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ABSTRACT
The non-Gaussian full network model for rubber elasticity is reformulated in a

more efficient and more micromechanics-motived manner. Based on such a full
network description, a so-called full network model for rubber photoelasticity is
proposed, by introducing directional polarizabilities into the individuallinks of the
idealized randomly jointed chain. This optical theory can be used to study the optical
properties or birefringence-strain behaviour of rubbers in arbitrary three-
dimensional deformation states. Detailed comparisons with two approximate
models, namely the classical three-chain model and an eight-chain model for rubber
photoelasticity, are provided for different types of deformation. The predicted
numerical results are compared with experimental data found in the literature.

§ 1. INTRODUCTION
The present understanding of the mechanical behaviour of amorphous polymers

owes much to early advances in the network theory of rubber elasticity (see, for
example, Kuhn and Grun (1942) and Treloar (1975)). These theories are based upon
the concept of a network of chains of randomly oriented rigid links that are connected
at junction points which, in rubber-like materials, are provided by the chemical
cross-links between macromolecules. Furthermore, these network theories use a
so-called affine deformation scheme, which is based on two key assumptions:
(i) statistical fluctuations of the position of the junction points about their mean position
can be neglected, (ii) the end-to-end vector of a chain between junction points
co-deforms with the local deformation of the continuum it is embedded in. According
to this scheme, as deformation progresses each chain stretches while rotating towards
a preferred direction. At all stages each chain attempts to maximize its entropy
by disorienting the elements or random links, subject only to the constraints imposed
by the end-to-end vectors. Another important assumption involved in these network
models is that intermolecular interactions are negligible in comparison to intramolec-
ular effects. The overall properties of the network are then obtainable by simply
summing the contributions of the individual chains. Furthermore, the exact
non-Gaussian treatments of a single chain, both for mechanical and optical behaviour,
are available (developed originally by Kuhn and Grun (1942) and James and Guth
(1943)). However, exact treatment of the transition from an individual chain to network
behaviour is very difficult owing to its mathematical complexity. In principle, this
transition (through an averaging process) needs the orientations of the individual chains
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1192 P. D. Wu and E. van der Giessen

of the network, which was not available for arbitrary three-dimensional (3D)
deformations until very recently (Wu and Van der Giessen 1993a).

Various simplified averaging procedures to obtain the network response have been
proposed (see Wu and Van der Giessen (1993a)). Among these simplified models, the
so-called three-chain model, originally suggested by James and Guth (1943), has
become the most widespread and almost standard non-Gaussian network model for
rubber elasticity. This model assumes that a network containing n chains per unit
volume is equivalent to three independent sets of n/3 single chains in three orthogonal
directions. Thus, the actual spatial distribution of chains is sampled in three
orthogonal orientations. Similarly, Treloar (1946) proposed the idea of a four-chain
Gaussian network representation (Flory and Rehner 1943) to sample four spatial chain
orientations. Very recently, Arruda and Boyce (1991, 1993) proposed a so-called
eight-chain model, which considers a set of eight chains connecting the central junction
point and each of the eight corners of the unit cube. Obviously, these models are but
approximate representations of the actual spatial distribution of molecular chains. All
these models can be regarded to sample a set of particular directions among all possible
orientations. More precisely, the three-chain model would overestimate the contribution
of the chain collection oriented along the direction of major principal extension, while
the eight -chain model would underestimate the stiffness of the network because of the
excessive freedom of the central junction point in the unit cube (Dahoun, G'Sell,
Molinari and Canova 1993). The four-chain model has the major drawback that it does
not exhibit the symmetry required of the principal strain space (Arruda and Boyce
1991).

The full network formulation by Wu and Van der Giessen (1992, 1993a) accounts
accurately for the actual spatial orientation distribution of molecular chains. Treloar and
Riding (1979a) had already developed a rubber elasticity theory based on such a full
network description, but their considerations were limited to deformations with biaxial
extension along fixed axes under plane stress conditions. Our model extends their theory
to a general formulation valid for 3D deformation processes. The modelling centres
around a general treatment of the orientation distribution of molecular chains and their
evolution as deformation progresses. This description utilizes the idea of a chain
orientation distribution function (CODF), which is governed by balance equations that
express physically well understood conservation principles. Assuming the network to
deform affinely with the deformation of the continuum in which it is embedded,
closed-form solutions have been derived for this CODF, which thus contain the
complete information of the orientation distribution of molecular chains at any stage
of the deformation. This solution is then used to develop the rubber elasticity model
by averaging out the contribution to the free energy of individual chains over all chain
orientations. The model has been found to be able to pick up the mechanical behaviour
of rubbers at various different large deformations (Dahoun 1992, Wu and Van der
Giessen 1993a). It has also been successfully used to model the orientation hardening
behaviour of large inelastic deformations of amorphous glassy polymers (see, for
example, Wu and Van der Giessen (1993a, b, 1994)). G'Sell and Dahoun (1994) and
Dahoun et al. (1993) used the full network model to describe the amorphous phase
responses in their composite model for large plastic deformation of semi-crystalline
polymers.

In § 2 of this paper, we reformulate the full network model for rubber elasticity in
a more efficient and more micromechanics-motivated manner. The so-derived
equations are mathematically equivalent to those given in Wu and Van der Giessen
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(1993a). However, the new representation of the model allows us to avoid calculating
principal stretches and principal directions of deformations.

The development of molecular chain segment orientation in rubber-like materials
under deformation has been extensively studied experimentally, often by the optical
anisotropy or birefringence (see, for example, Treloar (1975), Brown and Windle
(1984) and Mitchell, Brown and Windle (1985)). In § 3, a so-called non-Gaussian full
network model for rubber photoelasticity is proposed. The derivation of this optical
theory proceeds along lines parallel to the treatment of the full network model for rubber
elasticity. The essential modification is the introduction of directional polarizabilities
into the individual links of the idealized randomly-jointed chain. Again, Treloar and
Riding (1979b) had already developed a non-Gaussian optical theory based on such a
full network description; but, just as for the mechanical properties, their considerations
were limited to deformations with biaxial extension along fixed axes under plane stress
conditions. Our model extends their theory to a general formulation valid for 3D
deformation processes. For the purpose of comparison, we will also give two simplified
optical theories corresponding to the so-called three-chain model (see, for example,
Wang and Guth (1952)) and eight-chain model (Arruda and Boyce 1993) originally
for rubber elasticity (see also Arruda and Przybylo (1993)). The full network model for
rubber photoelasticity requires numerical integration; an approximation based on the
three-chain and eight-chain representations turns out to be accurate over the entire range
of strains. Verification with some experimental results from literature is provided both
for the mechanical and for the optical behaviour of a few rubber materials.

Tensors will be denoted by serif and vectors by sans serif bold-face letters. The
tensor product is denoted by ⊗ and the following operation for second-order tensors
applies (a = a ije i⊗ ej, b = b ije i⊗ ej, ei being a Cartesian basis): ab = a ikb k je i⊗ ej.

Superscripts T and - 1 denote the transverse and inverse of a second-order tensor,
respectively. The trace is denoted by tr. The three principal values of a are denoted by
iii where the superposed tilde reminds one of the principal value of the quantity.

§ 2. THE FULL NETWORK MODEL FOR RUBBER ELASTICITY

In Wu and Van der Giessen (1993a), we introduced a so-called molecular CODF,
denoted by C (θ , φ ; t), such that the relative density of molecular chains, at some instant
t, whose r-vector orientation falls in the range between (θ , φ ) and (θ + dθ , φ + dφ ), is
given by C (θ , φ ; t) sin θdθdφ . Note that sin θdθdφ is the area on a unit sphere spanned
by the interval (d θ , dφ ) and that t is just a time-like parameter. With n denoting the
number of chains per unit volume, the actual number of chains between (θ , φ ) and
(θ + dθ , φ + dφ ) is then

dn = nC (θ , φ ; t)sin θdθdφ . (1)

For a virgin, un strained material the orientation of network chains can usually be
considered to be disturbed in a random fashion; then C will be independent of θ and
φ, and the material's response is instantaneously isotropic. When the material is
deformed, all chains are stretched and, at the same time, rotated. Hence, the CODF will
develop into a non-uniform distribution which can be quite severe, as has been
demonstrated in Wu and Van der Giessen (1993a). Thus, texture development in the
sense of molecular chain distributions is described in this model in terms of this CODF.

Assuming the network to deform affinely with some 3D deformation process
represented by the deformation gradient tensor F of the continuum in which it is
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Fig. I

A single chain in unstrained (a ) and strained (b ) state; definition of geometric quantities.

embedded, each chain's end-to-end vector ro in the initial state is taken to be strained
and rotated to the vector r in the current state in an affine manner, i.e. r = Fro. It can
be shown (Wu and Van der Giessen 1993a) that in an arbitrary state of deformation,
the CODF for an initially random network can be expressed as follows:

C = Coλc3(θ, φ ; λi), (2)

where Co = 1/4π is the initial uniform distribution, and where λc(θ, φ ; λi) is the stretch
of an individual chain whose r-vector has an orientation (θ , φ ) with respect to the
Eulerian triads eiE(i.e. the principal stretch directions in the current configurations), and
Ai are the principal stretches. Here, we have substituted the principal stretches as the
time-like parameter t in the previous expressions for the COOF. This is possible since,
as a consequence of the affine deformation assumption, the distortion of the network
is independent of the rate of deformation, so that t only needs to be some monotonic
parameter. Identifying t with Ai will tum out to be convenient for further development
(Wu and Van der Giessen 1993a). For a detailed derivation of eqn. (2) we refer to Wu
and Van der Giessen (1993a). It is clear that the Eulerian triads themselves rotate during
the deformation process. Therefore, we have to recalculate the principal stretches Ai and
the corresponding principal directions eiE at each stage of the deformation process.
Before proceeding it is noted that since we assume the network to be incompressible,
the deformation gradient tensor satisfies det F = 1.

It is noted that the CODF in eqn. (2) is directly related to the stretch of an individual
chain and is determined completely through the deformation ellipsoid, which is
independent of the coordinate system used. Therefore, we can rewrite eqn. (2) in the
form

C = Coλc3(Θ, Φ; F), (3)

where (Θ , Φ ) is the orientation of the r-vector of an indi vidual chain in the current state
with respect to a fixed triad ei (see fig. 1), and whereF is the deformation gradient tensor.
The chain stretch λc can be obtained from F by

λc- 2 = m(FFT) -1m. (4)

Here, m is the unit vector m = r /r = miei (r = ||r||) along the end-to-end vector r, in the
current deformed state with components

m1 = sin Θ cos Φ, m 2 = sin Θ sin Φ, m 3 = cos Θ. (5)
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The actual number of chains between (Θ, Φ) and (Θ + dΘ, Φ + dΦ) is then

dn = nC0λc3(Θ, Φ; F)sinΘ dΘ dΦ. (6)

In order to represent the mechanical properties, let us consider a single chain
between two junction points, with its end-to-end vector r in the current state being
specified by angular coordinates Θ and Φ with respect to some fixed frame of reference
defined by the set of orthonormal base vectors ei (see fig. 1). We further assume that
this single chain has a given stretch λe in its current state. If the chain contains N links
of length l, the length of the unstrained free chain r0 is given by the root-mean-square
value l√N. By considering the statistical distribution of possible link angles at a given
stretch λe, Kuhn and Grun (1942) were the first to derive the well-known non-Gaussian
relationship between force fc and stretch λe for the stretched chain in the form

kT ( )fc = _l ℒ - 1 λ_√cN, (7)

where k is Boltzmann's constant, Tis the absolute temperature and ℒ is the Langevin
function defined by ℒ (f3) = coth 13- 1/13.By noting that r = λer0 = λel√ N, while 1/n

is the volume per chain and 1/(nr) is the cross-sectional area of the chain in the current
state, eqn. (7) can be transformed into a relationship between the Cauchy stress σc,

defined by σe = fern, acting on the continuum in which the chain is embedded and the
stretch in the form

σe = CR√Nλeℒ -l (λ_√cN), (8)

where CR = nkTis known as the rubbery modulus. Now, we can introduce a so-called
micro-stress tensor σe by

σe = σe(m ⊗ m) - pI, (9)

which can be interpreted as the contribution of the single chain to the stress of
the network. The hydrostatic pressure p is included because of incompressibility. The
overall or macro-stress tensor σ of the network is then obtained by simply averaging
the micro-stress tensor σe of the individual chains, i.e.

σ = 1/n ∫ σe dn. (1 0 )

With dn being given by eqn. (6) and the CODF by eqn. (3), we find

1 ∫0π ∫02π
σ=- σeλc3sinΘdΘdΦ-pI, (11)

4π 0 0

and with eqns. (8) and (9), we finally obtain for the Cartesian stress components,
σ = σijei⊗ ej,

1 ∫0π ∫02π (λ )
σij= 4πCR√N 0 0 λc4 ℒ -I_√ cN mimjsinΘdΘdΦ-pδij, (12)

with λe determined from eqn. (4) as a function of the deformation gradient tensor F and
the orientation (Θ , Φ ). The hydrostatic pressure p is left unspecified by the constitutive
equations and is to be determined from the boundary conditions.

Equations (12) are mathematically equivalent to those given by Wu and Van der
Giessen (1993a). However, the new representation of the model allows us to avoid
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calculating principal stretches and principal stretch directions for arbitrary 3D
deformation. Furthermore, this micromechanics-motivated new derivation will tum out
to be convenient for further development of the so-called full network model for rubber
photoelasticity in the next section.

§ 3. IMPROVED NETWORK MODELS FOR RUBBER PHOTOELASTICITY

It is well-known that many materials show the phenomenon of double refraction,
which arises from the fact that they are optically anisotropic. In other words, they have
different refractive indices, or polarizabilities in different directions. The refractive
index of a material is a function of its response to the electric field in the light wave
or, more specifically, of its polarizability, which is defined as the induced dipole
moment per unit field strength. Rubber-like materials are usually assumed to be random
in their structure and isotropic in the physical properties; such materials do not show
double refraction in the initial undeformed state. But in the deformed state, their
structures are no longer random; they cease to be isotropic and begin to show double
refraction or birefringence.

Usually, developing a network model for rubber photoelasticity follows closely the
lines taken in the treatment of the corresponding network model for rubber elasticity.
The essential modification is the introduction of directional polarizabilities into the
individual links of the idealized randomly-jointed chain. First, the optical properties of
the single chain are determined as a function of its length or stretch. Next, the
contribution of an individual chain to the polarizability of the network is determined.
Finally, the total polarizability of the network is obtained by integration over all the
chains.

3.1. Full network model-Eulerian form

Consider a single chain at a given stretch λc in the current deformed state, with its
unit vector m being specified by angular coordinates Θ and Φ with respect to the base
vectors e i (see fig. I). Kuhn and Grun (1942) had shown that a stretched chain can be
characterized by polarizabilities γI in the direction of m and γ2 in directions l and n
perpendicular to m. These are given by

2λc/√N ]
γ1 = N [OC1- (OCI- O(2) ℒ 1(λc/√N) ,

[
λc/√N ]

γ2 = N α2 + (α1 - α2) ℒ - I(λc/√N) , (13)

in terms of the polarizabilities α 1 and α2 parallel and perpendicular to the link direction
respectively. The optical anisotropy or difference of principal polarizabilities may be
written as

γ1 - γ2 = N(αl - O(2)P(λc), P(λc) = I _ 3λc/√N
ℒ -I(λc/√N) .

(14)

The contribution of an individual chain to the polarizability of the network can be
determined by introducing a so-called chain polarizability tensor Bc in the form

Bc = γ1m⊗m + γ2n⊗n + γ2l ⊗ 1= (γ1 - γ2)m⊗m + γ2I. (15)
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The overall polarizability tensor B of the network is then readily obtained by simply
summing the chain polarizability tensor Be of the individual chains, i.e.,

B = ∫ Bcdn. (16)

With dn given by eqn. (6) and the CODF according to eqn. (3), we obtain

∫0
π∫02π

B = n_ Bcλc3 sin e de dep. (17)
4π 0 0

Using eqns. (13) and (15), we find for the Cartesian polarizability tensor components,
B = Bijei⊗ej,

∫0
π∫02πn 3 .

Bij= 4π 0 0 λc(γ1-γ2)mimjSinededep+nγ2δij, (18)

with λc being given by eqn. (4) and m i by eqn. (5). The normalized differences of
polarizabilities in two orthogonal directions i and j are then given by

B ii - B jj N ∫0π ∫02π 313· - 13 = - - λ PeA )(mm - mm) sin e de dep (no sum) (19)
II jj n(αI - α2) 4π 0 0 c C i i j j , ,

with P(λc) being given by eqn. (14).

3.2. Full network model-Lagrangian form

The full network model for rubber photoelasticity derived above can also be
developed in the initial state, i.e. in a Lagrangian form instead of in the foregoing
Eulerian form. The Lagrangian form can be obtained in a rather straightforward manner
by employing a direct transformation of eqn. (17). Without going into the details, we
give only the result in the form

∫0
π∫02π

Bij = n_ (γl - γ2)FikFjlmokm0lsin eo deodepo + nγ2δij, (2 0 )

4π 0 0

with Fij being the Cartesian components of the deformation gradient tensor F.
Here, the integrations are performed in the initial orientation state (eo, epo), and
mOl = sin eo cos epo,m02 = sin eo sin epoand m03 = cos eo are the components of the unit
vector mo = r0/ro = mOkekalong the end-to-end vector ro in the initial state (see fig. 1).
It is noted that the chain stretch λc in eqn. (14) should in this case be determined in the
initial state according to λc2 = mo(FTF)mo.

It is noted that from eqn. (20) we can easily obtain the normalized differences of
polarizabilities f3ii - f3jj (no sum), which are similar to those given by Treloar and Riding
(1979b). However, Treloar and Riding (1979b) limited their attention to two-
dimensional (2D) deformations with fixed principal axes of stretching. Our formulation
is valid for arbitrary 3D deformations; for the 2D deformations mentioned, the
Lagrangian form of our full network model reduces to that in Treloar and Riding
(1979b). It is also noted that in the Lagrangian approach, the CODF is not needed at
all for the computation of the polarizability tensor of the network. However, the CODF
in itself is an essential source of information about the actual orientation distribution
of molecular chains at any stage of a general 3D state of deformation (Wu and Van der
Giessen 1993a).
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3.3. Simplified models

In this paper, we shall consider two simplified network models for rubber
photoelasticity, namely the three-chain model and eight-chain model. The three-chain
model was originally suggested by James and Guth (1943) for rubber elasticity and
assumes that a network containing n chains per unit volume is equivalent to three
independent sets of n/3 chains per unit volume parallel to the Eulerian principal axes
eiE. Using the notation B~i3-ch for the principal network polarizabilities, we thus have

3

B3-ch= Σ B ~ i3 -ch (e iE ⊗e iE ). (2 1 )

i=1

The normalized differences of the principal network polarizabilities had been given in
the form (see, for example, Treloar and Riding 1979b)

B~3-ch _ B~3-ch

i j = ⅓ N [P (λ i) - P (λ j) ], (2 2 )
n (α 1 _ α2)

where λ i are the principal stretches. The Cartesian components, B3-ch = B ij3 -ch e i⊗ e j,

can be determined from the principal values B~i3-Ch and principal directions eiE by a
standard tensor transformation argument. However, the results cannot be represented
by general mathematical formulae for arbitrary 3D deformations.

The eight-chain model for rubber elasticity was proposed by Arruda and Boyce
(1991, 1993) and considers a set of eight chains connecting the central junction point
and each of eight comers of the unit cube. The polarizability tensor according to the
eight-chain model, B8-ch, is found as

B8-ch = (γI - γ2 ) FFT + n γ I
n 3λ2 2 ,

c

(23)

with

λc = [⅓ tr (FFT)] 112. (24)

The tensor B8-ch can be represented as B8-ch = B ij8 -ch e i⊗ e j. It may be shown that
(see also Arruda and Przybylo (1993))

B 8-ch B 8-ch
β8-Ch _ β8-ch = ii - jj

/I jj n (α 1 _ α2)

N
= _2 P (λc )(F ikF ik - F jkF jk ), (no sum for i and j) . (2 5 )

3λc

3.4. Approximation of the full network model

Comparing the three- and eight-chain samplings with the actual 3D initial random
distribution of molecular chains, we expected that, as in the network models for rubber
elasticity (Wu and Van der Giessen 1993a), the three-chain model would overestimate
the actual optical anisotropy of the network, while the eight-chain model would
probably give a lower bound. Indeed, as will be demonstrated in the next section, the
optical response predicted by our full network model (18) or (20) is, for the same values
of Nand n, always in-between that predicted by the three-chain model and eight-chain
model, respectively. However, the integrations involved in eqns. (18) and (20) require
a rather time-consuming numerical procedure. All these observations motivated us to
search for an approximation of the full integration by combining the three-chain and
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eight-chain models. One possibility is the simple linear combination

B = (1 - ρ)B3-Ch + ρB8-ch, (2 6 )

where the parameter ρ may be a constant or related to some other physical quantity
which is, for instance, related to the deformation process. In this paper, we consider ρ

to be related to the maximal principal stretch Amax = max (AI, ,12, ,13) by

Amax
ρ=0.62_√N, (27)

where the factor 0·62 was chosen to give the best correlation will full integrations of
eqns. (18) and (20). In this way, the eight-chain contribution in eqn· (23) becomes
increasingly important when Amax approaches the limit stretch √N. The form of
eqn· (26) is similar to our previous proposition for the full network stress in rubber
elasticity in relation to that according to three- and eight-chain models (Wu and Van
der Giessen 1993a).

3.5· Calculation of birefringences

In an optical anisotropic medium the properties are represented by the refractive
index ellipsoid, the principal axes of which represent the three principal indices µ~iin
three mutually perpendicular directions. This in turn is related to the polarizability
ellipsoid, whose axes correspond to the principal polarizabilities B~i, and coincide in
direction with the axes of the refractive index ellipsoid· The conversion of
polarizabilities B~i (per unit volume) to refractive indices µ~i makes use of the
Lorentz-Lorenz relation

µ~i2- 1 4π ~

µ~i2+ 2 = ¯ 3B i'
(28)

Since the differences of refractive index relative to the mean value µ0 are generally
small, it may be shown that

µ~i2- 1 [µ~02- 1 6µ02] 6µ0~
µ~i2+ 2 ≈ µ~02 + 2 - (µ02+ 2)2 + (µ02+ 2)2 µi,

so that

µ~i= Δ µ oBi - M o, (29)

with

Δ - 4π (µ02+ 2)2 M _ (µ02- 1)(µ02+ 2) - 6µ02
µo - 3 6µ0 ' 0 - (µ02+ 2)2

Applying the relationship (29) for all three principal directions, we find that the
polarizability tensor B and the refractive index tensor µ, formed from the principal
values µ~i,are related through

µ = Δ µoB - Mol. (30)

Since the polarizability ellipsoid is coaxial with the refractive index ellipsoid,
the birefringence for propagation of light along any direction is determined by the
polarizabilities in the two transverse directions (directions of electric vector). Therefore,
for instance, propagation along e3 involves the difference of polarizabilities B ll - B22.
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Using eqn. (30), we obtain equations in the form

4π (µ02 + 2)2
µii - µ jj = ¯ 3 6µ0 (B ii - B jj) , (no sum), (31)

or

µii - µ jj = Δ µ N (β ii - β jj) , (no sum), (32)
with

4π (µ02 + 2)2 n (α I _ α2) .
Δ µN = ¯ 3 6µ0

Here, µ ij are the components of the refractive index tensor µ defined by µ = µ ije i ⊗ e j.

§4. RESULTS

The full network model for rubber elasticity has been used to describe the
large-strain elastic behaviour of rubber-like materials (Wu and Van der Giessen 1993a).
Detailed comparisons with experimental results and with two approximate models have
been provided for different types of deformation and rubbers (Wu and Van der Giessen
1993a). As an additional example of the application of the model, we study the
mechanical responses to uniaxial tension and pure shear of a vulcanized rubber reported
by Treloar (1944) but, according to the new derivation of the full network model given
in § 2. This also serves as a numerical check on the present network formulation
compared to the previous one (Wu and Van der Giessen 1993a). At each stage of the
deformation, the double integral in the full network relation (10) is evaluated by first
noting that due to symmetry only the intervals Θ ∈[0, π /2 ], Φ ∈[0, π ] need to be
considered, then subdividing that area into a number of cells and integrating within each
cell using Gaussian quadrature. Recursive refinement is applied for each cell until the
integral is obtained with a relative error of 10- 5.

As pointed out by Wu and Van der Giessen (1993a), the full network model as well
as the simplified three-chain model and eight-chain model are able to reproduce
experimental rubber stress-strain data for a certain deformation and material by
selecting the material parameters Nand CR for the given model. However, a more
important aspect appears to be the description of the network response under different
states of deformation. In order to assess the deformation dependence, we take the
following procedure (see also Arruda and Boyce (1993), Wu and Van der Giessen
(1993a)). The network parameters Nand CR are fitted from uniaxial tension data, and
are then used to predict pure shear. Figure 2 shows results for uniaxial tension in terms
of the nominal stress f or load per unit undeformed area as a function of the uniaxial
stretch λ. The values of N = 62 and C R = 0·3 MPa were found to give the best
correlation with the uniaxial tension data (Treloar 1944). The predicted results of pure
shear using these values of the parameters are given in fig. 3. The pure shear is
characterized by the principal stretches Al = A, A2 = 1, λ3 = 1/A along fixed directions,
while the material is in a state of plane stress, i.e. 0"33 = O. The figure shows the load
in the stretching direction, i.e. f= O "11 /A . It is observed that the full network model
predicts the different behaviour in pure shear well over the entire experimental range.

We proceed by studying the optical properties of rubbers in terms of the full network
model as well as the simplified three-chain and eight-chain models for rubber
photoelasticity. The numerical procedure of the integrations (18) and (20) involved in
the full network model is similar to that in the mechanical description (12) of the full
network given above. However, the integrals in eqns. (18) and (20) are 'well behaved'
over the whole of the specified ranges (Treloar and Riding 1979b). This is due to the
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Fig.2

Load against stretch diagram for uniaxial tension of a vulcanized rubber according to the full
network model for rubber elasticity with N = 62 and CR = 0·3 MPa. The experimental
data are taken from Treloar (1944).

Fig. 3

Load against stretch diagram for pure shear of a vulcanized rubber according to the full network
model for rubber elasticity with N = 62 and C R = O·3 MPa. The experimental data are
taken from Treloar (1944).

fact that whereas the tensile stress σe on the single chain tends to infinity as its stretch
λe approaches the limit stretch N (see eqn. (8», the optical anisotropy of the chain
remains finite and reaches the value n (α l - α 2 ) (see eqns. (14». As a result, the amount
of computation required to achieve any degree of accuracy is notably less for the optical
than for the mechanical problem.

Figure 4 shows the predicted difference in polarizability for uniaxial tension in the
e/ direction with principal stretches λ1 = λ, λ2 = λ3 = λ - 2. The value N = 25 was used
for all three models; it was simply used as a representative value of N. What this result
clearly shows is that relative to the full network model for rubber photoelasticity, the
simplified three-chain model tends to overestimate the optical anisotropy at large
stretches, while the eight-chain approximation tends to underestimate it. It is also



1202 P. D. Wu and E. van der Giessen

Fig. 4

Predicted normalized optical anisotropy against stretch diagram for uniaxial tension according
to different network models for rubber photoelasticity with N = 25.

observed that all models give virtually identical predictions for small stretches up to
λ ≈ 2·5 (or roughly 50% of the limit stretch). The difference at large stretches seems
to be associated with the different limit stretches of the complete network. The
stretching according to the three-chain model is limited directly by the tensile stretch
λL =√N of the chains parallel to the tensile direction, while the overall network limiting
stretch for the eight-chain model exceeds λL. It is seen that the approximation (26) for
the full network optical response is indeed very accurate up to very large stretches.

Next, we consider the case of simple (and not pure) shear, where the deformation
gradient tensor F is given by F = I + Tel ⊗ e2. In contrast to uniaxial tension where
the principal stretch directions are fixed in space, the principal stretch directions in
simple shear rotate constantly during the deformation process. As a result, the prediction
of the optical anisotropy in simple shear is much more involved than in the deformations
with fixed principal stretch directions. Figure 5 shows the predicted optical anisotropy
of simple shear according to the full network model, three-chain and eight-chain
network models for rubber photoelasticity. The differences in predicted normalized
optical anisotropy β II - β33 between the network models are similar to those presented
in fig. 4 for uniaxial tension. Compared with the CODF in simple shear presented in
Wu and Van der Giessen (1993a), it is found that all models support the observation
that molecular chains rotate towards the shear direction. Again, the approximation (26)
for the full network optical response in terms of β11 - β33 is very accurate up to very
large shear strains.

It is well-known that the secondary normal stresses σII and σ22 during simple shear
are mainly due to the development and subsequent rotation of the induced anisotropy,
and that the prediction of these mechanical phenomena generally shows a rather strong
dependence on the constitutive models (see, for example, Wu and Van der Giessen
(1993a, 1994». It is expected that the secondary order effects in optical anisotropies
such as β22 - β33 will also depend strongly on the constitutive models for rubber
photoelasticity. Figure 6 shows the predicted secondary optical anisotropy β22 - β33

during simple shear. Although the predicted absolute values of β22 - β33 are much
smaller than those of β II - β33, the relative differences in predicted β22 - β33 between
the network models are much larger than those in predicted β11 - β33. In fact, according
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Fig.5

Predicted normalized optical anisotropy β11-β33 against shear strain diagram during simple shear
according to different network models for rubber photoelasticity with N = 25.

Fig. 6

Development of secondary optical anisotropy β22-β33 during simple shear according to different
network models for rubber photoelasticity with N = 25.

to the eight-chain model, Iβ22 -β33 ≡ 0 during simple shear (see eqns. (25». This fact
is also the reason why the approximation (26) for the full network optical response in
terms of β22 - β33 is not very good in this special case.

Doherty, Lett and Treloar (1980) made simultaneous measurements of stress and
birefringence for a vulcanized styrene-butadiene rubber (SBR) under uniaxial tension.
The values of N = 75 and C R = O·3 MPa according to our full network model for rubber
elasticity are determined; the fit is shown in fig. 7. The so-determined value of N = 75
is then used to predict birefringence according to our full network model for rubber
photoelasticity. For that purpose, a value for the intrinsic birefringence Δ µN must be
estimated for a quantitative prediction. The simulated birefringence-stretch curve is
presented in fig. 8, where a value for the intrinsic birefringence Δ µN = 3·6 X 10 - 3 was
chosen to give the best correlation with the experimental data. The value of Δ µN seems
to be reasonable (see, for example, Treloar (1975». It is observed that the full network
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Fig. 7

Load response to uniaxial tension of a vulcanized styrene-butadiene rubber (SBR) according to
the full network model for rubber elasticity with N = 75 and CR = 0·3 MPa. The
experimental data are taken from Doherty et al. (1980).

Fig. 8

Predicted birefringence in uniaxial tension of a vulcanized styrene-butadiene rubber
(SBR) according to the full network for rubber photoelasticity with N = 75 and
Δ µN = 3·6 X 10 - 3. The experimental data are taken from Doherty et al. (1980).

model for rubber photoe1asticity is able to capture the optical behaviour, at least
qualitatively.

§ 5. DISCUSSION AND CONCLUSIONS

In this paper, the full network model for rubber elasticity has been reformulated in
a more efficient and more micromechanics motivated manner. The equations are
mathematically equivalent to those given in Wu and Van der Giessen (1993a). However,
the new representation of the model allows us to avoid calculating principal stretches
and principal stretch directions of deformations. The predicted numerical results have
been compared with experimental data for a vulcanized rubber under uniaxial tension
and pure shear. The comparison further supports our conclusion (Wu and van der
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Giessen 1993a): the full network model for rubber elasticity does pick up the
dependence of the state of deformation observed experimentally in rubber materials.

We have developed a so-called full network model for rubber photoelasticity. The
deri vation of this optical theory follows similar lines as the treatment of the full network
model for rubber elasticity. The essential modification is the introduction of directional
polarizabilities into the individual links of the idealized randomly joined chain. Our full
network optical theory has extended Treloar and Riding's (1979b) analysis for biaxial
extension with fixed principal stretch directions to general 3D deformation processes.
We have also presented a so-called eight-chain network optical theory, which is
equivalent to that discussed by Arruda and Przybylo (1993), and have considered the
classical three-chain network optical theory. The three-chain model and eight-chain
model are both based on approximate descriptions of an affine network model, while
our full network theory is based on an exact treatment of that same concept. The purpose
of studying the full network model for rubber photoelasticity here in some detail is to
assess the accuracy of the three-chain and eight-chain model. The general tendency of
the predictions of these simplified models compared with the more exact full network
theory is that with the same network parameters, the three-chain model overestimates
the optical anisotropy of the network at large strains, while the eight-chain model
underestimates the optical anisotropy. At small strains the models are indistinguishable.

In general, the form of the relations between polarizabilities and applied strains is
very similar to that for the corresponding stresses. However, the specific non-Gaussian
features are quantitatively less pronounced. This is due to the fact that whereas the
tensile stress σc on a single chain tends to infinity as its stretch λoc approaches the limit
stretch √ N , the polarizability of the chain remains finite throughout. It is noted that the
relative differences between various network models in predicted optical properties are
smaller than in predicted mechanical properties at large strains, using the same value
of N. Furthermore, the factor 0·62 was used in the approximation of the full network
model in the description of optical properties (see eqns. (26) and (27)), while the factor
0·85 in the description of mechanical properties gave the best correlation with the full
network model (Wu and Van der Giessen 1993a). From a numerical point of view this
also has to be attributed, to some extent, to the fact that the specific non-Gaussian
features are quantitatively less pronounced in the optical behaviour of rubbers.

The predicted numerical results according to the full network optical theory have
been compared with experimental data for a vulcanized styrene-butadiene rubber under
uniaxial tension. Although a value for the intrinsic birefringence Δ µN was estimated,
the full network optical theory was found to be able to capture the optical behaviour
of rubbers, at least qualitatively. A quantitative comparison needs more experimental
data for different types of deformation and materials. However, experiments for optical
properties are much less available than for mechanical properties of rubbers.
Furthermore, theoretical and experimental studies on optical properties presented in the
literature have been limited to one-dimensional or 2D deformations with fixed principal
stretch directions in space, as far as the authors are aware. Analysis of optical anisotropy
in deformations, including arbitrary rotations of the principal strain axes, is of
theoretical and practical importance. Obviously, large simple shear is a typical
large-strain and large-rotation problem. The present study of optical anisotropies under
simple shear has shown that the full network, as well as the three-chain network and
eight-chain network optical theories, correctly predict that the molecular chains rotate
continuously towards the shear direction. A more important aspect seems to be that the
prediction of the secondary optical anisotropy β22 - β33 during simple shear is strongly
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dependent on the constitutive models. Thus, the simple shear test seems to provide a
simple yet effective means for assessing the adequacy of non-Gaussian network models
for rubber photoelasticity.

Finally, it is well-known that if the number of links N is large, the orientation
distribution of the individual links with respect to the end-to-end vector has been given
by Kuhn and Grun (1942) analytically. Furthermore, a closed-form solution for the
molecular CODF has been derived by Wu and Van der Giessen (1993a). Therefore, it
is possible to obtain analytically a so-called link orientation distribution function, which
would be expected to contain the complete information of the orientation distribution
of molecular links at any stage of the deformation.

This paper is mainly concerned with the formulation of network optical theories and
their constitutive differences. Further refinement of the models and detailed
comparisons with experimental data are in progress and will be reported elsewhere.
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