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ABSTRACT This paper presents an efficient artificial neural network (ANN) electrothermal modeling
approach applied to GaN devices. The proposed method is based on decomposing the device nonlinearity
into intrinsic trapping-induced and thermal-induced nonlinearities that can be simulated by low-order ANN
models. The ANN models are then interconnected in the physics-relevant equivalent circuit to accurately
simulate the transistor. Genetic algorithm (GA)-based training procedure has been implemented to find
optimal values for the weights of the ANN models. The modeling approach is used to develop a large-
signal model for a 1-mm gate-width GaN high-electron mobility transistor (HMET). The model has been
implemented in the advanced design system (ADS) and it has been validated by pulsed and continues
small- and large-signal measurements. The model simulations showed a very good agreement with the
measurements and verify the validity of the developed technique for dynamic electrothermal modeling of
active devices.

INDEX TERMS GaN HEMT, electrothermal modeling, neural networks, genetic algorithm optimization.

I. INTRODUCTION

GAN high electron mobility transistor (HEMT) is currently
an outstanding device for designing RF and microwave
circuits. The higher electron saturation velocity, electron
mobility, breakdown voltage, and operating temperature
qualify it to be an outstanding device for designing advanced
communication-electronic circuits such as power amplifiers
and low noise amplifiers [1]. This makes the GaN HEMT
an optimal choice for designing transceivers for advanced
wireless communication systems such as 5G, WiMAX, ultra-
wideband radar systems, and Ku-band space communication
systems [2]. One of the main challenges that this device faces
especially in high power application is self-heating induced
power dissipation. The higher internal temperature (due to
self-heating) degrades the electron velocity andmobility, thus
reducing the drain channel current. This accordingly reduces
the device output power, gain and power efficiency [3], [4].
Even though the thermal performance of GaN HEMTs is
better than other technologies such as Si, this effect must
be considered in the modeling phase of the device for accu-
rate and reliable circuit design, especially for larger devices
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under linear- or quasi-linear-mode of operations [5]. Another
important effect is the typical inherent surface and buffer
trapping of the GaN HEMT, which results in current collapse
under RF (> 10 MHz) and kink effects in the dc and pulsed
IV measurements [6]. Both thermal and trapping effects are
correlated and typically pulsed current-voltage (IV) mea-
surements at well selected quiescent-bias-voltages are used
to characterize and model these two effects [7]. To charac-
terize the thermal effect, pulsed IV measurements, at cold
quiescent bias condition, are typically used. Furthermore,
narrow pulses stimulus voltages are used to just measure
the corresponding current without heating up the transistor.
In this case, isothermal measurements could be obtained,
and the current is mainly depending on the voltages levels
and ambient temperature (negligible self-heating). Moreover,
double-pulse technique can be used to obtainedmore accurate
characterization for the thermal and trapping effects [8].

Many papers have been published to address the issue
of electrothermal modeling of GaN including the dynamic
trapping effects [6], [7], [9]–[18]. Some of these works such
as the presented ones in [9], [10], [13] depend on the table-
based approach, which has limited modeling capability
because of its discrete nature. Also, its modeling range is
limited by the implemented base measurement. These two
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limitations have been overcome by using analytical modeling
based on closed formulas [6], [11]. This modeling has higher
rate of convergence because of its continuous nature and
its ability to predict the device behavior beyond the mea-
sured range. However, this technique is technology depen-
dent and proper expressions should be used to fit the curves
of the model parameters. Also, more effort is needed to
determine the model fitting parameters. Artificial-Neural-
Network (ANN) based modeling, such as the ones presented
in [14]–[18], can provide an optimal solution in terms of
accuracy and cost. The model architecture is based on inter-
connected neurons in a topology of multilayers (input, hid-
den and output). In feedforwardmultilayer-perceptron (MLP)
ANN, the outputs from neurons of a layer represent inputs for
the next layer. The process in each neuron is implemented
by mathematical activation function. In principle MLP is
a universal technique that can be used for approximating
any nonlinear function [19], which makes it technologically
independent and does not require prior knowledge about the
modeled device or predefined formulas.
The model topology (number of layer and neurons) is pro-

portional with the degree of nonlinearity for the considered
modeling problem. This accordingly, represents a challenge
for the ANN based on the mostly used local backpropa-
gation (BP) learning/optimization technique, especially for
modeling strong device nonlinearities such as the drain cur-
rent. During the BP training, the ANN calculates the resulting
output current, at certain input voltages, and compares it
with the measured current to get the error, which is then
propagated back through the system to adjust the weights for
best fitting. The main limitation of the backpropagation (BP),
as a gradient method, is its higher sensitivity to the initial
guess and the solution could get stuck in local minima [20].
To overcome this problem, more effort is needed to find
proper initial guess (close to the global minimum), tune the
model topology, modify the objective function or change
the activation function [21], [22]. This local minima problem
becomes more obvious in a non-linear problem of larger scale
ANN model such as IV characteristics modeling.
In this paper an efficient modeling technique is proposed

to address these issues. The main contributions of this paper
with respect to other published works are: (i) decompos-
ing the device nonlinearity into partial weaker nonlinearities
that can be represented by simpler topologies ANN models;
(ii) genetic algorithm (GA) global optimization [23] is used
to train the ANN models; (iii) distributed extrinsic network
is used to cover a wider frequency range; (iv) only cold IV
and S-parameters are used to characterize and model thermal,
trapping and parasitic effects. To the best of the author’s
knowledge, the presented modeling technique procedure has
not been presented previously and this paper will contribute
to demonstrate its applicability to nonlinear GaN HEMTs
modeling. In the first part of this paper, the characterization
and modeling techniques for the temperature-dependency
will be introduced. In the second part, the implemented GA
based optimization procedure will be presented, along with

the output of each combined ANN model will be compared
with the actual data. The third part will cover the large-signal
model implementation and validation and finally the results
will be discussed and the paper will be concluded.

II. MEASUREMENT SET-UP AND MODEL TOPOLOGY

The pulsed drain current can be represented as a function of
four parameters: the intrinsic gate voltage Vgs, the intrinsic
drain voltageVds, the gate quiescent-bias-voltageVgso and the
drain quiescent-bias-drain voltage Vdso. The internal power
dissipation and thus the associated self-heating is mainly
related to the quiescent voltages and current (Vgso, Igso, Idso
and Vdso) and their low frequency components. The quiescent
voltages are also stimulating the trapping effects. Therefore,
by keeping zero values for Vgso and Vdso (unbiased condition)
one can ensure that there is no further trapping and no self-
heating due to quiescent power. The other self-heating contri-
bution from the applied voltage could be avoided by applying
a very narrow pulse (in the order of 0.1 µs), which is just
enough to stimulate the device and measure the responding
drain and gate current. In this case, the device internal tem-
perature is nearly equal to the ambient temperature. Hence,
the obtained IVs could be considered as isothermal measure-
ments for the drain current (Ids,iso). The device is typically
mounted on temperature controlled thermal chuck to heat
up the device and therefore the drain current variation can
be related to the external temperature. For the considered
devices, narrow pulses of 200 ns width are applied to the
gate and drain terminals. The peaks pulses are swept from
−7 to 1 V for Vgs and from 0 to 30 V for Vds, both in steps
of 1 V. The measurements have been done at 25, 40, 55 and
70 ◦C temperature (adjusted by the thermal chuck).

FIGURE 1. Single-hidden layer ANN model for isothermal drain current.

The voltage and temperature dependence of the isother-
mal drain current Ids,iso is modeled by the model shown
in Fig. 1. As it can be seen in the figure, Ids,iso is simulated
by the single-hidden-layer ANN model. The total number of
input weights, biases and output weights is 20. This shows
the difficulty of such quietly large-scale problem and the
crucial need to use a global optimization such as genetic
algorithm for training larger size ANN. For this model-
ing (data fitting) problem, the hyperbolic functions (tanh)
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is used as an activation function. This function is consis-
tent with behavior of the drain current and it can accu-
rately describe it’s ohmic-saturation transition and pinch-off
(turn-on) nonlinearities [6], [14]. Ids,iso can be formulated in
terms of Vgs, Vds and Temperature (T ) as:

Ids,iso =

4
∑

k=1

wk tanh
(

w1kVds + w2kVgs + w3kT + w4k
)

.

(1)

FIGURE 2. Flowchart of the genetic algorithm model learning process.

III. GENETIC ALGORITHM OPTIMIZATION

BASED LEARNING

The implemented GA-based learning process is summarized
by the flow chart in Fig. 2. In this work, real-coded GA
is adopted [23]. The optimization process is started by ran-
dom generation of initial population of individuals. Each
individual consists of 20 values (16 for the input weights
and biases and 4 for the output weights). These individuals
represent the first generation of parents. The individuals are
then evaluated by fitting the pulsed IVs measurements and
the worst (maximum error) 10% out of them are rejected. The
objective error function is defined as:

Error =
1

N

N
∑

k=1

(

Ids,meas − Ids,sim
)2

(2)

where Ids,meas and Ids,sim are the measured and simulated
currents, respectively and N is the total number of data points.
The remaining individuals (parents) undergo recombination
(crossing) and mutation operations to produce the next gen-
eration of individuals (offspring). Double-point crossover has
been used to reproduce the offspring. Then, these reproduced
individuals are mutated (altered randomly) by low probability

of 10% [23]. These individuals are then re-evaluated by fit-
ting the measurements to select minimum errors individuals.
These offspring individuals replace the most error parent
individuals through the reinsertion step. The new combined
individuals will be parents for the next generation and again
will undergo selection, crossing andmutation operations. The
optimization process will continue over Nmax generations to
find the minimum error individual and the associated optimal
values of the model weights and biases.

FIGURE 3. Measured and Simulated isothermal drain current of 1 mm
GaN HEMT at: (a) 25 ◦C, (b) 40 ◦C, (c) 55 ◦C and (d) 70 ◦C temperatures.

IV. ISOTHERMAL CURRENT MODEL VALIDATION

The presented procedure in Section III, has been applied to
pulsed IV measurements of an on-wafer 1 mm (8×125µm)
GaN HEMT. It has been fabricated on SiC substrate by
the Ferdinand-Braun-Institute [24], and characterized by the
Fraunhofer Institute for Applied Solid-State Physics. The
pulsed IV measurements have been conducted by stimulat-
ing the device by gate and drain pulses of 200 ns pulse-
width and 1 ms pulse repetition-time. This narrow (much
smaller than the typical thermal time constant) pulse is not
enough to heats up the device and it provides stable and
reliable measurements [25]. Also the longer pulse repetition-
time (1ms), with respect to the pulse width (200 ns), will keep
the device cold and avoid any extra residual heat between con-
secutive pulses, especially for hot quiescent bias point [25].
As mentioned in the last section, the reference temperature
of the measurements is fixed by the thermal chuck (probing
of the on-wafer station) and temperature-control unit, with
accuracy of ±0.1◦C . Fig. 3 shows isothermal measurements
(under Vgso = 0 V and Vdso = 0 V) at 25 ◦C, 40 ◦C, 55 ◦C and
70 ◦C external temperatures. Three of these measurements at
25 ◦C, 40 ◦C and 70 ◦C are used to build the model; while the
fourth one at 55 ◦C are used for the model validation.
The optimization (model training) process is started by

generating a uniformly distributed random initial population
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FIGURE 4. Error variation versus number of generation through the
model weight optimization.

FIGURE 5. Simulated isothermal drain current of 1 mm GaN HEMT at:
(a) 100 ◦C, and (b) 150 ◦C temperatures.

of 1000 individuals. Each individual consists of 20 values
(between −1 and 1) for the model weights. The maximum
number of generations is set to 500. Fig. 4 shows the error
variation versus the number of generation during the opti-
mization process of the model weights. The convergence of
the error clearly shows the effectiveness and efficiency of the
implanted optimization.
This results was obtainedwith elapsed-time of 512 Seconds

using 3.6 GHz Computer of 16 GB RAM. This step has
to be done offline just to build the model and thus this
time is not a big issue. The simple (single-hidden layer
of 4 neurons) topology of the model makes it easy to rep-
resent it in a simple closed formula that could be directly
implanted in CAD with higher rate of convergence and
shorter time of simulation. Figs. 3(a) −3(d), present the
predicted and measured pulsed IVs at 25, 40, 55 and 70 ◦C,
respectively. The mean-square-error defined in (2) for these
four cases is 4.8719×10−4, 3.9829×10−4, 3.5280×10−4

and 3.5256×10−4, respectively. The model has been also
used to predict the drain current at higher temperature as
shown in Fig. 5 for 100 ◦C and 150 ◦C. As can be seen,
the model shows the typical expected reduction at higher
temperature and validates the model accuracy in simulating
the temperature dependence of the drain current.

V. ELECTROTHERMAL MODEL FOR DRAIN CURRENT

The longer time delay between consecutive dc IV measure-
ments, (which is typically much longer than trapping time
constants), allows even the trapped carriers to release and
participate in the conduction mechanism [26]. Thus the drain
current variation could be related mainly to the applied dc
voltages and the induced self-heating. Pulsed IVs at active

quiescent bias voltages will be affected also by self-heating
due to quiescent (average) power dissipation. In general, the
drain current can be represented by the same model in (1)
but the temperature T could be extended to consider also the
self-heating as follows:

T = RthPdiss + (Tref + 1T ) (3)

where 1T is the rise of ambient temperature with
respect to reference ambient temperature Tref (typically at
around 25 ◦C) and Pdiss is the intrinsic power dissipation
(Pdiss = VdsIds). Rth is the thermal resistance and it depends
mainly on the device structure and materials. The dc IVs at
Tref can be used to characterize and model variation of Ids
with Pdiss. Fig. 6(a) shows dc IVs for the same considered
device at room temperature Tref = 25 ◦C. The corresponding
power dissipations for the same dc IVs are calculated and
illustrated in Fig. 6(b).

FIGURE 6. (a) Measured dc IVs and (b) measured and simulated dc
power (Ids Vds) at 25 ◦C ambient temperature for 1 mm GaN HEMT.

FIGURE 7. Single-hidden layer ANN model for power dissipation.

The power dissipation variation with Vgs and Vds can be
described by the ANNmodel of two inputs and single hidden
layer of 3 neurons shown in Fig. 7. The same optimization
procedure presented in Section III is used to find the model
weights. Similar to Ids,iso, Pdiss can be represented analyti-
cally as:

Pdiss =

3
∑

k=1

wk tanh
(

w1kVds + w2kVgs + w3k
)

. (4)

Fig. 6(b) shows the measured and simulated Pdiss with mean-
square-error of 7.2×10−2. The ANN models in Figs. 1 and 7
can be combined to form an electrothermal model for the
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FIGURE 8. Electrothermal model for the drain current.

FIGURE 9. Measured and simulated DC IVs of 1 mm GaN HEMT at:
(a) 40 ◦C and (b) 70 ◦C ambient temperature.

drain current as it is illustrated in Fig. 8. As previously
mentioned, the self-heating is induced by the lower frequency
components of Pdiss (static and quasi-static power dissipa-
tion). These components are extracted using single-time-
constant RC low-pass-filter. The time constant of the RC
circuit is in the order of 1 ms (typical thermal time constant
of GaN devices) [27]. This implementation is widely used as
a simple and efficient technique for simulating the thermal
dynamic behavior [7].
The model of Fig. 8 has been implemented in MATLAB

and used to predict the dc IVs at different temperatures.
The dependence of Rth on Pdiss [28] has been considered by
implementing the following formula:

Rth = [1 + 2(1 + 0.1 × tanh(Pdiss − 9))Pdiss]Pdiss. (5)

The formula of Rth in (5) was empirically extracted and
it provided best fitting of the dc IV characteristics at Tref .
A tanh(·) function has been used in (5) to restrict Rth to a
constant value, in smooth manner, at high Pdiss and improve
the model convergence [11]. Figs. 9(a) and 9(b) show the
simulated dc IVs at 40 ◦C and 70 ◦C ambient temperature
with mean-square-error of 5.3585×10−4 and 5.1538×10−4,
respectively. As it can be seen the model can accurately
simulate the ambient temperature and self-heating induced
current collapse.

VI. TRAPPING EFFECT MODELING

In general, the trapping effect cannot be ignored, especially
for large-size GaN HEMT at high-power operation. In addi-
tion to the surface trapping due to polarization induced sur-
face charges [29], the high driving power stimulates some
carrier to be injected in the deep levels in the buffer layer
below the channel [26]. Under RF (>10 MHz) the longer
emission time of trapped carriers (in order of 1 µs) prevents

them to participate, which results in current reduction under
this condition with respect to static and quasi-static of oper-
ation. Thus, the last model of Fig. 8 should be extended by
adding another term to consider the current variation due to
surface and buffer trapping. The complete drain current can
be expressed as:

Ids = Ids,iso(Vgs,Vds,T ) + Ids,diff (Vgs,Vds,Vgso,Vdso)

(6)

where Ids,iso is determined by (1) and T is calculated using
(3)-(5) and it depends on the ambient temperature in addition
to the power dissipation Pdiss. Pdiss in (3) is predicted by its
ANN model and its static/quasi-static values are extracted by
a low pass circuit. The main nonlinear behavior of Ids and its
inherent thermal effect can be embedded from the measured
current at any arbitrary quiescent voltages and the remaining
part (the second term of (6)) can be used to characterize the
trapping induced dispersion.

FIGURE 10. Measured and simulated trapping induced current different
Ids,diff of 1 mm GaN HEMT at 25 ◦C under: (a) Vgso = −2 V and
Vdso =15 V, (b) Vgso = −4 V and Vdso =25 V and (c) Vgso = −7 V and
Vdso =0 V.

The incremental trapping current Ids,diff has been calcu-
lated by comparing measured pulsed IVs, at proper cold and
active quiescent voltages, with the corresponding predicted
ones using the model in Fig. 8. Fig. 10 shows the extracted
Ids,diff frommeasured pulsed IV at 25◦C under (Vgso = −2 V,
Vdso = 15 V), (Vgso = −4 V, Vdso = 25 V) and (Vgso =

−7 V, Vdso = 0 V) quiescent voltages. Variation of Ids,diff
with Vgs, Vgso, Vds and Vdso has been simulated by the ANN
model shown in Fig. 11. The mean-square-error for the three
cases in Fig. 10 is 3.7466×−4, 4.1246×−4 and 3.7390×−4,
respectively.
The model has four inputs with single hidden layer of four

neurons. Similarly, it can be represented by the following
formula:

Ids,diff =

4
∑

k=1

wk tanh

(

w1kVds + w2kVgs+

w3kVdso + w4kVgso + w5k

)

. (7)

The same mentioned genetic algorithm optimization in
Section III has been used to train the model to find optimal
values for the model weights. The trapping effect, which is
characterized here by Ids,diff, depends mainly on the rate of
change of the stimulus voltages (ac components) with respect
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FIGURE 11. Single-hidden layer ANN model for trapping induced
dispersion.

FIGURE 12. Electrothermal and trapping model for the drain current.

FIGURE 13. Measured and simulated pulsed IV of 1 mm GaN HEMT
under: (a)Vgso = 0V, Vdso =5V and T =25◦C, (b) Vgso = −4V, Vdso =25V
and T =70◦C, and (c) Vgso = −2V, Vdso =15V and T =70◦C. (d) Measured
and simulated dc IV at 25◦C.

to their quiescent values (Vgso and Vdso). Thus, as shown
in Fig. 12, this term could be implemented by ANN model
with a high pass filter (HPF) of time constant in the order
of 1 µs [27] to simulate the dynamic trapping effects. The
complete model including the three ANN models is shown
on Fig. 12. As presented in Fig. 13, the complete model has

been validated by pulsed and dc IVs at different active quies-
cent voltages and different ambient temperatures. Fig. 13(a)
shows the model simulation for pulsed IVs at 25◦C under
active quiescent biases (Vgso = 0V, Vdso = 5V). Under this
condition the device characteristics will be affectedmainly by
self-heating (due to quiescent power dissipation) and trapping
effects, which as can be seen, are well simulated by themodel.
As illustrated also in Figs. 13(b) and 13(c), the model also
shows very good fitting for cold pulsed IVs at high ambient
temperature of 70◦C. Fig. 13(d) also presents a very accurate
simulation for the dc IVs at room temperature of 25 ◦C,
which are mainly effected by self-heating. The mean-square-
error for these four cases is 6.2556×10−4, 5.6769×10−4,
5.6783×10−4 and 5.3585×10−4, respectively. These very
accurate results clearly justify the advantage of using the
non-gradient GA based training. In this model (see Fig. 12),
the drain current is not directly related to Vgs, Vds and T and
thus it is very difficult to calculate the derivatives of the error
function in case of using gradient BP based training.

FIGURE 14. Large signal model for GaN HEMT including electro-thermal
sub-model for the drain current [16].

VII. LARGE SIGNAL MODELING

The drain current has been embedded in the equivalent circuit
large signal model shown in Fig. 14. This model has been
reported in [16]. The extrinsic bias-independent part of the
model represents the parasitic resistances, inductances and
capacitances due to contacts/semiconductor, metallization
and pad-connections, respectively. The intrinsic network sim-
ulates the nonlinear bias-dependence of the depletion region
and channel current. The RC circuits in the drain and gate
sides are to represent the trapping time constants (CDTRDT
and CGTRGT ) and to simulate the dynamic trapping. Another
RC circuit of thermal time constant is added to simulate
the dynamic self-heating. The model extrinsic elements were
extracted from cold S-parameters measurements using the
same reported approach in [30]. After de-embedding the

94210 VOLUME 7, 2019



A. Jarndal: On Neural Network-Based Electrothermal Modeling of GaN Devices

extrinsic elements from active measured S-parameters, the
intrinsic elements are extracted quasi-analytically from the
intrinsic Y-parameters (Yi) following the same procedure
presented in [7]. The intrinsic gate capacitances and conduc-
tances are then integrated to find the corresponding currents
and charges Igs, Igd , Qgs and Qgd [7].

FIGURE 15. Measured and simulated intrinsic gate charges and currents
of 1 mm GaN HEMT.

FIGURE 16. Extracted and simulated intrinsic resistances of 1 mm
GaN HEMT.

The same neurogenetic modeling approach has been
applied to each intrinsic element to simulate its nonlinear
behavior with respect to the gate and drain stimulus voltages
Vgs and Vds. Simple, single hidden ANN topology of three
neurons with tanh activation function has been used for all
models. As it has been mentioned, this function can effi-
ciently simulate sudden or smooth change of the intrinsic ele-
ments in the ohmic-saturation and pinch-off regions. Fig. 15
shows the extracted and simulated intrinsic gate currents
and charges at room temperature of 25◦C. As can be seen,
the same model topology based on genetic algorithm opti-
mization provides a very good fitting for different nonlinear
behaviors. The same model also shows a good simulation
for the intrinsic resistances as presented in Fig. 16. The
mean-square-error for the simulated Qgs, Qgd,Ings, and Igd ,
is 7.5 ×10−3, 2.6 ×10−2, 1.3133×10−4 and 6.7767×10−4,
respectively.
As it was mentioned, the trapping induced gate-lag and

drain-lag are considered in the drain-current model by the
additional term of Ids,diff . To simulate the dynamic trapping

effect, RGTCGT and RDTCDT networks are added to the gate
and drain sides, respectively (see Fig. 14). In this repre-
sentation, symmetrical emission and capture times has been
assumed. This approach provides an efficient and simple
solution and it has been widely used [7], [9], [31]. The trap
emission time-constants can be estimated from the low fre-
quency Y-parameters of the considered device [32]–[34]. The
de-embedded intrinsic trans-conductance Ygm and output-
conductance Yds (after removing the extrinsic parasitic ele-
ments) can be formulated as [27]:

Ygm = Yi,21 − Yi,12 =
Gme

−jωτ

1 + RiGgsf + jωCgs
(8)

Yds = Yi,22 + Yi,12 = Gds + jωCds. (9)

The trapping induced out-put conductance dispersion can
be characterized by low frequency (fraction of MHz) mea-
surements of Yds [33]. For the considered device, under active
bias condition, Cgs has values in the order of 1 pF; while
Ggsf is in the order of 1 mS [34]. Thus, the last two terms of
the denominator in (8) can be ignored in the MHz frequency
range. In this case, the trapping induced trans-conductance
dispersion can be characterized from the magnitude of Ygm
versus frequency.

FIGURE 17. Measured intrinsic admittances for 1 mm GaN HEMT at VGS =

−1 V and VDS = 12 V.

Fig. 17 shows the real and imaginary measured values
of Yds for the same investigated 1-mm GaN HEMT. These
measurements agree well with the reported ones in [33], [34]
and show the expected multiple traps and the typical posi-
tive dispersion (growth of out-put conductance with increas-
ing the frequency). The trap mission time constants can be
extracted from the frequencies of the peaks of Imag[Yds] or
inflexion points of Real [Yds]. In our case, single trap has
been considered and its time constant is equal to the inverse
of Imag [Yds] peak frequency (in rad/s). From Fig. 17 the
estimated time constant is equal to 1

2π×1.2×105
= 1.3µs [33].

Themeasurements have been repeated at different bias condi-
tions. It was observed that the peak frequency of Imag [Yds] is
shifted to 104 Hz rang with decreasing VDS and this has been
also reported in [32]. For that reason 10 µs has been selected
(as an average) and used to fix the values of RDT at 1 M �

and CDT at 10 pF. Regarding the trans-conductance, positive
and negative dispersions can be observed depending on the
drain source voltage (VDS) [32]. Fig. 17 shows the measured
trans-conductance, which shows the typical lower variation
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FIGURE 18. Measured and simulated S-parameters of 1 mm GaN
HEMT at: (a) VGS = −2.5V and VDS = 19V and (b) VGS = −6V and VDS = 0V
from 0.5 GHz to 20 GHz.

FIGURE 19. Measured (symbols) and simulated (lines) signal waveform at
15dBm input power under VGS = −3V and VDS = 25 V bias condition
in 50� terminations and 25◦C room temperature.

(less than 10%) with respect to the output-conductance
(> 100%) [32]. Following the same approach, the other trap
emission time can be estimated from the frequency of trans-
conductance inflexion point to equal 1

2π×3.5×105
= 0.45µs

(see Fig. 17). The inflexion frequency of trans-conductance
has lower variation, in 105 Hz range, with bias voltages. This
could be attributed to the implemented surface passivation
process, which reduces the surface trapping and the induced
trans-conductance dispersion [29]. Here the emission time is
fixed at 1 µs and based on that, 1 M � was assigned to RGT
and 1 pF for CGT.

VIII. MODEL IMPLEMENTATION AND VALIDATION

The simple topologies of the developed ANN models
simplifies their implementation in Advanced Design Sys-
tem (ADS). Each ANN model can be implemented as a
tanh based closed formula in terms of its inputs. The mod-
eling procedure has been applied on the considered 1 mm
GaN on SiC substrate and then the developed equivalent
circuit model (see Fig. 14) has been implemented in ADS.

FIGURE 20. Measured (symbols) and simulated (lines) two-tone power
sweep versus total input power at carrier frequency of 2.15 GHz and
frequency spacing of 100 KHz for class-AB operated 1 mm GaN HEMT
(VGS = −3V, VDS = 24 V, IDS =200 mA) in 50� terminations and 25◦C
room temperature.

FIGURE 21. Two-tone power sweep (left) and frequency-spacing
sweep (right) simulations at carrier frequency of 2.15 GHz and class-C of
operation (VGS = −4.5 V, VDS = 24 V) in 50� terminations and 25◦C room
temperature.

Lumped elements have been used to represent the para-
sitic resistances, inductances and capacitances. Multiport
symbolically-defined device (SDD) has been used to imple-
ment the ANNmodels of the intrinsic elements including Ids,
Qgs, Igs,Qgd, Igd, Ri and Rgd. In Figs. 18-20, the implemented

94212 VOLUME 7, 2019



A. Jarndal: On Neural Network-Based Electrothermal Modeling of GaN Devices

model has been validated by S-parameters, signal-waveform
and power-sweep measurements for the same considered
device. Thesemeasurements are independent of themeasured
data that were used to build/train the model. As can be seen,
very good fitting is obtained, which accordingly verifies the
validity of the developed model for linear and nonlinear
circuits design.
Fig. 21 presents additional simulation to show the model

capability of simulating the intrinsic and strong nonlinearities
of the device. This could be observed from the predicted third
order intermodulation distortion (IMD3) sweet spot (local
minimum), which results from the interaction between small-
and large signal IMDs [36]. Fig. 21, also, shows variation of
the upper and lower IMDs with the frequency spacing and
typically the IMDs asymmetry is used as a measure for the
memory effects [37]. As can be seen, the model can simulate
the expected thermal and electrical memory due to trapping
and self-heating effects, respectively [38], [39].

IX. CONCLUSION

In this paper, an elecrothermal neurogenetic modeling
approach has been developed and applied to GaN transis-
tor. The method is based on simulating the device’s non-
linear behavior by interconnect simple ANN models, which
characterize the intrinsic, self-heating-induced and trapping-
induced nonlinearities. The model is easy to be implemented
in CAD software with equivalent circuit and analytical for-
mulas to represent its nonlinear elements. The modeling
technique has been explained as well as the model param-
eters extraction procedure. The developed model has been
implemented in ADS and validated by proper small- and
large-signal measurements. A very good result has been
obtained and it proves the validity of the developed modeling
approach. In the future work, the model will extended to
consider the asymmetrical trapping time constants and the
model will also be demonstrated by applying it to design
application circuits.
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