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ON NEUMANN TYPE PROBLEMS FOR NONLOCAL

EQUATIONS SET IN A HALF SPACE

GUY BARLES, EMMANUEL CHASSEIGNE, CHRISTINE GEORGELIN,
AND ESPEN R. JAKOBSEN

Abstract. We study Neumann type boundary value problems for nonlocal
equations related to Lévy type processes. Since these equations are nonlocal,
Neumann type problems can be obtained in many ways, depending on the kind
of “reflection” we impose on the outside jumps. To focus on the new phenom-
ena and ideas, we consider different models of reflection and rather general
nonsymmetric Lévy measures, but only simple linear equations in half-space
domains. We derive the Neumann/reflection problems through a truncation
procedure on the Lévy measure, and then we develop a viscosity solution theory
which includes comparison, existence, and some regularity results. For prob-

lems involving fractional Laplace (−Δ)
α
2 -like nonlocal operators, we prove

that solutions of all our nonlocal Neumann problems converge as α →, 2−

to the solution of a classical local Neumann problem. The reflection models
we consider include cases where the underlying Lévy processes are reflected,
projected, and/or censored when exiting the domain.

1. Introduction

In the probabilistic approach to elliptic and parabolic partial differential equa-
tions, it is well known that Neumann type boundary conditions are associated to
stochastic processes being reflected on the boundary. We refer the reader to the
book of Freidlin [14] for an introduction and to Lions and Sznitman [23] for gen-
eral results. A key result in this direction is roughly speaking the following: for a
PDE with Neumann or oblique boundary conditions, there is a unique underlying
reflection process, and any consistent approximation will converge to it in the limit
(see [23] and Barles and Lions [7]). At least in the case of normal reflections, this
result is strongly connected to the study of the Skorohod problem and relies on the
underlying stochastic processes being continuous.

The starting point of this article is to address the same question for jump pro-
cesses related to partial integrodifferential equations (PIDEs for short). What is
a reflection for such processes, and is a PIDE with Neumann boundary conditions
naturally connected to a reflection process? It turns out that the situation is more
complicated in this setting, at least the questions have to be formulated in a dif-
ferent way. In this article we address these questions through an analytical PIDE
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approach where we keep in mind the idea of having a reflecting process but without
defining it precisely or even proving its existence.

For jump processes which are discontinuous and may exit a domain without first
hitting its boundary, there are many ways to define a “reflection” or a “reflecting
process”. Also, because of the way the PIDE and the process are related, defining
a reflection on the boundary will change the equation inside the domain. This is
a new nonlocal phenomenon which is not encountered in the case of continuous
processes and PDEs.

PIDE with Neumann type boundary condition. In order to simplify the
presentation and focus on the main new ideas and phenomenas, we consider several
different models of reflections and rather general nonsymmetric Lévy measures, but
only for problems involving linear equations set in simple domains. The cases we
will consider already have interesting features and difficulties. We consider the half
space Ω :=

{
(x1, . . . , xN ) = (x′, xN ) ∈ R

N : xN > 0
}
and simple linear Neumann

type problems that we write as{
u(x)− I[u](x)− f(x) = 0 in Ω,

− ∂u
∂xN

= 0 in ∂Ω
(1.1)

or {
F (x, u, I[u]) = 0 in Ω,

− ∂u
∂xN

= 0 in ∂Ω,

where F (x, r, l) = r − l − f(x) and

I[u](x) = lim
δ→0+

∫
|z|>δ

[u(x+ η(x, z))− u(x)] dμ(z).

We will assume that f ∈ Cb(Ω), i.e. f is bounded and continuous, that μ is a
nonnegative Radon measure satisfying∫

|z|2 ∧ 1 dμ(z) < ∞,(1.2)

and that

x+ η(x, z) ∈ Ω for all x ∈ Ω , η(x, z) = z if x+ z ∈ Ω.(1.3)

Note that I[u] is a principal value (P.V.) integral and that (1.2) is the most
general integrability assumption satisfied by Lévy measures [1]. When η(x, z) ≡ z,
then I[u] is the generator of a stochastic process which can jump from x ∈ Ω to
x + z with a certain intensity; see e.g. [1, 12, 15]. Assumption (1.3) is a type of
reflection condition preventing the jump process from leaving the domain: nothing
happens and η(x, z) = z if x + z ∈ Ω, while if x + z /∈ Ω, then a “reflection” is
performed in order to move the particle back to a point P (x, z) = x+ η(x, z) inside
Ω. Note that we have to check at some point that the reflection is consistent with
a Neumann boundary condition. In this paper the boundary value problem (1.1)
will be interpreted in the sense of viscosity solutions.
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The main examples of η are the following model cases, where we use the notation
x = (x′, xN ) ∈ R

N−1 × R+, η(x, z) = (η(x, z)′, η(x, z)N ), etc.:

(a) η(x, z) =

{
z if xN + zN ≥ 0,

0 if not
[censored],

(b) η(x, z) =

{
z if xN + zN ≥ 0,

z xN

|zN | if not
[fleas on the window],

(c) η(x, z) =

{
z if xN + zN ≥ 0,

(z′,−xN ) if not
[normal projection],

(d) η(x, z) =

{
z if xN + zN ≥ 0,

(z′,−2xN − zN ) if not
[mirror reflection]

for all x ∈ Ω and z �= 0. The different reflections are depicted in Figure 1. We will
discuss later whether the naively proposed “reflections” are realized by a concrete
Markov process, i.e. if they correspond to the generator of such a process.

Main results. From an analytical (PIDE) point of view, the first step is to give
a sense to problem (1.1) and relate it to a homogeneous Neumann boundary value
problem. This is done in Sections 2 and 3. The first part is classical: to take into
account singular Lévy measures, we write the integral operator with a compensator
term, using also the principal value. Here classical arguments in viscosity solution
theory are used; see e.g. [6] and the references therein. Viscosity solutions’ theory
also provides a suitable definition of “generalized” boundary conditions (cf. the
user’s guide [13]) which is used, here, for the Neumann boundary conditions.

If μ is a bounded measure, then problem (1.1) can be solved easily without
caring much about the Neumann boundary condition. Moreover, the solutions will
be uniformly bounded by ||f ||∞. From the modelling point of view, (1.1) carries
the information that the particles of the system remain in Ω since they can only
jump inside Ω. This mass conservation is an other way to understand that we are
dealing with a (homogeneous) Neumann type of boundary condition.

When μ is a singular measure, we can approximate it by a sequence of bounded
measures (μn)n, consider the associated (uniformly bounded) solutions (un)n, and
wonder what the limiting problem is. This is the way we choose to make sense
of both the definition of problem (1.1) and the associated notion of (viscosity)
solutions. We point out here that the Neumann boundary condition is active only
if the measure is singular enough. Otherwise the equation will hold up to the
boundary, as in the case of reflecting α-stable process with α < 1 where the process
will never reach the boundary [9].

A natural next step is to prove uniqueness results for the above equations in
the different cases. Different proofs are given depending on the singularity of the
measure and the structure of the “reflection” mechanism at the boundary. They are
given in Sections 4 – 6. The first case we treat is when the jump function η enjoys
a contraction property in the normal direction. This covers all the noncensored
models (b)–(d). Had we had a contraction in all directions, then the usual viscosity
solution doubling of variables argument would work. Here we have to modify that
argument to take into account the special role of the normal direction.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4876 G. BARLES, E. CHASSEIGNE, C. GEORGELIN, AND E. R. JAKOBSEN

x = x+ηa(x,z)

x+z
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x+ηb(x,z)
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x+ηc(x,z)

Normal projection ηc

x +ηd(x,z)

M irror reflection ηd

Dashed lines are jumps

IRN −1

IR+

Figure 1

The second case we consider is the censored case (a) when the singularity of the
measure is not too strong. By this we mean typically a stable process with Lévy
measure with density dμ

dz ∼ 1
|z|N+α for α ∈ (0, 1). We construct an approximate

subsolution which blows up at the boundary, and this allows us to derive a com-
parison result by a penalization procedure. Such a construction is related to the
fact that the process does not reach the boundary in this case; see e.g. [9].

The last case is the censored case (a) when the singularity is strong, i.e. when
α ∈ [1, 2). This case requires much more work because no blow-up subsolutions
exist here. In fact, when α ∈ [1, 2), the censored process does reach the boundary
(see e.g. [9]). We first prove that the Neumann boundary condition is already en-
coded in the equation under the additional assumption that the solution is β-Hölder
continuous at the boundary for some β > α−1. Then we prove a comparison result
for sub/supersolutions with this Hölder regularity at the boundary. The proof is
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then similar to the proof in the α < 1 case, except that the special subsolutions in
this case are bounded and only penalize the boundary when the sub/supersolutions
are Hölder continuous there with β > α− 1. Finally, we construct solutions in this
class. In dimension N = 1, we use and prove that any bounded uniformly continu-
ous solution is Hölder continuous provided μ satisfies some additional integrability
condition. In higher dimensions, we use and prove a similar result under additional
regularity assumptions on f in the tangential directions.

Finally, in Section 7 we show that our models are consistent with the local
Neumann problem: All the proposed nonlocal models converge to the same local
Neumann problem when the Lévy measure approches the “local” case α = 2. More

precisely, we consider Lévy measures μα with densities (2 − α) g(z)
|z|N+α , where g is

a nonnegative bounded function which is C1 in a neighborhood of 0 and satisfies
g(0) > 0. In this case we prove that whatever nonlocal Neumann model we use, the
solutions uα converge as α → 2 to the unique viscosity solution of the same limit
problem, namely

(1.4)

⎧⎨
⎩−aΔu− b ·Du+ u = f in Ω ,

∂u

∂n
= 0 in ∂Ω ,

where a := g(0) |S
N−1|
N and b := Dg(0) |S

N−1|
N . For problems without boundary

conditions, such asymptotic results have been known for a long time; we refer e.g.
to [8, 10] and the references therein for more details.

Related work. One of the first papers on this subject was by Menaldi and Robin
[21]. In that paper stochastic differential equations for reflection problems were
solved in the case of diffusion processes with inside jumps, i.e. when there are no
jumps outside the domain. They used the method of “penalization on the domain”
inspired by Lions, Menaldi and Sznitman [24].

In model (a) (the censored case), any outside jump of the underlying process is
cancelled (censored) and the process is restarted (resurrected) at the origin of that
jump. We refer to e.g. [9, 15, 18, 20, 22] for more details on such processes. The
process can be constructed using the Ikeda-Nagasawa-Watanabe piecing together
procedure [9,15,22], as Hunt processes associated to some Dirichlet forms [9,18], or
via the Feynman-Kac transform involving the killing measure [9]. In particular, the
underlying processes in this paper are related to the censored stable processes of
Bogdan et al. [9] and the reflected α-stable process of Guan and Ma [18]. Approx-
imations by truncated measures have been considered in the work of Kim [20] on
the weak convergence of censored and reflected stable processes. But note that we
essentially only study the generators and not yet the processes themselves. On the
technical side, we use viscosity solution methods, while [9,18,20] use the theory of
Dirichlet forms and potential theory. Our assumptions are also different, e.g. with
our arguments we treat more general measures and we have the potential to treat
nonlinear problems, while [9, 18] treat much more general domains.

Let us also mention that the “natural” Neumann boundary condition for the
reflected α-stable process of Guan and Ma [18] is different from the one we con-
sider here. They show that the boundary condition arising through the variational
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formulation and Green type formulas is

(1.5) lim
t→0

t2−α ∂u

∂xN
(x+ teN ) = 0.

This formula allows the normal derivative ∂u
∂xN

to explode less rapidly than |xN |α−2,

and it is consistent (after one integration) with our assumption (6.2) in Theorem 6.1
(the censored case). Formula (1.5) also justifies the use of boundary conditions in
the viscosity sense since ∂u

∂xN
is not necessarily equal to 0 on the boundary for α < 2.

In model (b) outside jumps are stopped where the jump path hits the boundary,
and then the process is restarted there. Model (c) is close to the approach of Lions-
Sznitman in [23], and here outside jumps are immediately projected to the boundary
along the normal direction. This type of model will be thoroughly investigated in
the forthcoming paper [5] by three of the authors, but this time in the setting of
fully nonlinear equations set in general domains. Note that models (b) and (c)
coincide in one dimension, i.e. when N = 1. Finally, in model (d), outside jumps
are mirror reflected at the boundary. This is a natural way to define a “reflection”,
but the model may be problematic to set up and work with in general domains due
to the possibility of multiple reflections.

To the best of our knowledge, processes with generators of the form (b)–(d)
have not been considered before. For example, the works of Stroock [29] and Taira
[30,31] seem not to cover our cases because their integrodifferential operators involve
measures and jump vectors η that are more regular than ours. Moreover in these
works, it is the measure and not η that prevents the process to jump outside Ω.

In the case of symmetric α-stable processes (a subordinated Brownian motion),
our formulation follows after a “reflection” on the boundary. Such processes can be
constructed from a Brownian motion by first subordinating the process and then
reflecting it. Another possible way to construct a “reflected” process in this case
would be to reflect the Brownian motion first and then subordinate the reflected
process. These two approaches are well understood for Dirichlet type of problems
involving subordinated killed and killed subordinated process; cf. e.g. [27].

Another approach that is related to reflected subordinated processes is described
e.g. in Hsu [19] (but see also [25]), where pure jump processes such as Lévy processes
are connected via the Dirichlet-Neumann operator to the trace at the boundary of a
reflected brownian motion in a space with an extra dimension Ω×R+. An analytic
PIDE version of this approach was introduced by Caffarelli and Silvestre in [10] in
order to obtain Harnack inequalities for solutions of integrodifferential equations,
and since then these ideas have been used by many authors.

Finally we mention the more classical work of Garroni and Menaldi [16], where a
large class of uniformly elliptic integrodifferential equations are considered. There
are two main differences with our work: (i) In [16] the principle part of all equations
is a local nondegenerate 2nd order term. This allows the nonlocal terms to be con-
trolled by local terms (the solution and its 1st and 2nd derivatives) via interpolation
inequalities, and the local W 2,p and C2,α theories can therefore be extended to this
nonlocal case. In our paper, it is the nonlocal terms that are the principal terms,
and interpolation is not available. In addition, most of our results can be extended
to degenerate problems. (ii) In [16], Dirichlet type problems are considered, and
the authors have to assume extra decay properties of the jump vector η near the
boundary, conditions that are not satisfied in our Neumann models.
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2. Assumptions and definition of solutions

In this section we state the assumptions of problem (1.1) that we will use in
the rest of the paper, give the definition of solutions for (1.1), and show that the
quantities in this definition are well defined under our assumptions.

We always let Du(x) and D2u(x) denote the gradient and hessian matrix of a
function u at x, usc and lsc denote upper and lower semicontinuous (functions),
Cb denotes the space of bounded continuous functions, and B(x, r), B(x, r) denotes
respectively the open ball {y ∈ R

N : |x − y| < r} for x ∈ R
N and r > 0, and its

closure. We also define P (x, z) = x+ η(x, z). Our assumptions are as follows:

(Hf ) f ∈ Cb(Ω).
(Hμ) The measure μ is the sum of two nonnegative Radon measures μ∗ and μ#

on R
N \ {0},

μ = cμ∗ + μ#,

where c is either 0 or 1,∫
|z|<1

|zN | dμ∗ = ∞,

∫
RN

(1 ∧ |z|) dμ# < ∞,

and μ∗ satisfies (1.2) and is symmetric in the sense that∫
RN

χ(σiz) dμ∗(z) =

∫
RN

χ(z) dμ∗(z) for i = 1, . . . , N,

for all μ∗-integrable functions χ where σiz = (z1, . . . ,−zi, . . . , zN ).
(H0

η) Neumann problem: P (x, z)N = xN + η(x, z)N ≥ 0 for all x ∈ Ω, z ∈ R
N ,

and

η(x, z) = z if xN + zN ≥ 0.

(H1
η) At most linear growth of the jumps: There exists cη > 0 such that

|η(x, z)| ≤ cη|z| for all x ∈ Ω, z ∈ R
N .

(H2
η) Antisymmetry with respect to the z′-variables: For all x ∈ Ω,

η(x, σiz) = σiη(x, z) for i = 1, . . . , N − 1 ,

where σi is defined in (Hμ).

(H3
η) Weak continuity condition: If xn → x in Ω, then

η(xn, z) → η(x, z) for μ-a.e. z.

(H4
η) Continuity in the x′-variable: There exists Lη > 0 such that for all x′, y′ ∈

R
N−1, z ∈ R

N , and s > 0,

|η(x′, s, z)′ − η(y′, s, z)′| ≤ Lη|z||x′ − y′|.

(H5
η) Noncensored cases: Contraction in the N -th direction,

|P (x, z)N − P (y, z)N | ≤ |xN − yN | for all x, y ∈ Ω, z ∈ R
N .

(H6
η) Censored case: For all z �= 0 and x ∈ Ω,

η(x, z) =

{
z if xN + zN ≥ 0,

0 otherwise.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4880 G. BARLES, E. CHASSEIGNE, C. GEORGELIN, AND E. R. JAKOBSEN

Remark 2.1. Assumption (Hμ) means that we can decompose μ into a sum of a
singular symmetric (in the sense of (Hμ)) Lévy measure and a less singular Lévy
measure. This assumption covers the stable, the tempered stable, and the larger
class of self-decomposable processes in R

N ; cf. chapter 1.2 in [1]. In all these cases
the Lévy measures satisfy

dμ

dz
=

g(z)

|z|N+α
for α ∈ (0, 2),

and (Hμ) holds with c = 0 if α ∈ (0, 1), while if α ∈ [1, 2) and g is Lipschitz in

B(0, 1) and bounded, then (Hμ) holds with c = 1. In the last case we may take

dμ∗
dz

=
h(z)

|z|N+α
and

dμ#

dz
=

g(z)− h(z)

|z|N+α
for h(z) := min

|y|=|z|
g(y),

and note that h is symmetric and g − h is nonnegative. More generally, we can
consider measures where dμ

dz = g(z)dμ∗
dz and μ∗ is symmetric in the sense of (Hμ).

Remark 2.2. The cases (a), (b), (c), and (d) mentioned in the introduction satisfy
assumptions (Hi

η) for i = 0, 1, 2, 3, 4, where in fact (H4
η) holds with C = 0. Assump-

tion (H5
η) holds except in case (a), and case (a) is equivalent to (H6

η). Note that η
is continuous in x for z �= 0 in (b), (c), and (d), while in (a), η is continuous except
on the codimension 1 hypersurface {zN = xN}.

Now we will define generalized solutions in the viscosity sense, and to do that
we need the following notation:

I[φ] = Iδ[φ] + Iδ[φ] ,

where

Iδ[φ] =

∫
|z|≥δ

φ(x+ η(x, z))− φ(x) dμ(z) .

The Iδ-term is well defined for any bounded function φ. For the Iδ-term there are
two cases, depending on whether c = 0 or 1 in (Hμ). If c = 0, a Taylor expansion
shows that Iδ[φ](x) is well defined for φ ∈ C1 and x ∈ Ω. If c = 1, and the measure
μ is very singular, we add and subtract a compensator term P.V.

∫
|z|<δ

Dφ · η dμ
and write

(2.1) Iδ[φ](x) = Ĩδ[φ](x) + P.V.

∫
|z|<δ

Dφ(x) · η(x, z) dμ(z),

for

Ĩδ[φ](x) :=

∫
|z|<δ

φ(x+ η(x, z))− φ(x)−Dφ(x) · η(x, z) dμ(z).

Under our assumptions and C2-regularity of φ, a nontrivial argument (see Lemma
2.7 below) shows that these two terms are well defined.

Definition 2.3. Assume that (Hμ), (H
i
η) for i = 0, 1, 2 hold.

(i) A bounded usc function u is a viscosity subsolution to (1.1) if, for any test
function φ ∈ C2(RN ) and maximum point x of u− φ in B(x, cηδ) ∩ Ω,

F (x, u(x), Iδ[φ] + Iδ[u]) ≤ 0 if x ∈ Ω and

either F (x, u(x), Iδ[φ] + Iδ[u]) ≤ 0 if x ∈ ∂Ω and c = 0,

or − ∂φ

∂xN
(x) ≤ 0 if x ∈ ∂Ω and c = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEMS 4881

(ii) A bounded lsc function v is a viscosity supersolution to (1.1) if, for any test
function φ ∈ C2(RN ) and minimum point x of v − φ in B(x, cηδ) ∩ Ω,

F (x, v(x), Iδ[φ] + Iδ[v]) ≥ 0 if x ∈ Ω and

either F (x, v(x), Iδ[φ] + Iδ[v]) ≥ 0 if x ∈ ∂Ω and c = 0,

or − ∂φ

∂xN
(x) ≥ 0 if x ∈ ∂Ω and c = 1.

(iii) A viscosity solution is both a sub- and a supersolution.

Example 2.4. As suggested by one of the referees, in the mirror reflection case
(model (d)) problem (1.1) is equivalent to a problem posed in R

N with symmetric
data f . To make this precise, we take f ∈ C0,β(Ω), the space of bounded β-Hölder
continuous functions on Ω, and μ to be the Levy measure associated to the α

2 -

Laplacian, i.e. dμ(z) =
cα,Ndz
|z|N+α . Here β ∈ (0, 1), α ∈ (0, 2), and cα,N is a constant.

Then we extend f to R
N by setting

f(x′,−xN ) = f(x′, xN ) for all x′ ∈ R
N−1, xN > 0,

and consider the problem

u+ (−Δ)
α
2 u = f in R

N .

This problem has a unique viscosity solution (cf. e.g. [6]) satisfying

u(x′,−xN ) = u(x′, xN ) for all x′ ∈ R
N−1, xN ∈ R.

By classical Schauder estimates (cf. section V.4.4 in [28]) this solution belongs to
C [α+β],α+β−[α+β](RN ) and hence is a classical point-wise solution of the equation
(cf. [26]). A direct computation using the symmetry of u and continuous differen-
tiability when α > 1 then shows that u satisfies

u− I[u] = f in Ω for all α ∈ (0, 2), β ∈ (0, 1),

∂u

∂xN
= 0 at ∂Ω for all α ∈ (1, 2), β ∈ (0, 1),

where I is defined below (1.1) and η is given by model (d).
For α ∈ (0, 1) the solution may not be differentiable at ∂Ω, and hence the

Neumann condition will not hold in the classical sense. To see this, let u(x) =
|xN |α+βφ(x), where φ ∈ C∞

c (RN ) and φ = 1 in B(0, 1). For α + β ∈ (0, 1),
u ∈ C0,α+β(RN ), and it follows (cf. [26]) that

f := u+ (−Δ)
α
2 u ∈ C0,β(RN ).

The normal derivative of u blows up at the boundary, but u satisfies the Neumann
condition in the sense of the above definition and in the sense of (1.5).

Remark 2.5. The constant cη is defined in (H1
η). If u and φ are smooth and x is a

maximum point of u− φ over B(x, cηδ) ∩ Ω, then by (H1
η),

u(x)− φ(x) ≥ u(x+ η(x, z))− φ(x+ η(x, z)) for all |z| < δ.

If we rewrite this inequality and integrate, we find formally that Iδ[u](x) ≤ Iδ[φ](x).
Lemma 2.7 below makes this computation rigorous. From this inequality it is easy
to prove that classical (sub)solutions of (1.1) are viscosity (sub)solutions. Moreover,
smooth viscosity (sub)solutions are classical (sub)solutions (simply take φ = u).
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Remark 2.6. In general, see e.g. [4, 13], boundary conditions in the viscosity sense
should be posed for a subsolution u by requiring that for every maximum point
x ∈ ∂Ω of u− φ in B(x, cηδ) ∩ Ω,

min
(
F (x, u, Iδ[φ] + Iδ[u]),− ∂φ

∂xN
(x)

)
≤ 0.

This means that either an inequality involving the F -equation or the boundary
condition holds, and this is also the case for supersolutions where a similar definition
applies. In the cases we consider in this paper, such a general definition simplifies to
Definition 2.3: If the measure μ is very singular (case c = 1), then the inequalities
involving the F -equation cannot hold on the boundary and hence the inequalities
have to hold for the boundary condition instead. In the c = 0 case, on the contrary,
the equation will hold up to the boundary and the boundary condition cannot be
imposed in general. As already mentioned in the introduction, this is linked to
the fact that in the case of reflecting α-stable process with α < 1, the process will
never reach the boundary [9]. We also refer to [4] for results in this direction. In
other words, we only end up with a Neumann boundary condition if c = 1, i.e. the
measure has a “strong” singular part μ∗. In this case the intensity of small jumps
is so strong that our jump-reflection mechanisms (e.g. (a) – (d)) are not sufficient
to prevent the process from “diffusing” onto the boundary, and we need to add a
reflection process at the boundary to keep the process inside (just as in the case of
Brownian motion). We also note that the symmetry of μ∗ is a natural condition
in order to obtain Neumann and not oblique derivative boundary conditions; cf.
Lemma 3.3 and its proof.

We now prove that Iδ[φ] is well defined for φ ∈ C2.

Lemma 2.7. Assume that (Hμ) and (Hi
η) for i = 0, 1, 2 hold, and let x ∈ Ω,

φ ∈ C2, and δ > 0.

(a) P.V.

∫
|z|<δ

Dφ(x) · η(x, z) dμ(z)

=

∫
|z|<δ

Dφ(x) · η(x, z) dμ#(z) + c

∫
xN<|z|<δ

Dφ(x) · η(x, z) dμ∗(z).

(b) Iδ[φ](x) is well defined and there is R = R(x, η) > 0 such that

Iδ[φ](x) = oδ(1)‖φ‖C2(B(x,R)) as δ → 0.

In the following, we often drop the P.V. notation for such integrals since they
may be expressed in terms of converging integrals. Note that the integral over
{xN < |z| < δ} need not vanish since this region exceeds the boundary, and hence
η(x, z) will not be odd there.

To prove Lemma 2.7 and for later use, we give the following result.

Lemma 2.8. Assume that (Hμ) and (Hi
η) for i = 0, 1, 2 hold.

(i) Let x ∈ Ω, 0 < r < ρ ≤ xN , and v ∈ R
N be a fixed vector. Then∫

r<|z|<ρ

v · η(x, z) dμ(z) =
∫
r<|z|<ρ

v · η(x, z) dμ#(z)

and

P.V.

∫
|z|<ρ

v · η(x, z) dμ(z) =
∫
|z|<ρ

v · η(x, z) dμ#(z) .
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(ii) Let x ∈ Ω, 0 < r < δ, and v′ ∈ R
N−1 be a fixed vector. Then∫

r<|z|<δ

v′ · η(x, z)′ dμ(z) =
∫
r<|z|<δ

v′ · η(x, z)′ dμ#(z)

and

P.V.

∫
|z|<δ

v′ · η(x, z)′ dμ(z) =
∫
|z|<δ

v′ · η(x, z)′ dμ#(z) .

(iii) Let x ∈ Ω and 0 < r < δ. Then∫
r<|z|<δ

η(x, z)N dμ∗(z) ≥
∫

r<|z|<δ
zN>xN

(zN − xN ) dμ∗(z) ≥ 0 .

Proof. (i) By (Hμ), μ = cμ∗ + μ# with symmetric (cf. (Hμ)) μ∗. If |z| < ρ ≤ xN ,

then η(x, z) = z by (H0
η). Hence η is odd with respect to the z variable, and the

integral with respect to the symmetric part cμ∗ is zero. Passing to the limit as
r → 0 and using the integrability of μ# in (Hμ) along with (H1

η) finishes the proof
of (i).

(ii) Let σ′ = σ1 ◦ σ2 ◦ · · · ◦ σN−1, i.e. σ
′z = (−z′, zN ). Because of the symmetry

properties of μ∗ and η (see (H)μ and (H)2η),∫
r<|z|<δ

v′ · η(x, σ′z)′ dμ∗(z) =

∫
r<|z|<δ

v′ · η(x, z)′ dμ∗(z).

On the other hand, since η(x, σ′z) = σ′η(x, z) by (H2
η), the above integral is zero.

The result on the principal value is obtained as in the first case, after letting r → 0.
(iii) Let us decompose∫

r<|z|<δ

η(x, z)N dμ∗(z) =

∫
r<|z|<δ

−xN≤zN≤xN

η(x, z)N dμ∗(z)

+

∫
r<|z|<δ
zN>xN

η(x, z)N dμ∗(z) +

∫
r<|z|<δ

zN<−xN

η(x, z)N dμ∗(z) .

The integral over −xN ≤ zN ≤ xN vanishes since η(y, z) = z in this region and μ∗
is symmetric by (H)2η. By (H0

η) we have that η(x, z)N ≥ −xN if zN < −xN and
η(x, z) = zN > xN if zN > xN . Hence by the symmetry of μ∗,∫

r<|z|<δ

η(x, z)N dμ∗(z) ≥
∫

r<|z|<δ
zN>xN

(zN − xN ) dμ∗(z) ≥ 0,

and the proof is complete. �

Proof of Lemma 2.7. (a) By (Hμ), μ = cμ∗ + μ#. Part (a) now follows since the
integral with respect to μ# exists by (H1

η), while the integral with respect to μ∗ (of

course, understood in the sense of P.V.) vanishes over B(0, xN ) by Lemma 2.8(i).
(b) We consider Iδ in the form (2.1). Here the compensator term (the P.V. term)

is well defined by (a), and since |z| is integrable near the origin for μ#, this term is
|Dφ(x)|oδ(1) as δ → 0.

The Ĩδ-term in (2.1) is well defined since the integrand is smooth and bounded
by the function 1

2 |z|2 maxB(x,R) |D2φ|, for R = maxy∈B(0,δ) |η(x, y)|, which is a μ-

integrable function over B(0, δ). Moreover,
∫
0<|z|<δ

|z|2 dμ(z) = oδ(1) as δ → 0

since |z|2 is μ-integrable near 0. �
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3. Derivation of the boundary value problem - PIDE approach

In this section we derive the boundary value problems from approximate prob-
lems involving a sequence of bounded positive Radon measures μk = 1{|z|>1/k}μ

for k → +∞. Assume that (Hμ) holds and let μk
# = 1{|z|>1/k}μ# and μk

∗ =
1{|z|>1/k}μ∗. It then easily follows that

(H1
μ) lim

k→+∞

∫
|z| ∧ 1 dμk

#(z) =

∫
|z| ∧ 1 dμ#(z),

(H2
μ) lim

k→+∞

∫
|z|2 ∧ 1 dμk

∗(z) =

∫
|z|2 ∧ 1 dμ∗(z),

(H3
μ) lim

k→+∞

∫
|zN | ∧ 1 dμk

∗(z) = ∞.

The approximation problem we consider is then given by

u(x)− Iμk
[u](x) = f(x) in Ω,(3.1)

where f ∈ Cb(Ω) and, for φ ∈ Cb(Ω),

Iμk
[φ](x) =

∫
RN

φ(x+ η(x, z))− φ(x) dμk(z).

Since the measures μk are bounded, weak or generalized solutions are not needed,
and we alway understand equation (3.1) in the classical, pointwise sense. Now we
show that it is well posed in Cb(Ω) and that its solutions uk are uniformly bounded
in k.

Lemma 3.1. Assume that (Hf ), (Hμ), (H0
η), and (H3

η) hold.

(a) For every k, there is a unique pointwise solution uk of (3.1) in Cb(Ω).
(b) If uk and vk are Cb(Ω) pointwise sub- and supersolutions of (3.1), then

uk ≤ vk in Ω.

(c) If uk is a pointwise solution of (3.1), then ‖uk‖L∞(Ω) ≤ ‖f‖L∞(Ω).

Proof. (a) Let T : Cb(Ω) → Cb(Ω) be the operator defined by

Tu := u− ε
(
u− Iμk

[u]− f
)
,

where 0 < ε < (1 + 2‖μk‖1)−1 and ‖μk‖1 is the total (finite!) mass of the measure
μk. Then T is a contraction in the Banach space Cb(Ω) since

‖Tu− Tv‖∞ ≤ (1− ε)‖u− v‖∞ + 2ε‖μk‖1‖u− v‖∞
≤

(
1− ε(1 + 2‖μk‖1)

)
‖u− v‖∞

≤ C(k)‖u− v‖∞ ,

and C(k) < 1. Hence there exists a unique uk ∈ Cb(Ω) such that Tuk = uk, which
is equivalent to (3.1).

(b) By the definition of the supremum, we can find a sequence xn ∈ Ω such that

sup
Ω

(u− v) < (u− v)(xn) +
1

n
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEMS 4885

Then by the sub- and supersolution (pointwise) inequalities,

(u− v)(xn) ≤ Iμk
[u− v](xn)

=

∫
RN

(u− v)(xn + η(xn, z))− (u− v)(xn) dμ
k(z) <

1

n
μk(RN ).

Sending n → 0 then leads to supΩ(u− v) ≤ 0, and (b) follows.
(c) Follows from (b) since ±‖f‖L∞(Ω) are super- and subsolutions of (3.1). �

The limiting problem can be identified through the half-relaxed limit method.

Theorem 3.2. Assume that (Hf ), (Hμ), and (Hi
η) for i = 0, 1, 2, 3 hold. Then the

half-relaxed limit functions

u(x) = lim sup
k→+∞,y→x

uk(y) and u(x) = lim inf
k→+∞,y→x

uk(y)

are respectively sub- and supersolutions of the Neumann boundary problem in the
sense of Definition 2.3.

In the proof we will need the following result whose proof is given at the end of
this section.

Lemma 3.3. Assume that (Hi
η) for i = 0, 1, 2 hold, that (Hμ) holds with c = 1, and

let δ > 0 and γμk,δ(y) :=
∫
|z|<δ

η(y, z) dμk(z). If yk ∈ Ω for k ∈ N and yk → x ∈ ∂Ω

as k → ∞, then

|γμk,δ(yk)| → ∞ and
γμk,δ(yk)

|γμk,δ(yk)|
→ −n,

where n = (0, 0, . . . , 0,−1) is an outward normal vector of ∂Ω.

Proof of Theorem 3.2. Since the proofs are similar for u and u, we only show the
one for u. Let δ > 0 and φ ∈ C2, and assume that u − φ has a maximum point
x in B(x, cηδ) ∩ Ω. By modifying the test function if necessary, we may always
assume that the maximum is strict. A standard argument then shows that for k
large enough, uk−φ has a maximum point yk in B(x, cηδ)∩Ω, and when k → +∞,

yk → x and uk(yk) → u(x).

For a proof, we refer e.g. to Lemma 4.2 in [3] or Lemma V.1.6 in [2].

Case 1: x ∈ Ω, i.e. xN > 0. Here we may assume that yk ∈ Ω. Let δk = δ−|x−yk|
and 0 < r ≤ δk, and note that B(yk, cηr) ⊂ B(x, cηδ). Since the maximum of

(uk − φ) in B(yk, cηr) is attained at yk, we find that

(Iμk
)r[uk](yk) :=

∫
|z|<r

uk(yk + η(yk, z))− uk(yk) dμ
k

≤
∫
|z|<r

φ(yk + η(yk, z))− φ(yk) dμ
k = (Iμk

)r[φ](yk).

Since uk is a pointwise solution of (3.1), for all 0 < r ≤ δk,

uk(yk)− (Iμk
)r[φ](yk)− (Iμk

)r[uk](yk) ≤ f(yk),

where (Iμk
)r[uk](x) :=

∫
|z|≥r

uk(x+ η(x, z))− uk(x) dμ
k(z).
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We want to pass to the limit in this inequality and consider first the (Iμk
)r-term.

By the definition of u and (H3
η),

lim sup
k→+∞

uk(yk + η(yk, z)) ≤ u(x+ η(x, z)) for a.e. z.

Since we integrate away from the singularity of μ, we can use Fatou’s Lemma and
(H1

μ) and (H2
μ) to show that

lim sup
k→∞

(Iμk
)r[uk](yk) ≤

∫
|z|>r

u(x+ η(x, z))− u(x) dμ(z) = Ir[u](x).

To pass to the limit in the (Iμk
)r-term, we write it as

(Iμk
)r[φ](yk)

=

∫
|z|<r

φ(x+ η(yk, z))− φ(yk)−Dφ(yk) · η(yk, z) dμk(z)︸ ︷︷ ︸
=(Ĩμk

)r [φ](yk)

+γμk,r(yk) ·Dφ(yk),

where γμk,r(x) :=
∫
|z|<r

η(x, z) dμk(z). For |z| < r, a Taylor expansion then yields∣∣φ(yk + η(yk, z))− φ(yk)−Dφ(yk) · η(yk, z)
∣∣ ≤ ‖D2φ‖L∞(B(x,cηr))

|z|2.

Hence by (H1
η), (H3

η), (H1
μ) and (H2

μ), we can use the Dominated Convergence
Theorem to show that

(Ĩμk
)r[φ](yk) →

∫
|z|<r

φ(x+ η(x, z))− φ(x)− η(x, z)Dφ(x) dμ(z) = Ĩr[φ](x).

Next, by Lemma 2.7,

γμk,r(yk) =

∫
|z|<r

η(yk, z) dμ
k
#(z) + c

∫
yk,N≤|z|<r

η(yk, z) dμ
k
∗(z),

where the last integral is understood to be zero if yk,N > r. Note that since
yk,N → xN > 0, the domain of integration of the μ∗-integral is always bounded

away from z = 0 when k is large. Along with (H3
η) and (H2

μ), this allows us to
pass to the limit in the μ∗-integral using the Dominated Convergence Theorem.
Similarly, we may pass to the limit in the μ#-integral by (H1

η), (H
3
η) and (H1

μ). We
find that

γμk,r(yk,N ) → γr(x) :=

∫
|z|<r

z dμ#(x) + c

∫
xN≤|z|<r

η(x, z) dμ∗(x)

= P.V.

∫
|z|<r

η(x, z) dμ(x) =: γr(x),

where we used Lemma 2.7 again. Hence we can conclude that

lim
k→∞

(Iμk
)r[φ](yk) = Ĩr[φ](yk) + γr(x) ·Dφ(x) = Ir[φ](x).

Since δk → δ, we end up with the following limit equation:

u(x)− Ir[φ](x)− Ir[u](x) ≤ f(x)

for every 0 < r < δ. Using the Dominated Convergence Theorem again, we send
r → δ and obtain the subsolution condition for (1.1) at the point x ∈ Ω.
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Case 2: x ∈ ∂Ω, i.e. xN = 0. We first show it in the case c = 1. Following the
argument in Case 1, we may rewrite the subsolution condition as

uk(yk)− (Ĩμk
)δ[φ](yk)− (Iμk

)δ[uk](yk)− f(yk)

|γμk,δ(yk)|
− γμk,δ(yk) ·Dφ(yk)

|γμk,δ(yk)|
≤ 0.

Note that this time it may happen that yk ∈ ∂Ω. By Lemma 3.3, |γμk,δ(yk)| → ∞,
and since uk and f are uniformly bounded,

uk(yk)

|γμk,δ(yk)|
,

f(yk)

|γμk,δ(yk)|
,

(Iμk
)δ[uk](yk)

|γμk,δ(yk)|
all converge to zero. The same is true for

(Ĩμk
)δ[φ](yk)

|γμk,δ(yk)|

since the integrand of the numerator is controlled by ‖D2φ‖∞|z|21{|z|<δ} and μk sat-

isfy (H1
μ) uniformly in k. Using Lemma 3.3 again, we have γμk,δ(yk)/|γμk,δ(yk)| →

−n, so that we may go to the limit in the above inquality to find that

− ∂φ

∂xN
(x) =

∂φ

∂n
(x) ≤ 0 .

In the case when c = 0, the measure μ = μ#, which is less singular than μ∗. The
same line of arguments as in the proof for x ∈ Ω (much easier this time) now shows
that the equation holds at x ∈ ∂Ω. �

Proof of Lemma 3.3. First note that by Lemma 2.8(ii) with yk instead of x and μk

instead of μ,

γμk,δ(yk)
′ =

∫
|z|<δ

η(yk, z)
′ dμk(z) =

∫
|z|<δ

η(yk, z)
′ dμk

#(z) ,

which remains uniformly bounded in k because of (H1
η) and our assumption on μ#.

Since yk,N → xN = 0, we can assume that 0 ≤ yk,N < δ, and by (Hμ),

(γμk,δ)N (yk) =

∫
|z|<δ

η(yk, z)N dμk
#(z) +

∫
|z|<δ

η(yk, z)N dμk
∗(z) .

As above, the first integral is uniformly bounded as k → ∞. For the second one,
we send r → 0 in Lemma 2.8(iii) to find that

(3.2)

∫
|z|<δ

η(yk, z)N dμk
∗(z) ≥

∫
|z|<δ

yk,N<zN

(zN − yk,N ) dμk
∗(z) ≥ 0,

and, since yk,N → 0, we can then use Fatou’s Lemma to show that∫
|z|<δ
zN>0

zN dμ∗(z) ≤ lim inf
k→∞

∫
|z|<δ

yk,N<zN

(zN − yk,N ) dμk
∗(z) .

Applying symmetry of the measure μ∗ along with (H3
μ), we are led to∫

|z|<δ
zN>0

zN dμ∗(z) =
1

2

∫
|z|<δ

|zN | dμ∗(z) = +∞.
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Hence we have proved that (γμk,δ)N (yk) → ∞ as k → ∞, and if we use that(
γμk,δ

)′
(yk) is uniformly bounded, we see that

γμk,δ(yk)

|γμk,δ(yk)|
=

( (γμk,δ)
′(yk)

|γμk,δ(yk)|
,
(γμk,δ)N (yk)

|γμk,δ(yk)|
)
−→ (0, 0, . . . , 0, 1) = −n.

�

4. Comparison in noncensored cases

In this section we prove a comparison result for the noncensored cases, i.e. under
assumptions (Hi

η) for i = 0, . . . , 5. These assumptions cover all the examples given
in the introduction, except example (a) – the censored case. As a conseqence of
the comparison result and the results of the previous sections, we also obtain well-
posedness for (1.1). The comparison result is the following

Theorem 4.1. Assume that (Hμ), (Hf ), and (Hi
η) for i = 0, . . . , 5 hold, and let

f, g ∈ Cb(Ω). Let u be a bounded usc subsolution of (1.1) with data f and v a
bounded lsc supersolution of (1.1) with data g. If f ≤ g in Ω, then u ≤ v in Ω.

From this result it follows that the half-relaxed limits in Theorem 3.2 satisfy
u ≤ u in Ω. Since the opposite inequality is always satisfied, this means that
u := u = u is the solution of (1.1) according to Definition 2.3. Uniqueness and
continuous dependence (on f) follows from Theorem 4.1 by standard arguments
(cf. [13]), and we have the following result:

Corollary 4.2. Under the assumptions of Theorem 4.1, there exists a unique vis-
cosity solution of (1.1) depending continuously on f .

Proof of Theorem 4.1. We argue by contradiction assuming that M := supΩ(u −
v) > 0. We provide the full details only when c = 1. The case c = 0 is much easier
since the equation then holds, even on the boundary.

To get a contradiction, we introduce the function

ΨR(x) := u(x)− v(x)− ψR(x, x) ,

where ψR is given by

ψR(x, y) := ψ(|xN |/R) + ψ(|yN |/R) + ψ(|x′|/R) + ψ(|y′|/R)

and ψ is a smooth function such that

ψ(s) =

⎧⎪⎨
⎪⎩
0 for 0 ≤ s < 1/2 ,

increasing for 1/2 ≤ s < 1 ,

‖u‖∞ + ‖v‖∞ + 1 for s ≥ 1 .

Let MR := supΨR and note that MR → M as R → ∞. Since ΨR(x) ≤ −2 for |x|
large and M > 0, the function ΨR achieves its positive maximum MR > M

2 at a
point x̄R for R large enough. There are two cases for such large R > 0:

(a) either there is a maximum point x̄R of ΨR not located on the boundary,
(b) or all maximum points x̄R of ΨR are located on the boundary.

Case (a). The proof is rather classical, so we just sketch it and refer to [6] and to
the proof of case (b) for more precise arguments. First, to ensure that x̄R is the
unique maximum point, we replace ΨR by the function x �→ ΨR(x) − σ|x − x̄R|4
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for 0 < σ � 1. Then to get a comparison result, we do a doubling of variables
argument considering the maximum of u(x)−v(y)−φ(x, y), where the test function

φ(x, y) =
|x′ − y′|2

ε′2
+

|xN − yN |2
ε2N

+ ψR(x, y) + σ|x− x̄R|4

for ε′, εN > 0. The separate treatment of the N -components will allow us to
exploit (H5

η), the contraction property of the N -components of η. We note that
in all ensuing viscosity inequalities (see Definition 2.3), φ will only be integrated
over compact sets, so the integrability at infinity of |x|2 and |x|4 with respect to
the measure μ is not an issue. Moreover, the contribution from the σ-term will be
small for small σ.

In this setup, the maximum points (x̄, ȳ) of u − v − φ converge as ε′, εN → 0
to (x̄R, x̄R), and hence they are bounded away from the boundary for ε′, εN small
enough. This last property implies that we can use directly the equation (the
viscosity inequalites for F in Definition 2.3) and obtain max(ΨR−σ|x−x̄R|4) ≤ o(1)
as σ → 0, R → ∞, which is a contradiction to maxΨR > 0 for R large.

Case (b). We do a doubling of variables argument considering the maximum of

Φ(x, y) := u(x)− v(y)− φ(x, y),

with a new test function

φ(x, y) :=
|x′ − y′|2

ε′2
+

|xN − yN |2
ε2N

+ ψR(x, y)− dν(xN )− dν(yN ) ,

for ε, ε′ > 0, 0 < ν < 1, dν(·) = νd(·) for a smooth function d satisfying

d(s) =

⎧⎪⎨
⎪⎩
s for 0 ≤ s < 1/2 ,

is increasing for 1/2 ≤ s < 1 ,

1 for s ≥ 1 .

The term dν plays the role of a distance to the boundary of the domain. Such
terms are common in Neumann proofs to prevent the maximum points from being
on the boundary (cf. Step 1 below).

If 0 < ν < 1 and R � 1 are fixed, then Φ ≤ 0 for |x|, |y| large enough, while
Φ(x̄R, x̄R) = supΨR = MR > 0 for any maximum point x̄R of ΨR. Recall that
we are in Case (b) where dν((x̄R)N ) = 0. Hence the maximum of Φ is attained at

some point Ω
2
which we just denote by (x, y) for simplicity. Note that x, y,MR now

depend on ε′, εN , ν, R. At the end of the proof, we are going to first let εN → 0,
then ε′ → 0, then ν → 0, and finally R → ∞.

By rearranging the maximum point inequalities

Φ(x, x) + Φ(y, y) ≤ 2Φ(x, y) and Φ(xR, xR) ≤ Φ(x, y),(4.1)

and using the boundedness and semicontinuity of u, v and definition of ψR, we find
that

|xN − yN | ≤ c̄ εN , |x′ − y′| ≤ c̄ ε′ , |x|, |y| < R,

where c̄ := 4(‖u‖∞ + ‖v‖∞), and

2
|x′ − y′|2

ε′2
≤ u(x)− u(y)− (v(y)− v(x)) = oεN ,ε′(1),
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where oεN ,ε′(1) means that after passing to the limit as εN → 0, we are left with a
quantity which is an oε′(1). From this it follows that as εN , ε′, ν → 0,

Φ(x, y) → supΨR = MR and (by taking subsequences) x, y → xR,

where xR is a maximum point of ΨR. Since xR is at the boundary by assumption,
we assume without loss of generality that

0 ≤ xN , yN < 1.

Finally, we also get that

u(x)− v(y) = M + oεN ,ε′,ν,R(1)(4.2)

as εN , ε′, ν → 0 first and then R → ∞ at the end. We now proceed with the proof
in several steps.

Step 1. Pushing the maximum points inside. We prove that the F -viscosity inequal-
ities hold for u and v. According to Definition 2.3, this is clearly the case if c = 0
since these viscosity inequalities hold even if the maximum or minimum points are
on the boundary.

Assume that c = 1 and e.g. xN = 0. Then x is a (global) maximum point of the

function z �→ u(z)− v(y)− ϕ(z, y), so − ∂ϕ
∂xN

(x, y) ≤ 0 by Definition 2.3. But since
∂ψR

∂xN
is zero in a neighborhood of the boundary by definition,

− ∂ϕ

∂xN
(x, y) = −2(xN − yN )

ε2N
− ∂ψR

∂xN
(x, y) +

d

ds
dν(0) =

2yN
ε2N

+ ν > 0 ,

which is a contradiction. Therefore xN cannot be zero. A similar argument shows
that yN > 0 as well, and hence both x and y are inside Ω.

Step 2. Writing the viscosity inequalities and sending δ to zero. Let

δ < ρ := min(xN , yN ).

Since u is a viscosity subsolution and the function u(·)−v(y)−ϕ(·, y) has a maximum
at x, by Definition 2.3(i) and Lemma 2.7,

u(x)−
∫
|z|<δ

[ϕ(P (x, z), y)− ϕ(x, y)−Dxϕ(x, y) · η(x, z)] dμ(z)

− P.V.

∫
|z|<δ

Dxϕ(x, y)η(x, z) dμ(z)−
∫
|z|≥δ

[u(P (x, z))− u(x)] dμ(z) ≤ f(x) .

By Definition 2.3(ii), a similar inequality holds for the supersolution v and the
minimum point y of v(·)− u(x) + ϕ(x, ·). If we subtract these two inequalities and
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use Lemma 2.8(i), then

−
∫
|z|<δ

[ϕ(P (x, z), y)− ϕ(x, y)−Dxϕ(x, y) · η(x, z)] dμ(z)

−Dxϕ(x, y) ·
∫
|z|<δ

η(x, z) dμ#(z)

−
∫
|z|<δ

[ϕ(x, P (y, z))− ϕ(x, y) +Dyϕ(x, y) · η(y, z)] dμ(z)

+Dyϕ(x, y) ·
∫
|z|<δ

η(y, z) dμ#(z)

−
∫
|z|≥δ

[u(P (x, z))− v(P (y, z))− u(x) + v(y)] dμ(z)

+ u(x)− v(y) ≤ f(x)− f(y) .

In order to pass to the limit as δ → 0 to get rid of the test function ϕ, we use
Lemma 2.7 for all the terms which are smooth functions: the integrals over B(0, δ)
all vanish as δ → 0 and we are left with limit of the integral over {|z| > δ}. To
this end, we split this integral into two integrals, one over {|z| ≥ 1} (which is
independent of δ of course) and the other over {δ ≤ |z| < 1}, that we have to deal
with.

Using the definition of the maximum point for Φ, we have that for any z

u(P (x, z))− v(P (y, z))− ϕ(P (x, z), P (y, z)) ≤ u(x)− v(y)− ϕ(x, y) .

Hence, it follows that

u(P (x, z))− v(P (y, z))− (u(x)− v(y))

≤ |P (x, z)N − P (y, z)N |2
ε2N

− |xN − yN |2
ε2N

+
|P (x, z)′ − P (y, z)′|2

ε′2
− |x′ − y′|2

ε′2

+ ψR(P (x, z), P (y, z))− ψR(x, y)

− dν(P (x, z)N ) + dν(xN )− dν(P (y, z)N ) + dν(yN ) ,

and we put this inequality into the integral over {δ ≤ |z| < 1} which gives rise to
several terms denoted by (with obvious notation)∫

δ≤|z|<1

{
u(P (x, z))− v(P (y, z))− u(x) + v(y)

}
dμ(z) ≤ T δ

εN
+ T δ

ε′ + T δ
ψR

+ T δ
dν

.

By (H5
η), it follows that T

δ
εN

≤ 0. Next,

T δ
ε′ =

∫
δ≤|z|<1

( |P (x, z)′ − P (y, z)′|2
ε′2

− |x′ − y′|2
ε′2

)
dμ

=
1

ε′2

∫
δ≤|z|<1

|η(x, z)′ − η(y, z)′|2 dμ(z)

+
2

ε′2

∫
δ≤|z|<1

(x′ − y′) · (η(x, z)′ − η(y, z)′) dμ(z) .

For the first term of T δ
ε′ , we use the domination of the integrand by c|z|2 to pass to

the limit as δ → 0. For the second one, we use Lemma 2.8(iii) which allows us to
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wipe out the symmetric μ∗-contribution, so that we get in the limit

lim sup
δ→0

T δ
ε′ ≤

1

ε′2

∫
0<|z|<1

|η(x, z)′ − η(y, z)′|2 dμ(z)

+
2

ε′2

∫
0<|z|<1

(x′ − y′) · (η(x, z)′ − η(y, z)′) dμ#(z) .

We now concentrate on the penalisation terms which are given by integrals of
smooth functions. Recall that 0 < xN , yN < 1, so that ψ(xN/R) and ψ(yN/R)
vanish (we have assumed that R � 1). Hence, using Lemma 2.7 we get as δ → 0
the following two contributions:

lim
δ→0

T δ
dν

=− Ĩ1[dν ](x)−
d

ds
dν(xN ) P.V.

∫
0<|z|<1

η(x, z)N dμ(z) + (· · · )(y),

lim
δ→0

T δ
ψR

≤− Ĩ1[ψ̃R](x)−Dψ̃R(x)
′ · P.V.

∫
0<|z|<1

η(x, z)N dμ(z) + (· · · )(y).

where ψ̃R(x) := ψ(|x′|/R) and the (· · · )(y) notation stands for the same terms but
calculated at y instead of x. Now, note that d

dsd(xN ) > 0 and use Lemma 2.8(iii)
(with r = xN > 0). This gives that in the principal value for Tdν

, the μ∗-term
which is multiplied by (−ν) has a nonpositive contribution. Hence we find that

lim
δ→0

T δ
dν

≤ −ν Ĩ1[d](x)− ν
d

ds
d(xN )

∫
0<|z|<1

η(x, z)Ndμ#(z) + (· · · )(y) = oν(1) .

As for the TψR
-term, this time we use Lemma 2.8(ii), which implies that the sym-

metric μ∗-part of the principal value vanishes:

lim
δ→0

T δ
ψR

= −Ĩ1[ψ̃R](x)−
1

R

[
dψ

ds
(|x′|/R)

]′
·
∫
0<|z|<1

η(x, z)′ dμ#(z) + (· · · )(y)

≤ C(μ)
( 1

R2
‖ψ‖C2 +

1

R
‖ψ‖C1

)
= oR(1) .

Thus when ε′, εN , ν, R > 0 are fixed and we send δ → 0, we obtain

u(x)− v(y) ≤ f(x)− f(y) + oν(1) + oR(1)

+
1

ε′2

∫
|z|<1

|η(x, z)′ − η(y, z)′|2 dμ(z)

+
2

ε′2

∫
|z|<1

(x′ − y′) · (η(x, z)′ − η(y, z)′) dμ#(z)

+

∫
|z|≥1

{
u(P (x, z))− v(P (y, z))− u(x) + v(y)

}
dμ(z)

= f(x)− f(y) + oν(1) + oR(1) + Int1 + Int2 + Int3

as ν → 0 and R → ∞, where the oR(1)- and oν(1)-terms are independent of the
other parameters.

Step 3. Sending the parameters to their limits. We have seen that by (4.1), |xN −
yN | ≤ c̄ εN , where c̄ only depends on the infinite norm of u and v. Moreover,
|x|, |y| < R. Hence we can assume (taking subsequences) that x, y converge as
εN → 0 to points, still denoted by x, y, such that xN = yN .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEMS 4893

Now, combining (H3
η) and (H4

η), we then obtain that in the limit,

lim
εN→0

|η(x, z)′ − η(y, z)′| ≤ Lη|z||x′ − y′| for μ-a.e. z .

By (H1
η) and the integrability condition on μ#, we can use the dominated conver-

gence theorem in Int2. The argument is similar for Int1, now using the domination

|η(x, z)′ − η(y, z)′|2 ≤ (2cη)
2|z|2 .

The result is that

lim
εN→0

Int2 = 0 and lim
εN→0

Int1 ≤ (2cη)
2 |x′ − y′|2

ε′2

∫
|z|<1

|z|2dμ(z) = oε′(1).

Next, since |x − y| → 0 as εN , ε′ → 0 here, we may assume that x, y → x̄ ∈ Ω as
εN , ε′ → 0 by considering subsequences if necessary. Then, also using the continuity
of f ,

lim
ε′→0

lim
εN→0

Int1 ≤ 0 and lim
ε′→0

lim
εN→0

|f(x)− f(y)| = 0.

We then also pass to the limit as ν → 0, taking converging subsequences of x̄ and
calling the limit x̄ again, to find that

(4.3) u(x̄)− v(x̄) ≤ 0 + lim sup
ν→0

lim sup
ε′→0

lim sup
εN→0

[Int3] + oR(1) .

Since the integrand is bounded and μ is finite on {|z| ≥ 1}, we can use Fatou’s
Lemma and upper semicontinuity of u − v to pass to the limit in the Int3-term.
Since

lim
ν→0

lim
ε′→0

lim
εN→0

(
u(x)− v(y)

)
= M + oR(1)

by (4.2), we then find that

lim sup
ν→0

lim sup
ε′→0

lim sup
εN→0

[Int3]

≤
∫
|z|≥1

{
u(P (x̄, z))− v(P (x̄, z))−

(
M + oR(1)

)}
dμ(z) .

Now since u(P (x̄, z))− v(P (x̄, z)) ≤ supΩ(u− v) = M ,

lim sup
ν→0

lim sup
ε′→0

lim sup
εN→0

[Int3] ≤
∫
|z|≥1

oR(1) dμ(z) = oR(1).

When R → ∞ in (4.3), we get M ≤ 0 and the proof is complete. �

5. Comparison in the censored case. I

In this section we give comparison and well-posedness results for the initial value
problem (1.1) in the censored case (under assumption (H6

η)) when the measure μ
is not too singular:

(H′
μ) The measure μ is a nonnegative Radon measure satisfying

(i)

∫
RN

|z| ∧ 1 dμ < ∞ and (ii)

∫
{zN=a}

dμ = 0 for any a < 0 .
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In addition, we assume the existence of a “blow-up supersolution”:

(U) There exists R0 > 0 such that, for any R > R0, there is a positive function
UR ∈ C2(Ω) such that

−I[UR](x) ≥ −KR in {x : 0 < xN ≤ R},

for some KR ≥ 0, and

UR(x) ≥
1

ωR(xN )
in Ω,

for some function ωR which is nonnegative, continuous, strictly increasing
in a neighbourhood of 0, and satisfies ω(0) = 0.

Remark 5.1. See Appendix A for a discussion of this assumption. For example, in
Remark A.4 we prove that (U) holds if

μ = μ̄+

M∑
i=1

ciδxi ,

where ci ∈ R, xi ∈ Ω, δxi are delta measures supported at {xi}, and
dμ̄

dz
=

g(z)

|z|N+α
where α ∈ (0, 1), 0 ≤ g ∈ L∞(R), lim

z→0
g(z) = g(0) > 0.

This class of measures include the Lévy measures of the stable, tempered stable,
and self-decomposable Lévy processes. Much more general examples are presented
in Appendix A.

Theorem 5.2. Assume (H′
μ), (Hf ), (H

6
η) and (U) hold. Let u be a bounded usc

subsolution of (1.1) and v be a bounded lsc supersolution of (1.1). Then u ≤ v in
Ω.

As in the previous section, we have a well-posedness result for (1.1) by Theorems
5.2 and 3.2.

Corollary 5.3. Under the assumptions of Theorem 5.2, there exists a unique vis-
cosity solution of (1.1) depending continuously on f .

Proof of Theorem 5.2. We argue by contradiction assuming that M := supΩ (u −
v) > 0. Take R > R0 and 0 < κ � 1. Using 0 < ε � 1, we double the variables by
introducing the quantities

φ(x, y) =
|x− y|2

ε2
+ κ[UR(x) + UR(y)] + ψR(x) + ψR(y),

Φ(x, y) = u(x)− v(y)− φ(x, y),

where UR is defined in (U) and ψR(x) = 2(‖u‖∞ + ‖v‖∞)ψ( |x|R ) for an increasing

function ψ(s) ∈ C∞(0,∞) which is 0 in (0, 12 ) and 1 in (1,∞).
For any R, κ and ε, the function Φ achieves its maximum at (x̄, ȳ)=(x̄R,κ,ε, ȳR,κ,ε)

and, by the definition of UR and ψR, we have

(5.1) x̄N , ȳN ≥ δ0 = ω−1
R

( κ

2(‖u‖∞ + ‖v‖∞)

)
and |x̄|, |ȳ| ≤ R.

For fixed R and κ, a standard argument also show that

|x̄− ȳ|2
ε2

→ 0 as ε → 0.
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By the estimates on x̄, ȳ and extracting subsequences if necessary, we can assume
without loss of generality that x̄, ȳ → X, u(x̄) → u(X), and v(ȳ) → v(X), where
X is a maximum point of Φ(x, x) = u(x) − v(x) − φ(x, x). When we send κ → 0
and then R → +∞, we have

u(X)− v(X) → M and κUR(X) + ψR(X) → 0 .

Now we write the viscosity inequalities. Since u− φ(·, ȳ) has a global maximum
at x̄ and v − (−φ(x̄, ·)) has a global minimum at ȳ, by Definition 2.3

u(x̄)− Iδ[u](x̄)− Iδ[φ(·, ȳ)](x̄) ≤ f(x̄) and

v(ȳ)− Iδ[v](ȳ)− Iδ[−φ(x̄, ·)](ȳ) ≥ f(ȳ),

for any δ > 0. With this in mind we see that

M + o(1) = u(x̄)− v(ȳ)− φ(x̄, ȳ)

≤ Iδ[u](x̄)− Iδ[v](ȳ) + Iδ[φ(·, ȳ)](x̄)− Iδ[φ(x̄, ·)](ȳ) + f(x̄)− f(ȳ).(5.2)

In this inequality, we aim at first sending δ → 0 in order to get rid of the ε-depending
Iδ[φ]-terms. In fact Iδ[ϕ] → 0 as δ → 0 by the Dominated Convergence Theorem
since |η(x, z)| ≤ cη|z|, and hence for any C1-function ϕ,∫

RN

|ϕ(x+ η(x, z))− ϕ(x)| 1|z|<δdμ(z) ≤ cη‖Dϕ‖L∞(B(0,cηδ))

∫
RN

1|z|<δ |z| dμ(z).

Next we consider the Iδ-terms. We restrict ourselves to a subsequence such that
x̄N ≥ ȳN (if x̄N ≤ ȳN , the argument is similar). Then

Iδ[u](x̄)− Iδ[v](ȳ) =

∫
−x̄N<zN<−ȳN

[u(x̄+ z)− u(x̄)] 1|z|>δdμ(z)

+

∫
−ȳN<zN

[u(x̄+ z)− v(ȳ + z)− (u(x̄)− v(ȳ))] 1|z|>δdμ(z)

=: I1 + I2.

For I1, we have

|I1| ≤ 2‖u‖∞
∫
|z|>δ

1{−x̄N<zN<−ȳN}(z) dμ(z) .

Keeping κ and R fixed and recalling (5.1), we see that this integral is independent of
δ as soon as δ < δ0. Furthermore, because of (H′

μ) (ii), the Dominated Convergence
Theorem implies that

I1 → 0 as ε → 0

since |x̄− ȳ| → 0 as ε → 0.
For I2, we use the maximum point property for x̄, ȳ,(

u(x̄+ z)− v(ȳ + z)
)
−
(
u(x̄)− v(ȳ)

)
≤ φ(x̄+ z, ȳ + z)− φ(x̄, ȳ) ,

which after cancellation of the ε-terms leads to

I2 ≤ κ
(
Iδ[UR](x̄) + Iδ[UR](ȳ)

)
+
(
Iδ[ψR](x̄) + Iδ[ψR](ȳ)

)
.

Recalling (5.1) again and using the regularity of UR and φ, we can send δ → 0 and
obtain

lim sup
δ→0

I2 ≤ κ
(
I[UR](x̄) + I[UR](ȳ)

)
+
(
I[ψR](x̄) + I[ψR](ȳ)

)
,
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where the terms on the right-hand side are well defined by the properties of UR

and ψR.
Consider equation (5.2) again. Using all the previous estimates, we can send

δ → 0 first and obtain using (U) for the UR-terms that

M + o(1) ≤ 2KRκ+ (I[ψR](x̄) + I[ψR](ȳ)) + (f(x̄)− f(ȳ)) .

In this inequality, we can first send ε → 0, keeping R and κ fixed. Then f(x̄) −
f(ȳ) → 0 as ε → 0 since f is uniformly continuous in BR, and we find that

M + o(1) ≤ 2KRκ+ 2I[ψR](X) .

We conclude the proof by first sending κ → 0 and then R → +∞. �

6. Comparison results in the censored case. II

In this section we give comparison and well-posedness results for the initial value
problem (1.1) in the censored case (under assumption (H6

η)) when the measure μ
is very singular. To this end we make the following assumption:

(H′′
μ) Hypothesis (Hμ) holds with

μ∗(dz) =
dz

|z|N+α
,

∫
RN

(1 ∧ |z|β)μ#(dz) < ∞ ,

∫
{zN=a}

μ#(dz) = 0 for any a < 0 ,

for α ∈ (1, 2) and β := α− 1.
This assumption is much more restrictive than (Hμ), and the results of this

section are not completely satisfactory. We had much difficulty in obtaining com-
parison results because on one hand it is not possible to get rid of the boundary
and the boundary condition in such a general way as we did in the less singular
case I. On the other hand many of the technical difficulties came from the way
the x-depending domain of integration in I interfered with the singularity of the
measure and the boundary.

Our first result is the following:

Theorem 6.1. Assume (Hf ), (H
6
η), and (H′′

μ) hold.
(a) Let u and v be respectively a bounded usc subsolution and a bounded lsc

supersolution of

(6.1) w(x)− I[w](x) = f(x) in Ω ,

and let us also denote by u and v respectively their usc or lsc extensions to Ω.1 If

(6.2) u(x′, xN ) ≥ u(x′, 0) + o(xβ
N ) and v(x′, xN ) ≤ v(x′, 0) + o(xβ

N ) as xN → 0,

uniformly in x′ on compacts, then u and v are respectively a bounded usc subsolution
and a bounded lsc supersolution of (1.1).

(b) If u and v are respectively a bounded usc subsolution and a bounded lsc
supersolution of (1.1) satisfying (6.2), then

u ≤ v in Ω;

in particular, there exists at most one solution of (1.1) in C0,β(Ω) for β > β.

1For any x′ ∈ R
N−1, u(x′, 0) := lim sup(y′,yN )→(x′,0) u(y

′, yN ) and v(x′, 0) :=

lim inf(y′,yN )→(x′,0) v(y
′, yN ).
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Remark 6.2. The meaning of Theorem 6.1 (a) is that for sub- and supersolutions
having a suitable regularity at the boundary, the Neumann boundary condition is
already encoded in the equation/inequality holding in Ω. Hence any solution of the
equation in Ω, with a suitable regularity on the boundary, will have an extension
to Ω which solves (1.1). In the setting of solutions, (6.2) is consistent with (1.5).

Unfortunately Theorem 6.1 (b) does not provide the full comparison result for
semicontinuous sub- and supersolutions, and we do not know if this result is optimal
or not. In view of Theorem 6.1 (b), it is clear that we need a companion existence
result providing the existence of solutions satisfying (6.2) or belonging to C0,β(Ω)
for β > β. We address this question after the proof of Theorem 6.1.

Proof. (a) We only prove the subsolution case since the supersolution case is anal-
ogous. Let φ be a smooth function and assume that u − φ has a maximum point
x̄ = (x̄′, 0) ∈ ∂Ω in B(x̄, cηδ)∩Ω. We may assume that the maximum is strict and
global without any loss of generality.

Let θ(t) = tβ ∧ 1 for t ≥ 0, and for 0 < κ � 1, we consider the function

u(x)− φ(x) + κθ(xN ).

This function has a global maximum point xκ near (x̄′, 0), and we claim that
(xκ)N > 0. If (xκ)N = 0, then xκ = (x̄′, 0), the strict global maximum point
of u− φ on ∂Ω. But then by (6.2),

u(x̄′, 0)− φ(x̄′, 0) ≥ u(x̄′, a)− φ(x̄′, a) + κθ(a) ≥ u(x̄′, 0)− φ(x̄′, 0) + o(aβ) + κθ(a),

which is a contradiction since o(aβ) + κθ(a) > 0 for a small enough.
By Definition 2.3, we may write the viscosity subsolution inequality at xκ as

u(xκ)− Ĩδ[φ](xκ)− γ(xκ) ·Dφ(xκ) + κIδ[θ](xκ)− Iδ[u](xκ) ≤ f(xκ),(6.3)

for (say) 0 < δ < 1, where γ(xκ)P.V.
∫
|z|<δ

η(xκ, z)μ(dz).

We first consider the term κIδ[θ](xκ). By (Hμ), μ = μ# + μ∗, and we may write
κIδ[θ] as a sum of an integral involving μ# and one involving μ∗. The integral

involving μ# is O(κ) since θ is in C0,β and (H′′
μ) holds, while the other integral (the

μ∗-integral) is given by

κ P.V.

∫
|z|≤δ

xN+zN≥0

θ(xN + zN )− θ(xN )
dz

|z|N+α
,

where we have dropped the subscript κ to simplify the notation. Since δ < 1 and
xN → 0 as κ → 0, we may assume that 0 ≤ xN + zN < 1 for |z| ≤ δ, and hence
that the principal value reduces to

κ P.V.

∫
|z|≤δ

xN+zN≥0

|xN + zN |β − |xN |β dz

|z|N+α
.

By the computations of Lemma B.1 in the Appendix,

−P.V.

∫
xN+zN≥0

|xN + zN |β − |xN |β dz

|z|N+α
= 0

for xN > 0. Writing

κ P.V.

∫
|z|≤δ

xN+zN≥0

(· · · ) = κ P.V.

∫
xN+zN≥0

(· · · ) − κ

∫
|z|>δ

xN+zN≥0

(· · · ) ,
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we conclude that for fixed δ,

κ P.V.

∫
|z|≤δ

xN+zN≥0

θ(xN + zN )− θ(xN )
dz

|z|N+α
= O(κ) .

Finally, the u,- Ĩδ,- and Iδ-terms are uniformly bounded in κ while γ(xκ) → ∞
since (xκ)N → 0. We divide (6.3) by |γ(xκ)| and send κ → 0. As in the proof of
Theorem 3.2, the second part when x ∈ ∂Ω and c = 1, the result is that all terms
vanish except the γ-term, and we are left with the boundary condition

∂φ

∂n
(x) ≤ 0 .

(b) By linearity of the problem and part (a), the function w = u − v is a
subsolution of (1.1) with f ≡ 0, and we are done if we can prove that w ≤ 0.
To prove this, we consider the function

χR,ν(x) := ψ(|xN |/R) + ψ(|x′|/R)− νd(xN ) ,

where ψ and d are defined as in the proof of Theorem 4.1, replacing, in the case
of ψ, 2(‖u‖∞ + ‖v‖∞ + 1) by 2‖w‖∞ + 1. The function χR,ν is smooth, and easy
computations show that χR,ν is a supersolution of (1.1) with an f ≥ �(R, ν), where
�(R, ν) → 0 as R → ∞ and ν → 0. At the boundary ∂Ω,

−∂χR,ν

∂xN
= 0 + ν · 1 > 0.

Because of the behavior of χR,ν at infinity, the function w − χR,ν achieves its
maximum at some point x, and because of the behaviour of χR,ν at the boundary,
xN > 0. By Definition 2.3 we then have the following subsolution inequality:

w(x)− χR,ν(x) ≤ −χR,ν(x) + I[χR,ν ](x) + Iδ[u− χR,ν ](x) ≤ −�(R, ν) + 0,

where we have used that Iδ[w](x̄) ≤ 0 at any maximum point x̄ of the function w.
Hence, for any y ∈ Ω,

w(y)− χR,ν(y) ≤ −�(R, ν),

and part (b) follows from sending R → ∞ and then ν → 0. �

Now we turn to the existence of Hölder continuous solutions and we begin with
a result in dimension 1.

Theorem 6.3. Assume N = 1 and that (Hf ), (H
6
η), and (H′′

μ) hold.

(a) Any bounded, uniformly continuous solution of (1.1) is in C0,β(Ω) for some
β > β.

(b) There exists a solution of (1.1) in C0,β(Ω) for some β > β.

Proof. (a) Let C > 0. To prove the Hölder regularity we consider

(6.4) M = sup
[0,+∞)×[0,+∞)

(
u(x)−u(y)−φ(x, y)

)
where φ(x, y) = C|x−y|β ,

and argue by contradiction assuming that M > 0. The aim is to show that this is
impossible for C > 0 large enough.

In order to emphasize the main ideas and to avoid technicalities, we assume that
this supremum is achieved at some point (x, y) such that x, y > 0. This assumption
can be made rigorous by replacing φ by

φ̃(x, y) = φ(x, y) + ψR(x, y)− dν(xN )− dν(yN ),
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and arguing as in the proof of Theorem 4.1 where ψR and dν are defined for R, ν > 0.
The contribution from the new terms in the proof would be o(1) as ν,R → 0.

Since M > 0 we have x �= y. We now assume that x < y, since the other case
can be treated analogously. To simplify we redefine φ, φ(z) := C|x− y+ z|β . Note
that this function is concave in the intervals (−∞, y−x) and (y−x,+∞), and that
it is smooth in (−δ, δ) for δ ≤ y − x so that it can be used as a test function. By
the maximum point property for (x, y),

u(x+ z1)− u(y + z2)− C|x− y + (z1 − z2)|β ≤ u(x)− u(y)− C|x− y|β ,

for z1 ≥ −x and z2 > −y, and hence

u(x+ z)− u(y + z)− [u(x)− u(y)] ≤ 0 for z ≥ −x (> −y),(6.5)

u(x+ z)− u(x) ≤ [φ(z)− φ(0)] for z ≥ −x,(6.6)

u(y + z)− u(y) ≥ −[φ(−z)− φ(0)] for z ≥ −y.(6.7)

Using the definition of viscosity solution and the symmetry of the measure μ∗,
for δ, δ′ > 0 small enough, we have the inequalities

−(Iδ[φ] + Iδ[u])(x) + u(x) ≤ f(x) and − (Iδ′ [φ] + Iδ
′
[u])(y) + u(y) ≥ f(y),

which reduce here to

−
∫ −δ

−x

(u(x+ z)− u(x))dμ(z)−
∫ δ

−δ

[φ(z)− φ(0)− φ′(0)z]dμ(z)(6.8)

−
∫ δ

−δ

φ′(0)zdμ(z)−
∫ +∞

δ

(u(x+ z)− u(x))dμ(z) + u(x) ≤ f(x) ,

−
∫ −δ′

−y

(u(y + z)− u(y))dμ(z) +

∫ δ′

−δ′
[φ(−z)− φ(0) + φ′(0)z]dμ(z)(6.9)

−
∫ δ′

−δ′
φ′(0)zdμ(z)−

∫ +∞

δ′
(u(y + z)− u(y))dμ(z) + u(y) ≥ f(y) .

In the proof below we will subtract these inequalities and the main difficulty of
the proof will come from the term

J := −
∫ −x

−y

(u(y + z)− u(y))dμ(z)

which is not a difference of terms from (6.8) and (6.9). Indeed the domain of
integration z ∈ (−y,−x) appears in inequality (6.9) but not in (6.8). Because of
the singularity of μ, if x is close to 0 it is not obvious how to get an estimate for
J which is independent of C, or how to control this term with a bad sign by a
term with a good sign. Therefore we have problems with this term if x → 0 when
C → +∞. For the μ#-part of J there is no problem. We can use (6.7) to see that

−
∫ −x

−y

(u(y+ z)−u(y))dμ#(z) ≤
∫ −x

−y

[φ(−z)−φ(0)]dμ#(z) ≤ C

∫ −x

−y

|z|βdμ#(z) ,

and we will see later that this term can be controlled since |z|β is μ#-integrable.

First case. We first consider the case when x ≤ y − x, or equivalently, 2x ≤ y. In
this case J ≥ 0 and can be dropped from inequality (6.9). To see this we note that
for −y ≤ z ≤ −x,

2x− y ≤ x− y − z ≤ x
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with x ≤ y − x and 2x− y = −(y − x) + x ≥ −(y − x), and hence by (6.7)

u(y + z)− u(y) ≥ −[φ(−z)− φ(0)] = |x− y|β − |x− y − z|β ≥ 0 .(6.10)

In this first case, we choose δ = x and δ′ = y − x and subtract the viscosity
inequalities (6.8) and (6.9). After some computations using (6.6), (6.7), and (6.10),
and dropping the J-term, we are led to the inequality

−
∫ y−x

−x

[φ(z) + φ(−z)− 2φ(0)]dμ(z)

−
∫ +∞

y−x

((u(x+ z)− u(y + z))− (u(x)− u(y)))dμ(z) + u(x)− u(y)≤f(x)− f(y).

Some easy computations then show that the first integral equals

−C(y − x)β−α

∫ 1

− x
y−x

[|1 + z|β + |1− z|β − 2]
dz

|z|1+α
+O(C) ,

where the O(C)-term comes from the μ# part of the measure since the integrand
can be estimated by 2|z|β which is integrable on, say, (−1, 1). The second integral
is nonpositive by (6.5) and can be dropped because of the “−” in front.

Finally, since f is bounded and u(x)− u(y) ≥ 0 (by assumption), we obtain

−C(y − x)β−α

∫ 1

− x
y−x

[|1 + z|β + |1− z|β − 2]
dz

|z|1+α
≤ 2‖f‖∞ + O(C) .(6.11)

In order to conclude, we use thatM = u(x)−u(y)−C|x−y|β > 0 (by assumption)
and β ≤ 1 ≤ α to find that

|x− y| ≤
(2‖u‖∞

C

)1/β

and C(y − x)β−α ≥ KCζ ,

where ζ := 1 + (α− β)β−1 > 1 and K = (2||u||∞)
β−α
β . Then we note that

−
∫ 1

− x
y−x

[|1 + z|β + |1− z|β − 2]
dz

|z|1+α
≥ −

∫ 1

0

[|1 + z|β + |1− z|β − 2]
dz

|z|1+α
> 0 ,

since z �→ |1 + z|β is strictly concave on (−1, 1). From inequality (6.11) we then
find that

K̃Cζ ≤ 2‖f‖∞ +O(C) ,

which cannot hold for C large enough and we have a contradiction in the first case.

Second case. We next consider the case when x > y−x, or equivalently, 2x > y. In
this case we choose δ = δ′ = y − x, subtract viscosity inequalities (6.8) and (6.9),
and use (6.7) to see that

−
∫ −x

−y

[φ(−z)− φ(0)]dμ(z)−
∫ y−x

−(y−x)

[φ(z) + φ(−z)− 2φ(0)]dμ(z)

−
∫ +∞

y−x

((u(x+ z)− u(y + z))− (u(x)− u(y)))dμ(z) + u(x)− u(y)≤f(x)− f(y).

Arguing as in the first case, we can drop all u-terms and are led to an inequality of
the form

−C(y − x)β−α(B(a) +G) ≤ 2‖f‖∞ +O(C) ,
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where

B(a) =

∫ −a

−a−1

(|1 + z|β − 1)
dz

|z|N+α
,

G =

∫ 1

−1

(|1 + z|β + |1− z|β − 2)
dz

|z|N+α
,

with a = x/(y − x) > 1. A technical computation (Corollary B.3 in the appendix)
then shows that B(a) + G ≤ −κ < 0 for some β > β and we can conclude the
argument as in the first case. The proof of (a) is complete.

Note the important estimate, valid in both cases: there exist k1, k2 > 0 such
that

(6.12) I[u](x)− I[u](y) ≤ −k1C|x− y|β−α + k2(1 + C) ,

where the 1 comes from the localization terms. This formal estimate should be
interpreted in the viscosity sense and with the above choice(s) of test function and
parameters δ and δ′; cf. e.g. (6.11).

(b) To show the existence of solutions with a suitable regularity property, we
follow the so-called “Sirtaki method in 4 steps”. We just give a sketch the proof
which is an easy adaptation of the above arguments.

We start by building a suitable approximate problem. We approximate the
Lévy measure μ by bounded measures μn = μ 1|z|>1/n for n ≥ 1 and denote the
associated nonlocal term by In. Then we introduce a truncation of the nonlocal
term and add an additional viscosity term. The result is the approximate equation

−εuxx − TR(In[u]) + u = f in Ω ,

where TR(s) := max(min(s,R),−R), R, ε > 0 .
1. For fixed ε, n,R, since the TR-term and the measure μn are bounded, this

equation can easily be solved by classical viscosity solutions’ methods (Perron’s
method and comparison result). This provides us with a continuous solution which
is bounded and we even have ||u||∞ ≤ ||f ||∞.

Moreover, in order to obtain the C0,β-regularity and C0,β-bounds, we consider
(6.4) and follow the arguments in the first part of this proof. After subtracting the
viscosity sub- and supersolution inequalities, we formally obtain

−ε [uxx(x)− uxx(y)]− [TR(In[u])(x)− TR(In[u])(y)]

+u(x)− u(y) ≤ f(x)− f(y) .(6.13)

For the second derivatives, we have an analogue estimate to (6.12), namely there
exists k′1, k

′
2 > 0 such that

(6.14) uxx(x)− uxx(y) ≤ −k′1C|x− y|β−2 + k′2 .

Note that to give meaning to this formal estimate, we must consider instead of uxx

the sub- and superjets of the theorem of sums; cf. e.g. [6]. Now consider (6.13)
with fixed R, ε > 0. Since the TR-terms are bounded, we can rewrite it as

−ε [uxx(x)− uxx(y)] ≤ 2R + 2(||u||∞ + ||f ||∞) ,

and use (6.14) to find that the inequality cannot hold for C large enough. This
implies that the solution {un,R,ε} is at least C0,β by the arguments of the regularity
proof above.
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2. The above argument also shows that, for fixed ε, the C0,β-bounds for the
{un,R,ε} are uniform in n since they depend only on R through the TR-term. This
allows us to pass to the limit n → +∞ and get a solution uR,ε := limn→+∞ un,R,ε

of the limiting equation enjoying the same C0,β-bound. This solution satisfies the
truncated viscous equation with μn replaced by the singular measure μ.

3. Next, we repeat the proof of the C0,β-bound for the truncated viscous equa-
tion: Estimate (6.12) together with the fact that TR is an increasing and a 1-
Lipschitz continuous function implies that

TR(I[u](x))− TR(I[u](y)) ≤ k2 ,

at least for C large enough. Rewriting the analogue of (6.13) as

−ε [uxx(x)− uxx(y)] ≤ [TR(I[u])(x)− TR(I[u])(y)] + 2(||u||∞ + ||f ||∞) ,

this new estimate on the difference of the truncated terms shows that the C0,β-
bound which is obtained in Step 1 is independent of R and we can let R → +∞.
The result is that the limit uε := limR→∞ uR,ε is a C0,β-solution of the nontruncated
viscous equation

−I[u]− εuxx + u = f in Ω .

4. Finally we come back again to the proof of the C0,β-bound, but this time the
main role is played by the nonlocal term via estimate (6.12). Indeed we rewrite the
analogue of (6.13) as

− [I[u](x)− I[u](y)] ≤ ε [uxx(x)− uxx(y)] + 2(||u||∞ + ||f ||∞) ,

and remark that, since the uxx-terms satisfy (6.14), the ε-term in (6.13) can be
estimated by εk′2. Using (6.12), we again obtain a contradiction for large enough
C. The argument is the same as in Step 3 with the roles of the local and nonlocal
terms exchanged. This also explains the terminology “Sirtaki’s method”, since
Sirtaki is a dance where we exchange the roles of the two feet and here we exchange
the role of the εuxx- and I[u]-terms. To conclude the argument, we have found that
the C0,β-bound is independent of ε, and we pass to the limit as ε → 0. We get a
solution u of the original problem belonging to C0,β. Since this solution is unique,
it is the solution we are looking for. �

Now we turn to the case when N ≥ 2. Unfortunately we require far more
retrictive assumptions on f .

Theorem 6.4. Assume N ≥ 2, that (Hf ), (H
6
η), and (H′′

μ) hold, and that f(. . . , xN )

is in W 2,∞(RN−1) for any xN > 0 with uniformly bounded W 2,∞-norms.
(a) Any bounded, uniformly continuous solution of (1.1) is in C0,β(Ω) for some

β > β.
(b) There exists a solution of (1.1) in C0,β(Ω) for some β > β.

Proof. We are not going to provide the full proof since it is rather long and tedious
and is mostly based on two ingredients which we have already seen. But we remark
that an easy consequence of the the comparison result and linearity of the problem
is that u inherits the regularity of f . That is to say, there exists a constant K > 0
such that, for any x′, z′ ∈ R

N−1 and xN > 0,

(6.15) −K|z′|2 ≤ u(x′ + z′, xN ) + u(x′ − z′, xN )− 2u(x′ + z′, xN ) ≤ K|z′|2 .
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Then we repeat the 1-d proof essentially considering

sup
[0,+∞)×[0,+∞)

(u(x′, xN )− u(x′, yN )− C|xN − yN |β) .

Of course, a doubling of variables in x′ is necessary to take care of the singularity
of the measure, but using the W 2,∞ property in x′, we can go back to the 1-d
computations without any difficulty. Let us just mention the key decomposition we
use here. We rewrite the integrals with respect to μ∗, first replacing the integrands
by

u(x′ + z′, xN + zN ) + u(x′ − z′, xN − zN )− 2u(x′, xN ),

and then by

Δ2
z′u(x′, xN + zN ) + Δ2

z′u(x′, xN − zN ) + 2Δ2
zNu(x′, xN ),

where

Δ2
z′u(x′, xN ) :=

1

2

(
u(x′ + z′, xN ) + u(x′ + z′, xN )− 2u(x′, xN )

)
,

Δ2
zNu(x′, xN ) :=

1

2

(
u(x′, xN + zN ) + u(x′, xN − zN )− 2u(x′, xN )

)
.

These expressions are not equal pointwise of course, but they give the same integrals
because of the symmetry of μ∗. We deal with the Δ2

z′ -terms using (6.15), and the
Δ2

zN -term is treated as in the one dimensional case. Also note that we use a

decomposition of Ω into sets like RN−1×{zN : a ≤ zN ≤ b}, for a, b > 0, following
the 1-d proof.

Finally, concerning the nonsymetric part μ#, we use as usual the fact that it is
a controlled term since it is less singular.

The existence is proved as in the proof of Theorem 6.3. �

Remark 6.5. The regularity results of the N = 1 and N ≥ 2 cases are different.
In the first case, the result is purely elliptic and we gain regularity. In the second
case, the result is elliptic in the xN -direction, while in the other directions we just
use a preservation of regularity argument. It is an open problem to find an elliptic
argument also in the x′-directions.

7. The limit as α → 2−

In this section we prove that all the Neumann models we consider converge to
the same local Neumann problem as α → 2−, provided that the nonlocal operators
include the normalisation constant (2 − α). To be more precise, we consider the
following problem:⎧⎪⎨

⎪⎩
−(2− α)

∫
RN uα(x+ η(x, z))− uα(x) dμα + uα(x) = f(x) in Ω ,

∂u

∂n
= 0 in ∂Ω ,

(7.1)

where α ∈ (0, 2), η depends on the Neumann model we consider, and

dμα

dz
=

g(z)

|z|N+α
,

where g is nonnegative, continuous and bounded in R
N , g(0) > 0 and g ∈ C1(B)

for some ball B around 0.
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We prove below that the solution of (7.1) converges to the solution of the fol-
lowing local problem:

(7.2)

⎧⎨
⎩−aΔu− b ·Du+ u = f in Ω ,

∂u

∂n
= 0 in ∂Ω ,

where

a := g(0)
|SN−1|

N
and b := Dg(0)

|SN−1|
N

.

In this section |SN−1| denotes the measure of the unit sphere in R
N and IdN the

N ×N identity matrix.

Theorem 7.1. Assume (Hi
η), i = 0, . . . , 4, hold and let uα be the solution of (7.1)

for α ∈ (0, 2). Then, as α → 2−, uα converges locally uniformly to the unique
solution u of (7.2).

Before providing the proof, we introduce the following sequences of measures:

(dν1α)i,j = (2− α)zizj
g(z)

|z|N+α
dz ,

dν2α = (2− α)z
g(z)− g(0)

|z|N+α
dz ,

(dν3α,y)i,j = (2− α)η(y, z)iη(y, z)j
g(z)

|z|N+α
dz ,

dν4α,y = (2− α)η(y, z)
g(z)− g(0)

|z|N+α
dz ,

where η(y, z)i denotes the i-th component of the vector η(y, z). Note that ν1α and
ν3α,y are matrix measures while ν2α and ν4α,y are vector measures. The localization
phenomenon occuring as α → 2 is reflected in the following lemma:

Lemma 7.2.
(a) As α → 2−, ν1α ⇀ aδ0IdN and ν2α ⇀ bδ0 in the sense of measures.
(b) For any sequence αk → 2 and yk → x ∈ ∂Ω, there exist two vector functions

ā(x), b̄(x) ∈ R
N satisfying

1

2
a ≤ āi(x) ≤ Λ and |b̄i(x)| ≤ Λ for some Λ = Λ(g, η) < ∞ ,

such that, at least along a subsequence,

ν3αk,yk
⇀ diag(ā(x))δ0 , ν4αk,yk

⇀ b̄(x)δ0 ,

where diag(ā(x)) is the diagonal matrix with diagonal coefficients āi(x).

Proof. If δ ∈ (0, 1) is fixed, we notice first that, for any K > 1,

0 ≤ (2− α)

∫
δ<|z|<K

|z|2 g(z) dz|z|N+α
≤ ‖g‖∞(δ2−α −K2−α) → 0 as α → 2− ,

so that the only possible limit in the sense of measure is supported in {0}. Similar
calculations show that the same is true for all the measures νi, i = 2, . . . , 4.

Next we remark that we may replace g(z) by g(0) in ν1α, ν
3
α,y and g(z)− g(0) by

(Dg(0), z) in ν2α, ν
4
α,y without changing the limits as α → 2−. Indeed, the errors
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introduced can be expressed as uniformly bounded measures multiplied by (2− α)
and will therefore tend to 0 in the limit. For example, in the case of ν1α, we have∣∣∣(2− α)

∫
|z|<δ

zizj
g(z)− g(0)

|z|N+α
dz

∣∣∣
≤ Cg(2− α)

∫
|z|<δ

|z|3
|z|N+α

dz ≤ Cg(2− α)
δ3−α

3− α
→ 0 as α → 2−,

for Cg = ‖Dg‖L∞(B(0,δ)). Similar arguments can be used for ν2α, ν
3
α,y and ν4α,y.

Taking into account these reductions, we first examine ν1α. By symmetry

(2− α)

∫
|z|<δ

zizj
g(0)

|z|N+α
dz = 0 ,

for i �= j, while for i = j,

g(0)(2− α)

∫
|z|<δ

z2i
dz

|z|N+α
= g(0)

|SN−1|
N

(2− α)

∫ δ

r=0

r2+N−1

rN+α
dr

= g(0)
|SN−1|

N
δ2−α −→ a as α → 2− .

This means that the measures {ν1α} concentrate to a delta mass δ0 multiplied by
the diagonal matrix aIdN .

For ν2α, by using similar arguments, we have

(2− α)

∫
|z|<δ

zi
(z,Dg(0))

|z|N+α
dz =

N∑
j=1

∂g

∂xj
(0)(2− α)

∫
|z|<δ

zizj
dz

|z|N+α

=
∂g

∂xi
(0)(2− α)

∫
|z|<δ

z2i
dz

|z|N+α

−→ ∂g

∂xi
(0)

|SN−1|
N

as α → 2− .

Hence, by the definition of b, ν2α concentrates to bδ0.
We now come to the measure ν3 which is more complex to analyze due to the

presence of the perturbation η(yk, z). We first note that by (H2
η), it follows that∫

|z|<δ

η(yk, z)iη(yk, z)j
g(0)dz

|z|N+α
= 0 for i �= j .

Indeed, since i �= j, either i �= N or j �= N and, for example, in the first case, we can
use a change of variable with σi to prove the claim. Then by (H1

η) |η(yk, z)| ≤ cη|z|,
and we have for 1 ≤ i ≤ N

0 ≤ (2− α)

∫
|z|<δ

η(yk, z)
2
i

g(0)dz

|z|N+α
dz

≤ c2η(2− α)

∫
|z|<δ

|z|2 g(0)dz|z|N+α
dz ≤ c2ηg(0)|SN−1| .

So, the total mass of ν3 is bounded and, by the same arguments as above, it is clear
that the support of ν3 shrinks to {0} (or the empty set). We split the integral over
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{|z| < δ} as follows:

(2− α)

∫
|z|<δ

η(yk, z)
2
i

g(0)dz

|z|N+α
=

∫
|z|<δ

zN>−yk,N

(· · · ) +
∫

|z|<δ
zN≤−yk,N

(· · · ) = (Ai) + (Bi) .

Since ηi(yk, z) = z when zN > −yk,N and yk,N → xN = 0,

(Ai) = (2− α)

∫
|z|<δ

zN>−yk,N

z2i
g(0)dz

|z|N+α

= (2− α)

∫
|z|<δ
zN>0

z2i
g(0)dz

|z|N+α
+ oyk,N

(1) → 1

2
a.

The other integral has a sign and can take different values according to the structure
of the jumps, but in all cases we see that the weak limit of ν3 can be written as
ā(x)δ0, where ā(x) satisfies a

2 ≤ āi(x) ≤ Λ.

The measure ν4 is treated similarly: the total mass can be bounded by

(2− α)

∫
|z|<δ

|η(y, z)| |(Dg(0), z)|
|z|N+α

dz ≤ cη|Dg(0)|(2− α)

∫
|z|<δ

|z|2 dz

|z|N+α

= cη|Dg(0)||SN−1|δ2−α ,

so that, up to a subsequence, there indeed exists a vector function b̄ such that
ν4αn,yn

→ b̄δ0 in the sense of measures, with ‖b̄‖∞ ≤ cη|Dg(0)||SN−1|. The result

then holds with Λ := |SN−1|cη max{|Dg(0)|, g(0)}. �

Remark 7.3. Note that in the censored case, ā(x) ≡ a/2 since the jumps below level
−yN are censored, while ā(x) = a by symmetry when the jumps are mirror reflected.
Under our general hypotheses, different structures of the jumps (i.e. different η’s)
lead to different ā’s which could in principle depend on x and the sequences αk, yk.
We will overcome this difficulty by using the extremal Pucci operator associated to
ā(x): for any symmetric N ×N matrix A with eigenvalues (λi) we define

(7.3) M+(A) :=
a

2

∑
λi<0

λi + Λ
∑
λi>0

λi .

Proposition 7.4. Let us define the half-relaxed limits as α → 2−:

ū(x) := lim sup
α→2,y→x

uα(y) and u(x) := lim inf
α→2,y→x

uα(y) .

Under the assumptions of Theorem 7.1, ū is a viscosity subsolution of (7.2), and u
is a viscosity supersolution of (7.2).

Proof. The proofs for ū and u are similar, therefore we only provide it for ū. We
have to check that ū satisfies the viscosity subsolution inequalities for the Neumann
problem (7.2) at any point x ∈ Ω. There are two separate cases to check, (i) when
x ∈ Ω and (ii) when x ∈ ∂Ω.

Step 1. Case (i) where x ∈ Ω, that is, xN > 0. Let φ be a smooth function and
assume that x is a strict local maximum point of u − φ. By standard arguments
there exists a sequence (yα)α of local maximum points of uα − φ such that yα → x
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as α → 2−. Moreover, since xN > 0, by taking α close to 2, we can assume that
yα,N > δ for some small δ > 0. By the subsolution inequality for uα at yα,

−(2− α)

∫
|z|<δ

φ(yα + z)− φ(yα)−Dφ(yα) · z dμα − (2− α)

∫
|z|<δ

Dφ(yα) · z dμα

−(2− α)

∫
|z|≥δ

uα(P (yα, z))− uα(yα) dμα + uα(yα) ≤ f(yα).

We recall that the second integral of the left-hand side is well defined; see the
remark after Lemma 2.7.

We denote the three integral terms by I1, I2, and I3. Then

I1 = −(2− α)

∫
|z|<δ

((D2φ(yα) + oδ(1))z, z) dμα

= −(2− α)

∫
|z|<δ

(D2φ(yα)z, z) dμα + oδ(1).

Note that the oδ(1)-term is independent of α because the measure (2 − α)|z|2μα

has bounded mass. The symmetry of μα implies that
∫
|z|<δ

zizj dμα = 0 and then,

by Lemma 7.2, we get

I1 = −(2− α)Tr(D2φ(yα))

∫
|z|<δ

|z|2 dμα + oδ(1) = aΔφ(x) + oα(1) + oδ(1) .

Similarly we have

I2 = −(2− α)

∫
|z|<δ

Dφ(yα) · z dμα = −(2− α)Dφ(yα)

∫
|z|<δ

z dμα,

and by symmetry of μα and Lemma 7.2 we see that

I2 = −(2− α)Dφ(yα)

∫
|z|<δ

z
g(z)− g(0)

|z|N+α
dz = b ·Dφ(x) + oα(1) + oδ(1) .

The oδ(1)-terms are independent of α since the measures ν2α of Lemma 7.2 have
unformly bounded mass. For the last integral I3, we use the boundedness of (uα)α
with respect to α to see that

(7.4) |I3| ≤ C(2− α)

∫
|z|≥δ

dz

|z|N+α
≤ C ′ 2− α

αδα
→ 0 as α → 2 .

So we keep δ > 0 fixed and pass to the limit as α → 2− (and yα → x) to get

−aΔφ(x)− b ·Dφ(x) + ū(x) ≤ f(x) + oδ(1) .

Then, since δ < xN could be arbitrarily small, we pass to the limit as δ → 0 and
get the viscosity subsolution condition for ū at x.

Step 2. Case (ii) where x ∈ ∂Ω, that is, xN = 0. We again consider a smooth
function φ such that ū−φ has a strict local maximum point at x and, as above, we
have a sequence (yα)α of maximum points of uα − φ such that yα → x as α → 2−.

In this step we are going to prove that

(7.5) min
(
−M+(D2u(x))− Λ|Du(x)|+ ū(x)− f(x) ;

∂φ

∂n
(x)

)
≤ 0 ,

where M+ is defined in (7.3). We may assume that ∂φ
∂n (x) = − ∂φ

∂xN
(x) > 0 since

otherwise (7.5) is already satisfied. Then for α close to 2, − ∂φ
∂xN

(yα) > 0 by the
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continuity of Dφ. We can also assume yα ∈ Ω, since otherwise yα ∈ ∂Ω and then
∂φ
∂n (yα) = − ∂φ

∂xN
(yα) ≤ 0 for α close to 2 by Definition 2.3, and this would contradict

our assumption.
Therefore 0 < yα,N → 0 as α → 2, and the subsolution inequality for uα takes

the form

− (2− α)

∫
|z|<δ

φ(yα + η(yα, z))− φ(yα)−Dφ(yα) · η(yα, z) dμα

− (2− α)

∫
|z|<δ

Dφ(yα) · η(yα, z) dμα

− (2− α)

∫
|z|≥δ

uα(P (yα)− uα(yα) dμα + uα(yα) ≤ f(yα).

We denote as before the three integral terms by I1, I2, I3. The compensator term
I2 can be written as

I2 = −g(0)Dφ(yα) · (2− α)

∫
|z|<δ

η(yα, z)
dz

|z|N+α

−Dφ(yα) · (2− α)

∫
|z|<δ

η(yα, z)
g(z)− g(0)

|z|N+α
dz

= I2,1 + I2,2 .

For symmetry reasons of both η and the measure, I2,1 reduces to the scalar product
of the N -th components, and it has a sign,

I2,1 = −g(0)
∂φ

∂xN
(yα)(2− α)

∫
|z|<δ

η(yα, z)N
dz

|z|N+α
≥ 0 ,

since g(0), − ∂φ
∂xN

(yα), and the η-integral are nonnegative (see Lemma 2.8 (iii)).
Thus we may drop the I2,1-term from the inequality above and get that

I1 + I2,2 + I3 + uα(yα) ≤ f(yα) .

We now pass to the limit in this inequality as α → 2, and hence yα,N → 0. The
difference with Step 1 above is that now yα converges to the boundary so that we
cannot take a fixed 0 < δ < yα,N as α → 2. For the first integral, Lemma 7.2
enables us to take subsequences αk → 2 and yα → 0 such that (dropping the
subscript k for simplicity)

I1 = −(2− α)

∫
|z|<δ

φ(yα + η(yα, z))− φ(yα)−Dφ(yα) · η(yα, z)
g(z)dz

|z|N+α

= −
∑
i,j

∫
|z|<δ

(∂2
i,jφ(yα) + oδ(1)) d(ν

3
α,yα

)i,j(z)

= −
∑
i,j

∂2
i,jφ(x)

∫
|z|<δ

d(ν3α,yα
)i,j(z) + oα(1) + oδ(1)

= −
∑
i

āi(x)∂
2
i,iφ(x) + oα(1) + oδ(1)

≥ −M+(D2φ(x)) + oα(1) + oδ(1) .

The last term I3 can be treated as in Step 1 and vanishes as α → 2. We are left
with the I2,2-term and again use Lemma 7.2, this time for the measure ν4. The
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result is the existence of a vector b̄(x) such that along subsequences we have

I2,2 = Dφ(yα) · (2− α)

∫
|z|<δ

η(yα, z)
g(z)− g(0)

|z|N+α
dz

= Dφ(x) · b̄(x) + oα(1) ≥ −Λ|Dφ(x)|+ oα(1) .

Hence, passing to the limit α → 2 in the above inequality leads to

−M+(D2φ(x))− Λ|Dφ(x)|+ ū(x)− f(x) ≤ 0,

and (7.5) still holds.

Step 3. We shall now prove that boundary condition (7.5) reduces to the condition
∂φ
∂n ≤ 0. Let us assume on the contrary that ∂φ

∂n (x) > 0 for some point x at the
boundary {xN = 0} and some smooth function φ such that u− φ has a maximum
point at x. For any τ, ε > 0, we take a smooth, bounded function ψ : R+ → R+

such that

ψ(t) = τ
(
t− t2

ε2

)
for 0 ≤ t ≤ ε2/2 .

Since ψ(0) = 0 and 0 ≤ ψ for 0 ≤ t ≤ ε2/2, it follows that u(x)−φ(x)−ψ(xN) again
has a local maximum point at x. Hence (7.5) holds with φ(x) + ψ(xN ) replacing
φ(x), i.e.

(7.6) min
(
E(φ) +

a

2

2τ

ε2
− Λτ ;

∂φ

∂n
(x)− τ

)
≤ 0 ,

where

E(φ) := −M+(D2φ(x))− Λ|Dφ(x)|+ ū(x)− f(x) .

Since we assumed that ∂φ
∂n (x) > 0, we first fix τ > 0 small enough so that the

inequality ∂φ
∂n (x) − τ > 0 still holds. Then we can choose ε > 0 small enough to

ensure that also

E(φ) +
a

2

2τ

ε2
− Λτ > 0 .

But then we contradict (7.6), and hence the boundary condition for ū reduces to
∂φ/∂n ≤ 0 everywhere on the boundary. This concludes the proof of Proposi-
tion 7.4. �

Proof of Theorem 7.1. We have seen that ū is a subsolution of (7.2) while u is a
supersolution of the same problem. Since u ≤ ū on Ω by definition and u ≥ ū on Ω
by the comparison principle for (7.2), we see that u = ū on Ω. Setting u := u = ū
on Ω, it immediately follows that u is continuous (since u is lsc and ū is usc) and
the unique viscosity solution of (7.2). By classical arguments in the half-relaxed
limit method, the sequence (uα)α also converges locally uniformly to u. �

Appendix A. Blow-up supersolution in censored case. I

In this section we assume (H6
η) and (H′

μ) as in Section 5. Remeber that Ω :={
(x1, . . . , xN ) = (x′, xN ) : xN ≥ 0

}
. First we show that in the censored fractional

Laplace case (i.e. the censored alpha stable case), we can essentially take

U(x) = − lnxN

as our blow-up supersolution in assumption (U) in Section 5.
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Lemma A.1. If dμ(z) = dz
|z|N+α for α ∈ (0, 1) and U(x) = − ln(xN ), then

−I[U ](x) = −
∫
xN+zN≥0

U(x+ z)− U(x) dz

|z|N+α
> 0 for x ∈ Ω.

Proof. We first change variables, z̄ = z
xN

, to find that

−I[U ](x) =
∫
xN+zN≥0

ln
(
1 +

zN
xN

) dz

|z|N+α
=

1

xα
N

∫
z̄N≥−1

ln(1 + z̄N )
dz̄

|z̄|N+α
.

Now we are done if we can prove that

J =

∫
z̄N≥−1

ln(1 + z̄N )
dz̄

|z̄|N+α
> 0.

When N = 1, we take 1 + z̄ = ey and note that simple computations lead to

J =

∫ ∞

−∞
y

eydy

|ey − 1|1+α
=

∫ ∞

−∞
F (y)e

y
2 (1−α)dy where F (y) =

y

|2 sinh y
2 |1+α

.

Since F (y) is odd and 1− α > 0,

0 < −F (−y)e−
y
2 (1−α) < F (y)e

y
2 (1−α) for y > 0,

and hence by symmetry J > 0.
In the case N > 1 we introduce polar coordinates z = ry where r ≥ 0 and

|y| = 1, and we let dS(y) be the surface measure on the sphere |y| = 1 in R
N . We

then find that

J =
(∫

|y|=1,yN>0

∫ ∞

0

+

∫
|y|=1,yN<0

∫ − 1
yN

0

)
ln(1 + ryN )

rN−1dr dS(y)

rN+α
.

The change of variables s = yNr then leads to

J =
(∫

|y|=1,yN>0

∫ ∞

0

+

∫
|y|=1,yN<0

∫ −1

0

)
sgn(yN )|yN |α ln(1 + s)

ds

|s|1+α
dS(y)

=

∫
|y|=1,yN>0

|yN |α dS(y)

∫ ∞

−1

ln(1 + s)
ds

|s|1+α
.

The lemma now follows from the computations we did for N = 1. �

We now generalize to a much larger class of integral operators with Lévy measures
μ such that dμ(z) ∼ dz

|z|N+α near |z| = 0. In this case the blow-up supersolution

will be the modified log-function UR defined as

UR(x) = ŪR(xN ) for x ∈ Ω, R > 1,

where ŪR is a (nonnegative) monotone decreasing C∞(0,∞) function such that

ŪR(s) =

{
− ln(s) + 3

2 lnR if 0 < s ≤ R,

0 if s ≥ 2R.
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The main result in this appendix says that UR will be the blow-up “supersolution”
of assumption (U) provided the Lévy measure μ also satisfies

(U)′ For all R, ε > 0 there are r, c,K > 0 and α ∈ (0, 1) such that

(a)

∫
−1<zN≤R

ln(1 + zN )
(
sαμ(sdz)− c dz

|z|N+α

)
> −ε for s ∈ (0, r),

(b)

∫
−1<zN≤− 1

2

ln(1 + zN ) μ(sdz) ≥ −K for s ∈ (r, R).

Theorem A.2. Assume (H6
η), (Hμ)

′, and (U)′ hold. Then the function UR defined
above satisfies the assumptions in (U). In particular, there is R0 > 0 such that for
any R > R0 there is KR ≥ 0 such that

−I[UR](x) ≥ −KR in {x : 0 < xN ≤ R}.

Before we prove this result, we show how assumption (U)′ can be checked when
μ is a Lévy measure whose restriction to {z : |zN | ≤ r} has a density

dμ

dz
=

g(z)

|z|N+α
, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α ∈ (0, 1),

0 ≤ g ∈ L∞
loc(R

N ) ∩ L1(RN ; dz
1+|z|N+α ),

limz→0 g(z) = g(0) > 0.

(A.1)

Note that the L1 assumption makes dμ
dz integrable near infinity and that L∞(RN ) ⊂

L1(RN ; dz
1+|z|N+α ) for α > 0.

Corollary A.3. If μ has a density satisfying (A.1), then the function UR defined
above satisfies the assumptions in (U).

Proof. By Theorem A.2, the proof consists in checking that (U)′ holds. Part (b)
follows from Hölder’s inequality since ln(1 + s) ∈ L1(−1, 0). Now we check part
(a). Note that

sαμ(sdz)− c dz

|z|N+α
=

g(sz)− c

|z|N+α
dz.

Now choose c = g(0) and write∫
−1<zN≤R

ln(1 + zN )
(
sαμ(sdz)− c dz

|z|N+α

)
≥ − sup

−s<r<Rs
|g(r)− g(0)|

∫
−1<zN≤R

| ln(1 + zN )| dz

|z|N+α
.

Part (a) now follows since the last integral is finite for any R > 0, while the sup-term
goes to zero as s → 0 by continuity of g at z = 0. �
Remark A.4. Assumption (A.1) also includes measures like

μ =

M1∑
i=1

μi,

where each measure μi has a density satisfying (A.1) for different gi and αi. To

see this, simply take α = maxi αi and g(z) =
∑M

i=1 gi(z)|z|α−αi and note that

g∈L1(RN ; dz
1+|z|N+α ). We can even relax this assumption to include measures with

zero or arbitrary negative αi provided that maxi αi remains in (0, 1). Finally we
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mention that we need some assumption on μ in order to control the negative part
of the integral −I[UR]. In (A.1) we do this by requiring continuity at 0 of g, but a
careful reader can extend this assumption to allow some discontinuities at 0.

Remark A.5. In assumption (U)′ it is only the restriction of μ to the set

{z : −r < zN < Rr} ∩ {z : −1 < zN < −1

2
}

that plays any role. Hence if μ satisfies (U)′, by taking r̄ small enough, so will μ+ μ̄
for any measure μ̄ satisfying∫

|z|>0

dμ̄ < ∞ and supp μ̄ ∩ {z : −1 < zN < r̄} = ∅ for some r̄ > 0.

For example, the delta-measure μ̄ =
∑M

i=1 δxi is ok if xi
N > 0.

Proof of Theorem A.2. First note that there is an R0 > 0 such that

JR0
:=

∫
−1<zN≤R0

ln(1 + zN )
dz

|z|N+α
> 0.

Indeed, in the proof of Lemma A.1, we showed that J∞ = J > 0. The result then
follows by the Dominated Convergence Theorem since the integrand is positive for
zN > 0 and integrable.

For any R > R0, we note immediatly that UR is a nonnegative decreasing func-
tion which trivially satisfies the second part of (U) with ωR(s) =

1
ŪR(s)

. We will

now check that UR has the appropriate supersolution properties and hence com-
plete the proof that UR satisfies (U) under (U)′ . By the definition of UR, we can
write

−I[UR](x) =

∫
−xN<zN≤RxN

ln
(
1 +

zN
xN

)
μ(dz) + IR

=

∫
−1<yN≤R

ln(1 + yN ) μ(xN dy) + IR,

where IR = −
∫
zN>RxN

UR(x + z) − UR(x) μ(dz) > 0 since UR is decreasing. By

assumption (U)′ we then find an r > 0 such that for xN ∈ (0, r),

−xα
NI[UR](x) ≥ JR +

∫
−1<yN≤R

ln(1 + y)
(
xα
Nμ(xN dy)− dy

|y|1+α

)
≥ 1

2
JR > 0.

When xN ∈ (r, R), another application of (U)′ along with (Hμ)
′ leads to

− I[UR](x)

≥
(∫

−xN<zN<− xN
2

+

∫
−xN

2 <zN<R∩|z|<1

+

∫
− xN

2 <zN<R∩|z|>1

)
ln
(
1 +

z

xN

)
dμ(dz)

≥ −K − max
s∈(− 1

2 ,
R
r )

|∂s ln(1 + s)|
|xN |

∫
|z|<1

|z|dμ(z)− max
s∈(− 1

2 ,
R
r )
| ln(1 + s)|

∫
|z|>1

dμ(z).

Since this last expression is bounded for xN ∈ (r, R), this completes the proof. �
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Appendix B. Estimates for the censored case. II

Lemma B.1. Let μ(dz) = dz
|z|N+α , α ∈ (1, 2), and define θ̃(x) = |xN |β. If β ∈ (0, 1)

and x ∈ Ω, then

I[θ̃](x) = P.V.

∫
xN+zN≥0

θ̃(x+ z)− θ̃(x) μ(dz)

⎧⎪⎨
⎪⎩
> 0 if β > α− 1,

= 0 if β = α− 1,

< 0 if β < α− 1.

One of the referees informed us that this result is known and a proof can be
found in [9]. Our proof is different and we keep it for the reader’s convenience.

Proof. First let β ∈ (0, 1) and N = 1, and define θ̃(x) = |x|β. Note that the change
of variables z = xz̄ followed by 1 + z̄ = es reveals that

I[θ̃](x) = P.V.

∫
x+z≥0

|x+ z|β − |x|β dz

|z|1+α

= |x|β−α P.V.

∫
z̄≥−1

|1 + z̄|β − 1
dz̄

|z̄|1+α

= |x|β−α P.V.

∫ ∞

−∞

2 sinh βs
2

|2 sinh s
2 |1+α

e
s
2 (1+β−α)dx.

When β = α− 1, the integrand is odd and hence the integral is zero. For β > α− 1
(β < α − 1) the exponential factor makes the integral positive (negative). Hence

when β + 1− α = 0, > 0 or < 0, then I[θ̃] = 0, > 0, or < 0 respectively.

When N > 1, a similar result holds for θ̃(x) = |xN |β . The idea is to work in
polar coordinates. We set x = ry for r ≥ 0 and |y| = 1 and let dS(y) denote the
surface area element of the N -sphere |y| = 1. We also use the change of variables
ryN = r̄xN .

I[θ̃](x)

=

∫
xN+zN≥0

|xN + zN |β − |xN |β dz

|z|N+α

=

∫
|y|=1

∫
xN+ryN>0

|xN + ryN |β − |xN |β rN−1dr dS(y)

rN+α

=

(∫
|y|=1,yN>0

∫ ∞

0

+

∫
|y|=1,yN<0

∫ − xN
yN

0

)
(· · · )dr dS(y)

r1+α

=

(∫
|y|=1,yN>0

∫ ∞

0

−
∫
|y|=1,yN<0

∫ −1

0

)
|xN |β−α|yN |α

(
|1 + r̄|β − 1

)dr̄ dS(y)
|r̄|1+α

= |xN |β−α

∫
|y|=1,yN>0

|yN |α dS(y)

∫ ∞

−1

|1 + r̄|β − 1
dr̄

|r̄|1+α
.

Here the first integral is just a positive constant while the second integral is the
same as the one we found in the N = 1 case. The conclusion is therefore as in that
case: When β + 1− α = 0, > 0 or < 0, then I[θ̃] = 0, > 0, or < 0 respectively. �
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Next we consider the two integrals

B(a) =

∫ −a

−a−1

|1 + z|β − 1 dμ(z),

G =

∫ 1

−1

|1 + z|β + |1− z|β − 2 dμ(z),

where a > 1, β ∈ (0, 1), and dμ(z) = dz
|z|N+α for α ∈ [1, 2).

Proposition B.2. If β = α− 1, then there is κ > 0 such that

B(a) +G ≤ −κ < 0

for any a > 1.

By continuity of the integrals in β we have the following corollary:

Corollary B.3. There is κ > 0 and β > α− 1 such that

B(a) +G ≤ −κ ≤ 0

for any a > 1.

To prove Proposition B.2, note that z + 1 ≤ 0 for z ∈ (−a− 1,−a) (a > 1) and
that the change of variable 1 + z = −ex in B(a) leads to

B(a) =

∫ ln a

ln(a−1)

2 sinh βx
2

|2 cosh x
2 |1+α

e
x
2 (1+β−α) dx

β=α−1
=

∫ ln a

ln(a−1)

2 sinh βx
2

|2 cosh x
2 |1+α

dx.

For the G integral we have the following result.

Lemma B.4.

G = 2 P.V.

∫ ln 2

− ln 2

2 sinh βx
2

|2 sinh x
2 |1+α

e
x
2 (1+β−α)dx − 2

∫ ∞

ln 2

2 sinh βx
2

|2 sinh x
2 |1+α

e−
x
2 (1+β−α)dx,

and if β = α− 1,

G = − 2

∫ ∞

ln 2

2 sinh βx
2

|2 sinh x
2 |1+α

dx.

Proof. First note that by symmetry

G = 2 lim
b→0+

∫
(−1,1)\(−b,b)

|1 + z|β − 1 dμ(z).

Then, since 1 + z > 0 for z ∈ (−1, 1), the change of variable 1 + z = ex leads to

G = 2 lim
b→0+

∫
(−∞,ln 2)\(ln(1−b),ln(1+b))

2 sinh βx
2

|2 sinh x
2 |1+α

e
x
2 (1+β−α) dx.

Note that ln(1± b) = ±b+O(b2) and decompose the above integral as follows:∫
(−∞,ln 2)\(ln(1−b),ln(1+b))

(· · · ) dx

=
(∫

(−∞,ln 2)\(−b,+b)

+

∫
(−∞,ln 2)\(ln(1−b),−b)

−
∫
(−∞,ln 2)\(ln(1+b),b)

)
(· · · ) dx.
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Now since sinh x = x + O(x3), the last two integrals are bounded by Cb2 b
b1+α =

Cb2−α for b � 1, and we have

G = 2 lim
b→0+

∫
(−∞,ln 2)\(−b,b)

(· · · ) dx = 2

(
P.V.

∫
(− ln 2,ln 2)

+

∫
(−∞,− ln 2)

)
(· · · ) dx.

A change of variables in the last integral then gives the first statement of the lemma.
The last part of the lemma follows since the integrand is odd when β = α− 1, and
hence the integral over (− ln 2, ln 2) vanishes. �

We also need the next lemma.

Lemma B.5. If β = α− 1, then B(2) < −G
2 .

Proof. We will show that

B(2) =

∫ ln 2

0

2 sinh βx
2

|2 cosh x
2 |1+α

dx ≤
∫ ln 2

0

2 sinh β(x+ln 2)
2

|2 sinh x+ln 2
2 |1+α

dx <

∫ ∞

0

(· · · ) dx = −G

2
.

The last inequality is trivial, and since sinh is an increasing function, the first
inequality follows if we can show that

cosh
x

2
≥ sinh

x+ ln 2

2
for all x ∈ (0, ln 2).

But this easily follows since f(x) = cosh x
2 − sinh x+ln 2

2 satisfies

f ′(x) =
1

2
sinh

x

2
− 1

2
cosh

x+ ln 2

2
≤ 0 for all x,

f(ln 2) =

√
2− 1

4
≥ 0.

�

Proof of Proposition B.2. Divide the integral B(a) into three parts(∫ 0

ln(a−1)∧0

+

∫ ln 2∧ln a

ln(a−1)∨0

+

∫ ln 2∨ln a

ln 2

)
(· · · ) dx.

Now we conclude since the first integral is negative, the second one is less than −G
2

by Lemma B.5, and the last one is less than −G
2 by definition of G. �
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de diffusion réfléchis par pénalisation du domaine (French, with English summary), C. R.
Acad. Sci. Paris Sér. I Math. 292 (1981), no. 11, 559–562. MR614669 (82f:60172)
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Denis Poisson, FR CNRS 2964, Université François Rabelais, Parc de Grandmont, 37200

Tours, France

E-mail address: barles@lmpt.univ-tours.fr
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