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Abstract
We consider the problem of neighbor discovery in static wireless ad hoc networks with directional anten-

nas. We propose several probabilistic algorithms in which nodes perform random, independent transmissions to
discover their one-hop neighbors. Our neighbor discovery algorithms are classified into two groups, viz. Direct-
Discovery Algorithms in which nodes discover their neighbors only upon receiving a transmission from their
neighbors and Gossip-Based Algorithms in which nodes gossip about their neighbors’ location information to
enable faster discovery. We first consider the operation of these algorithms in a slotted, synchronous system
and mathematically derive their optimal parameter settings. We show how to extend these algorithms for an
asynchronous system and describe their optimal design. Analysis and simulation of the algorithms show that
nodes discover their neighbors much faster using gossip-based algorithms than using direct-discovery algorithms.
Furthermore, the performance of gossip-based algorithms is insensitive to an increase in node density.
The efficiency of a neighbor discovery algorithm also depends on the choice of antenna beamwidth. We

discuss in detail how the choice of beamwidth impacts the performance of the discovery process and provide
insights into how nodes can configure their beamwidths.

1 Introduction

Wireless ad-hoc networks, particularly, static ad-hoc networks such as sensor networks and community mesh net-
works, have generated tremendous amount of interest recently. Sensor networks have applications such as surveil-
lance and tracking [16], environmental observation [2], habitat monitoring [7], and health monitoring [13], while
mesh networks [8] enable nodes to connect home networks together forming a community ad-hoc network. A char-
acteristic requirement of these ad-hoc networks is that they be “self-configuring”, i.e., that a large number of wireless
nodes organize themselves to efficiently perform the tasks required by the application after they have been deployed.
Examples of self-configuration include construction of routing paths, clustering, and formation of minimum weight
spanning trees. “Self-configuring” ad-hoc networks are very attractive since they reduce the cost of installation and
allow for building large scale systems.

∗This work was supported by the National Science Foundation under the grant EEC-0313747 001.
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In this paper, we consider an aspect of self-configuration in wireless ad-hoc networks referred to as neighbor dis-
covery. After nodes are deployed, they need to discover their one-hop neighbors. Knowledge of one-hop neighbors
is essential for almost all routing protocols, medium-access control protocols and several other topology-control
algorithms such as construction of minimum-energy spanning trees. Neighbor discovery is, therefore, a crucial first
step in the process of self-organization of a wireless ad-hoc network. Ideally, nodes should discover their neighbors
as quickly as possible as rapid discovery of neighbors often translates into energy efficiency, since nodes have to
spend less energy discovering neighbors. Also, rapid discovery allows for other protocols (such as topology con-
trol, medium access and routing protocols) to quickly start their execution. We emphasize that the focus of this
paper is on neighbor discovery alone and not how the discovered neighbor information is used by topology control
algorithms [11, 6, 15], medium access protocols [3, 1] and routing algorithms [4].
There has been earlier work on neighbor discovery in wireless networks [9, 5]. In these papers, the authors present

algorithms for neighbor discovery in wireless networks where nodes have omni-directional antennas and operate in
a synchronous fashion. Our work differs from the existing work in two important ways. First, we address the
problem of neighbor discovery when nodes have directional antennas. Second, we also consider the case in which
the neighbor discovery algorithms operate asynchronously. Directional antennas offer many advantages over omni-
directional antennas such as increased spatial reuse, increased transmission range and increased capacity. However,
discovery of neighbors becomes harder since nodes must control the direction of their antennas in order to transmit
or receive data packets from their neighbors. Thus the efficiency of neighbor discovery algorithms using directional
antennas depends not only on how often nodes transmit and receive but also on antenna properties such as their
direction and beamwidth. In this paper, we propose several probabilistic neighbor discovery algorithms in which
nodes perform random independent transmissions in different directions to discover their one hop neighbors. The
goal of these neighbor discovery algorithms is to maximize the probability of discovery of neighbors within a given
amount of time. We consider both synchronous and asynchronous algorithms and their optimal design. While the
algorithm in [9] can be made asynchronous in the manner described in this paper, synchronization is a requirement
for the algorithm described in [5].
In this paper, we present several probabilistic neighbor discovery algorithms, both synchronous and asynchronous.

Our neighbor discovery algorithms can be classified into two groups, viz. Direct-Discovery Algorithms in which a
nodes discovers its neighbor only when it successfully hears a transmission from that neighbor and Gossip-Based
Discovery Algorithms in which nodes gossip about each others’ location information to speed up discovery. Some
of the important contributions of our work are:

1. A simple mathematical model to derive the optimal parameter settings for synchronous direct-discovery and
gossip-based algorithms.

2. A simulation-based performance comparison of the gossip-based and the direct-discovery algorithms, demon-
strating that nodes discover their neighbors significantly faster using the gossip-based algorithm than using
the direct-discovery algorithm. Interestingly, we also see that while the performance of direct-discovery al-
gorithm degrades as node density increases, the gossip-based algorithm remains insensitive to an increase in
node density.
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3. A detailed study of how the performance of the gossip-based algorithm varies with the fraction of nodes with
location information. An interesting feature of our gossip-based algorithm is that it can operate even when
only a fraction of nodes have location information. Simulations show that the performance of the gossip-based
algorithm degrades gracefully to that of the direct discovery algorithm as the fraction of nodes with location
information decreases.

4. Extension of our synchronous discovery algorithms to their asynchronous counterparts and derivation of their
optimal parameter settings.

5. A discussion of how nodes should configure their beamwidths in order to maximize the number of discovered
neighbors in a given amount of time.

The rest of the paper is structured as follows. In Section 2, we describe our model and list various assumptions.
Section 3 describes a direct-discovery algorithm and its analysis. We next present the gossip-based algorithm in
Section 4. In Section 5, we extend the discovery algorithms to operate asynchronously. In Section 6, we discuss how
the choice of beamwidth affects neighbor discovery. Finally, we conclude in Section 7.

2 Model and Assumptions

We make the following assumptions about the wireless network:

1. Unique Node IDs: Each node is distinguishable by a unique identifier such as a MAC address.

2. Static Nodes: Nodes are assumed to be static i.e., non-mobile.

3. Radio model: Each node is equipped with a radio transceiver that enables the node to transmit and receive
signals. At any given time, a node can either be in transmit or receive mode, but not both. All nodes have a
fixed transmission power.

4. Antenna Model: Each node is equipped with a directional antenna with beamwidth θ (0 < θ ≤ 2π). We
assume that each antenna is steerable, i.e., each node can point its antenna in any desired direction. Nodes can
use their antennas for directional transmission and/or directional reception.

5. Antenna Pattern: We approximate the antenna pattern as a circular sector with angle θ and radius equal
to the transmission/reception range. In reality, the directional antenna pattern consists of a mainlobe which is
the direction of maximum radiation or reception and several smaller backlobes arising due to inefficiencies in
antenna design. For simplicity, we ignore backlobes from our discussion in this paper.

6. Synchronous and Asynchronous Algorithms: We propose both synchronous and asynchronous algorithms
for neighbor discovery. For a synchronous discovery algorithm, we assume that time is slotted and nodes are
perfectly synchronized on time slots. The length of each time slot is equal to the duration of a packet. In case
of an asynchronous algorithm, nodes need not be synchronized.
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7. Collision Model: Collisions occur if a node simultaneously receives transmissions from two or more of its
neighbors. While a receiving node can detect collisions, the transmitting node cannot. No partial recovery of
the collided packets is possible.

The goal of the neighbor discovery process is to have each node in the network rapidly discover all of its one-hop
neighbors.

3 Direct-Discovery Algorithms

The neighbor discovery algorithms described in this section are called Direct-Discovery Algorithms. In these al-
gorithms, a node must receive at least one successful transmission from its neighbor in order for it to discover
that neighbor. When a node successfully receives a transmission from a neighbor, it records the Angle-Of-Arrival
(AOA) information of the received signal along with the identity of the neighbor. Alternately, if nodes are capable
of determining their location using GPS or any other locating mechanism, then the location information associated
with the neighbor is recorded. The AOA or location information of the neighbors is essential for future directional
transmission/reception to the neighboring nodes, once discovery is completed. We emphasize that requiring nodes
to be capable of providing either AOA or location information is not a constraint imposed by our neighbor discovery
algorithms, since this information is required for future directional transmission/reception.
We first describe the synchronous neighbor discovery algorithms. We assume that time is slotted with each slot of

duration equal to the length of a packet. The discovery algorithms are probabilistic in nature, i.e., in each time slot a
node transmits with a certain transmission probability pt and listens with probability 1 − pt.
We first describe a direct-discovery algorithm when nodes have directional transmitter with beamwidth, θ and an

omni-directional receiver. Subsequently, we discuss extensions to other antenna models.

3.1 Directional Transmission and Omni-directional Reception

3.1.1 Algorithm Operation

All nodes execute the following direct-discovery algorithm. At the beginning of each time slot, a node transmits in
a random direction with transmission probability pt and listens for transmissions with probability 1 − pt. The goal
is to find the optimal pt that maximizes the probability of the node discovering its neighbors within a given amount
of time.

3.1.2 Analysis

For simplicity, we assume a clique of k nodes, i.e., k wireless nodes within transmission range of each other.
Consider a random node (call it node i) which has k-1 neighbors. We know from our collision model that if only
one station transmits to node i in a given time slot, then i discovers that node. If two or more stations transmit
simultaneously, i does not discover any of the nodes.
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Under the assumption that transmission events are independent, the probability that node i discovers node j in a
given time slot, j = 1, 2, . . . , k − 1 is:

pi,j =
θ

2π
pt(1 − θ

2π
pt)k−2(1 − pt)

where pt is the probability that j transmits in the time slot and θ
2π is the probability that j’s transmit beam covers i.

The probability that node i discovers node j within t time slots is then given by:

Pi,j(t) = 1 − (1 − pi,j)t (1)

We are interested in maximizing the probability of node i discovering a neighbor j within t time slots by a proper
choice of pt. Since all nodes are in a clique, the probability of node i discovering any other neighbor is also
maximized by the same choice of pt. In fact, the probability of any node in the clique discovering its neighbor
within time t is exactly as (1). Hence, the optimal pt is the same for all the nodes.
From (1), we note that maximizing Pi,j(t) is equivalent to maximizing the probability of node i discovering node

j in a given time slot, pi,j by a proper choice of pt. On differentiating (1) and equating it to 0, we find the optimal pt

to be :

pt =
(2 + (k − 1) θ

2π ) −
√

(2 + (k − 1) θ
2π )2 − 4k θ

2π

kθ
π

(2)

For large k,
pt ≈

2π
kθ

Intuitively, the probability of discovering a neighbor is maximized when nodes transmit in a probabilistic round-
robin fashion i.e., each node transmits once every θk

2π time slots. The multiplicative factor of
2π
θ in the expression for

the optimal pt is due to the spatial reuse offered by using a directional antenna of beamwidth θ.
An alternative objective function to the one considered in this section is to maximize the fraction, F , of neighbors

discovered within a given amount of time. We will see in Section 3.1.4 that the optimal pt derived in (2) also
maximizes F .

3.1.3 Practical Considerations

In practice, a node will not have exact information about the number of neighbors it has. How then should nodes
choose their transmission probability, pt? pt could be chosen based on some estimate of the number of neighbors.
One such estimate is the expected number of neighbors k of a node. This estimate is easily available since the
density of the network can be “wired” into the nodes prior to deployment. The expected number of neighbors of a
node is given by: k = γπr2, where γ is the density of the wireless network measured in nodes per unit area and r
is the transmission radius of the node. When k > k, we overestimate the transmission probability leading to more
collisions, while underestimation occurs when k < k thereby under-utilizing the channel and missing opportunities
to discover neighbors. In Figure 1, we plot pi,j as a function of the estimation error k−k, when k = 20 and θ = 60o.
We observe that pi,j is maximized when there is no estimation error and decreases as the error increases either due
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Figure 1: Effect of estimation error on discovery probability

to underestimation or overestimation. We also see that an overestimation of the number of neighbors results in a
larger pi,j than an underestimate (a similar observation was made in [9]). Similar behavior was observed for other
choices of k and θ. The key observation, however, is that discovery can still be achieved even if there is an error in
estimating the number of neighbors and that performance degrades gracefully with increasing error.

3.1.4 Validation of Model

In deriving the optimal pt in Section 3.1.2, we made two simplifying assumptions about the discovery process. First,
our analysis was based on the assumption that all nodes belong to a single clique. In reality, network topologies
are arbitrary and multi-hop. Second, our model ignores the spatial correlation among nodes in calculating the
probability of discovery. Our model asumes that the probability of a node i discovering another node j in a time slot
is independent of another node k discovering node j in the same time slot. In order to validate these assumptions,
we compute the expected fraction of neighbors discovered by a node within time t using our model assumptions and
compare it with the results obtained using simulation. A node i, which has k − 1 neighbors, discoversm of them in
t time slots in one of the following two ways:

1. i discoversm − 1 neighbors in the first t − 1 time slots and another one of the remaining k − m neighbors in
the tth time slot; or

2. i discoversm neighbors in the first t− 1 time slots and none of the remaining k −m− 1 neighbors in the tth

time slot

Hence, the probability that node i discovers m neighbors within t slots, denoted by Pi(m, t) is given by the
following recurrence:

Pi(m, t) = Pi(m − 1, t − 1)(k − m)ps + Pi(m, t − 1)[1 − (k − m − 1)ps]

where ps is the probability of a successful transmission from a given neighbor to node i in a given time slot and is
given by:

ps =
θpt

2π
(1 − θpt

2π
)k−2(1 − pt)
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The boundary conditions of the recurrence relation are:

Pi(m, t) = 0, m > t

Pi(0, 0) = 1

The expected fraction of neighbors discovered by node i within time t is given by:

F =
∑min(t,k−1)

n=1 nPi(n, t)
k − 1

(3)
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Figure 2: Validation of Analysis

It is difficult to obtain a closed form expression for the fraction F and hence, we solve equation (3) numerically.
We find that the value of pt that maximizes fraction F is exactly as given in equation (2). This is not surprising since
the value of pt given in equation (2) maximizes the probability of a successful transmission in a time slot and hence
the probability of successfully discovering a neighbor within a given amount of time. Intuitively, this pt should also
maximize the expected number of neighbors discovered within a given amount of time.
In order to validate our model assumptions, we compare the results obtained using equation (3) with simulation

results. The comparison is shown in Figure 2. The simulation scenario consists of 1000 nodes each with a trans-
mission range (r) of 200 m and a beamwidth of 30o uniformly distributed in a square with area 9 × 106m2. The
node density is γ = 1000

9×106 nodes/m2. Each node thus has on average k = γπr2 = 14 neighbors. The transmission
probability, pt, is obtained from equation (2) by substituting k = 15, for both our simulation and the analytical
model in equation (3). From Figure 2, we observe a good match between our analytical results and simulations.
Similarly good matches were obtained for other values of γ. This validates the model assumptions used to obtain
the optimal pt.

3.2 Other Antenna Models

We now consider the direct-discovery algorithms using two other antenna models:

1. Directional Transmitter and Directional Receiver
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2. Omni-directional Transmitter and Directional Receiver

3.2.1 Directional Transmission and Directional Reception

The direct-discovery algorithm is quite similar to that described in Section 3.1. The only difference in this case is
that nodes have directional receivers and in every time slot a node listens with probability 1 − pt by pointing its
receive beam in a random direction.
As shown in Figure 3, a node A successfully discovers another node B, only if the transmit and receive beams of

B and A point to each other and no other node within A’s reception beam transmits to A.

B
A

Figure 3: Directional Transmission and Reception

The probability that node i discovers a neighbor j in a time slot, j = 1,2,. . .,k - 1 is

pi,j =
θα

4π2
pt(1 − θα

4π2
pt)k−2(1 − pt)

Proceeding in the same manner as in Section 3.1, we obtain the optimal pt to be:

pt =
(2 + (k − 1) θα

4π2 ) −
√

(2 + (k − 1) θα
4π2 )2 − 4k θα

4π2

2kθα
4π2

For large k,

∴ pt ≈
4π2

kθα

3.2.2 Omnidirectional Transmission and Directional Reception

In this antenna model, a node i successfully receives a transmission from a neighboring station j only if i’s receive
beam points to station j and no other station within i’s receive beam transmits in the same time slot.
The probability that node i discovers a neighbor j, j = 1,2,. . .,k - 1 is same as the case of directional transmission

and omni-directional reception:
pi,j =

α

2π
pt(1 − α

2π
pt)k−2(1 − pt)

The optimal pt is therefore the same as derived in Section 3.1:

pt =
(2 + (k − 1) α

2π ) −
√

(2 + (k − 1) α
2π )2 − 4k α

2π
kα
π
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which for large k can be approximated as
pt ≈

2π
kα

4 A Gossip-Based Neighbor Discovery Algorithm

The neighbor discovery algorithms described thus far belong to the family of Direct-Discovery Algorithms. In this
section, we explore Gossip-Based Discovery Algorithms in which a node exploits location information and can learn
indirectly about its neighbor’s existence through its interaction with other neighbors.

4.1 Algorithm Operation

We assume that each node knows its location using a locating device such as GPS. The gossip-based algorithm
operates almost exactly the same as the direct-discovery algorithm described in Section 3. Consider a node i. In
each slot, i chooses a random direction and transmits with probability pt with a fixed beamwidth, θ. The only
difference is that i includes in its message the list of neighbors that it has discovered so far and their locations. When
a node, m, receives a transmission from its neighbor i, m not only discovers node i but but also any information
about nodes that i has discovered (including nodes that probably are neighbors ofm).
We refer to our algorithm as a gossip-based neighbor discovery algorithm since it is analogous to gossip-style

algorithms. Before the start of the algorithm, each node has a unique gossip viz. its identifier and location, which it
wishes to communicate to all of its neighbors. During the execution of the algorithm, each node maintains a table of
the gossip (discovered neighbors and their locations) it has accumulated so far. At each round, each node transmits
this table with probability pt in a random direction (with beamwidth θ).
The gossip-based discovery algorithm differs from the direct-discovery algorithm in two crucial ways. First, it

allows a node to discover its neighbors indirectly (i.e., through some other neighbor). Second, it allows a node to
discover multiple neighbors in one step. We will soon see that these differences help nodes discover their neighbors
significantly faster than with a direct-discovery algorithm.

4.2 Analysis

Similar to our earlier analyses, our goal is to find the transmission probability that maximizes the probability of
discovering a neighbor. For our analysis, we assume that nodes have a directional transmitter and omni-directional
receiver. Extension of our anlaysis to other antenna models is straightforward and is not considered here.
Consider a node i that has k-1 neighbors numbered 1, 2, . . . , k − 1. Our goal is to find the optimal pt that

maximizes the probability of discovering a given neighbor within time t.
Let Pi,j(t) denote the probability that node i “discovers” node j within t time slots. Node i can “discover” node

j in one of the following two ways :

1. directly by successfully receiving a transmission from node j. Let Di,j(t) denote the probability that node i

successfully receives one or more transmission from node j in t time slots.
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2. indirectly by receiving a transmission from a nodem which has itself discovered j at an earlier time slot either
directly or indirectly. Let Ii,j(t) denote the probability that node i discovers node j indirectly by time t.

We derive Pi,j(t) based on the assumption that the probability of indirect discovery between a given pair of nodes is
independent of the probability of direct discovery between any other pair of nodes.

Pi,j(t) = Di,j(t) + (1 − Di,j(t))Ii,j(t) (4)

Di,j(t) = 1 − (1 − pi,j)t

where pi,j denotes the probability of a successful transmission from node j to node i in any time slot and is expressed
as:

pi,j =
θ

2π
pt(1 − θ

2π
pt)k−2(1 − pt)

Since pi,js are the same for all node pairs, i and j, we simply denote the probability of a successful transmission
from a given node to another node as ps.

Ii,j(t) is defined by the following recurrence:

Ii,j(t) = Ii,j(t − 1) + (1 − Ii,j(t − 1))Ai,j({i}, t) (5)

where Ai,j({i}, t) denotes the probability that i discovers j indirectly in the tth slot, given that i has not discovered
j indirectly by t − 1 slots. In general, for a set S of nodes, Ai,j(S, t) is defined as:

Ai,j(S, t) =
∑

m$=i,j Dm,j(t − 1)ps+

∑

m/∈S

(1 − Dm,j(t − 1))Im,j(S, t − 1)ps (6)

Thus, Ai,j(S, t) denotes the probability that i discovers j indirectly in the tth slot given that none of the nodes in set
S has discovered j indirectly by t − 1 slots.

Ii,j(S, t), in turn, is given by the following recurrence:

Ii,j(S, t) = Ii,j(S, t − 1) + (1 − Ii,j(S, t − 1))Ai,j(S ∪ {i}, t) (7)

The boundary conditions of the recurrence are given by:

Ii,j(1) = 0; Ii,j(S, 1) = 0 ∀S

From (5), we see that i discovers j indirectly by time t either by discovering j indirectly:

1. by time t − 1, or

2. exactly in the tth time slot, given that it did not discover j indirectly by time t − 1. This happens if a nodem
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other than i or j has discovered j, directly or indirectly, by time t − 1 and successfully transmits to node i in
the tth time slot with probability ps. Ai,j({i}, t) denotes the probability of this event.

Note that, for a given t, Ii,j(S, t) is smaller than Ii,j(t), as none of the nodes in S has discovered j indirectly by time
t, which reduces the probability that i discovers j indirectly through any of the nodes in S by time t. We also note
that Ii,j(S, t) keeps becoming smaller as t becomes smaller. This is because, from (7), we see that the set S of nodes
that have not discovered j indirectly, keeps growing as t becomes smaller. Hence, both Ai,j(S, t) and Im,j(S, t)
become smaller.
We can solve (5) numerically for different values of pt and t and obtain Pi,j(t) from equation (4). The optimal

pt is the transmission probability that maximizes Pi,j(t). In Figure 4, we plot the optimal value of pt for different
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Figure 4: Optimal transmission probability for gossip-based algorithm

antenna beamwidths by solving equation (4) numerically. We observe from the figure that the optimal value of pt

obtained numerically matches almost exactly the optimal pt we obtained for the direct discovery algorithm (see
eq. (2), Section 3.1) which is given by the following equation:

pt =
(2 + (k − 1) θ

2π ) −
√

(2 + (k − 1) θ
2π )2 − 4k θ

2π

kθ
π

This is not surprising since, intuitively, the probability Pi,j(t) for both algorithms is maximized when the probability
of a successful transmission in a time slot, ps, is maximized. Since ps is the same for both the algorithms, the optimal
pt should also be the same.
In Figure 5(a), we plot the decay probability 1−Pi,j(t), i.e., the probability that node i does not discover a given

neighbor j within time t. This probability is computed numerically from (4) using the optimal value of pt. For the
graph shown in figure 5(a), we choose k = 30 and θ = 30o. The line labeled 1−Di,j(t) is the probability that node
i does not discover node j within time t with the direct-discovery algorithm.
From Figure 5(a) we observe that the probability of not discovering a neighbor decays much faster for the gossip-

based algorithm than for the direct-discovery algorithm. We also observe that the indirect discovery probability
Ii,j(t) dominates the direct discovery probability Di,j(t) since the lines 1 − Ii,j(t) and 1 − Pi,j(t) almost perfectly
overlap each other. This graph suggests the potential benefit of indirect discovery in speeding up neighbor discovery.
Given the promise of indirect discovery, we proceed to explore the following questions :

1. what is the fraction of neighbors discovered by a node in time t?
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2. what is the time until a large fraction (say 98 %) of the entire topology is discovered?

Since it is difficult to derive answers to these questions analytically, we resort to simulation to answer them.

4.3 Simulation Results

In Figure 6(a) we plot the fraction of neighbors discovered by a node as a function of time for the gossip-based
algorithm as well as the direct-discovery algorithm. The simulation scenario consists of 2000 nodes uniformly
distributed in a square with area 9 × 106m2. Nodes have a transmission range of 200m and have an antenna
beamwidth of 30 degrees. For the simulation results shown here (and in the rest of the paper), each node only has
information about node density based on which it calculates the expected number of its neighbors. The transmission
probability pt is then calculated based on this estimate. The results are averaged over 20 runs each corresponding
to a different node placement. The same node placements are used for both the neighbor discovery algorithms. We
do not show the confidence intervals, since the confidence interval widths were observed to be very small. (The
95% confidence interval widths for simulations of both the algorithms were within 2.3% of the corresponding mean
values).
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The simulation results clearly indicate that nodes discover their neighbors much faster using the gossip-based
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algorithm than using the direct-discovery algorithm. To quantify the difference between the two algorithms, we
observe that at the end of 50 time slots, the expected fraction of neighbors discovered by a node using direct-
discovery algorithm is 0.37 while the fraction is 0.94 using the gossip-based algorithm. In other words, in 50 time
slots a node discovers 2.5 times more neighbors with the gossip-based algorithm than with the direct-discovery
algorithm.
We observed in Figure 6(a) that each node quickly discovers a large fraction of its neighbors using the gossip-

based algorithm. A related, but system-wide, metric of interest is the time until all nodes in the network collectively
discover a certain fraction of the entire underlying graph. More formally, let G = (V, E) represent the actual
underlying graph where V is the set of nodes and E is the set of directed edges representing pairs of nodes that
are neighbors of each other. Formally, E = {(u, v)|u, v ∈ V, d(u, v) ≤ r}, where d(u, v) represents the euclidean
distance between nodes u and v, and r is the node transmission range. Let G(t) = (V, E(t)) represent the graph
discovered by time t. The set E(t) is the union ∪v∈V Ev(t), where Ev(t) represents the set of edges discovered by
node v by time t. We then ask the question: what is the time, Tf , until

|E(t)|
|E| ≥ f?

In Figure 6(b), we plot T0.98 as a function of node density. We also plot the 95% confidence intervals on the graph.
However, the confidence intervals are very small and hence, not noticeable. We observe that T0.98 increases with
node density for the direct-discovery algorithm. This is not surprising since the direct-discovery algorithm allows
a node to discover at most one node per time slot and with the increase in node density the number of neighbors
of a node also increases. Interestingly, T0.98 for the gossip-based algorithm is insensitive to an increase in node
density. In fact, T0.98 initially decreases with an increase in node density. This is because, as density increases,
the probability of a nodes discovering its neighbors indirectly increases and offsets the decrease in the probability
of direct discovery. In Figure 5(b), we numerically evaluate 1 − Ii,j(t) and 1 − Pi,j(t) for different node densities
using the analysis in Section 4.2. The probability of a successful transmission ps decreases with increasing node
density and so does the probability of direct discovery Di,j(t). Although the indirect discovery probability Ii,j(t)
also depends on ps, an increase in node density means that a node can discover its neighbors indirectly from more
nodes. This more than offsets the decrease in ps resulting in an overall increase in Ii,j(t). In Figure 5(b), we observe
that Ii,j(t) and Pi,j(t) almost overlap with each other, despite an increase in the number of neighbors. This indicates
that Pi,j(t) is insensitive to an increase in node density. This explains the insensitivity in the time to discover a
certain fraction of neighbors with respect to node density as observed in our simulations and validates the analysis
in Section 4.2.

4.4 Practical Considerations

We next consider several practical issues associated with our gossip-based neighbor discovery algorithm.
1. Fraction of nodes with location information: So far, we assume that each node knows its location informa-

tion. In practice, the gossip-based algorithm can still be used without modification even if only a fraction of nodes
know their location information. We simulate the gossip-based neighbor discovery algorithm by varying the frac-
tion of nodes in the network with location information (f ). In Figure 7, we plot the expected fraction of neighbors
discovered by a node against time for different values of f . We observe that the performance degrades gracefully
and approaches the performance of the direct-discovery algorithm as the fraction of nodes with location information
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becomes smaller. The ability of the gossip-based algorithm to operate without change even when only a fraction of
nodes have location information demonstrates its flexibility.
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Figure 7: Performance of gossip-based algorithm when only a fraction of nodes have location information

2. Message Size: In the gossip-based algorithm, a node’s message consists of not only the identities of its dis-
covered neighbors but also their co-ordinates. Thus, message length grows as more and more nodes are discovered.
This may not be a serious concern if the node density is not large, but for very dense networks the message size
can be reduced by compressing the neighbor information. Clever encoding of the location information should be
possible since nodes that are geographically close to each other will have very similar location information.
3. Physical Obstacles: While the gossip-based algorithm works well in a free-space environment, the presence

of physical obstacles can cause nodes to incorrectly infer another node as its neighbor. In other words, even though
two nodes may be geographically close to each other, they may still not be able to communicate with each other.
In such an environment, the location-discovery phase must be followed by a “pruning” phase. In this phase, each
node solicits a response from each “potential” neighbor that it has discovered indirectly by sending out probe mes-
sages exactly in the direction of its potential neighbor. This is possible since the node already knows the location
information of its potential neighbors. The absence of a response after sufficient number of retries causes a removal
of that node from the neighbor list. While this “pruning” slows down the discovery process, the algorithm still dis-
covers neighbors more quickly than the direct-discovery algorithm. This is because each node only probes potential
neighbors that are discovered indirectly.

4.5 Algorithm Enhancements

In the gossip-based algorithm described earlier, nodes only gossip about their discovered neighbors. However, the
gossip-based algorithm also allows a node to gossip about other discovered nodes which are not its neighbors. By
including the identities of other discovered nodes (which are not its neighbors) in its gossip message, a node can
potentially help its neighbors to discover their neighbors faster. However, this extra information comes at the cost
of an increased message length. One possible solution is to only gossip about a fraction of such non-neighbors at
a time. A more detailed study of the various tradeoffs and analysis of discovery probability using this enhanced
algorithm is an interesting direction for future research.
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5 Asynchronous Discovery Algorithms

So far, we have assumed the existence of a slotted, synchronous system for both the direct-discovery and gossip-
based algorithms, and obtained the transmission probability, pt, that maximizes the probability of discovering a
neighbor. We next outline how our synchronous algorithms can operate asynchronously.

5.1 Direct-Discovery Algorithm

We discuss the asynchronous version of direct-discovery algorithm and its optimal design. As in the previous
section, nodes have a fixed beamwidth θ. We analyze the case in which nodes have a directional transmitter and
omni-directional receiver. The extension to other antenna models is straightforward.
The asynchronous direct-discovery algorithm operates as follows. Each node listens for a random time interval.

Upon the expiry of this time interval, the node transmits in a random direction and then returns to listen mode. All
transmissions are of fixed duration, τ .

5.2 Analysis

Consider a random node, say i, with k-1 neighbors, j = 1, 2, . . . , k−1. LetNi(t) = (Ni,1(t), Ni,2(t), . . . , Ni,k−1(t))
be a k-tuple, where each Ni,j(t) represents the number of transmissions successfully received by node i from its
neighbor j in time t.
For simplicity, we assume that the listen intervals of each node are exponentially distributed with rate λ. We

further assume that the transmission duration is very small, i.e., τ ≈ 0. This assumption means that the inter-
transmission times of a node are exponentially distributed with rate λ. Given these assumptions, the inter-transmission
time from a given node j to its neighboring node i is also exponentially distributed with rate λ′ = θ

2πλ, since
θ
2π is

the probability that node j’s transmission covers node i. Since node i has k − 1 such neighbors, the time between
two successive transmissions to node i is exponentially distributed with rate, λ′′ = (k − 1)λ′. Or, in terms of λ,
λ′′ = (k − 1) θ

2πλ.
We are interested in the event that node i does not discover its neighbor j in time t, i.e.,Ni,j(t) = 0. We condition

this event on the number of transmissions from node j to node i by time t, which we represent by the random variable
Xi,j(t).
Let pi,j represent the probability that node i successfully receives a transmission from a given neighbor j. There-

fore, the probability that node i successfully receives m transmissions from a node j given n transmissions from
node j in time t, follows a binomial distribution with parameters n and pi,j .

P (Ni,j(t) = m|Xi,j(t) = n) =
(

n

m

)
pi,j

m(1 − pi,j)n−m

P (Ni,j(t) = 0|Xi,j(t) = n) = (1 − pi,j)n
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Removing the conditioning on the number of transmissions Xi,j(t),

P (Ni,j(t) = 0) =
t/τ∑

j=0

(1 − pi,j)j .
e−λ′t(λ′t)j

j!
(8)

The upper limit of t/τ in the summation in (8) is based on the fact that a node cannot simultaneously schedule more
than one transmission to a given node. In the limit as transmission time approaches zero i.e., τ → 0, the fraction t/τ

in (8) approaches∞. Substituting in (8) yields:

P (Ni,j(t) = 0) =
∞∑

j=0

(1 − pi,j)j e−λ′t(λ′t)j

j!
(9)

Simplifying (9) and expressing λ′ in terms of λ yields:

P (Ni,j(t) = 0) = e−
θ
2π λpi,jt (10)

We next determine pi,j , the probability that node i successfully receives a transmission from node j. This probability
is simply the probability that node i receives no other transmission in a time period of 2τ . More precisely, a
transmission from node j to node i that starts at time instant t is successful only if no other node transmits to node i

during the time interval [t − τ, t + τ ].
Recall from our earlier discussion, that inter-reception times at node i are exponentially distributed with rate

λ′′ = (k − 1) θ
2πλ. In addition, node i performs its own transmissions with rate λ. Therefore,

pi,j = e−2τ(λ′′+λ)

= e−2τλ((k−1) θ
2π +1)

Rewriting (10) in terms of λ yields
P (Ni,j(t) = 0) = e−

θ
2π f(λ)t

where,
f(λ) = λe−2τλ((k−1) θ

2π +1)

Returning to the neighbor discovery problem, we seek a value of λ that minimizes the probability, P (Ni,j(t) = 0).
This corresponds to finding the optimal rate λ that maximizes f(λ). Standard calculations yields:

λ =
1

2τ((k − 1) θ
2π + 1)

(11)

This result for optimal value of λ is reminiscent of the expression we obtained earlier for the optimal transmission
probability pt for a synchronous system in that the optimal transmission rate λ of a node is inversely proportional to
the number of its neighbors k. An interesting question is how the performance of asynchronous discovery algorithm
compares to its synchronous counterpart. In other words, we wish to find out how much synchronization helps
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improve the performance of neighbor discovery algorithm.

5.3 Comparison of Asynchronous and Synchronous Direct-Discovery Algorithm

We now compare the times required by the two direct-discovery algorithms. Our metric for comparison is the time
t until the probability that a node i discovers a given neighbor j exceeds p, i.e., the minimum time t such that
Pi,j(t) ≥ p. We will assume that node i has k-1 neighbors and beamwidth θ.
For the synchronous direct-discovery algorithm,

Pi,j(t) = 1 − (1 − pi,j)t

where pi,j denotes the probability of successful transmission from node j to node i in a time slot. Assuming the
optimal value of pt = 2π

θk , we obtain

pi,j =
1
k
(1 − 1

k
)k−2(1 − 2π

θk
)

The minimum time, ts, until Pi,j(ts) exceeds p is given by:

ts =
log(1 − p)

log(1 − 1
k (1 − 1

k )k−2(1 − 2π
θk ))

(12)

Note that time ts in (12) is measured in number of slots. For small x, log(1 + x) ≈ x. Hence,

ts =
log(1 − p)

− 1
k (1 − 1

k )k−2(1 − 2π
θk )

(13)

For the asynchronous direct-discovery algorithm, we obtain the minimum time, ta, until Pi,j(ta) exceeds p from (10)
and (11) as:

ta = −2e(k − 1 +
2π
θ

) log(1 − p)

For large k, we can approximate the above as,

ta = −2ek log(1 − p) (14)

The expression for ta is in number of slots assuming each slot has duration τ .
The ratio R of (14) to (13) yields

R = 2e(1 − 1
k
)k−2(1 − 2π

θk
)

For large k, (1 − 1
k )k−2 → e−1 and (1 − 2π

θk ) → 1. Hence,

R ≈ 2

Thus, our analysis suggests that for dense networks, the asynchronous algorithm requires an amount of time to
discover a neighbor that is approximately twice the time required by the synchronous algorithm. This factor of two
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slowdown in asynchronous discovery algorithms is observed in our simulations as well and will be discussed in more
detail in Section 5.5.

5.4 Asynchronous Gossip-Based Algorithm

The operation of asynchronous gossip-based algorithm is similar to that of the direct-discovery algorithm, except
for the additional information contained in the messages. In Section 4, we found that the optimal transmission
probability pt for the synchronous gossip-based algorithm is the same as that for the synchronous direct-discovery
algorithm. For both algorithms, the probability of a successful transmission pi,j is the same and the discovery prob-
ability is maximized when pi,j is maximized. Since the probability of a successful transmission remains the same
even for asynchronous versions of the algorithms, the optimal transmission rate, λ, for the gossip-based algorithm is
the same as that for the direct-discovery algorithm.

5.5 Simulation Results

In Figure 8, we compare the asynchronous direct and gossip-based discovery algorithms with their synchronous
counterparts. The simulation setting is exactly the same as considered in Section 4, viz. each node with a beamwidth
of 30o and transmission range of 200m. For the results in Figure 8(a), we simulate 2000 nodes in a square with
area 9 × 106m2. In Figure 8(a), we plot the expected fraction of neighbors discovered by a node against time for
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Figure 8: Comparison of Synchronous and Asynchronous Discovery Algorithms

the various discovery algorithms. Not surprisingly, the gossip-based algorithms outperform the direct-discovery
algorithms and the synchronous discovery algorithms outperform their asynchronous counterparts.
In Figure 8(b), we plot the time, T0.98, to discover 98% of the graph against node density. We also plot the 95%

confidence intervals which are too small to be noticeable. We observe that for the asynchronous gossip-based algo-
rithm, T0.98, is insensitive to node density and in fact decreases initially with increasing density. This behavior is
exactly same as that observed for the synchronous gossip-based algorithm. T0.98 for the direct-discovery algorithms,
however, increases with node density. Another interesting observation is that, for a given node density, T0.98 for the
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asynchronous discovery algorithms is approximately twice the corresponding T0.98 for their synchronous counter-
parts. This slowdown by a factor of two in the simulations is exactly as predicted in our analysis in Section 5.3.
In fact, in a classical paper by Roberts [12], it was shown that the throughput achieved using slotted ALOHA is
twice that of pure ALOHA. An explanation for this result as pointed out in [12] is that the “vulnerable” period of
a transmission is only one time slot (since nodes transmit only at slot boundaries) in slotted ALOHA, while the
“vulnerable” period in pure ALOHA is twice the length of a packet or two time slots. Because of the similarity of
the ALOHA protocols to our discovery algorithms, we see that the values of Tk for asynchronous algorithms are
approximately twice that for their synchronous counterparts.

5.6 Algorithm Enhancements

We propose an enhancement to the asynchronous discovery algorithm in which each node senses if it is currently
receiving a transmission, before it transmits. Details of this algorithm and its analysis is available in A. Our analysis
shows that, by using sensing, there is an increase in probability of discovering a neighbor within a given amount of
time. However, this increase is only small.

6 Antenna Beamwidth Selection

So far, our analysis was based on determining the optimal transmission probability pt, given that nodes have a fixed
beamwidth, θ. However, the process of neighbor discovery depends not only on pt but also on node beamwidths. A
large beamwidth covers a large transmission area and is therefore more likely to cause greater interference compared
to a smaller beamwidth. However, a large beamwidth is advantageous since it potentially allows many nodes to
simultaneously receive a transmission. Thus, there is a trade-off between the speed of discovery of neighbors and
probability of collision. The goal, then, is to find the node beamwidth that maximizes the expected number of
neighbors discovered by a node in a given amount of time. Our goal is motivated by the fact that information about
a large number of neighbors is essential for almost all routing protocols in order to construct optimal routes in the
network.
For a given transmission power, the transmission range of a node depends on its beamwidth. Let do be the range of

a transmission when a node transmits omni-directionally. By using a directional transmitter, a node can focus all its
power in the direction of transmission. With a beamwidth of θ, a node can radiate 2π

θ times more power in direction
of transmission as compared to an omni-directional antenna, thus extending its transmission range. This quantity of
2π
θ is called the gain of the directional antenna. The transmission range, d(θ), then is the distance at which received
signal strength is the same as the signal strength at distance do when using an omni-directional antenna. If α is the
pathloss exponent, then we obtain the following relationship between do, d and θ.

1
dα

o
=

2π
θ

1
d(θ)α

(15)

Rewriting equation (15):
d(θ) = do(

2π
θ

)
1
α (16)
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All nodes at distance d(θ) or less from the node are its potential neighbors. It is easy to see from equation (16) d(θ)
increases as node beamwidth decreases and, hence, the number of its potential neighbors.
For a given antenna beamwidth and neighbor discovery algorithm, the number of discovered neighbors increases

with time. The number of discovered neighbors also depends on the number of potential neighbors of the node
which is a function of the beamwidth and node density. We thus formulate the optimal beamwidth selection problem
as follows. Given that nodes are uniformly distributed with density λ, what is the optimal choice of beamwidth that
maximizes the expected number of discovered neighbors by time t?
In order to address this question, we simulate our synchronous neighbor discovery algorithms for different antenna

beamwidths. The results of our simulation are shown in Figure 9. The simulation involves 2000 nodes placed in a
square with area 9×106m2. We used the simple model given by (16) to determine the transmission range of nodes for
different choices of beamwidths. For our simulations, we choose an omni-directional transmission radius do = 107m
and the path loss exponent α = 4. Depending on the choice of beamwidth, nodes choose the transmission probability
pt as provided by our analyses in Sections 3 and 4. We observe from Figure 9 that for a given neighbor discovery
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Figure 9: Effect of beamwidth on neighbor discovery

algorithm, the choice of beamwidth depends on the time t that is allocated to the neighbor discovery process. For
both neighbor discovery algorithms, larger values of t yield larger expected numbers of discovered neighbors using
narrower beamwidths. However, if t is small, using a large beamwidth results in a greater number of neighbors being
discovered as seen in Figure 9(a). As t increases, no new neighbors are discovered and hence narrower beamwidths
are more preferable. This is indeed the case even for the gossip-based algorithm too. However, the advantage of
using a larger beamwidth seems insignificant in the case of the gossip-based algorithm, as seen from Figure 9(b),
and suggests that nodes can use the narrowest possible beamwidth even for small t.
If nodes are equipped with antennas that can dynamically adjust their beamwidths, an interesting question is

whether there is any benefit in varying the node beamwidth during discovery. For instance, from Figure 9(a) we
observe that, for the direct-discovery algorithm, nodes can initially transmit with a beamwidth of 2π until t = 25.
After t = 25, no additional neighbors are discovered if nodes transmit omnidirectionally and so nodes can reduce
their beamwidth to the next largest beamwidth and continue the discovery process. An interesting problem is to
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determine in what step sizes should nodes reduce their beamwidth and after what time intervals should nodes switch
to smaller beamwidths. We do not consider this problem in this paper, and is a topic for future work. Figure 9(b),
however, suggests little benefit in varying beamwidths for the gossip-based algorithm.

7 Conclusions and Future Work

In this paper, we considered the problem of neighbor discovery in wireless networks with directional antennas.
We proposed two classes of probabilistic neighbor discovery algorithms, viz. Direct-Discovery Algorithms in which
nodes discover their neighbors only when they hear transmissions from their neighbors andGossip-Based Algorithms
in which nodes gossip about location information about their neighbors. We first considered the operation of these
algorithms in a slotted, synchronous system and find the transmission probability that maximizes the probability
of discovering their neighbors. Simulations of the algorithms demonstrated that the Gossip-Based Algorithms are
insensitive to increase in node density i.e., the time required to discover a given fraction of neighbors remains
unaffected with the increase in node density. The gossip-based algorithm also has an interesting property that it
operates without any modification even if only a fraction of nodes have location information and its performance
degrades gracefully to that of direct-discovery algorithm when none of the nodes have location information. We
also described how the synchronous algorithms can be modified to operate asynchronously and analytically derive
its optimal algorithm parameters. Finally, we discussed how choice of antenna beamwidths affects the expected
number of neighbors discovered by the neighbor discovery algorithms.
There are a number of future directions from this work. Analytical derivation of the time to discover a given

fraction of the entire topology is an interesting problem. Deriving analytical bounds for the decay probability for
the gossip-based algorithm is another future goal, as it will help determine how well the gossip-based algorithm
performs in comparison to the direct-discovery algorithm as a function of the various algorithm parameters. When
nodes can dynamically adjust their beamwidths, designing beamwidth varying algorithms to maximize the number
of neighbors discovered is an interesting open question. Some applications require nodes to discover only sufficient
number of neighbors to achieve k-connectivity. Designing beamwidth varying algorithms to rapidly achieve k-
connectivity is another interesting direction for future work.
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APPENDIX

A Asynchronous Neighbor Discovery Algorithm With Sensing

The analysis of the asynchronous algorithm described in Section 5 assumes that nodes transmit as soon as their listen
period expires, even if they are receiving a transmission from their neighbors. By avoiding transmission during an
ongoing reception, nodes can increase the probability of successfully receiving a transmission. We, therefore, mod-
ify the asynchronous algorithm described in Section 5 as follows. Each node listens for an exponentially distributed
interval with rate λ. At the end of the interval, if the node is receiving a transmission it listens again for an exponen-
tially distributed time interval with rate λ. However, if there is no ongoing transmission, then the node transmits in
a random direction with a fixed beamwidth θ. After transmission, the node listens again.
Our goal is to determine an optimal λ that minimizes P (Ni,j(t) = 0), the probability that node i hears no

transmission from its neighboring node j in time t.
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It can be seen that the inter-transmission times of a node for the modified algorithm is an exponential random
variable with rate λ′ = λpidle, where pidle is the probability that the node is not receiving a transmission at a given
time instant. We can use the analysis in Section 5 to obtain the optimal λ′. However, the probability of a successful
transmission from node j to node i pi,j for the modified algorithm is different since node i senses an ongoing reception
before transmitting its own packet. The probability pi,j is given by:

pi,j = pi,j = e−2τλ′(k−1) θ
2π

Using the analysis in Section 5, the optimal λ′ is:

λ
′
=

1
2τ(k − 1) θ

2π

(17)

However, our goal is to obtain the optimal λ and not λ′ , therefore

λ =
1

2τ(k − 1) θ
2πpidle

(18)

From (18), we need to determine pidle in order to obtain λ. Recall that pidle represents the probability that a given
node (designated as node m in our discussion) is not receiving any transmission at any given time instant.
Consider the time line of node m shown in Figure 10.

Idle
Period Period

X1
X2

X3

Timeline

T

Unsuccessful Busy Period

Successful
Busy

Figure 10: Time Line of a Node

Let B represent the mean duration of the busy period and I represent the mean duration of the idle period at node
m. Then pidle is given by:

pidle =
I

B + I
(19)

The inter-arrival times at node m are exponentially distributed with rate, λ′′ = (k − 1) θ
2πλ

′ .
Substituting from equation (17) for λ′ , yield

λ
′′

=
π

θτ
(20)
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Now the mean idle period of node m is given by :

I =
1
λ′′ =

θτ

π
(21)

The busy period of node m is given by :

B = X1 + X2 + . . . + XR + τ

where Xi’s are iid exponential random variables with rate λ
′′ while R is geometrically distributed with mean 1

p

where p = e−λ
′′

τ . In words, p represents the probability of no transmission arriving for the duration of an ongoing
transmission, τ .
The sum X1 + X2 + . . . + XR is exponentially distributed with rate λ

′′
p. Hence, the mean busy period of node

m is:
B =

1
λ′′p

+ τ = τ(1 +
θ

pπ
) (22)

Replacing B and I in (19) with expressions in (22) and (21) yields

pidle =
e−

π
θ

1 + e−
π
θ (1 + π

θ )
(23)

Substituting in equation (18) for pidle, yields the expression for λ.
Substituting the optimal vLue of λ into the expression for P (Ni,j(t) = 0) yields:

P (Ni,j(t) = 0) = exp{− θ

2π
1

2eτ(k − 1) θ
2π

t} (24)

For the asynchronous algorithm described in Section 5,

P (Ni,j(t) = 0) = exp{− θ

2π
1

2eτ((k − 1) θ
2π + 1)

t} (25)

It is easy to see that P (Ni,j(t) = 0) is smaller in (24) than in (25). In other words, node i has greater probability
of discovering j within a given time using the modified algorithm . However, it can be seen from the expressions that
the decrease in P (Ni,j(t) = 0) with the reception sensing is very small.
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