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In the theory of turning point problems for ordinary linear differential equations of second order necessary 
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sequence of necessary conditions for resonance, which is derived in an iterative way. Special cases are 

considered as illustrative examples. 

• 1980 Mathematics Subject Classification: 34E20. 

Keywords & Phrases: turning point problem, singular perturbartion problem, Ackerberg-O'Malley reso

nance. 

1. INTRODUCTION 

Since 1970, there has been published a large number of papers that consider the singularly perturbed 

turning point problem of the form 

o/" + /(x,E)y' + g(x,E)y = 0, (O<E~l, -a<x<b) (1.1) 

y(-a) = a, y(b) = {3, (1.2) 

where a and b are positive numbers and /(0, 0) =O. This problem was studied first by AcKERBERG 

and O'MALLEY [I]. They gave the condition under which the boundary value problem 

o/" - p(x)y' + g(x)y = 0 

y(-a) = a, y(b) = {3, 

(1.3) 

(1.4) 

with p(O)=O, p'(O)>O exhibits "resonance". That is, under which condition the limit of its solution 

for t:~O is non-trivial. In 1971, WATT [2] showed by an example that the condition given in [I]: 

:,~~3 = N, (N:non-negative integer) (1.5) 

is not sufficient for exhibiting resonance. In 1973, CooK and EcKHAUS [3] gave an improved condition 

for resonance of the boundary value problem ( 1.1) - ( 1.2), which is 

- ?(O,E) = N +µ. 1t: (N:non-negative integer), 
1x(0,E) 

where µ1 =-[ ~ +gxAN + ~ )]. In 1975-1976, MATKOWSKY [4] examined several examples and pro

posed to analyse the related eigenvalue problem to test the resonance. In 1978, OLVER [5] formulated 
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sufficient conditions for testing the resonance. These studies have stimulated the development of a 

theory for this kind of turning point problems. We shall point out in this paper that all of these con

ditions given by former authors, except [5], are only necessary conditions for resonance, we shall show 

by examples that they are not sufficient. Moreover, we find that there is a sequence of necessary con

ditions for resonance which can be derived in an iterative way. As special cases we consider 

g(x,£) = 0, and /(x,t:) = -Ax, g(x,£) = B,_ where A, B are constants. It turns out that the first 

necessary condition given by AcKERBERG and O'MALLEY [l] 

j~~:~~ = N, (N:non-negative integer) 

implies the whole sequence of necessary conditions for resonance, so it is also sufficient for these 

cases. 

II. EXAMPLE 

Consider the turning point problem for the differential equation of the form 

£_Y"-x(l+x2)y'+(2+B(t:))y = 0, 

where 

B(£) ,......, p I £+p2t:2 + .... 

Suppose its outer solution has the expansion of the form 

Y "'. Yo(x)+£.Y1(x)+t:2y2(x)+£3YJ(x)+ · · ·. 

(2.1) 

(2.2) 

(2.3) 

Substituting (2.3) into (2.1) and equating the terms with identical powers of t:, we obtain the recurrent 

system of differential equations for Yn• (n =O, 1,2, · · ·) 

n 

-x(l+x2 )y'n+2yn = -y"n-1-Di.Yn-i' 
i=l 

withy_ 1(x) = 0. 

From (2.4) with n =Owe have 

(2.4) 

x2 
Yo(x) = Co 

1 
+x2 , (2.5) 

where C0 is an undetermined constant. Substituting (2.5) into (2.4) with n = l, we have 

-x(l + x 2).y'1 +2y1 -y"o -p1Yo = Go(x). (2.6) 

Its solution is 

f
x Go(s) 

Y1 = C1/o(x) + Io(x) 2 ds 
-s(l +s )/o(s) 

x2 
where J 0(x)=--2 . Since 

I+x 

-2+6x2 
Go(x) = 2 2 2 Colo(x) - p1Co/o(x), 

x (1 +x ) 

we have from (2. 7) 

Y1 = C1/o(x) + Co/o(x) ( [ 3 2 - 68 ~ 
3 

+ Pi 2 lds 
s (I +s ) s(l +s ) 

[
-l-9x

2
-6x

4 
P1 x

2 l 
= C 1/o(x) + 2 2 2 - (6--

2 
)ln--2 Co/o(x). 

x (I+x) l+x 

(2.7) 

(2.8) 

(2.9) 



Becausey 1(x) should be analytic at x=O, we must have 

Pt = 12. 

Otherwise, it is non-resonant. We should take then C0 =O. 

From (2.4) with n = 1 we obtain the equation for y 2 : 

-x(I+x)y'2 + 2y2 = -y"1 - PtY1 - P2Yo = G1 

where p 1 = 12 . Its solution is 

x G1(s) 
Y2 = C2Io(x) + Io(x)j 2 ds. 

-s(I +s )I0(s) 

3 

(2.10) 

(2.11) 

(2.12) 

If we only want to test whether C0 is equal to zero, the process can be simplified. Let y~ 0 > denote the 

particular solution of (2.4) with only C0 as factor. Then from (2.9) we know that 

-I-9x2-6x4 

y\0> = Colo(x) 2 2)2 (2.13) 
x (I+x 

Since 

G\0>(x) = -(Y\0>)"-12y\0> -p2Jo (2.14) 

= 12---------
[ 

2+ x 2 +25x4 +24x6 +6x8 

x2(1 +x2)4 

we have from (2.12) 

A0> = 12Col0(x) [ 
1 

+ 
44 1 

x2(1 + x2)4 8 (l + x2)4 

+ 3 1 + ~ _I_. + 5 x
2 

+ 1. x
4 

2 (I+ x2)3 4 1 + x2 (l + x2)4 2 (l + x2)4 

+ ~In 4] + p
2

2 
Colo(x) In 4. 

I+x I+x 
(2.15) 

It is only when 

P2 = -108 (2.16) 

that y~ 0 > is analytic at x =O. Otherwise, we should take C0 =O. 

EQ. (2.16) is the second condition for the boundary value problem of differential equation (2.1) to 

be resonant. Evidently, in the present approach, a sequence of numbers p;, (i =3, 4, · · ·) should be 

determined, and it is not sufficient to solve a single related eigenvalue problem as proposed by MAT

KOWSKY in [4]. 

III. GENERAL CASE 

We return to the boundary value problem {l.1)-(1.2), and write it as 

where 

€)1
11 

- xA(x,£)y' + B(x,£)y = 0 (0<£~1, -a<x<b) 

A(x, €) ,_,Ao(x) + tA1(x) + ~A2(x) + 

B(x, £) ,._. Bo(x) + €B 1(x) + ~B 2 (x) + 

with A0(0)>0. Suppose that A;(x), B;(x), (i=O, 1,2, ···)are analytic in [-a,b]. 

(3.1) 

(3.2) 

(3.3) 
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Let the outer expansion of its solution be 

y ......, Yo(x) + £Y1(x) + ~Y2(x) + (3.4) 

Substituting (3.4) into (2.1 ), and equating the terms with equal powers of £, we obtain the recursive 

equations governingyn, (n =O, 1,2, · · · ) 

n n 

-xAo(x)y'n + Bo(x)yn = -y"n-1 + x~A;y'n-i - ~B;.Yn-i 
i=I i=I 

withy-1=0. 
From (3.5) (with n =O) we obtain the equation for y 0 : 

-xAo(x)y'o + Bo(x)yo = 0, 

its solution is 

Yo = Co exp [f ~:~}l ds]=coio(x). 

Suppose the expansions of A;(x), B;(x), (i=0,1,2, ···)near x=O are 

A·(X) =A· 0 +A· 1X +A· 2X2 + ... 
l l, I, I, ' 

B·(x) = B· o + B· 1X + B· 2x2 + · · · 
l l, l, l, ' 

and the expansions of Aj 1(x), Aj3(x), (i=O, 1,2, ···)near x=O are 

A:-1(x) =A· o +A. 1X +A· 2x2 + 
I l, l, I, 

A:-3(x) =A· o +A· 1X +A· 2x2 + I I, l, I, 

then J 0(x) has the expansion 

BA [
00 

n - l lo(x) = x 0
•
0 0

•
0 exp ~ (~ Bo,;Ao,n-i )xn . 

n=I i=O 

In order that y 0(x) is analytic at x =O, we must have 

B A- _ B(O,O) N (N . . ) 
o,o o,o = A(O,O) = :non-negative integer, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

which is the condition for resonance given by AC:KERBERG and O'MALLEY [l]. We shall show later on 

that it is only the first necessary condition in the sequence of necessary conditions for resonance. 

From (3.5) with n = 1 we obtain the equation for y 1 : 

-xAo(x).y'1 + Bo(x).y1 = -y"o + xA1y'o - BiYo = Lo[yo], 

where L 0 is the differential operator of the form: 

d2 d 
Lo= ---2 + xA1-d - Bi. 

dx x 

The solution of (3.10) is 

j
x Lo[yo(s)] 

Y1 = C1lo(x) + lo(x) -sAo(s)lo(s) ds. 

Since 

Y
' - Bo(x) C I ( 
o - xAo(x) o ox), 

(3.10) 

(3.11) 



xAoB'o-xA'oBo-AoBo +Ba 
y"o = C0/ 0(x), 

x
2
Aa 

we have that 

[

-xA0B'0+xA'0B0 +A0B 0-Ba +x
2
AoBoA1 l 

Lo [yo(x)] = - B1 Colo(x). 
· x 2Aa 

From (3.11) we derive .-----

where 

J
x [sA 0B'0-sA'oBo-AoBo+Bfi-s

2
AoBoA1 B1 l 

YI = C1Io(x)+Colo(x) 3 3 +~ ds 
s A 0 sno 

[

ao,-2 ao,-1 2 
= C1Io(x) + Colo(x) -:;i-+-x-+ao,olnx+ao,1x+ao,2X + · · · 

I 2 - l + 2 (;;o B 1,;Ao,2-; )x
2 

+ · · · , 

I ::: 
ao,-2 = -2(-Ao,oBo,o+Ba.o)Ao,o, 

2 ::: B 
ao,-1 = - [(- Ao,oBo,o+Bo,o)Ao,1 +(-Ao,0Bo,1-Ao,1Bo,o+Bo,0Bo,1 +Bo,1 o,o 

-
+ Ao,oBo,1 -Ao,1Bo,o)Ao,o], 

ao,o = (- Ao,oBo,o+Ba,o)Ao,2 +(-Ao,0Bo,1-Ao,1Bo,o+Bo,0Bo,1 +Bo,1Bo,o 

::: 2 2 

+ Ao,oBo,1 -Ao,1Bo,o)Ao,1 +(- ~Ao,;Bo,2-;+ ~Bo,;Bo,2-; 
i=O i=O 

2 2 ::: 

+ ~iBo,;Ao,2-;- ~iAo,;Bo,2-;-Ao,0Bo,oA1,o)Ao,o, 
i=I i=l 

ao,n =-;; (- Ao,0Bo,o+Ba,o)Ao,n+2+(-Ao,0Bo,1-Ao,1Bo,o+Bo,0Bo,1 I { ::: 

+ Bo,1Bo,o+Ao,0Bo,1-Ao,1Bo,o>Ao.n+1 +:~: [-;~ 0 Ao,;Bo,p-i 
+ f Bo,;Bo,p-i+ f iBo,;Ao,p-;- f iAo,;Bo,p-; 

i=O i=l i=l 

- P~
2

( :±Ao,;Bo,j-i)A l,p-2-j]Ao,n +2-p}· 
j=O i=O 

From (3.12) we see that if we wish to have y 1 (x) analytic at x = 0, it is required that 

-
ao,o + B1,0Ao,o = 0. 

This is the second necessary condition for resonance after (3.9). 
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(3.12) 

(3.13) 



Especially, if A(x,E) = 1, B(x,E) = g(x,E), condition (3.13) reduces to 

l 
g£(0,0)= - [ ix(O,O) + (N +1:-)g~.x(O,O)] 

6 

(3.14) 

N is the non-negative integer that appeared in the first necessary condition (3.9). For the differential 

equation 

E_Y"-x(a + aE)y' + (p +Pt: + yX + 8x2)y = 0 

the second necessary condition (3.13) reduces to 

a8+2p8+y2-paa+pd2 =O 

since 

_ aa+2pa+y2-paa B __ 
ao,o - 3 , 1,0 - P · 

a 

(3.15) 

(3.16) 

They are in agreement with those derived by COOK and EcKHAus [3]. We remark that the above con

ditions are not sufficient, which can be shown by the following example: 

E_Y" - x(I + 4E)y' + (1 + 2x)y = 0 . 

Condition (3.16) is satisfied, and its outer solution is 

y = Yo(x) + E.Y1(x) + ~Yi(x) + · · ·, 

where 

2x -4 
Yo(x) = Coxeix, Y1(x) = C1xe2x + Coxe (---;-- - 8x), 

Y2(x) = C2xe2x - 4C1xe2x(! + 2) + 32C0(1 - xlnx + x 2 + x 3)e2x 

buty2(x) is not analytic at x=O, unless C0 =0. 

By the same process we can obtain the third necessary condition. From (3.5) with n = 2, we obtain 

the equation for Y2(x): 

-xAo(x)y'2 + Bo(x)y2 = -y"1 + x(A1Y'1 + Al)''o) - B1Y1 - Bl)'o. (3.17) 

Owing that we only want to find the necessary condition for resonance, we can just consider the par

ticular solution corresponding to the terms with C0 as factor. Let y\0> be these terms in y 1 then 

ao-2 ao-1 - - -[- - l 
y\

0
> = Colo(x) ~ + -~- + ao,1X + ao,2X

2 + · · · + ao,nXn + · · · (3.18) 

where lio,-2 = ao,-2, ao,-1 = ao,-1> ao,n = ao,n + ! :±B1,;Ao,n-i• (i;;a.l). Consider the solution of 
i=O 

the following equation 

-xAo(x)y'2 + Bo(x)y2 = -(y\0>)" + x(A1y\0>' + Al)''o) - B1y\0> - Bl)'o 

= Lo[y\0>] + L1[yo], (3.19) 

where L 1 is the differential operator of the form 

Since 

d 
L1=xA2dx-B2. (3.20) 
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(y<O))" _ C I ( ) o o o o o o o ~ - n 

[

xA B' -xA' B -A B +B2 oo 
1 - o o x 2 2 ..::- ao,nX 

X Ao n=-2 

2Bo oo - n 1 oo - n] + -
2

- ~ nao,nX + - 2 ~ n(n - I)ao,nX , 
X Ao n=-2 X n=-2 

with a0,0 =O, we have that 

--~--=Co - 3-
3 

(-Ao,oBo,o + Bfi,o) + ~ ~(-Ao,;Bo,n-i 
Lo(Y\O>] { 1 [ oo n 

-xAo(x)lo(x) X Ao n=I i=O 

+ Bo,;Bo,n-i + iBo,;Ao,n-i - iAo,;Bo,n-;)xn] X 

oo 2x [oo n l X ~ ao,nXn + - 3- 3 ~ ~Ao,;Bo,n-i xn X 
n=-2 X Ao n=O i=O 

X ~ nao,nXn-l - -TT~ ~ A1,;Ao,jBo,kXn X 00 2 00 [ l 
n=-2 X Ao n=O i+j+k=n 

00 
- n X 

00 
n 

00 
- n I 

X ~ ao,nX - xA ~A 1,nX X ~ nao,nX -
n=-2 0 n=O n=-2 

and 

L1(Yo] [-1 oo 1 oo l 
_ =Co --

3 
~ ~ A1,;Ao,jBo,kxn+--~B2,nXn . 

xAo(x)Io(x) xAo n=O i+j+k=n xAo n=O " 

The particular solution of (3.19) with C0 as factor is 

<O) _ Jx Lo(Y\
0
>(s)] + L 1[y0(s)] 

Y2 - Colo(x) -sAo(s)Io(s) ds 

= Colo(x) [ai,-4 + a1,-3 + a1,-2 + a1,-1 + a1,olnx + ... + a1,nXn + ... 
x4 x3 x2 x 

+ (-Ao,0Bo,0A2,0Ao,o + B2,0Ao,o) lnx + h1x + · · · + bnxn + · · · l · (3.21) 

where 

I [ 2 :: - J-a1, -4 = -4 (-5Ao,oBo,o + Bo,o)Ao,o + 6Ao,o ao,-2, 

I { [ :: a1, -3 = -3 (-6Ao,1Bo,o - 4Ao,0Bo,1 + 2Bo,0Bo,1)Ao,o 

2 - - J-+ (-5Ao,oBo,o + Bo,o)Ao,1 + 6Ao,1 ao,-2 

+ [<-3Ao,oBo,o + Bfi,0).40,0 + Uo,o ]ao,-1 }· 

-1 { n _ [ J. j-i [ . . 
a1.n-4 = ~ 4 ~ao,n-2-j 2 ~ (2n-2p-1-z-5)Ao,pBo,j-i-p 

n j=O i=O p=O 



and 

+ Bo,pBo,j-i-p J Ao,i + (n -2-j)(n -2-J- l>Ao.j] 

- n~
2 

ao,n-4-j :± [j~i C~Ao,qBo,p-q )Al,j-i-p]Ao,i 
j=O i=O p=O q=O 

- n~
2 

[n£j(n-4-J-p)ao,n-4-j-pA1,p]Ao,j 
j=O p=O 

+ ~~
2 

[n1-jao,n-4-j-pB1,p]Ao,j}• 
1=0 p=O 

(n = 2, 3, 5, · · · ; n=;6:4) 

a1,o = ±ao,2-j [:± j£ [<3-2p-j-i)Ao,pBo,j-i-p + Bo,pBo,j-i-p]Ao,; 
j=O i=O p=O 

+ (2 - }) (I - j}A O,j] -

2 . j-i -

- ~ ao,-j ± ~ ( f Ao,qBo,p-qA 1,j-i-p)Ao,i 
j =O i =Op =O q =O 

2 [2-. l - 2 [2-. 1-
- ~ ~(-J-p)ao,-j-pA1,p Ao.j + ~ ~ao,-j-pB1,p Ao.j 

j =O p =O j =O p =O 

1 [ n n-j i n - l 
bn = - ~ ~ (~ Ao,pBO,i-p )A2,n-j-i + ~ Ao,jB2.n-j . 

n j=O i=O p=O j=O 

It is only if 

a1,o = a1,o + Ao,0Bo,0A2,0Ao,o + B2,0Ao,o = 0 

thaty 2(x) is analytic at x=O. 

EQ (3.22) is the third necessary condition for the resonance of differential equation (3.1). 

For the differential equation (2.1), the third necessary conditon reduces to 

P2 = -108; 

for the special case A(x,t:) = l, B(x,t:) = g(x,t:), it reduces to 

2 - -
(3Bo,o + Bo,o + 2)ao,2 + 2(Bo,1 + Bo,0Bo,1)ao,1 + +2(-Bo,2 - 2Bo,1 - 3Bo,o 

+ Bo,oBo,3 + Bo,1Bo,2)ao,-1 + (-Bo,4 - 3Bo,3 - SBo,2 - 7Bo,1 - 9Bo,o 

+ B~.2 + 2Bo,oBo,4 + 2Bo,1Bo,3)ao,-2 + ao,0B1,o + ao,-1B1,1 + ao,-2B1,2 

+ B2,o = 0 

_ _1._ o;g(O,O) _ _ 1 o;g,(0,0) 
where Boo -g(O,O), B 0 i - . , B 1o-g.(0,0),B1 i -

1 
. , ••• etc. 

' ' i ox' ' ' i. ox' 
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(3.22) 

By the same process we can find the successive necessary condtion for resonance. If we find that 

00 

y~O) = C of o(X) ~ an -1,iXi (3.23) 
i=-r 

where r~N= B(O,O) (N: non-negative integer), with an,o=O, then we get the equation for Yn+I from 
""' A(O,O) 



(3.5) 

-xAo(x)y'n+l + Bo(X)Yn+I = Lo(Y~ 0 >] + L1(Y~O!_i] + 

+ · · · + Ln(Yo] = Io(X)Fn(x), 

where L 0, L 1 are defined ~bove by (3.10), (3:20) and Li(i=2,3, · · · n) are defined by 

- d 
Li= xAi+t dx -Bi+I · 

We can find that the solution of (3.24) with C0 as factor is 

(O) _ Jx Fn(s) 
Yn+I - Colo(x) -sAo(s) ds. 
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(3.24) 

(3.25) 

(3.26) 

Expanding the integrand in (3.26) into power series of x at x =O, and equating the coeffiecient of x - I 

to zero, then we get the next necessary condition for resonance. 

From above we see that the resonance cases are exceptional. But if A and B are constants, and BI A 

is a non-negative integer, or if B(x,E) = 0, then the coefficients an, 0 ,(n =O, 1,2, · · · ) are all zero, and 

the whole sequence of necessary conditions for resonance is satisfied, and the equation exhibits reso

nance, which is in agreement with our known result. 

The construction of the asymptotic solution of boundary value problems for differential equations 

of the type 

E_Y" - xA(x,E)y' + B(x,E)y = 0 

has been given in the earlier paper [6] of the present author for both the resonant case and the non'" 

resonant case. The aymptotic correctness of the solution has also been discussed. The problems of 

generalizing the method to the cas~ of multiple turning points is still open. 
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