering. Let m > 2. Let 7 be a smooth surface covered by affine open

sets {U¡)iel. Let C0,...,Cm_2 be effective divisors on Y locally defined in U¡ by

equations cs ¡ = 0 (0 < s < m - 2, i G /). Suppose there is a line bundle F over Y

with transition function { f,¡} over { U,,C\ \JJ} such that

(1) cSit=f$-°c3j

for all 0 < s < m - 2. Let <í>, be the fibre coordinates over U¡. Then the equations

(2) <>T + cm^i4>r2+ ■■■+c0,, = 0

give rise to a surface A' in F and the projection map from F to y induces a finite

morphism /: X -* Y oí degree m.

Definition. The surface X constructed as above is called the m-tuple cover of Y

with branch locus data (C0,..., Cm_2).

Let D, be the discriminant of the equation (2) for / g /. Then { Dl }¡ e, give rise to

a divisor on Y, denoted by D. Obviously D is the branch locus of the map /. The

map / is called totally ramified at a point p g Y if f'l{p) consists of one point.
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24 JIN-GEN YANG

Since the degree (w — 1) term in (2) has zero coefficient, the set of all totally

ramified points in Y is C0 O • • • C\Cm^2.

For any point p g Y, let up(Cs) be the multiplicity of Cs at p. Then a point

p g Q fi • • • Pi Cm_2 gives rise to an w-tuple point on X if and only if ap(Cs) > m

— s for 0 < s < w - 2.

Suppose x = f'1(p) is an isolated multiple point of X We call x a simple m-tuple

point if there is an open neighborhood U oí p such that the support of the divisor

C0 + C, + ■ • • + Cm_2 in Í7 has two irreducible components which are nonsingular

at the point p with normal crossing.

Suppose that X has only a finite number of w-tuple points. Let p g C0

n • • • nCm_2 be such that f'l{p) is an w-tuple point. Let qx: Yx -* Y be the

blowing-up of Tat /?. Let Fj = ^(.P)- Let

rj = min([^(Cm_2)/2],...,[/i/;(C0)/w]),

where [a] is the integer part of a. We call rx the multiplicity of the branch locus data

(C0,..., Cm_2) at p. Let the divisors Cls (0 < s < w - 2) be defined by

Q,, - q?(Cs) - rx{m - s)Ev

Let F, = q*(F) - rlEl. It is easy to check that the line bundle F, and the divisors

C10,.. .,Cr m_2 on 7, satisfy the condition (1). Let /,: A, -» 7, be the w-tuple

cover of Y", with branch locus data (C\ 0,..., CXm_2). Obviously there is a map ir^.

Xx -* X such that the diagram

■n

Xx      -»      X

l/i 4/

r,    S    y

commutes.

By the choice of r,, we see that Xx has only a finite number of w-tuple points. We

can repeat the same procedure for any w-tuple point on Xx.

Lemma. The above procedure will terminate after a finite number of steps.

Proof. It is easy to see that after a finite number of steps there are at most finitely

many simple w-tuple points on the top surface. Thus we may assume that f~x(p) is

a simple w-tuple point.

By definition, the simple w-tuple point f'l{p) is analytically isomorphic to an

w-tuple point given by

xm + ySm^2zim.2xm-2 +  . . .  +yslzhx + ySoz'o = Q

satisfying

(A) s¡ + t¡ > m — i for 0 < i < m — 2;

(B)tam0<itím_2(si + i) < w;

(C)min0<,.<m_2(í, + /)< w.

In particular, up(C¡) = s¡ + t¡ for 0 < /' < w - 2.
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Let S = {0 < i < w - 2: j,/(w - i) = mm0síksím_2(sk/(m - k))} and

T = (O < i < w - 2: í,/(w - t) =     min     (í*/(w - k))\.

Let a = min,e7.{i,/(w - /')} + min/eS{rj/(w — /')}. We call this rational number

a the "grade" of the w-tuple point f~l(p).

The exceptional divisor F, of the blowing-up qx intersects the branch locus of /,

at two distinct points px and p'x, which are the only points on Yx that might give rise

to w-tuple points on Xx. Since the discussions of px and p'x are the same, it suffices

to consider px. If f{x{px) is not an w-tuple point then there is nothing to prove. So

we assume f{l{px) is an w-tuple point. Then it can be represented by

xm _|_     sm_2Zsm_jJrtm_1-2rlxm-2 _|_   . . .   4. yslzsl + 'l ~(m~ l)^ -|- ySoz1o + 'o~ ""i = 0

where r, = min([(im_2 + tm_2)/2],...,[{sQ + t0)/m]). We want to show that the

"grade" ax of f{x{px) is smaller than a. Assume that yef and & g S are such

that Sj/(m -j) = min,er(j,/(w - 0} and tk/(m - k) = rninjeS{r(./(m - ')}•

We also assume that {sn + t„)/(m - n) = min0<J<m_2((i, + /,)/(w - /)}. By def-

inition,

ax = min{j,/(w - /)} + min((i, + i, -(w - i)rx)/(m - i)}

where Sx = S and

Tx = (o < /' < w - 2: (j,. + i, -(w - z')>i)/(w - i)

min     ((íA + í;t-(w-/:)r1)/(w -Ac))}.

Clearly neTx. Hence «, < sn/{m - n) + (sk + tk - (w - k)rx)/{m - k). Since

tj(m- n)> tj/{m-j) and (i„ + t„)/(m - n) « (Sj + tj)/(m - j) we have

s„/(m - n) < 5y/(w -7). On the other hand, sk/(m - k) < 1 (by property (B))

and rx > 1 imply that (í¿ + rfc - (w - k)rx)/{m - k) < tk/{m - k). Hence

«1 « s/(m -f)+(sk + tk-(m- k)rx)/(m - k)

<Sj/(m-j) + tk/(m-k) = a.

Since all "grades" during the process of the resolution are nonnegative rational

numbers with denominators less than a fixed number ml, the procedure must

terminate after a finite number of steps.   D

If X has only a finite number of w-tuple points then, by the lemma, there will be

a commutative diagram

•*«      ~*      ■*»-]      -»•••-»      X2      -»      ^Tj      -*       X

¿4 A-i4 A4 A4 /I

y      -»     y        -»•••—»     y      —»      y      —>      y

such that X„ has no w-tuple points. But X„ is not necessarily normal.

Definition. The surface X„ is called the canonical resolution of m-tuple points in

X. If X„ is normal, then the above resolution is called a normal canonical resolution.
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Here the term "resolution" is not in the usual sense. Note that during the

canonical resolution each map q¡ is related to a number rt, which is the multiplicity

of the branch locus data of the w-tuple covering map f¡_,. The sequence rx,...,rn

can be used to decide some geometric invariants of the surface Xn.

Theorem 1. The holomorphic Euler characteristic of the canonical resolution Xn of

the m-tuple point p in X is given by

,~\       i „    *   \ /,, ^  x      x^ I (m — l)w(2w — 1)   ,      (w — l)w   \
(3)  x{x„,e>Xm) = mX(Y,eiY)- E (--^-¿r,2--—j-2-'-/)-

Proof. Let F* be the completion of the Une bundle F¡. Let [Y¡] be the zero

section of F*. There are exact sequences

0 -* Offi-Xt) -» &F* -»^-»0,

0 -» Ofm(-{Yt]) -» 0F* -* GYl -» 0,

0 - 6V(-2[y,]) - M-M - Or,(-Fi) -* 0-

0 - ¿VHO - <V(-(w - 1)[YJ) - <5Y,(-(m - l)Ft) - 0

due to the facts m[Y¡] ~ X¡ in F* and Y,\r¡ ~ F¡.

Using these exact sequences and the Riemann-Roch Theorem, we have

x(xi,0Xi) = x(Ft*>*rr) -X^^ffi-Xd)

= x{p*^Fr)-x(F*,(!)Fr(-(m-l)[Y,}))+x{Y„&yi(-(m-l)Fi))

= x(y„ 0Yi) + x{y„ Oy,(-F,)) + ■ ■ • +x(y„ e>rHm - l)F>))

= wX(y„ 0y) +(L2)Fi(F, + kt) + • • • +(|)(w - l)F,((w - 1)F, + k,)

lm-1       \

= mx(Yi,0Y)+(^)    £ r2   F,2+((w-l)w/4)F,A:,.
\ r-l       /

= wx(y,^y)-r((w- l)w(2w- l)/12)F,2+((w- l)w/4)F,Jc,

where A:,  is the canonical divisor of  Y¡. Since F, = q*(F¡_x) - r¡Ej and  A:, =

q*{k¡_x) + E¡, the theorem follows immediately.   D

2. Nearly absolutely isolated w-tuple points. Let p be an isolated w-tuple surface

singularity which can be embedded in C3. In other words, p g V c C3 where F is a

surface. We may assume that p is the only singularity on V. Let it: M -» F be a

resolution of />. The set ^4 = ■n~1(p) is called the exceptional set. The number

/i(/>) = dim H°(V, RlTr^(0M)) is called the geometric genus of />.

In this section we use the construction of w-tuple covering and Theorem 1 to find

a formula for h(p) for a certain type of p.

Denote by x, y, z the coordinates of C3. Assume that p = (0,0,0). Since V c C3,

V is defined by a single equation. Without loss of generality, we may assume the

equation is given by

zm = am^2(x,y)zm-2 + am_3(x,y)zm'3 + ■■■ +ax(x,y)z + a0(x, y)
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ISOLATED HYPERSURFACE SINGULARITIES OF DIMENSION 2 27

where a0(x, y),..., am_2(x, y) are polynomials in x, v. For any polynomial g(x, y),

define the order of g(x, y) to be the lowest degree of all its terms, denoted by

ord(g). Since p has multiplicity w, ord(a,) > w - /'. Let x, y,w be the homoge-

neous coordinates in P2. Let

N —     max
0</<m-2

deg(a,) + w - /' - 1

m

and let A¡(x, y, w) = wN(m~')ai(x/w, y/w) for each 0 < i < m — 2. Each

A¡(x, y, w) is a homogeneous polynomial of degree (w - i)N. Let F be the line

bundle 0P2(N). Let C, be the zero locus of A¡(x, y,w) on P2. Then it is easy to see

that the fibre coordinates of F satisfy (1) for each affine open subset of P2. Let X

be the w-tuple cover of P2 with branch locus data (C0,..., Cm_2) as defined before.

Then V is merely a subscheme of X. Hence we may think of X as our original V and

p g X sits over 0 e P2. Let it: Xn -* X be the canonical resolution of the w-tuple

point p as defined in the previous section. Suppose Xn is normal. Then there are

finite number of multiple points of X„ on ir~l{p) with multiplicities smaller than w.

These are called infinitely near multiple points of p. Suppose that their canonical

resolutions are normal. Then we can consider their infinitely near multiple points

and repeat the same process. If all canonical resolutions involved in the above

process are normal then the w-tuple point p is called nearly absolutely isolated.

(Remember that an isolated singularity is absolutely isolated if it can be resolved by

a sequence of blowing-ups.) Obviously all isolated double points are nearly abso-

lutely isolated.

Theorem 2. Let p be a nearly absolutely isolated m-tuple point of dimension 2 which

can be embedded in C3. Then the geometric genus h(p) of p is given by the formula

(4)    HP) - i i li^-'T"1^- u^üi.
X = 2<?e/A, = l^

where Ix is the set of all infinitely near X-tuple points of p and rx , ■■■,rn is the

sequence of multiplicities of the branch locus data of q.

Proof. Let X be the resolution of p in the sense that there is a morphism £:

X -* X such that è\X-^-up) is an isomorphism and X is nonsingular on £-1(/>).

Theorem 1 implies that x(X, @x) - x(X ®x) is equal to the right-hand side of (4).

It is well known that x(*, Qx) = x(X, 0X) - h(p). Therefore (4) is true.   D

Since p has multiplicity w, ord(a,(x, y)) > m — i. Let Ti be the tangent cone of

C, at 0 for 2 < / < m — 2. We say that p is generic when 0 is an ordinary

(w — /')-tuple point of C¡ for each i and T¡ fï T- = 0 for any i # /.

Corollary. If p is a generic m-tuple point, then h(p) = (™).

Proof. Being generic implies that p is resolved by blowing up once. Therefore in

(4) there is only one term

(m — l)w(2w — l)      (w — l)w

12 -(?)■
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3. Fundamental cycles. On the exceptional set A there is a unique positive cycle Z

satisfying

(i) A{Z < 0 for any irreducible component A¡ of Z;

(ii) Z is minimal with respect to the above property.

The cycle Z is called the fundamental cycle. For details, see [1].

Let p be a nearly absolutely isolated w-tuple point as in the last section. There is

a commutative diagram

*-*„-»*,,_!-•••-        *a        - Xi - *

/„I /„-i 4 4 A4 fi

Y„     -     y„_!     - ... -    ya    -     yx     -     y
?» ?»-l ?2 ?1

where ip is the minimal resolution of X„. Let tt = irx° ir2° • ■ • ° irn ° \p and let

a = fx° tt2° • • • ° TTn ° ip- Then w: Â -* X is a resolution of p, though not neces-

sarily minimal.

Theorem 3. Let Z be the fundamental cycle of p on X. Then Z < a*(Ex), the

pull-back of the exceptional divisor Ex = ^1"1(0) on Yx. Moreover, Z2 > -w and the

equality holds if and only if Z = a*(Ex).

Proof. Let Z = a*(Ex). Then Z2 = w£2 = -w. For any irreducible component

A, of A, we have

/0,       if a (A,) is a point;
yi,-Z = (otAi)Ex =

(-1,     ifa(^,) = F1.

Hence Z satisfies the first condition of the definition of fundamental cycle. There-

fore Z ^ Z.

Write Z = Z + Z'. Then Z2 + 2ZZ' + Z'2 = -w. By the definition of Z, ZZ'

< 0. Since the intersection matrix of A is negative definite, Z'2 < 0 and Z'2 = 0 if

and only if Z' = 0. This finishes the proof.   D

Corollary. If p is generic, then Z = a*(Ex) and Z2 = -m.

Proof. In this case X = Xx, and a*(Ex) has no multiple components. Hence

Z = a*{Ex).    D
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