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Abstract

In this short note, we reify the connection between work on the storage capacity problem in wide
two-layer treelike neural networks and the rapidly-growing body of literature on kernel limits of wide
neural networks. Concretely, we observe that the “effective order parameter” studied in the statistical
mechanics literature is exactly equivalent to the infinite-width Neural Network Gaussian Process Kernel.
This correspondence connects the expressivity and trainability of wide two-layer neural networks.

The study of two-layer neural networks in the limit of large hidden layer width has a long history in
the statistical physics of learning (Barkai et al., 1992; Engel et al., 1992). This work focuses on the Gardner
storage capacity problem, which measures the computational power of a neural network by the largest
random binary classification dataset it can “memorize” (Gardner, 1988; Gardner and Derrida, 1988). In this
problem, one performs Bayesian inference of network weights using a likelihood that is flat on the set of
weights that yield zero classification error and vanishes uniformly otherwise. Memorization is possible if
the support of the resulting Bayes posterior has nonzero volume, i.e., if there exists a non-negligible set
of weights for which all examples are correctly classified. In the thermodynamic limit where the input
dimensionality # and dataset size % tend to infinity with fixed ratio  ≡ %/# , there is a sharp transition
between memorization with probability one and memorization with probability zero at some critical ratio
2 , referred to as the storage capacity.

These statistical mechanics calculations rely on studying functions of the overlap @ between the hidden
unit weight vectors of identical copies, known as replicas, of the network, which is termed the “order
parameter.” Classic work by Barkai et al. (1992) and Engel et al. (1992) for treelike networks with sign
function hidden layer activations revealed a remarkable simplification in the limit where the number of
hidden units  was taken to be large: the equations reduced to those of a perceptron (Gardner, 1988;
Gardner and Derrida, 1988), with the order parameter replaced by an “effective” order parameter @eff(@).
This result was recently extended to rectified linear unit activation functions by Baldassi et al. (2019) and to
general activation functions in our own work (Zavatone-Veth and Pehlevan, 2021, hereafter ZP).

Beginning with pioneering work by Neal (1996) and Williams (1997), a parallel line of research in the
machine learning community has characterized the infinite-width limits of Bayesian neural networks with
Gaussian priors over their weights. This work also revealed a remarkable simplification: for a two-layer
network with hidden layer activation function 5 , infinite-width inference is equivalent to shallow Gaussian
process (GP) inference with kernela

 5 (x, y) = E
[
5 (w · x) 5 (w · y) : w ∼ N(0, I)

]
(1)
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aFor clarity of exposition, we make the simplifying assumptions that the network has no bias terms and

that the prior weight variance is unity.
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given by the deterministic infinite-width limit of the Gram matrix of hidden layer activations. Here, x, y ∈ R#

are interpreted as two inputs to the network, and w ∼ N(0, I) is a random weight vector. In recent years, this
neural network-Gaussian process (NNGP) correspondence has proven to be an extremely fruitful tool in the
theory of deep learning thanks to the observation that it can be extended to networks with more than a single
hidden layer (Lee et al., 2018; Matthews et al., 2018). Importantly, this correspondence does not apply only
at the level of the prior, but also at the level of the Bayes posterior. For sensible likelihoods that model the
targets as being conditionally independent of the network weights given the network outputs, the function-
space posterior distribution tends to that induced by the limiting Gaussian process prior (Hron et al., 2020).
Moreover, the connection between infinitely-wide neural networks and kernel machines has been extended
to study gradient-based training (Jacot et al., 2018).

However, a precise connection between these two lines of research on Bayesian inference in infinitely-
wide two-layer neural networks has yet to be drawn. In this brief note, we re-interpret results on the
storage capacity problem in terms of the behavior of the NNGP kernel. This observation allows us to clarify
the conceptual and technical connections between these parallel lines of work on wide and deep neural
networks.

We start by observing that, for unit-norm inputs x, y ∈ S#−1, the infinite-width NNGP kernel (1) can be
expressed as a function of the overlap @ ≡ x·y ∈ [−1,+1] (Cho and Saul, 2009; Lee et al., 2018; Matthews et al.,
2018; Neal, 1996; Williams, 1997):

 5 (@) =





E
[
5 (G)2 : G ∼ N(0, 1)

]
, if @ = 1

E

[
5 (G) 5 (H) :

(
G
H

)
∼ N

((
0
0

)
,

(
1 @
@ 1

))]
, if − 1 < @ < 1

E
[
5 (G) 5 (−G) : G ∼ N(0, 1)

]
, if @ = −1.

(2)

For functions 5 that are square-integrable with respect to Gaussian measure,  5 (@) is a continuous function
on the closed interval [−1, 1], with a power series that converges throughout that interval (Bogachev, 1998;
Daniely et al., 2016; Zavatone-Veth and Pehlevan, 2021).

The NNGP kernel coincides exactly with the effective order parameter studied in the statistical mechanics
literature:b

@eff(@) =  5 (@). (3)

In particular, the result of ZP shows that the storage capacity remains finite in the infinite-width limit if the
left derivative

%− 5 (@ = 1) ≡ lim
@↑1

 5 (1) −  5 (@)

1 − @
(4)

of the kernel at @ = 1 is finite, and diverges otherwise. For the special cases of 5 (G) = sign(G), which
yields infinite capacity, and 5 (G) = ReLU(G) = max{0, G}, which yields finite capacity, this was noted in
previous work by Barkai et al. (1992) and by Baldassi et al. (2019), respectively, based on direct computations
of  sign(@) and  ReLU(@).

c Thus, the relationship of the limiting behavior of the NNGP kernel for sign
activation functions to the expressivity of infinitely-wide networks was implicitly studied thirty years ago.

Therefore, the storage capacity of a treelike committee machine is related to the behavior of the NNGP
kernel for nearly colinear arguments. In ZP, we gave a general argument based on Fourier-Hermite expan-
sions that %− 5 (@ = 1) is finite if and only if the activation function 5 is in the Sobolev space of functions
that are square-integrable with respect to Gaussian measure and have weak derivatives that are also square-
integrable with respect to Gaussian measure (Bogachev, 1998). Roughly speaking, a kernel with a cusp at
@ = 1 will yield divergent capacity. Intuitively, %− 5 (@ = 1) measures the ability of the kernel to discrimi-
nate between nearly colinear inputs, which has a natural relationship to expressivity (Paccolat et al., 2021;
Poole et al., 2016).

bPossibly up to irrelevant constant offsets; in ZP we defined the effective order parameter as @eff(@) =
 5 (@) − [EG∼N(0,1) 5 (G)]

2.
cIn the machine learning literature, kernels of this family were studied systematically by Cho and Saul

(2009).
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The relationship between %− 5 (@ = 1) and the expressivity of deep networks was noted in a different
context by Poole et al. (2016). Those authors studied the expressivity of infinitely wide and deep fully-
connected networks with random weights in terms of the fixed points of  5 (@) under iteration. For networks
without bias terms, their results have a close relationship to those of ZP, which we will illustrate in a simple
setting. We assume that all inputs lie on the sphere, and normalize the activation function such that
 5 (@ = 1) = 1. Then, the result of Poole et al. (2016) shows that networks with %− 5 (@ = 1) > 1 display
chaotic behavior in the sense that the fixed points of  5 (@) are unstable, while those with %− 5 (@ = 1) < 1
display ordered behavior. Those authors proposed that the sharp enhancement of differences between
inputs by networks in the chaotic regime is a signature of expressivity. We remark that capacity calculation
is conceptually distinct from the settings of GP inference and Poole et al. (2016) in that the effective order
parameter measures the similarity between the weight vectors of two different replicas for a random input
example, while the kernel measures the similarity of two input examples for a random weight vector.

The connection between the storage capacity problem and the NNGP kernel also helps to clarify the
relationship of ZP to Panigrahi et al. (2020)’s study of gradient descent training in two-layer networks with
fixed readout weights. In their setting, the speed of training is governed by the minimum eigenvalue of the
“gradient Gram matrix” evaluated on the training examples, schematically given as� 5 (x, y) = x ·y 5 ′(x, y).

d

Working under the assumption that all inputs lie on the sphere, they showed that activation functions with
a discontinuity in their derivatives yield rapid gradient descent training under a weaker bound on the
maximum overlap @ between any two training examples than is required for smooth activation functions.

As we have� 5 (@) = @ 5 ′(@) for inputs on the sphere, we can apply the above intuition for the relationship
between the left derivative %− 5 (@ = 1) and discriminability. By the abovementioned results, functions
5 with discontinuous first derivatives will result in divergent left derivatives %−� 5 (@ = 1) and thus sharp
discrimination capabilities. This sharp discrimation capability will yield better separation between diagonal
and off-diagonal elements of � 5 (@) for @ near one. By the Gershgorin circle theorem, this should in turn
yield better lower bounds on the minimum eigenvalue of the � 5 as a function of @ than would hold for
� 5 (@) with finite %−� 5 (@ = 1), possibly decreasing training time (Horn and Johnson, 2012). Therefore, the
link between trainability and the second weak derivative of the activation function noted by Panigrahi et al.
(2020) and the link between storage capacity and the first weak derivative of the activation function noted
in ZP bear a close conceptual relation: both depend on the discrimination capabilities of the appropriate
kernel for nearly-colinear inputs.

To conclude, the storage capacity of a wide two-layer treelike neural network is determined by the be-
havior of the corresponding NNGP kernel for nearly-colinear inputs on the sphere. This connection yields
an intuitive explanation for the varying behavior of the storage capacity in terms of input discriminabil-
ity (Baldassi et al., 2019; Barkai et al., 1992; Engel et al., 1992; Gardner, 1988; Gardner and Derrida, 1988;
Zavatone-Veth and Pehlevan, 2021), as well as a more precise description of the relationship of this line of
research to work on kernel limits of neural networks (Cho and Saul, 2009; Hron et al., 2020; Jacot et al., 2018;
Lee et al., 2018; Matthews et al., 2018; Neal, 1996; Panigrahi et al., 2020; Poole et al., 2016; Williams, 1997).

Yet, further research will be required to fully understand the connections between studies of the
storage capacity problem in statistical physics and results on the NNGP limit. Though both lines of
research focus on Bayesian inference of network weights, they consider different settings. The statisti-
cal physics literature largely focuses on simple two-layer models in a limit where the input dimension
tends to infinity with the hidden layer width (Baldassi et al., 2019; Barkai et al., 1992; Engel et al., 1992;
Zavatone-Veth and Pehlevan, 2021), while most studies of the NNGP limit consider deeper fully-connected
networks with finite-dimensional inputs (Hron et al., 2020; Lee et al., 2018; Matthews et al., 2018; Neal, 1996;
Williams, 1997). Given the growing interest in applying tools from statistical physics to study inference in
wide neural networks,e we hope that the connections noted in this work will spark more detailed investiga-
tion of possible commonalities between these seemingly disparate settings.

dHere, the activation function 5 is always assumed to be at least Lipschitz continuous, and is assumed
to have weak derivative 5 ′ that is square-integrable with respect to Gaussian measure such that � 5 is
well-defined.

eSee our discussion in Zavatone-Veth et al. (2021) and references therein.
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