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ON NEARLY ORTHOGONAL LATTICE BASES AND RANDOM
LATTICES∗
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Abstract. We study lattice bases where the angle between any basis vector and the linear
subspace spanned by the other basis vectors is at least π

3
radians; we denote such bases as “nearly

orthogonal.” We show that a nearly orthogonal lattice basis always contains a shortest lattice vector.
Moreover, we prove that if the basis vector lengths are “nearly equal,” then the basis is the unique
nearly orthogonal lattice basis up to multiplication of basis vectors by ±1. We also study random
lattices generated by the columns of random matrices with n rows and m ≤ n columns. We show that
if m ≤ c n, with c ≈ 0.071, then the random matrix forms a nearly orthogonal basis for the random
lattice with high probability for large n and almost surely as n tends to infinity. Consequently, the
columns of such a random matrix contain the shortest vector in the random lattice. Finally, we
discuss an interesting JPEG image compression application where nearly orthogonal lattice bases
play an important role.
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1. Introduction. Lattices are regular arrangements of points in space that are
studied in numerous fields, including coding theory, number theory, and cryptography
[1, 15, 17, 21, 25]. Formally, a lattice L in R

n is the set of all linear integer combinations
of a finite set of vectors; that is, L = {u1b1 + u2b2 + · · · + umbm |ui ∈ Z} for some
b1, b2, . . . , bm in R

n. The set of vectors B = {b1, b2, . . . , bm} is said to span the lattice
L. An independent set of vectors that spans L is a basis of L. A lattice is said to be
m-dimensional (m-D) if a basis contains m vectors.

In this paper we study the properties of lattice bases whose vectors are “nearly
orthogonal” to one another. We define a basis to be θ-orthogonal if the angle between
any basis vector and the linear subspace spanned by the remaining basis vectors is
at least θ. A θ-orthogonal basis is deemed to be nearly orthogonal if θ is at least π

3
radians.

We derive two simple but appealing properties of nearly orthogonal lattice bases.
1. A π

3 -orthogonal basis always contains a shortest nonzero lattice vector.

2. If all vectors of a θ-orthogonal (θ > π
3 ) basis have lengths less than

√
3

sin θ+
√

3 cos θ

times the length of the shortest basis vector, then the basis is the unique π
3 -

orthogonal basis for the lattice (up to multiplication of basis vectors by ±1).
Gauss [13] proved the first property for two-dimensional (2-D) lattices. We prove
(generalizations of) the above properties for m-D lattices for arbitrary m.

We also study lattices generated by a set of random vectors; we focus on vectors
comprising Gaussian or Bernoulli (± 1√

n
) entries. The set of vectors and the generated
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lattice are henceforth referred to as a random basis and a random lattice, respectively.
Random bases and lattices find applications in coding [7] and cryptography [28]. We
prove an appealing property of random lattices.

If a random lattice L in R
n is generated by m ≤ c n (c ≈ 0.071) random

vectors, then the random vectors form a π
3 -orthogonal basis of L with high

probability at finite n and almost surely as n → ∞.
Consequently, the shortest vector in L is contained by the random basis with high
probability.

We also exploit properties of nearly orthogonal bases to solve an interesting digital
image processing problem. Digital color images are routinely subjected to compression
schemes such as the JPEG standard [26]. The various settings used during JPEG
compression of an image—termed as the image’s JPEG compression history—are
often discarded after decompression. For recompression of images which were earlier
in JPEG-compressed form, it is useful to estimate the discarded compression history
from their current representation. We call this problem JPEG compression history
estimation (CHEst). The JPEG compression step maps a color image into a set of
points contained in a collection of related lattices [23]. We show that the JPEG
CHEst problem can be solved by estimating the nearly orthogonal bases spanning
these lattices. Then, we invoke the derived properties of nearly orthogonal bases in a
heuristic to solve the JPEG CHEst problem [23].

Lattices that contain nearly orthogonal bases are somewhat special1 because there
exist lattices without any π

3 -orthogonal basis (see (4) for an example). Consequently,
the new properties of nearly orthogonal lattice bases in this paper cannot be exploited
in all lattice problems.

This paper is organized as follows. Section 2 provides some basic definitions and
well-known results about lattices. Section 3 formally states our results on nearly
orthogonal lattice bases, and section 4 furnishes the proofs for the results in section 3.
Section 5 identifies new properties of random lattices. Section 6 describes the role
of nearly orthogonal bases in solving the JPEG CHEst problem. Section 7 discusses
some limitations of our results and future research directions.

2. Lattices. Consider an m-D lattice L in R
n, m ≤ n. By an ordered basis for L,

we mean a basis with a certain ordering of the basis vectors. We represent an ordered
basis by an ordered set and also by a matrix whose columns define the basis vectors and
their ordering. We use the braces (., .) for ordered sets (for example, (b1, b2, . . . , bm))
and {., .} otherwise (for example, {b1, b2, . . . , bm}). For vectors u, v ∈ R

n, we use
both uT v (with T denoting matrix or vector transpose) and 〈u, v〉 to denote the inner
product of u and v. We denote the Euclidean norm of a vector v in R

n by ‖v‖.
Any two bases B1 and B2 of L are related (when treated as n ×m matrices) as

B1 = B2U , where U is a m × m unimodular matrix; that is, U is an integer matrix
with determinant equal to ±1.

The closest vector problem (CVP) and the shortest vector problem (SVP) are two
closely related fundamental lattice problems [1, 2, 10, 15]. Given a lattice L and an
input vector (not necessarily in L), CVP aims to find a vector in L that is closest (in
the Euclidean sense) to the input vector. Even finding approximate CVP solutions
is known to be NP-hard [10]. The SVP seeks a vector in L with the shortest (in
the Euclidean sense) nonzero length λ(L). The decision version of SVP is not known

1However, our random basis results suggest nearly orthogonal bases occur frequently in low-
dimensional lattices.
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to be NP-complete in the traditional sense, but SVP is NP-hard under randomized
reductions [2]. In fact, even finding approximately shortest vectors (to within any
constant factor) is NP-hard under randomized reductions [16, 20].

A shortest lattice vector is always contained by orthogonal bases. Hence, one
approach to finding short vectors in lattices is to obtain a basis that is close (in some
sense) to orthogonal and use the shortest vector in such a basis as an approximate
solution to the SVP. A commonly used measure to quantify the “orthogonality” of a
lattice basis {b1, b2, . . . , bm} is its orthogonality defect [17]:∏m

i=1 ‖bi‖
|det ([b1, b2, . . . , bm]) | ,

with det denoting the determinant. For rational lattices (lattices comprising rational
vectors), the Lovász basis reduction algorithm [17], often called the LLL algorithm,
obtains an LLL-reduced lattice basis in polynomial time. Such a basis has a small
orthogonality defect. There exist other notions of reduced bases due to Minkowski
and to Korkine and Zolotarev (KZ) [15]. Both Minkowski-reduced and KZ-reduced
bases contain the shortest lattice vector, but it is NP-hard to obtain such bases.

We choose to quantify a basis’s closeness to orthogonality in terms of the following
new measures.

• Weak θ-orthogonality: An ordered set of vectors (b1, b2, . . . , bm) is weakly
θ-orthogonal if for i = 2, 3, . . . ,m, the angle between bi and the subspace
spanned by {b1, b2, . . . , bi−1} lies in the range

[
θ, π

2

]
. That is,

cos−1

⎛⎝ |〈bi,
∑i−1

j=1 αi bi〉|

‖bi‖
∥∥∥∑i−1

j=1 αi bi〉
∥∥∥
⎞⎠ ≥ θ for all αj ∈ R with

∑
j

|αj | > 0.(1)

• θ-orthogonality: A set of vectors {b1, b2, . . . , bm} is θ-orthogonal if every or-
dering of the vectors yields a weakly θ-orthogonal set.

A (weakly) θ-orthogonal basis is one whose vectors are (weakly) θ-orthogonal. Babai
[4] proved that an n-D LLL-reduced basis is θ-orthogonal where sin θ = (

√
2/3)n; for

large n, this value of θ is very small. Thus the notion of an LLL-reduced basis is quite
different from that of a weakly π

3 -orthogonal basis.
We will encounter θ-orthogonal bases in random lattices in section 5 and weakly

θ-orthogonal bases (with θ ≥ π
3 ) in the JPEG CHEst application in section 6.

3. Nearly orthogonal bases: Results. This section formally states the two
properties of nearly orthogonal lattice bases that were identified in the introduction.
We also identify an additional property characterizing unimodular matrices that relate
two nearly orthogonal bases; this property is particularly useful for the JPEG CHEst
application.

Obviously, in an orthogonal lattice basis, the shortest basis vector is a shortest
lattice vector. More generally, given a lattice basis {b1, b2, . . . , bm}, let θi be the angle
between bi and the subspace spanned by the other basis vectors. Then

λ (L) ≥ min
i∈{1,2,...,m}

‖bi‖ sin θi.(2)

Therefore, a θ-orthogonal basis has a basis vector whose length is no more than

λ (L) / sin θ; if θ = π
3 , this bound becomes 2λ(L)√

3
. This shows that nearly orthogonal

lattice bases contain short vectors.



202 R. NEELAMANI, S. DASH, AND R. G. BARANIUK

Gauss proved that in R
2 every π

3 -orthogonal lattice basis indeed contains a short-
est lattice vector and provided a polynomial time algorithm to determine such a basis
in a rational lattice; see [32] for a nice description. We first show that Gauss’s shortest
lattice vector result can be extended to higher-dimensional lattices.

Theorem 1. Let B = (b1, b2, . . . , bm) be an ordered basis of a lattice L. If B is
weakly

(
π
3 + ε

)
-orthogonal for 0 ≤ ε ≤ π

6 , then a shortest vector in B is a shortest
nonzero vector in L. More generally,

min
j∈{1,2,...,m}

‖bj‖ ≤
∥∥∥∥∥

m∑
i=1

uibi

∥∥∥∥∥ for all ui ∈ Z with

m∑
i=1

|ui| ≥ 1,(3)

with equality possible only if ε = 0 or
∑m

i=1 |ui| = 1.
Corollary 1. If 0 < ε ≤ π

6 , then a weakly
(
π
3 + ε

)
-orthogonal basis contains

every shortest nonzero lattice vector (up to multiplication by ±1).
Theorem 1 asserts that a θ-orthogonal lattice basis is guaranteed to contain a

shortest lattice vector if θ ≥ π
3 . In fact, the bound π

3 is tight because, for any ε > 0,
there exist lattices where some θ-orthogonal basis, with θ = π

3 − ε, does not contain
the shortest lattice vector. For example, consider a lattice in R

2 defined by the basis
{b1, b2}, with ‖b1‖ = ‖b2‖ = 1, and the angle between them equal to π

3 − ε. Obviously
b2 − b1 has length less than 1.

For a rational lattice defined by some basis B1, a weakly π
3 -orthogonal basis

B2 = B1U , with U polynomially bounded in size, provides a polynomial-size certificate
for λ (L). However, we do not expect all rational lattices to have such bases because
this would imply that NP=co-NP, assuming SVP is NP-complete. For example, the
lattice L spanned by the basis

B =

⎡⎢⎢⎢⎣
1 0 1

2

0 1 1
2

0 0 1√
2

⎤⎥⎥⎥⎦(4)

does not have any weakly π
3 -orthogonal basis. It is not difficult to verify that [1 0 0]T

is a shortest lattice vector. Thus, λ(L) = 1. Now, assume that L possesses a weakly
π
3 -orthogonal basis B̃ = (b1, b2, b3). Let θ1 be the angle between b2 and b1, and let θ2

be the angle between b3 and the subspace spanned by b1 and b2. Since b1, b2, and b3
have length at least 1,

det(B̃) = ‖b1‖ ‖b2‖ ‖b3‖ | sin θ1| | sin θ2| ≥ sin2 π

3
=

3

4
.(5)

But det(B) = 1√
2
< det(B̃), which shows that the lattice L with basis B in (4) has no

weakly π
3 -orthogonal basis.

Our second observation describes the conditions under which a lattice contains
the unique (modulo permutations and sign changes) set of nearly orthogonal lattice
basis vectors.

Theorem 2. Let B = (b1, b2, . . . , bm) be a weakly θ-orthogonal basis for a lattice
L with θ > π

3 . For all i ∈ {1, 2, . . . ,m}, if

‖bi‖ < η(θ) min
j∈{1,2,...,m}

‖bj‖ ,(6)
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Fig. 1. (a) The vectors comprising the lattice are denoted by circles. One of the lattice bases
comprises two orthogonal vectors of lengths 1 and 1.5. Since 1.5 < η(π

2
) =

√
3, the lattice possesses

no other basis such that the angle between its vectors is at least π
3

radians. (b) This lattice contains
at least two π

3
-orthogonal bases. One of the lattice bases comprises two orthogonal vectors of lengths

1 and 2. Here 2 > η(π
2
), and this basis is not the only π

3
-orthogonal basis.

with η(θ) =

√
3

sin θ +
√

3 cos θ
,(7)

then any π
3 -orthogonal basis comprises the vectors in B multiplied by ±1.

In other words, a nearly orthogonal basis is essentially unique when the lengths of
its basis vectors are nearly equal. For example, both Figures 1(a) and 1(b) illustrate
2-D lattices that can be spanned by orthogonal basis vectors. For the lattice in
Figure 1(a), the ratio of the lengths of the basis vectors is less than η

(
π
2

)
=

√
3.

Hence, there exists only one (modulo sign changes) basis such that the angle between
the vectors is greater than π

3 . In contrast, the lattice in Figure 1(b) contains many
distinct π

3 -orthogonal bases.
In the JPEG CHEst application [23], the target three-dimensional (3-D) lattice

bases in R
3 are known to be weakly

(
π
3 + ε

)
-orthogonal but not

(
π
3 + ε

)
-orthogonal.

Theorem 2 addresses the uniqueness of π
3 -orthogonal bases but not weakly π

3 -orthogonal
bases. To estimate the target lattice basis, we need to understand how different weakly
orthogonal bases are related. The following theorem guarantees that for 3-D lattices
a weakly

(
π
3 + ε

)
-orthogonal basis with nearly equal-length basis vectors is related to

every weakly orthogonal basis by a unimodular matrix with small entries.
Theorem 3. Let B = (b1, b2, . . . , bm) and B̃ be two weakly θ-orthogonal bases for

a lattice L, where θ > π
3 . Let U = (uij) be a unimodular matrix such that B = B̃U .

Define

κ (B) =

(
2√
3

)m−1

×
maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

.(8)

Then, |uij | ≤ κ (B) for all i and j.

For example, if B is a weakly θ-orthogonal basis of a 3-D lattice with
maxi∈{1,2,3}‖bi‖
mini∈{1,2,3}‖bi‖ <

1.5, then the entries of the unimodular matrix relating another weakly θ-orthogonal
basis B̃ to B are either 0 or ±1.

4. Nearly orthogonal bases: Proofs.

4.1. Proof of Theorem 1. We first prove Theorem 1 for 2-D lattices (Gauss’s
result) and then tackle the proof for higher-dimensional lattices via induction.
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4.1.1. Proof for 2-D lattices. Consider a 2-D lattice with a basis B = {b1, b2}
satisfying the conditions of Theorem 1. Let θ′ denote the angle between b1 and b2.
Since π

3 ≤ θ′ ≤ π
2 by assumption,

|〈b1, b2〉| = ‖b1‖ ‖b2‖ cos θ′ ≤ ‖b1‖ ‖b2‖
2

.(9)

The squared-length of any nonzero lattice vector v = u1b1 +u2b2, with u1, u2 ∈ Z and
|u1| + |u2| > 0, equals

‖v‖2 = |u1|2‖b1‖2 + |u2|2‖b2‖2 + 2u1u2〈b1, b2〉

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − 2|u1||u2||〈b1, b2〉|

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − |u1||u2|‖b1‖ ‖b2‖ (using (9))

= (|u1|‖b1‖ − |u2|‖b2‖)2 + |u1||u2|‖b1‖ ‖b2‖(10)

≥ min
(
‖b1‖2, ‖b2‖2

)
,

with equality possible only if either |u1|+ |u2| = 1 or θ′ = π
3 . This proves Theorem 1

for 2-D lattices.

4.1.2. Proof for higher-dimensional lattices. Let k > 2 be an integer, and
assume that Theorem 1 is true for every (k − 1)-D lattice. Consider a k-D lattice
L spanned by a weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk), with ε ≥ 0. Any

nonzero vector in L can be written as
∑k

i=1 ui bi for integers ui, where ui �= 0 for

some i ∈ {1, 2, . . . , k}. If uk = 0, then
∑k

i=1 ui bi is contained in the (k − 1)-D lattice
spanned by the weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk−1). For uk = 0, by the

induction hypothesis, we have∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ =

∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ ≥ min
j∈{1,2,...,k−1}

‖bj‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

If ε > 0, then the first inequality in the above expression can hold as an equality only
if
∑k−1

i=1 |ui| = 1. If uk �= 0 and ui = 0 for i = 1, 2, . . . , k − 1, then again∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ ≥ ‖bk‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

Again, it is necessary that |uk| = 1 for the equality to hold above.

Assume that uk �= 0 and ui �= 0 for some i ∈ {1, 2, . . . , k − 1}. Now
∑k

i=1 ui bi is

contained in the 2-D lattice spanned by the vectors
∑k−1

i=1 ui bi and ukbk. Since the or-
dered set (b1, b2, . . . , bk) is weakly

(
π
3 + ε

)
-orthogonal, the angle between the nonzero

vectors
∑k−1

i=1 ui bi and ukbk lies in the interval
[
π
3 + ε, π

2

]
. Invoking Theorem 1 for

2-D lattices, we have∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ ≥ min

(∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ , ‖ukbk‖
)

≥ min

(
min

j∈{1,2,...,k−1}
‖bj‖ , ‖ukbk‖

)
≥ min

j∈{1,2,...,k}
‖bj‖ .(11)
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Thus, the set of basis vectors {b1, b2, . . . , bk} contains a shortest nonzero vector in the
k-D lattice. Also, if ε > 0, then equality is not possible in (11), and the second part
of the theorem follows.

4.2. Proof of Theorem 2. Similar to the proof of Theorem 1, we first prove
Theorem 2 for 2-D lattices and then prove the general case by induction.

4.2.1. Proof for 2-D lattices. Consider a 2-D lattice in R
n with basis vectors

b1 and b2 such that the basis {b1, b2} is weakly θ-orthogonal with θ > π
3 . Note that

for 2-D lattices, weak θ-orthogonality is the same as θ-orthogonality. Without loss of
generality (w.l.o.g.), we can assume that 1 = ‖b1‖ ≤ ‖b2‖. Further, by rotating the
2-D lattice, the basis vectors can be expressed as the columns of the n× 2 matrix

⎡⎢⎢⎢⎢⎢⎣
1 b21
0 b22
0 0
...

...
0 0

⎤⎥⎥⎥⎥⎥⎦ .

Let θ′ ∈
[
θ, π

2

]
denote the angle between b1 and b2. Clearly,

cos θ′ =
|b21|
‖b2‖

and sin θ′ =
|b22|
‖b2‖

.

Since (6) holds by assumption,

‖b2‖ <

√
3‖b1‖

sin θ +
√

3 cos θ
≤

√
3‖b1‖

sin θ′ +
√

3 cos θ′
=

√
3

|b22|
‖b2‖ +

√
3 |b21|
‖b2‖

,

where we have used the fact that η(θ) is a nondecreasing function of θ for θ ∈
[
π
3 ,

π
2

]
.

Therefore,

|b22| <
√

3(1 − |b21|).(12)

Let {b̃1, b̃2} denote another π
3 -orthogonal basis for the same 2-D lattice. Using

Theorem 1 and Corollary 1, we infer that {b1, b2} contains every shortest lattice vector

(multiplied by ±1) and {b1, b2} and
{
b̃1, b̃2

}
contain a common shortest lattice vector.

Assume w.l.o.g. that b̃1 = ±b1 is a shortest lattice vector. Then, we can write

[
b̃1 b̃2

]
=
[
b1 b2

] [±1 u
0 ±1

]
with u ∈ Z.

To prove Theorem 2, we need to show that u = 0.
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Let θ̃ denote the angle between b̃1 and ±b̃2. Then,

cos2 θ̃ =

∣∣∣〈̃b1, b̃2〉∣∣∣2∥∥∥b̃1∥∥∥2 ∥∥∥b̃2∥∥∥2
=

(u± b21)
2

(u± b21)2 + b222

>
(u± b21)

2

(u± b21)2 + 3(1 − |b21|)2
(using (12))

=
1

1 + 3(1−|b21|)2
(u±b21)2

.(13)

If u �= 0, then

|u± b21| ≥ |u| − |b21| ≥ 1 − |b21| ≥ 0 (from (12)).

Hence,

|u± b21|2 ≥ (1 − |b21|)2.

Therefore, from (13) we have

cos2 θ̃ >
1

4
,(14)

which holds if and only if θ̃ < π
3 . Thus, {b̃1, b̃2} can be π

3 -orthogonal only if u = 0.
This proves Theorem 2 for 2-D lattices.

4.2.2. Proof for higher-dimensional lattices. Let B and B̃ be two n × k
matrices defining bases of the same k-D lattice in R

n. We can write B = B̃ U for
some integer unimodular matrix U = (uij). Using induction on k, we will show that
if B is weakly θ-orthogonal with π

3 < θ ≤ π
2 , if the columns of B satisfy (6), and

if B̃ is π
3 -orthogonal, then B̃ can be obtained by permuting the columns of B and

multiplying them by ±1. Equivalently, we will show every column of U has exactly
one component equal to ±1 and all others equal to 0 (we call such a matrix a signed
permutation matrix).

Assume that Theorem 2 holds for all (k−1)-D lattices with k > 2. Let b1, b2, . . . , bk
denote the columns of B, and let b̃1, b̃2, . . . , b̃k denote the columns of B̃. Since per-
muting the columns of B̃ does not destroy π

3 -orthogonality, we can assume w.l.o.g.

that b̃1 is B̃’s shortest vector. From Theorem 1, b̃1 is also a shortest lattice vector.
Further, using Corollary 1, ±b̃1 is contained in B. Assume that b� = ±b̃1 for some
	 ∈ {1, 2, . . . , k}. Then

B = B̃

⎡⎢⎢⎢⎢⎣
u11 . . . u1�−1 ±1 u1�+1 . . . u1k

...
U ′

1 0 U ′
2

...

⎤⎥⎥⎥⎥⎦ .(15)

Above, U ′
1 is a (k−1)× (	−1) submatrix, where as U ′

2 is a (k−1)× (k−	) submatrix.
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We will show that u1j = 0 for all j ∈ {1, 2, . . . , k} with j �= 	. Define

Br =
[
b� bj

]
, B̃r =

[
b̃1
∑k

i=2 uij b̃i

]
.(16)

Then, from (15) and (16),

Br = B̃r

[
±1 u1j

0 1

]
.

Since Br and B̃r are related by a unimodular matrix, they both define bases of the
same 2-D lattice. Further, Br is weakly θ-orthogonal with ||bj || < η(θ)||b�||, and B̃r

is π
3 -orthogonal. Invoking Theorem 2 for 2-D lattices, we can infer that u1j = 0. It

remains to be shown that U ′ = [U ′
1 U ′

2] is also a signed permutation matrix, where

B′ = B̃′U ′,

with B′ = [b1, b2, . . . , b�−1, b�+1, . . . , bk] and B̃′ =
[
b̃2, b̃3, . . . , b̃k

]
. Observe that

det(U ′) = det(U) = ±1. Both B′ and B̃′ are bases of the same (k − 1)-D lattice

as U ′ is unimodular. B̃′ is π
3 -orthogonal, whereas B′ is weakly θ-orthogonal, and its

columns satisfy (6). By the induction hypothesis, U ′ is a signed permutation matrix.
Therefore, U is also a signed permutation matrix.

4.3. Proof of Theorem 3. Theorem 3 is a direct consequence of the following
lemma.

Lemma 1. Let B = (b1, b2, . . . , bm) be a weakly θ-orthogonal basis of a lattice,
where θ > π

3 . Then, for any integers u1, u2, . . . , um,∥∥∥∥∥
m∑
i=1

uibi

∥∥∥∥∥ ≥
(√

3

2

)m−1

× max
i∈{1,2,...,m}

‖uibi‖ .(17)

Lemma 1 can be proved as follows. Consider the vectors b1 and b2; the angle θ
between them lies in the interval

(
π
3 ,

π
2

)
. Recall from (10) that

‖u1b1 + u2b2‖2 ≥ (|u1| ‖b1‖ − |u2| ‖b2‖)2 + |u1||u2|‖b1‖‖b2‖.

Consider the expression (y − x)
2

+ yx with 0 ≤ x ≤ y. For fixed y this expression
attains its minimum value of

(
3
4

)
y2 when x = y

2 . By setting y = |u1| ‖b1‖ and
x = |u2| ‖b2‖ w.l.o.g, we can infer that

‖u1b1 + u2b2‖ ≥
√

3

2
max

i∈{1,2}
‖uibi‖.

Since B is weakly θ-orthogonal, the angle between ukbk and
∑k−1

i=1 uibi lies in the
interval

(
π
3 ,

π
2

)
for k = 2, 3, . . . ,m. Hence (17) follows by induction.

We now proceed to prove Theorem 3 by invoking Lemma 1. First, we define Δ =
(
√

3/2)m−1. For any j ∈ {1, 2, . . . ,m}, we have

‖bj‖ =

∥∥∥∥∥
m∑
i=1

uij b̃i

∥∥∥∥∥ ≥ Δ max
i∈{1,2,...,m}

∥∥∥uij b̃i

∥∥∥ ≥ Δ min
i∈{1,2,...,m}

‖b̃i‖ max
i∈{1,2,...,m}

|uij |.
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Since B and B̃ are both weakly θ-orthogonal with θ > π
3 , mini∈{1,2,...,m} ‖b̃i‖ =

mini∈{1,2,...,m} ‖bi‖. Therefore,

Δ max
i∈{1,2,...,m}

|uij | ≤
‖bj‖

mini∈{1,2,...,m} ‖b̃i‖
≤

maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

= Δκ (B) .

Thus, |uij | ≤ κ (B) for all i and j.

5. Random lattices and SVP. In several applications, the orthogonality of
random lattice bases and the length of the shortest vector λ(L) in a random lattice L
play an important role. For example, in certain wireless communications applications
involving multiple transmitters and receivers, the received message ideally lies on a
lattice spanned by a random basis [7]. The random basis models the fluctuations in the
communication channel between each transmitter-receiver pair. Due to the presence
of noise, the ideal received message is retrieved by solving a CVP. The complexity
of this problem is controlled by the orthogonality of the random basis [1]. Random
bases are also employed to perform error correction coding [28] and in cryptography
[28]. The level of achievable error correction is controlled by the shortest vector in
the lattice.

In this section, we determine the θ-orthogonality of random bases. This result
immediately lets us identify conditions under which a random basis contains (with
high probability) the shortest lattice vector.

Before describing our results on random lattices and bases, we first review some
known properties of random lattices and then list some powerful results from random
matrix theory.

5.1. Known properties of random lattices. Consider an m-D lattice gener-
ated by a random basis with each of the m basis vectors chosen independently and
uniformly from the unit ball in R

n (n ≥ m).2 With m fixed and with n → ∞, the
probability that the random basis is Minkowski-reduced tends to 1 [11]. Thus, as
n → ∞, the random basis contains a shortest vector in the lattice almost surely.
Recently, [3] proved that, as n − m → ∞, the probability that a random basis is
LLL-reduced → 1. Further, [3] also showed that a random basis is LLL-reduced with
nonzero probability when n−m is fixed with n → ∞.

5.2. Known properties of random matrices. Random matrix theory, a rich
field with many applications [6, 12], has witnessed several significant developments
over the past few decades [12, 18, 19, 30]. We will invoke some of these results to
derive some new properties of random bases and lattices; the paper [6] provides an
excellent summary of the results we mention below.

Consider an n ×m matrix B with each element of B an independent identically
distributed random variable. If the variables are zero-mean Gaussian distributed with
variance 1

n , then we refer to such a B as a Gaussian random basis. If the variables
take on values in {− 1√

n
, 1√

n
} with equal probability, then we term B to be a Bernoulli

random basis. We say that B is a scaled Gaussian (Bernoulli) basis if it is obtained
by scaling the columns of a Gaussian (Bernoulli) basis arbitrarily.

Gaussian and Bernoulli random bases enjoy the following properties. Below, ψ2
i ,

i = 1, 2, . . . ,m, denote the eigenvalues of BTB.

2The m vectors form a basis because they are linearly independent almost surely.
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1. For both Gaussian and Bernoulli B, BTB’s smallest and largest eigenvalues,
ψ2

min and ψ2
max, converge almost surely to (1−

√
c)2 and (1+

√
c)2, respectively,

as n,m → ∞ and m
n → c < 1 [6, 12, 30].

2. Let ε > 0 be given. Then, there exists an Nε such that, for every n > Nε and
r > 0,

P

(
|ψmin| ≤

(
1 −
√

m

n

)
− (r + ε)

)
≤ e−

nr2

ρ ,(18)

P

(
|ψmax| ≥

(
1 +

√
m

n

)
+ (r + ε)

)
≤ e−

nr2

ρ ,(19)

with ρ = 2 for Gaussian B and ρ = 16 for Bernoulli B [6, 18].
In essence, a random matrix’s largest and smallest singular values converge, respec-
tively, to 1±

√
m
n almost surely as n,m → ∞ and lie close to 1±

√
m
n with very high

probability at finite (but sufficiently large) n.

5.3. New results on random lattices. We now formally state the new prop-
erties of random lattices mentioned in the introduction plus several additional corol-
laries. Our proofs assume that the lattices are generated by Gaussian or Bernoulli
random bases (whose column vectors are essentially unit-length). However, our results
easily extend to lattices generated by Gaussian or Bernoulli random bases because
the θ-orthogonality of a basis does not change upon scaling the basis vectors.

The key step in proving our results is to relate the condition number of a random
basis to its θ-orthogonality (see Lemma 2). A matrix’s condition number is defined
as the ratio of the largest to the smallest singular value. Then we invoke the results
in section 5.2 to quantify the θ-orthogonality of random bases. Finally we invoke
previously deduced properties of nearly orthogonal lattice bases.

We wish to emphasize that we prove our statements only for lattices which are
not full-dimensional. Our computational results suggest these statements are not
true for full-dimensional lattices. Further, Sorkin [31] proves that, with high proba-
bility, Gaussian random matrices are not nearly orthogonal when m > n/4. See the
paragraph after Corollary 3 for more details.

Lemma 2. Consider an arbitrary n×m real-valued matrix B, with m ≤ n, whose
largest and smallest singular values are denoted by ψmax and ψmin, respectively. Then
the columns of B are θ-orthogonal with

θ = sin−1

(
2ψmax ψmin

ψ2
min + ψ2

max

)
.(20)

The proof is given in section 5.4. The value of θ in (20) is the best possible in
the sense that there is a 2× 2 matrix B with singular values ψmin and ψmax such that
the angle between the two columns of B is given by (20). Note that for large ψmin

ψmax

(that is, for a small condition number), the θ in (20) is close to π
2 . Thus, Lemma 2

quantifies our intuition that a matrix with a small condition number should be nearly
orthogonal.

By combining Lemma 2 with the properties of random matrices listed in sec-
tion 5.2, we can immediately deduce the θ-orthogonality of an n ×m random basis.
See section 5.4.2 for the proof.



210 R. NEELAMANI, S. DASH, AND R. G. BARANIUK

Theorem 4. Let B denote an n × m Gaussian or Bernoulli random basis. If
m ≤ cn, 0 ≤ c < 1, then as n → ∞, B is θ-orthogonal almost surely with

θ = sin−1

(
1 − c

1 + c

)
.(21)

Further, given an ε > 0, there exists an Nε such that, for every n > Nε and r > 0, B
is θ-orthogonal,

θ = sin−1

(
1 − c

1 + c
− 3

√
3

4
(r + ε)

)
,(22)

with probability greater than 1 − 2e−
nr2

ρ , where ρ = 2 for Gaussian B and ρ = 16 for
Bernoulli B.

The value of θ in (21) is not the best possible in the sense that, for a given value
of c, a random n × m Gaussian matrix with m ≤ c n would be θ′-orthogonal (with
high probability) for some θ′ > θ (see Figure 2). The reason is that the θ predicted
by Lemma 2 is satisfied by all matrices. However, Theorem 4 is restricted to random
matrices.

Theorem 4 allows us to bound the length of the shortest nonzero vector in a
random lattice.

Corollary 2. Let the n × m matrix B = (b1, b2, . . . , bm), with m ≤ cn and
0 ≤ c < 1, denote a Gaussian or Bernoulli random basis for a lattice L. Then the
shortest vector’s length λ(L) satisfies

λ (L) ≥ 1 − c

1 + c

almost surely as n → ∞.
Each column of a Bernoulli B is unit-length by construction. For Gaussian B, it

is not difficult to show that all columns have length 1 almost surely as n → ∞. Hence
Corollary 2 is an immediate consequence of Theorem 4 and (2). Corollary 2 implies
that, in random lattices that are not full-dimensional, it is easy to obtain approximate
solutions to the SVP (within a constant factor). This is because for random lattices
in R

n with dimension n(1− ε), λ(L) is greater than ε times the length of the shortest
basis vector (approximately). Compare this with Daudé’s and Vallée’s [9] result that
in random full-dimensional lattices in R

n, λ(L) is at least O(1/
√
n) times the length

of the shortest basis vector with high probability.
By substituting θ = π

3 into Theorem 4 and then invoking Corollary 1, we can
deduce sufficient conditions for a random basis to be π

3 -orthogonal.
Corollary 3. Let the n×m matrix B denote a Gaussian or Bernoulli random

basis for lattice L. If m
n ≤ c <

(
7 −

√
48
)

(≈ 0.071), then B is π
3 -orthogonal almost

surely as n → ∞. Further, given an ε > 0, there exists an Nε such that, for every

n > Nε and 4(1−c)

3
√

3(1+c)
− ε− 2

3 > r > 0, B is π
3 -orthogonal with probability greater than

1 − 2e−nr2/ρ, where ρ = 2 for Gaussian B and ρ = 16 for Bernoulli B.
Figure 2 illustrates that, in practice, an n × m Gaussian and Bernoulli random

matrix is nearly orthogonal for much larger values of m
n than our results claim. Our

plots suggest that the probability for a random basis to be nearly orthogonal sharply
transitions from 1 to 0 for m

n values in the interval [0.2, 0.25]. Sorkin [31] has shown
us that if the columns of B represent points chosen uniformly from the unit sphere in
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Fig. 2. Empirical probability that a n × m Gaussian or Bernoulli random matrix is π
3
-

orthogonal. At n = 256, 512, 1024, and 2048 and at m indicated by circles (for Gaussian) and
triangles (for Bernoulli), we tested 200 randomly generated matrices. The empirical probability is
the fraction of random matrices that were π

3
-orthogonal.

R
n (one can obtain such points by dividing the columns of a Gaussian matrix by their

norms), then the best possible m
n value for random n×m matrices to be π

3 -orthogonal
is m

n = 0.25. Further, if m/n > 0.25, B is almost surely not π
3 -orthogonal as n → ∞.

For large n, the columns of a Gaussian matrix almost surely have length 1 and thus
behave like points chosen uniformly from the unit sphere in R

n. Therefore, as n → ∞,
random n× n/4 Gaussian matrices are almost surely π

3 -orthogonal.

5.4. Proof of results on random lattices. This section provides the proofs
for Lemma 2 and Theorem 4.

5.4.1. Proof of Lemma 2. Our goal is to construct a lower-bound for the angle
between any column of B and the subspace spanned by all the other columns in terms
of the singular values of B. Clearly, if ψmin = 0, then the columns of B are linearly
dependent. Hence, (20) holds as B’s columns are θ-orthogonal with θ = 0. For the
rest of the proof, we will assume that ψmin �= 0.
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Consider the SVD of B:

B = XΨY,(23)

where X and Y are n×m and m×m real-valued matrices, respectively, with orthonor-
mal columns and Ψ is a m×m real-valued diagonal matrix. Let bi and xi denote the
ith column of B and X , respectively, let yij denote the element from the ith row and
jth column of Y, and let ψi denote the ith diagonal element of Ψ. Then, (23) can be
rewritten as

[
b1 b2 . . . bm

]
=
[
x1 x2 . . . xm

]
⎡⎢⎢⎢⎣
ψ1 0 . . . 0
0 ψ2 . . . 0
...

. . .
...

0 . . . . . . ψm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y11 y12 . . . y1m

y21 y22 . . . y2m

...
. . .

...
ym1 . . . . . . ymm

⎤⎥⎥⎥⎦.
We now analyze the angle between b1 (w.l.o.g) and the subspace spanned by

{b2, b3, . . . , bm}. Note that

b1 =

m∑
i=1

ψi yi1 xi.

Let b̃1 denote an arbitrary nonzero vector in the subspace spanned by {b2, b3, . . . , bm}.
Then,

b̃1 =

m∑
k=2

αk bk =

m∑
k=2

αk

m∑
i=1

ψi yik xi =

m∑
i=1

xi ψi

m∑
k=2

αk yik

for some αk ∈ R with
∑

k |αk| > 0. Let ỹi1 =
∑m

k=2 αk yik. Then,

b̃1 =

m∑
i=1

ψiỹi1xi.

Let θ̃ ≥ θ denote the angle between b1 and b̃1. Then,

cos θ̃ =

∣∣∣〈b1, b̃1〉∣∣∣
‖b1‖

∥∥∥b̃1∥∥∥ =
|〈
∑m

i=1 ψi yi1 xi,
∑m

i=1 ψi ỹi1 xi〉|
‖
∑m

i=1 ψi yi1 xi‖ ‖
∑m

i=1 ψi ỹi1 xi‖
(24)

=

∣∣∑m
i=1 ψ

2
i yi1 ỹi1

∣∣√∑m
i=1 ψ

2
i y

2
i1

√∑m
i=1 ψ

2
i ỹ

2
i1

,(25)

where the orthonormality of the X columns is used to obtain (25) from (24). Let yi,
i = 1, 2, . . . ,m, and ỹ1 denote column vectors

yi :=

⎡⎢⎢⎢⎣
y1i

y2i

...
ymi

⎤⎥⎥⎥⎦and ỹ1 :=

⎡⎢⎢⎢⎣
ỹ11

ỹ21

...
ỹm1

⎤⎥⎥⎥⎦ .
Since ỹ1 =

∑m
k=2 αk yk,

ỹT1 y1 = 0.
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Then (25) can be rewritten using matrix notation as

cos θ̃ =

∣∣yT1 Ψ2 ỹ1

∣∣√
yT1 Ψ2 y1

√
ỹT1 Ψ2 ỹ1

,(26)

with Ψ2 := ΨTΨ. The angle θ̃ is minimized when the right-hand side of (26) is
maximized.

For arbitrary B with only the singular values known (that is, Ψ is known), the θ-
orthogonality of B is given by solving the following constrained optimization problem:

cos θ = max
y1,ỹ1

∣∣yT1 Ψ2ỹ1

∣∣√
yT1 Ψ2 y1

√
ỹT1 Ψ2ỹ1

such that ỹT1 y1 = 0.(27)

Wielandt’s inequality [14, Thm. 7.4.34] states that if A is a positive definite ma-
trix, with γmin and γmax denoting its minimum and maximum eigenvalues (both are
positive), then

|xTAy|2 ≤
(
γmax − γmin

γmax + γmin

)2

(xTAx)(yTAy)

for every pair of orthogonal vectors x and y (equality holds for some pair of orthogonal
vectors). In our problem, A = Ψ2, x = ỹ1, y = y1, γmax = ψ2

max, and γmin = ψ2
min.

Therefore, using Wielandt’s inequality and (27), we have

cos θ =
ψ2

max − ψ2
min

ψ2
max + ψ2

min

.

Hence

sin θ =
2ψmaxψmin

ψ2
max + ψ2

min

,(28)

which proves (20).

5.4.2. Proof of Theorem 4. The first part of Theorem 4 follows easily. From
section 5.2, we can infer that with m ≤ cn, 0 ≤ c < 1, both ψmin ≥ 1 −

√
c and

ψmax ≤ 1 +
√
c almost surely as n → ∞. Invoking Lemma 2 and substituting ψmin =

1 −
√
c and ψmax = 1 +

√
c into (20), it follows that, as n → ∞, B is θ-orthogonal

almost surely with θ given by (21).
We now focus on proving the second part of Theorem 4. Let d =

√
c, and define

G(d) :=
1 − d2

1 + d2
.

We first show that, for δ ≥ 0,

G(d + δ) ≥ G(d) − 3
√

3

4
δ.(29)

Using the mean value theorem,

G(d + δ) = G(d) + G′
(
d + δ̃

)
δ for some δ̃ ∈ (0, δ),(30)
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with G′ denoting the derivative of G with respect to d. Further,

G′(d) =
−4d

(1 + d2)
2 ≥ −3

√
3

4
for d > 0.(31)

One can verify the inequality above by differentiating G′(d) and observing that G′(d)
is minimized when 3d4+2d2−1 = 0. The only positive root of this quadratic equation
is d2 = 1/3 or d = 1/

√
3. Combining (30) and (31), we obtain (29).

From the results in section 5.2, it follows that the probability that both minimum
and maximum singular values of B satisfy

|ψmin| ≥ 1 −
(√

c + r + ε
)

and |ψmax| ≤ 1 +
(√

c + r + ε
)

(32)

is greater than 1 − 2e−
nr2

ρ . When (32) holds, B is at least sin−1 (G (
√
c + r + ε))-

orthogonal. This follows from (20). Invoking (29), we can infer that B is θ-orthogonal
with θ as in (22).

6. JPEG CHEst. In this section, we review the JPEG CHEst problem that
motivates our study of nearly orthogonal lattices and describe how we use this pa-
per’s results to solve this problem. We first touch on the topic of digital color image
representation and briefly describe the essential components of JPEG image compres-
sion.

6.1. Digital color image representation. Traditionally, digital color images
are represented by specifying the color of each pixel, the smallest unit of image repre-
sentation. According to the trichromatic theory [29], three parameters are sufficient to
specify any color perceived by humans.3 For example, a pixel’s color can be conveyed
by a vector w

RGB
= (w

R
, w

G
, w

B
) ∈ R

3, where w
R
, w

G
, and w

B
specify the intensity

of the color’s red (R), green (G), and blue (B) components, respectively. Call w
RGB

the RGB encoding of a color. RGB encodings are vectors in the vector space where
the R, G, and B colors form the standard unit basis vectors; this coordinate system
is called the RGB color space. A color image with M pixels can be specified using
RGB encodings by a matrix P ∈ R

3×M .

6.2. JPEG compression and decompression. To achieve color image com-
pression, schemes such as JPEG first transform the image to a color encoding other
than the RGB encoding and then perform quantization. Such color encodings can be
related to the RGB encoding by a color-transform matrix C ∈ R

3×3. The columns of
C form a different basis for the color space spanned by the R, G, and B vectors. Hence
an RGB encoding w

RGB
can be transformed to the C encoding vector as C−1w

RGB
;

the image P is mapped to C−1P . For example, the matrix relating the RGB color
space to the ITU.BT-601 Y CbCr color space is given by [27]⎡⎣wY

w
Cb

w
Cr

⎤⎦ =

⎡⎣ 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

⎤⎦⎡⎣wR

w
G

w
B

⎤⎦ .(33)

The quantization step is performed by first choosing a diagonal positive (nonzero
entries are positive) integer quantization matrix Q and then computing the quan-
tized (compressed) image from C−1P as Pc =

⌈
Q−1C−1P

⌋
, where .� stands for

3The underlying reason is that the human retina has only three types of receptors that influence
color perception.
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the operation of rounding to the nearest integer. JPEG decompression constructs
Pd = CQPc = CQ

⌈
Q−1C−1P

⌋
. Larger Q’s achieve more compression but at the cost

of greater distortion between the decompressed image Pd and the original image P .
In practice, the image matrix P is first decomposed into different frequency com-

ponents P = {P1, P2, . . . , Pk} for some k > 1 (usually k = 64) during compression.
Then, a common color transform C is applied to all the submatrices P1, P2, . . . , Pk,
but each submatrix Pi is quantized with a different quantization matrix Qi. The
compressed image is Pc = {Pc,1, Pc,2, . . . , Pc,k} =

{⌈
Q−1

1 C−1P1

⌋
,
⌈
Q−1

2 C−1P2

⌋
, . . . ,⌈

Q−1
k C−1Pk

⌋}
, and the decompressed image is Pd = {CQ1Pc,1, CQ2Pc,2, . . . , CQkPc,k}.

During compression, the JPEG-compressed file format stores the matrix C and the
matrices Qi along with Pc. These stored matrices are utilized to decompress the JPEG
image but are discarded afterward. Hence we refer to the set {C,Q1, Q2, . . . , Qk} as
the compression history of the image.

6.3. JPEG CHEst problem statement. This paper’s contributions are mo-
tivated by the following question: Given a decompressed image Pd =

{
CQ1Pc,1,

CQ2Pc,2, . . . , CQkPc,k

}
and some information about the structure of C and the Qi’s,

can we estimate the color transform C and the quantization matrices Qi? As
{C,Q1, Q2, . . . , Qk} comprises the compression history of the image, we refer to this
problem as JPEG CHEst. An image’s compression history is useful for applications
such as JPEG recompression [5, 22, 23].

6.4. Near-orthogonality and JPEG CHEst. The columns of CQiPc,i lie on
a 3-D lattice with basis CQi because Pc,i is an integer matrix. The estimation of
CQi’s comprises the main step in JPEG CHEst. Since a lattice can have multiple
bases, we must exploit some additional information about practical color transforms
to correctly deduce the CQi’s from the CQiPc,i’s. Most practical color transforms
aim to represent a color using an approximately rotated reference coordinate system.
Consequently, most practical color transform matrices C (and, thus, CQi) can be
expected to be almost orthogonal. We have verified that all C’s used in practice are
weakly

(
π
3 + ε

)
-orthogonal, with 0 < ε ≤ π

6 .4 Thus, nearly orthogonal lattice bases
are central to JPEG CHEst.

6.5. Our approach. Our approach is to first estimate the products CQi by
exploiting the near-orthogonality of C and to then decompose CQi into C and Qi.
We will assume that C is weakly

(
π
3 + ε

)
-orthogonal, 0 < ε ≤ π

6 .

6.5.1. Estimating the CQi’s. Let Bi be a basis of the lattice Li spanned by
CQi. Then, for some unimodular matrix Ui, we have

Bi = CQiUi.(34)

If Bi is given, then estimating CQi is equivalent to estimating the respective Ui.
Thanks to our problem structure, the correct Ui’s satisfy the following constraints.

Note that these constraints become increasingly restrictive as the number of frequency
components k increases.

1. The Ui’s are such that BiU−1
i is weakly

(
π
3 + ε

)
-orthogonal.

2. The product UiB−1
i BjU−1

j is diagonal with positive entries for any i, j ∈
{1, 2, . . . , k}. This is an immediate consequence of (34).

4In general, the stronger assumption of π
3
-orthogonality does not hold for some practical color

transform matrices.
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Table 6.1

Number of unimodular matrices satisfying constraints 3 and 4 for small κ.

κ Constraint 4 Constraints 3 and 4
1 6960 5232
2 135408 43248
3 1281648 197616
4 5194416 513264
5 20852976 1324272

If, in addition, Bi is weakly
(
π
3 + ε

)
-orthogonal, then the following hold.

3. The columns of Ui corresponding to the shortest columns of Bi are the stan-
dard unit vectors times ±1. This follows from Corollary 1 because the
columns of both Bi and CQi indeed contain all shortest vectors in Li up
to multiplication by ±1.

4. All entries of Ui are ≤ κ(Bi) in magnitude. This follows from Theorem 3.
We now outline our heuristic.
(i) Obtain bases Bi for the lattices Li, i = 1, 2, . . . , k. Construct a weakly(

π
3 + ε

)
-orthogonal basis B� for at least one lattice L�, 	 ∈ {1, 2, . . . , k}.

(ii) Compute κ(B�).
(iii) For every unimodular matrix U� satisfying constraints 1, 3, and 4, go to step

(iv).
(iv) For U� chosen in step (iii), test if there exist unimodular matrices Uj for

each j = 1, 2, . . . , k, j �= 	, that satisfies constraint 2. If such a collection of
matrices exists, then return this collection; otherwise, go to step (iii).

For step (i), we simply use the LLL algorithm to compute LLL-reduced bases
for each Li. Such bases are not guaranteed to be weakly

(
π
3 + ε

)
-orthogonal, but in

practice, this is usually the case for a number of the Li’s. Instead of LLL, the method
proposed in [24] could be also employed (as suggested by the referees). In contrast
to the LLL, [24] always finds a basis that contains the shortest lattice vector in low-
dimensional lattices (up to four dimensions) such as the Li’s in our problem. In step
(iv), for each frequency component j �= 	, we compute the diagonal matrix Dj with

smallest positive entries such that Ũj = B−1
j B�U−1

� Dj is integral, and then we test

whether Ũj is unimodular. If not, then for the given U� no appropriate unimodular
matrix Uj exists.

The overall complexity of the heuristic is determined mainly by the number of
times we repeat step (iv), which equals the number of distinct choices for U� in step
(iii). This number is typically not very large because in step (i) we are usually able
to find some weakly

(
π
3 + ε

)
-orthogonal basis Bl with κ < 2. In fact, we enumerate

all unimodular matrices satisfying constraints 3 and 4 and then test constraint 1. (In
practice, one can avoid enumerating the various column permutations of a unimodular
matrix). Table 6.1 provides the number of unimodular matrices satisfying constraint 4
alone and also constraints 3 and 4. Clearly, constraints 3 and 4 help us to significantly
limit the number of unimodular matrices we need to test, thereby speeding up our
search.

Our heuristic returns a collection of unimodular matrices {Ui} that satisfy con-
straints 1 and 2; of course, they also satisfy constraints 3 and 4 if the corresponding
Bi’s are weakly

(
π
3 + ε

)
-orthogonal. From the Ui’s, we compute CQi = BiU−1. If

constraints 1 and 2 can be satisfied by another solution {U ′
i}, then it is easy to see

that U ′
i �= Ui for every i = 1, 2, . . . , k. In section 6.5.3, we will argue (without proof)

that constraints 1 and 2 are likely to have a unique solution in most practical cases.
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6.5.2. Splitting CQi into C and Qi. Decomposing the CQi’s into C and
Qi’s is equivalent to determining the norm of each column of C because the Qi’s are
diagonal matrices. Since the Qi’s are integer matrices, the norm of each column of
CQi is an integer multiple of the corresponding column norm of C. In other words,
the norms of the jth column (j ∈ {1, 2, 3}) of different CQi’s form a sublattice of
the one-dimensional lattice spanned by the jth column norm of C. As long as the
greatest common divisor of the jth diagonal values of the matrices Qi is 1, we can
uniquely determine the jth column of C; the values of Qi follow trivially.

6.5.3. Uniqueness. Does JPEG CHEst have a unique solution? In other words,
is there a collection of matrices

(C ′, Q′
1, Q

′
2, . . . , Q

′
k) �= (C,Q1, Q2, . . . , Qk)

such that C ′Q′
i is a weakly

(
π
3 + ε

)
-orthogonal basis of Li for all i ∈ {1, 2, . . . , k}? We

believe that the solution can be nonunique only if the Qi’s are chosen carefully. For
example, let Q be a diagonal matrix with positive diagonal coefficients. Assume that,
for i = 1, 2, . . . , k, Qi = αiQ, with αi ∈ R and αi > 0. Further, assume that there
exists a unimodular matrix U not equal to the identity matrix I such that C ′ = CQU
is weakly

(
π
3 + ε

)
-orthogonal. Define Q′

i = αiI for i = 1, 2, . . . , k. Then C ′Q′
i is also

a weakly
(
π
3 + ε

)
-orthogonal basis for Li. Typically, JPEG employs Qi’s that are not

related in any special way. Therefore, we believe that for most practical cases JPEG
CHEst has a unique solution.

6.5.4. Experimental results. We tested the proposed approach using a wide
variety of test cases. In reality, the decompressed image Pd is always corrupted with
some additive noise. Consequently, to estimate the desired compression history, the
approach described above was combined with some additional noise mitigation steps.
Our algorithm provided accurate estimates of the image’s JPEG compression history
for all the test cases. We refer the reader to [22, 23] for details on the experimental
setup and results.

7. Discussion and conclusions. In this paper, we derived some interesting
properties of nearly orthogonal lattice bases and random bases. We chose to directly
quantify the orthogonality of a basis in terms of the minimum angle θ between a basis
vector and the linear subspace spanned by the remaining basis vectors. When θ ≥ π

3
radians, we say that the basis is nearly orthogonal. A key contribution of this paper
is to show that a nearly orthogonal lattice basis always contains a shortest lattice
vector. We also investigated the uniqueness of nearly orthogonal lattice bases. We
proved that if the basis vectors of a nearly orthogonal basis are nearly equal in length,
then the lattice essentially contains only one nearly orthogonal basis. These results
enable us to solve a fascinating digital color imaging problem called JPEG CHEst.

The applicability of our results on nearly orthogonal bases is limited by the fact
that every lattice does not necessarily admit a nearly orthogonal basis. In this sense,
lattices that contain a nearly orthogonal basis are somewhat special.

However, in random lattices, nearly orthogonal bases occur frequently when the
lattice is sufficiently low-dimensional. Our second main result is that an m-D Gaussian
or Bernoulli random basis that spans a lattice in R

n, with m < 0.071n, is nearly
orthogonal almost surely as n → ∞ and with high probability at finite but large n.
Consequently, a random n × 0.071n lattice basis contains the shortest lattice vector
with high probability. In fact, based on [31], the bound 0.071 can be relaxed to 0.25,
at least in the Gaussian case.
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We believe that analyzing random lattices using some of the techniques developed
in this paper is a fruitful area for future research. For example, we have recently
realized (using Corollary 3) that a random n × 0.071n lattice basis is Minkowski-
reduced with high probability [8].

Acknowledgments. We thank Gabor Pataki for useful comments and for the
reference to Gauss’s work in Vazirani’s book. We also thank the editor Alexander
Vardy and the anonymous reviewers for their thorough and thought-provoking re-
views; our work on random lattices was motivated by their comments. Finally, we
thank Gregory Sorkin who gave us numerous insights into the properties of random
matrices.

REFERENCES

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search in lattices, IEEE
Trans. Inform. Theory, 48 (2002), pp. 2201–2214.

[2] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, in Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 10–19.

[3] A. Akhavi, J.-F. Marckert, and A. Rouault, On the Reduction of a Random Basis, e-print
math 060433, http://arxiv.org/abs/math/06043331 (2006). (2006).

[4] L. Babai, On lovaász’ lattice reduction and the nearest lattice point problem, Combinatorica,
6 (1986), pp. 1–14.

[5] H. H. Bauschke, C. H. Hamilton, M. S. Macklem, J. S. McMichael, and N. R. Swart,
Recompression of JPEG images by requantization, IEEE Trans. Image Process., 12 (2003),
pp. 843–849.

[6] E. Candès and T. Tao, Near optimal signal recovery from random projections: Universal
encoding strategies?, IEEE Trans. Inform. Theory, 25 (2006), pp. 5402–5425.

[7] O. Damen, A. Chkeif, and J. Belfiore, Lattice code decoder for space-time codes, IEEE
Commun. Lett., 4 (2000), pp. 161–163.

[8] S. Dash and R. Neelamani, Some Properties of SVP in Random Lattices, manuscript in
preparation, 2006.
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