
18 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

On Neurobiological, Neuro-Fuzzy, Machine
Learning, and Statistical Pattern

Recognition Techniques
Anupam Joshi,Member, IEEE,Narendran Ramakrishman,Member, IEEE,Elias N. Houstis, and John R. Rice

Abstract—In this paper, we propose two new neuro-fuzzy
schemes, one for classification and one for clustering problems.
The classification scheme is based on Simpson’s fuzzy min–max
method and relaxes some assumptions he makes. This enables our
scheme to handle mutually nonexclusive classes. The neuro-fuzzy
clustering scheme is a multiresolution algorithm that is modeled
after the mechanics of human pattern recognition. We also
present data from an exhaustive comparison of these techniques
with neural, statistical, machine learning, and other traditional
approaches to pattern recognition applications. The data sets
used for comparisons include those from the machine learning
repository at the University of California, Irvine. We find that
our proposed schemes compare quite well with the existing
techniques, and in addition offer the advantages of one-pass
learning and on-line adaptation.

Index Terms—Pattern recognition, classification, clustering,
neuro-fuzzy systems, multiresolution, vision systems, overlapping
classes, comparative experiments.

I. INTRODUCTION, BACKGROUND, AND RELATED WORK

W E begin this paper, to paraphrase the popular song,
at the very beginningin consideration of the inter-

disciplinary audience that is the target of this issue. Neural
networks (NN’s) represent acomputational[36] approach to
intelligence as contrasted with the traditional, more symbolic
approaches. The idea of such systems is due to the work of the
psychologist D. Hebb [20] (and after whom a class of learning
techniques is referred to as Hebbian). Despite the pioneering
early work of McCullouch and Pitts [39] and Rosenblatt [51],
the field was largely ignored through most of 1960’s and
1970’s, with researchers in artificial intelligence (AI) mostly
concentrating on symbolic techniques. Reasons for this could
be the lack of appropriate computational hardware or the work
of Minsky and Papert which showed limitations of a class of
NN’s (single layer perceptrons) popular then. The failure of
good old-fashioned AI (GOFAI) [5], the development of very
large-scale integration (VLSI) and parallel computing revived
interest in NN’s in the mid 1980’s as an alternate mechanism to
investigate, understand, and duplicate intelligence. In the past

Manuscript received January 11, 1996; revised June 29, 1996. This work
was supported in part by NSF Grants ASC 9404859 and CCR 9202536,
AFOSR Grant F49620-92-J-0069, and ARPA ARO Grant DAAH04-94-G-
0010.

A. Joshi is with the Department of Computer Engineering and Computer
Science at the University of Missouri, Colombia, MO 65211 USA.

N. Ramakrishnan, E. N. Houstis, and J. R. Rice are with the Department
of Computer Sciences, Purdue University, West Lafayette, IN 47907 USA.

Publisher Item Identifier S 1045-9227(97)00241-5.

decade, there has been a phenomenal growth in the published
literature in this field, and a large number of conferences are
now held in the area [36].

Some researchers view NN’s as mechanisms to study in-
telligence (e.g., the famous text by McClelland and Rumel-
hart [53]), but most literature in the area sees NN’s as a
tool to solve problems in science and engineering. Most of
these problems involve pattern recognition (PR) in one form
or another—everything from speech recognition to image
recognition to SAR/Sonar data classification to stock market
tracking, and so on. The paper by Jainet al. [24] elaborates
upon this viewpoint. These problems involve both classi-
fication (supervised learning) and clustering (unsupervised
learning). Recently, many researchers have investigated the
links between NN-based techniques and traditional statistical
pattern recognition techniques. One of the first efforts in this
direction was the seminal text by Jain and Sethi [57]. Since
then, this topic has aroused considerable interest and has seen
many discussions—some acrimonious, between those who feel
that NN’s are old wine in new bottles, and those who feel
that they represent a new paradigm. As any follower of the
news group comp.ai.neural-nets knows, this debate occurs
there almost every six months, often triggered by an innocent
question from a “newbie.”

In addition, several works have given scholarly discussions
of these links—see the excellent overview of Cheng and
Titterington [8]. Responses to their article by, among others,
Amari [2], McClelland [38], and Ripley [49], also commented
on these relationships and suggested avenues for potential
cross disciplinary work. Sarle [55] has described how some
of the simpler NN models can be described in terms of,
and implemented by, standard statistical techniques. Ripley’s
work [48], [50] along the same lines presents some empirical
results comparing networks trained with different algorithms
with nonparametric discriminant techniques. Balakrishnanet
al. [3] report comparisons of Kohonen feature maps with
traditional clustering techniques such as K-means. Duin [13]
makes interesting observations on techniques used to compare
classifiers.

An area that has remained relatively unexplored in this
interdisciplinary context is the use of NN techniques that
are closely related to biological neural systems. The human
visual system can out perform most computer systems on
pattern recognition and identification tasks and part of this
capability comes from the human ability to classify and

1045–9227/97$10.00 1997 IEEE

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 19

categorize. Extensive studies by psychologists have suggested
a threefold process to model human abilities. First, some
metric of distance is defined on the space of the input (stimuli).
Then, an exponentiation is used to convert these to measures
of similarity between the stimuli. Finally, a similarity choice
model is used to determine the probability of identifying
one stimulus with another. We refer the reader to [43] for a
detailed exposition. Such work is of increasing importance in
the domain of content-based lookup of large image databases.
However, in the visual pattern recognition domain, a large
part of the recognition and identification ability of humans is
dependent on the particularwetware configurations. Specif-
ically, the use of multiresolution processing has attracted
much interest from the vision community [25]. This technique
uses multiple representations of the same input at different
resolutions which are obtained by blurring the image with
Gaussian kernels of differing widths. The notion of hierarchi-
cal representations also gets support from neuro physiological
data. Enroth–Cugell [14] showed as far back as the 1960’s that
the retinal processing being done by a Cat’s ganglion cells can
be likened to a difference of Gaussians. Marr and Hildereth
[37] showed that even for human retinal processing, a similar
Laplacian of Gaussian (LOG) operator could be defined. Joshi
and Lee [26] showed that an NN could be trained to produce
a connection pattern similar to that found in the retina, and
that the mathematical operation performed by such a network
is similar to the LOG operator. Daugman [10] suggested the
use of Gabor filter-based descriptions. Several studies have
shown that there are as many as six channels tuned to different
spatial frequencies that carry different representations of the
visual input to the higher layers in the occipital cortex. Another
interesting property of the visual system is the increasing size
of the receptive fields of the cells as we go up the processing
layers in the visual cortex, and up to the infero temporal
(IT) regions [22], [34]. The receptive field (the region in the
photoreceptor layer whose activity influences it) of a cell in
the lateral geniculate nucleus, for instance, will be larger than
that of a retinal ganglion cell.

This kind of view has given rise to multiresolution-based
algorithms, implemented in a special pyramid like parallel
architecture. Each processor in a pyramid receives input from
some processors in the lower layers, and feeds its output
to cells in the upper layer. The most common pyramid is
a nonoverlapped quad pyramid, where each processor re-
ceives input from four processors in the layer below it [25].
Several recent works, including [44], have shown how such
a multiresolution-based model can successfully account for
human visual processing performance. Interestingly, multires-
olution approaches are similar to the agglomerative schemes
for clustering found in statistics.

In this paper, we propose new neuro-fuzzy classification and
clustering techniques based on the multiresolution idea. The
classification scheme is a modification of the scheme proposed
by Simpson [58]. These techniques are described in the next
section. We then present a comparison of various statistical,
neural, and neuro fuzzy techniques for both classification and
clustering, including the ones proposed here. The data sets
used are representative samples obtained from the machine

learning repository of the University of California at Irvine.
One of the data sets used, which contains overlapping classes,
is from our own work dealing with the creation of problem
solving environments [17], [28].

II. NEURO-FUZZY SCHEMES

A. Classification

We have developed a new algorithm for classification [47],
which is a modification of a technique proposed by Simpson
[58]. The basic idea is to use fuzzy sets to describe pattern
classes. These fuzzy sets are, in turn, represented by the fuzzy
union of several -dimensional hyperboxes. Such hyperboxes
define a region in -dimensional pattern space that contain
patterns with full-class membership. A hyperbox is completely
defined by its min-point and max-point and also has associated
with it a fuzzy membership function (with respect to these
min–max points). This membership function helps to view
the hyperbox as a fuzzy set and such “hyperbox fuzzy sets”
can be aggregated to form a single fuzzy set class. This
provides degree-of-membership information that can be used
in decision making. The resulting structure fits neatly into
an NN assembly. Learning in the fuzzy min–max network
proceeds by placing and adjusting the hyperboxes in pattern
space. Recall in the network consists of calculating the fuzzy
union of the membership function values produced from each
of the fuzzy set hyperboxes. This system can be represented
as a three-layer feedforward NN with a single pass fuzzy
algorithm for determining weights.

Initially, the system starts with an empty set (of hyper-
boxes). As each pattern sample is “taught” to the fuzzy
min–max network, either an existing hyperbox (of the same
class) is expanded to include the new pattern or a new
hyperbox is created to represent the new pattern. The latter
case arises when we do not have an already existing hyperbox
of the same class or when we have such a hyperbox but
which cannot expand any further beyond a limitset on such
expansions.

Simpson’s method assumes that the pattern classes un-
derlying the domain are mutually exclusive and that each
pattern belongs to exactly one class. But the pattern classes
that characterize problems in many real-world domains are
frequentlynot mutually exclusive. For example, consider the
problem of classifying geometric figures into classes such
as polygon, square, rectangle etc., Note that these classes
are not mutually exclusive (i.e., a square is a squareand a
rectangleand a polygon). It is possible to apply Simpson’s
algorithm to this problem by first “reorganizing” the data
into mutually disjoint classes such as “rectangles that are not
squares,” “polygons that are not rectangles,” and “polygons,”
etc., but this strategy does not reflect the natural overlapping
characteristics of the underlying base classes.

Thus, Simpson’s algorithm fails to account for a situation
where one pattern might belong to several classes. Also,
the only parameter in Simpson’s method is the maximum
hyperbox size parameter—this denotes the limit beyond
which a hyperbox cannot expand to “enclose” a new pattern.

20 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

(There is a sensitivity parameter which is normally set to
a constant so as to produce a moderately quick gradation
from full membership to no membership). In this section,
we develop an enhanced scheme that operates with such
overlapping and nonexclusive classes. In the process, we
introduce another parameterto tune the system.

Consider the th ordered pair from the training
set, where is the th pattern sample and is the class
vector denoting membership of in the various classes (a
“1” denotes membership and a “0” represents an absence of
membership). Assume, for example, that the desired output
for the th pattern () be . Our algorithm
considers this as two ordered pairs containing the same pattern

but with two pattern classes as training outputs—
and , respectively.

In other words, the pattern is associated with both class 1 and
class 2. This will cause hyperboxes of both classes 1 and 2
to completely contain the pattern , unlike Simpson’s algo-
rithm. Thus, weallow hyperboxes to overlap if the problem
domain so demands.

Since each pattern can belong to more than one class, a
new way to interpret the output of the fuzzy min–max NN
needs to be defined. In the original algorithm, one locates
the node in the output layer with the highest value and sets
the corresponding bit to one. All other bits are set to zero,
obtaining a hard decision.

In the modified algorithm, however, we introduce a param-
eter and we set to onenot only the node with the highest
outputbut alsothe nodes whose outputs fall within a band
of the output value. This results in more than one output node
getting included and consequently, aids in the determination
of nonexclusive classes. It also allows our algorithm to handle
“nearby classes.” Consider the scenario when a pattern gets
associated with the wrong class, say Class 1, merely because
of its proximity to members of Class 1 that were in the
training samples rather than to members of its characteristic
class (Class 2). Such a situation can be caused due to a larger
incidence of the Class 1 patterns in the training set than the
Class 2 patterns or due to a nonuniform sampling, since we
make no prior assumption on the sampling distribution. In
such a case, the parameter gives us the ability to make a
soft decision by which we can associate a pattern with more
than one class.

B. Clustering

Simpson has also presented a related technique for cluster-
ing that uses groups of fuzzy hyperboxes to represent pattern
clusters. The details are almost analogous to his classification
scheme and can be found in [59].

Hyperboxes, defined by pairs of min–max points, and their
membership functions are used to define fuzzy subsets of
the -dimensional pattern space. The pattern clusters are
represented by these hyperboxes. The bulk of the processing
of this algorithm involves the finding and fine-tuning of the
boundaries of the clusters. Simpson’s clustering algorithm,
however, results in a large number of hyperboxes (clusters)
to represent the given data adequately. Also, the clustering

performance depends to a large extent on the maximum
allowed size of a hyperbox. In other words,, the maximum
hyperbox size influences the number of clusters formed, and in
turn, the clustering accuracy. Simpson also desires the clusters
to be “compact” and hence performs a compaction procedure
that eliminates overlap between hyperboxes inall dimensions.
The disadvantage of this is that the algorithm requires more
than one run through the data in order to achieve “cluster
stability” and hence discourages single-pass clustering.

We propose a multiresolution scheme, similar to computer
vision [25], to partition the data into clusters. The basic idea
is to look at the clustering process at differing levels of
detail (resolution). For clustering at the base of the multilevel
pyramid, we use Simpson’s algorithm. This is looking at the
data at the highest resolution. Then, we operate at different
“zoom/resolution” levels to obtain the final clusters. At each
step up the pyramid, we treat the clusters from the level below
as points at this level. As we go up the hierarchy, therefore,
we view the original data with decreasing resolution. This
approach has led to encouraging results from clustering real
world data sets.

The parameters of this algorithm are—the maximum
hyperbox size and —the zoom factor which represents the
number of resolution levels. The user specifies the zoom factor
as the extent to which the algorithm should “focus” on the data
in the pattern space. We also enhance the fuzzy hyperbox data
structure as follows: to contain the “center-of-mass” of
the pattern samples represented by the hyperbox, andthe
number of pattern samples represented by the hyperbox.

For example, when a hyperbox is first created for pattern
, (i.e., the min and the max point both

correspond to the pattern sample). Now, is set to as
is the only pattern “represented” by and is set to one.
When is expanded to represent an additional pattern sample

, in addition to and getting updated by Simpson’s
algorithm, we update and as follows:

In other words, is updated to reflect the new “center-of-
mass” of the pattern samples represented by.

Our proposed algorithm operates as follows.

1) Initial clusters are formed from the pattern data by
placing and adjusting the hyperboxes. At this stage,
the number of clusters equals the number of hyper-
boxes. In our implementation, we have used Simpson’s
fuzzy min–max NN, but any similar technique for such
clustering can be used.

2) The bounding box formed by the patterns is calculated
and we partition this region based on the zoom factor.
In effect, this partitions the total pattern space into
several levels of windows/regions. A zoom factor of
implies that there exist levels above the bottom of the
pyramid. The th level above the base level partitions
the total region into subregions. For example,
if we choose a zoom factor of two, the first level above

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 21

the base has 16 subregions and the next level has four
subregions.

3) We assume the highest zoom factor (i.e., which causes
the window regions to assume the smallest size) and
examine the centers of masses of the hyperboxes inside
each window. If they are “sufficiently close by” we
relabel them so that they indicate the same pattern
cluster. The criterion for such combination is a function
that depends on, , the size of the bounding box and
the actual distance between the hyperboxes. A good
choice for such a heuristic (after empirical trial and
error) was found to be , where is the actual
distance between the hyperboxes andis the diagonal
of the current bounding box. Thus, represents the
effect of the zoom factor on the pattern clustering.
The distance between two hyperboxes is defined as
the distance between their centers of mass. In other
words, if hyperboxes and are candidates for such
“combination,” then

The hyperboxes are combined if the distance condition
is satisfied.

4) After we are done with all regions of a zoom factor, we
zoom up and view these newly grouped hyperboxes at
a higher level. The same procedure is recursed through
till no more hyperboxes can be relabeled.

Another subtle point is deciding on the method to relabel
clusters—Does hyperbox take on the class of or vice
versa? The parameter of the hyperboxes aid us in this
decision. If the of is greater than that of , then
assumes the class of and vice versa.

III. D ESCRIPTION OFSOME OTHER

CLASSIFICATION TECHNIQUES

Pattern classification can be regarded as supervised learn-
ing based on inductive inference. The learning algorithm is
presented with a sequence of input–output pairs of the form

, where is an input vector of size and is
the output associated with . The objective is to learn the
function that accounts for these examples. Then, given a
“new” , we can determine the from that most closely
replicates the pattern exemplars. (Typically the’s represent
the pattern classes and hence assume values from one to,
where is the number of classes in the domain.) We have
used several different methods, statistical, neural, and others,
to perform classification and compare results. In this section,
we describe the methods that were used, omitting details for
the sake of brevity. The performance of these algorithms has
been evaluated by applying them to several real-world data
sets. More information about these data sets is given in the
next section. Some interesting observations on techniques used
to compare classifiers can be found in [13].

A. Traditional Method

We started out with a traditional naive heuristic, which
represented a pattern class as the centroid of all the known

exemplars of the class. The characteristic vector for a class is
defined as the average, computed element-by-element, of the
characteristic vectors of all the class members. That is, the
th element of the characteristic vector of a class is

computed as

where denotes the number of pattern examples in class
and represents the characteristic vector of the class

member . The distance from a problem to a class
is defined as the norm of the difference between the two
characteristic vectors

The norm can be chosen as any reasonable distance measure.
Then, we say that belongs to class if where
is some threshold value that can be adjusted depending on the
reliability of the characteristic vectors. This basic technique
will serve as a baseline measure of classification accuracy.

B. Classical Machine Learning Algorithms

Several algorithms that have been proposed by the AI com-
munity are described next. These include classical decision tree
algorithms, native inducers and classical Bayesian classifiers.
The implementations used are available in public domain in
the MLC++ [30] (machine learning library in C++).

In addition to directly using the techniques presented next,
we also tested their performance by combining them with other
inducers to improve their behavior etc. We found the most
useful of such “wrappers” to be the feature subset selection
(FSS) inducer. The FSS inducer operates by selecting a “good”
subset of features to present to the algorithm for improved
accuracy and performance. The effectiveness of this wrapper
inducer is dealt with in a future section.

ID3: This is a classical iterative algorithm for constructing
decision tress from examples [45]. The simplicity of the
resulting decision trees is a characteristic of ID3’s attribute
selection heuristic. Initially, a small “window” of the training
exemplars are used to form a decision tree and it is then
determined if the decision tree so formed correctly classifies
all the examples in the training set. If this condition is
satisfied, then the process terminates; otherwise, a portion of
the incorrectly classified examples is added to the window and
then used to “grow” the decision tree. This algorithm is based
on the idea that it is less profitable to consider the training set,
in its entirety, than an appropriately chosen part of it.

HOODG: This is a greedy hill-climbing inducer for build-
ing decision graphs [29]. It does this in a bottom-up manner.
It was originally proposed to overcome the disadvantages of
decision trees—duplication of subtrees in disjunctive concepts
(replication) and partitioning of data into fragments, where
a high-arity attribute is tested at each node (fragmentation).
Thus, it is most useful in cases where the concepts are best
represented as graphs and it is important to understand of the
structure of the learned concept. It however, does not cater to
unknown values. HOODG suffers from irrelevant or weakly

22 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

relevant features and also requires discretized data. Thus, it
must be used with another inducer and requires procedures
like disc-filtering [11].

Const: This inducer just predicts a constant class for all
the exemplars. The majority class present in the training set
is chosen as this constant class. Though this approach is very
naive, its accuracy is very useful as thebaselineaccuracy.

IB: Aha’s instance-based algorithms generate class predic-
tions based only on specific instances [1], [64]. These methods,
thus, do not maintain any set of abstractions for the classes.
The disadvantage is that these methods have large storage
requirements, but these can be significantly reduced with minor
sacrifices in learning rate and classification accuracy. The
performance also degrades rapidly with attribute noise in the
exemplars and hence, it becomes necessary to distinguish noisy
instances.

C4.5: C4.5 is a decision tree cum rule-based system [46].
C4.5 has several options which can be tuned to suit a particular
learning environment. Some of these options include varying
the amount of pruning of the decision tree, choosing among
“best” trees, windowing, using noisy data and several options
for the rule induction program. The most used of these features
are windowing and allowing C4.5 to build several trees and
retaining the best.

Bayes: The Bayes inducer [32] computes conditional prob-
abilities of the classes given the instance and picks the
class with the highest posterior. Features are assumed to be
independent but the algorithm is nevertheless robust in cases
where this condition is not met. The probability that the
algorithm will induce an arbitrary pair of concept descriptions
is calculated and then this is used to compute the probability
of correct classification over the instance space. This involves
considering the number of training instances, the number of
attributes, the distribution of these attributes, and the level of
class noise.

oneR: Holte’s one-R [21] is a simple classifier that makes
a “one-rule” which is a rule based on the value of a single
attribute. It is based on the idea that very simple classification
rules perform well on most commonly used datasets. It is
most commonly implemented as a base inducer. Using this
algorithm, it is easy to get reasonable accuracy on many tasks
by simply looking at one feature. However, it has been claimed
to be significantly inferior to C4.5.

Aha-IB: This is an external system that interfaces with the
IB basic inducer. It is basically used for tolerating noisy,
irrelevant and novel attributes in conventional instance-based
learning. It is still a research system and is not very robust.
More details about this algorithm can be obtained from [1].

Disc-Bayes: Better results to the Bayes inducer are pro-
vided by this algorithm. It achieves this by discretizing the
continuous features. This preprocessing step is provided by
chaining the disc-filter inducer to the naive-Bayes inducer [11],
[33].

OC1-Inducer: This system is used for the induction of
multivariate decision trees [42]. Such trees classify examples
by testing linear combinations of the features at each nonleaf
node in the decision tree. OC1 uses a combination of deter-
ministic and randomized algorithms to heuristically “search”

for a good tree. It has been experimentally observed that OC1
consistently finds much smaller trees than comparable methods
using univariate tests.

C. Statistical Techniques

The two basic statistical techniques commonly used for
pattern classification are regression and discriminant analysis.
We used the SAS/STAT routines [56] which implement these
algorithms. Below, we describe briefly the basic ideas of these
two techniques.

Regression Models:Regression analysis [12], [63] deter-
mines the relationship between one variable (also called the
dependent or response variable) and another set of variables
(called the independent variables). This relationship is often
described in the form of several parameters. These parameters
are adjusted until a reasonable measure of fit is attained. The
SAS/STAT REG procedure serves as a general purpose tool
for regression by least squares and supports a diverse range of
models. For methods of regression using logistic models, we
used the SAS/STAT LOGISTIC procedure.

Discriminant Analysis:Discriminant analysis [9], [16],
[60] uses a function called a discriminant function to determine
the class to which a given observation belongs, based on
knowledge of the quantitative variables. This is also known
as “classificatory discriminant analysis.” The SAS/STAT
DISCRIM procedure computes discriminant functions to
classify observations into two or more groups. It encompasses
both parametric and nonparametric methods. When the
distribution of pattern exemplars within each group can be
assumed to be multivariate normal, a parametric method is
used; if, on the other hand, no reasonable assumptions can be
made about the distributions, nonparametric methods are used.

D. Feedforward Neural Nets: Gradient Descent Algorithms

Let us suppose that in the classification problem, we repre-
sent the classes by a vector of size. A one in the th position
of the vector indicates membership in theth class. Our
problem now becomes one of mapping the characteristic vector
of size into the classification vector of size. Feedforward
NN’s have been shown to be effective in this task. Such a
NN is essentially a supervised learning system consisting of
an input layer, an output layer and one or more hidden layers,
each layer consisting of a number of neurons.

Backpropagation:Using the backpropagation (BP) algo-
rithm, the weights are then changed in a way so as to reduce
the difference between the desired and actual outputs of the
NN. This is essentially using gradient descent on the error
surface with respect to the weight values. For more details,
see the classic text by Rumelhart and McClelland [52].

BP with Momentum:The second algorithm we consider
modifies BP by adding a fraction (the momentum parameter,

) of the previous weight change during the computation of the
new weight change [65]. This simple artifice helps moderate
changes in the search direction, reduce the notorious oscillation
problems common with gradient descent. To take care of the
“plateaus,” a “flat spot elimination constant”is added to the
derivative of . Typical values of the momentum parameter are

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 23

and the flat spot elimination constanttakes values
from 0–0.25.

Quickprop: Quickpropagation (Quickprop) [15], uses in-
formation about the curvature (and second derivative) of
the error surface to compute the weight change. Quickprop
approximates the error surface to be locally quadratic and
attempts to jump in one step from the current position directly
into the minimum of the quadratic.

Rprop: The final algorithm that we consider is called “re-
silient backpropagation” (Rprop) [6] because it uses the local
topology of the error surface to make a more appropriate
weight change. In other words, we introduce a “personal
update value” for each weight, which evolves during the
learning process according to its local view of the error
function. Rprop is very powerful and efficient because the
size of the weight step taken is no longer influenced by the
size of the partial derivative. It is uniquely determined by the
sequence of the signs of the derivatives, which provides a
reliable hint about the topology of the local error function.

E. LVQ Algorithms

LVQ (learning vector quantization) borrows ideas from
classical clustering and vector quantization techniques for
signal processing, such as the-nearest neighbor algorithm.
Signal values are approximated by quantized references or
“codebook” vectors . Several “codebook” vectors are as-
signed to each class in the domain, and a new patternis
said to belong to the same class to which the nearest
belongs. LVQ determines effective values for the “codebook”
vectors so that they define the optimal decision boundaries
between classes, in the sense of Bayesian decision theory.
The accuracy and time needed for learning depend on an
appropriately chosen set of codebook vectors and the exact
algorithm that modifies the codebook vectors. We have utilized
four different implementations of the LVQ algorithm—LVQ1,
OLVQ1, LVQ2, and LVQ3. LVQPAK, [31] a LVQ program
training package was used in the experiments.

IV. CLASSIFICATION RESULTS

We evaluated the performance of the various classification
algorithms described above by applying them to real world
data sets. In this section, the results on seven such data
sets—IRIS, PYTHIA, soybean, glass, ionosphere, ECG and
wine—are described. Each of these data sets possess an unique
characteristic. The IRIS data set, for instance, contains three
classes—one is linearly separable from the others while the
other two are not linearly separable from each other. The
PYTHIA data set contains classes that are not mutually-
exclusive, the soybean data set contains data that have missing
features, etc. These data sets, with the exception of PYTHIA,
were obtained from the machine learning repository of the
University of California at Irvine [41], which also contains
details about the information contained in these datasets and
their characteristics. In this section, we therefore, concentrate
on the PYTHIA dataset which comes from our work in sci-
entific computing—the efficient numerical solution of partial
differential equations (PDE’s) [27], [28], [47], [62]. PYTHIA

is an intelligent computational assistant that prescribes an
optimal strategy to solve a given PDE. This includes the
method to use, the discretization to be employed and the hard-
ware/software configuration of the computing environment. An
important step in PYTHIA’s reasoning is the categorization
of a given PDE problem into one of several classes. The
following nonexclusive classes are defined in PYTHIA (the
number of exemplars in each class is given in parentheses).

1) Singular: PDE problems whose solutions have at least
one singularity (6).

2) Analytic: PDE problems whose solutions are analytic
(35).

3) Oscillatory: PDE problems whose solutions oscillate
(34).

4) Boundary-layer: Problems that depict a boundary layer
in their solutions (32).

5) Boundary-conditions-mixed:Problems that have
mixed boundary conditions (74).

6) Special: PDE problems whose solutions do not fall
into any of the classes 1) through 5).

Each PDE problem is coded as a 32-component character-
istic vector and there were a total of 167 problems in the PDE
population that belong to at least one of the classes 1) through
6).

A. Results from Classification

In this section, we describe results from the classification
experiments performed on the seven data sets described above.
Each data set is split into two parts—the first part contains
approximately two-thirds of the total exemplars. The second
part represents the other one-third of the population. In per-
forming these experiments, one part is used for “training” (i.e.,
in the modeling stage) and the other part is used to measure
the “learning” and “generalization” provided by the paradigm
(this is called the test data set). Each paradigm described in
the previous section was trained using both 1) the first part
and the 2) the second part. For this reason, we refer to 1) as
the larger training set and 2) as the smaller training set. After
training, the learning of the paradigm was tested by applying it
to the portion of the data set that it has not encountered before.
This is the “generalization” accuracy. (The recall accuracy
is computed by considering only the portion of the data set
used for “training”). Each method previously discussed was
operated with a wide range of the parameters that control its
behavior. We report the results from only the “best” set of
parameters and due to space considerations, we provide only
the generalization accuracy. Also, both parts of the data sets
are chosen so that they represent the same relative proportion
of the various classes as does the entire data set.

In each of these techniques, the number of patterns classified
correctly was determined as follows: we first determine the
error vector which is the component-by-component difference
between the desired output and the actual output. Then, we fix
a threshold for the error norm () and infer that patterns
leading to error vectors with norms above the threshold have
been incorrectly classified. We have carried out experiments

24 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

TABLE I
THE PERFORMANCE (% ACCURACY IN CLASSIFICATION) OF THE TEN CLASSICAL AI A LGORITHMS

TABLE II
THE PERFORMANCE (% ACCURACY IN CLASSIFICATION) OF 13 ALGORITHMS

using threshold values of 0.2, 0.1, 0.05, and 0.005 for each
of the techniques.

The performance data (% accuracy) are given in Tables I
and II. The % accuracy is defined as follows: The algorithm
is selected “good” parameters are chosen for it as it is trained
on part of the set. The parameters are then used to classify
the other part of the set. We report the percent of these
classifications that are correct (accurate).

Traditional Method: It has been detailed above that the
traditional method relies on the definition of an appropriate
norm (distance measure) to quantify the distance of a problem

from a class . We have used three definitions of the norm
, namely the norms , , and .

It was observed that the traditional method is very naive
and averages around 50% accuracy for the datasets considered
here. Varying the threshold (), contrary to expectations,
did not lead to a perceptible improvement/decline in the
performance of the paradigm. Also norms and
appear to perform better than as they do a more
reasonable task of “encapsulating” the information in the
characteristic vector by a scalar.

Classical AI Algorithms:As described earlier, these algo-
rithms are implemented in the machine learning library in
C++ (MLC++) [30]. Table I shows the performance of these
methods on each of the seven data sets. The values of accuracy
indicate the performance when training with the larger training
set, and with an FSS wrapper inducer.

ID3 performs quite well except for the PYTHIA data
set which has mutually nonexclusive features. However, its
performance is slightly inferior to IB or C4.5. The HOODG
base inducer’s performance averages around that of the ID3
decision tree algorithm. Also, it does not perform very well
on the soybean and echocardiogram databases because they
contain missing features. It can be seen that the “Const”
inducer achieves a maximum of only around 63% accuracy
as it predicts the class which is represented in a majority in
the training set. Incidentally, this high performance is achieved
for the Ionosphere database which has 63.714% of its samples
from the majority class. The IB inducer and C4.5 together
account for a majority of the successful classifications. In each
case, the highest accuracy achieved by any AI algorithm is
realized by either IB or C4.5. However, in the case of the
PYTHIA data set, IB falls very short of C4.5’s performance
which is still not as good as the other algorithms to be
discussed in later sections. (The accuracy of C4.5 on PYTHIA
is 91% while the best observed accuracy is 95.83%.) It can also
be observed from the above table that the Bayes inducer, Aha-
IB, oneR classifier, and the disc-Bayes classifiers fall within a
small band of each other. Further, in two out of the seven data
sets considered, the OC1 inducer comes up with the second
best overall performance.

Training with the smaller training set leads to, as expected,
a slight degradation in the performance of the algorithms.
Also, training with the FSS wrapper inducer results in better

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 25

performance for the C4.5, Bayes, disc-Bayes and the OC1
inducers (For instance, the accuracy figures for the PYTHIA
dataset with these algorithms are 90, 64.1, 58.35, and 68.12%,
respectively, without the FSS inducer and 91, 66, 60, 46, and
70.37%, respectively, with the FSS inducer). When the larger
training set is used, the FSS inducer improves the performance
of only one or two inducers while as many as five algorithms
give better performance when it is used in conjunction with
the smaller training set.

Statistical Routines:The two statistical methods utilized
were regression analysis and discriminant analysis. Proc REG
performs linear regression and provides the user to chose from
one of nine different models. We found the most useful of
such models to be STEPWISE, MAXR, and MINR. These
methods basically differ in the ways in which they include
or exclude variables from the model. The STEPWISE model
starts with no variables in the model and slowly adds/deletes
variables. The process of starting with no variables and slowly
adding variables (without deletion) is called forward selection.
The MAXR and MINR provide more complicated versions of
forward selection. In MAXR, forward selection is used to fit
the best one-variable model, the best two-variable model and
so on. Variables are switched so that a factoris maximized.

is an indication of how much variation in the data is
explained by the model. Model MINR is similar to MAXR,
except that variables are switched so that the increase in
from adding a variable to the model is minimized.

Then, REG uses the principle of least squares to produce
estimates that are the best linear unbiased estimates under
classical statistical assumptions. REG was tailored to perform
pattern classification as follows: We again assume that the
input pattern vector is of size and the number of classes are
. We append the “class” vector at the end of the input vector

to form an augmented vector of size . These di-
mensional pattern samples are input as the regressor variables
and the response variable is set to one. This schema has the
advantage that data sets that contain mutually nonexclusive
classes do not require any different treatment from the other
data sets.

For each regression experiment conducted, an analysis of
variance was conducted afterwards. The two most useful
results from this analysis are the “F-statistic” for the overall
model and the significance probabilities. The F-statistic is a
metric for the overall model and indicates the percentage to
which the model explains the variation in the data. The signif-
icance probabilities denote the significance of the parameter
estimates in the regression equation. From these estimates,
the accuracy of the regression was interpreted as follows: For
a new pattern sample (size), the “appropriately” augmented
vector is chosen that results in the closest fit i.e., the one which
causes the least deviation from the output variable one. Then
the pattern is classified as belonging to the class represented
by the augmented vector.

The LOGISTIC procedure, on the other hand, fits linear
logistic regression models by the method of maximum likeli-
hood. Like REG, it performs stepwise regression with a choice
of forward, backward, and stepwise entry of the variables into
the models.

Proc DISCRIM, the other statistical routine discussed pre-
viously, performs discriminant analysis and computes various
discriminant functions for classifying observations. As no
specific assumptions are made about the distribution of pattern
samples in each group, we adopt nonparametric methods to
derive classification criteria. These methods include thekernel
and the -nearest-neighbormethods. The purpose of a kernel
is to estimate the group-specific densities. Several different
kernels can be used for density estimation—uniform, normal,
biweight, and triweight, etc.—and two kinds of distance mea-
sures, Mahalanobis and Euclidean—can be used to determine
proximity. While the -NN classifier has been know to give
good results in some cases [40], we found the uniform kernel
with an Euclidean distance measure to be most useful for the
data sets described in this paper. This choice of the kernel
was found to yield uniformly good results for all the data sets
while other kernels led to suboptimal classifications.

See Table II for the performance of these methods. It is seen
that the DISCRIM and LOGISTIC procedures consistently
out perform the REG procedure. This can be explained as
follows [56]: DISCRIM obeys a canonical discriminant anal-
ysis methodology in which canonical variables are derived
from the quantitative data, which are linear combinations
of the given variables. These canonical variables summa-
rize “between-class” variation in the same manner in which
principal components analysis (PCA) performs total variation.
Thus a discriminant criterion is always derived in DISCRIM.
In contrast, in the REG procedure, the accuracy obtained is
limited by the coefficients of the variables in the regression
equation. The measure of fit is thus limited by the efficiency
of parameter estimation. The LOGISTIC procedure is more
sophisticated, in its use of link functions that model the
“response probability” by logistic terms.

Feedforward NN’s: As described in the previous section,
feedforward networks perform a mapping from the problem
characteristic vector to an output vector describing class mem-
berships. For each of the data sets, an appropriately sized
network was constructed. The input layer contained as many
neurons as the number of dimensions of the data set. The
output layer contained as many neurons as the number of
classes present in the data. Since the input and output of
the network are fixed by the problem, the only layer whose
size had to be determined is the hidden layer. Also, since
we had noa priori information on how the various input
characteristics affect the classification, we chose not to impose
any structure on the connection patterns in the network. Our
networks were thusfully connected, that is, each element in
one layer is connected to each element in the next layer.
There have been several heuristics proposed to determine an
appropriate number of hidden-layer nodes. Care was taken to
ensure that the number is large enough to form an adequate
“internal representation” of the domain. Also, it should be
small enough to permit generalization from the training data.
For example, the network that we chose for the PYTHIA
data set is of size 32 10 5. A good heuristic that we
utilized was to set the number of hidden-layer nodes to be
a fraction of the number of features taking care that it does
not significantly exceed the number of classes in the domain.

26 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

Each of the algorithms mentioned in the previous section was
trained with five choices of the control parameters and the
choice leading to the best performance was considered for
performance evaluation. Each network was trained until the
weights converged, i.e., when subsequent iterations did not
cause any significant changes to the weight vector. Again, as
mentioned previously, training was done with both the larger
training set and the smaller set. All simulations were performed
using the Stuttgart neural-network simulator [65].

The only “free” parameter in the simple back propagation
paradigm was the learning rate and it was varied in the
range . It was observed that the best performance,
in terms of classification accuracy, was achieved atvalues of
0.8–0.95. Increasing also led to an decrease in convergence
time.

In the variant of BP with momentum, the important pa-
rameters are the learning rate, the momentum coefficient

and the flat spot elimination constant. was kept at a
low value (0.2), because of the overpowering effect of the
high momentum term which was found to be “optimal” at
the values 0.7, 0.8, and 0.9. The ideal value of the flat spot
elimination constant was found to be around 0.05.

Quickprop also assumed a low value of the learning rate
, approximately 0.2. Also, the parameters, the maximum

growth parameter and, the weight decay term influence the
performance of Quickprop very much. It was observed that
the ideal value of was in the range and that
for was either 0.0001 or 0.0002. QuickProp had a very
fast convergence rate; even though it got into lots of local
minima problems, it was always able to come out of them with
very high momentum. Also, the maximum weight changes
took place in the first 100–200 iterations and the subsequent
iterations only served to “fine-tune” the error attained in these
initial iterations.

Of all the supervised paradigms for feedforward NN’s
studied in this article, Rprop provided the best performance
for the same number of training iterations. We chose a fixed
value of because the algorithm refines it iteratively and
we set an upper bound 25 on the weight changes . Even
though some local minima problems were observed at high
values of , an extremely fast convergence rate served
to make the network settle to a comfortable error level in
about 100 iterations. The best performances were achieved at

.
Experiments with varying the error threshold gave

further insights into the functioning of these four algorithms.
As the threshold value was decreased, the performance of BP,
enhanced BP, and Quickprop methods decline, while that of
Rprop consistently maintains a high value.

Another statistic that we found to be useful when comparing
these methods was the mean and median values for the error
norms of these algorithms with an appropriately chosen value
for the error threshold. Again, it was seen that Rprop
provides the best performance of all the feedforward NN
paradigms. Rprop’s median error is nearly negligible. While
the mean value describes the average error, the very low
median value of Rprop shows us that while there are outliers,
Rprop classifies most of the problem patterns correctly.

See Table II for the performance of feedforward NN’s on
the seven data sets. It can be seen that the statistics order these
algorithms consistently in the following order of improving
accuracy: BP, BP with momentum, Quickprop, and Rprop. The
differences in the accuracies between “successive” algorithms
(induced by the above ordering) was in the range 1–3% except
for the PYTHIA data set which resulted in an extremely low
performance for BP, and, conversely, a very high performance
for the RProp algorithm. Presumably, this data contained a
lot of local minima hence the more sophisticated gradient
descent algorithms performed better. Also, Rprop was found
to be a very good algorithm for most classification purposes.
It should be noted that RProp achieved the best/second best
performance for five out of seven data sets. Training with the
smaller training set instead of the larger leads to the expected
degradation of performance.

LVQ Algorithms: The LVQ algorithms mentioned in the
previous section were trained as follows—a certain number
of codebook vectors were chosen so that their numbers in
the respective classes were proportional to theira priori
probabilities. The total number of codebook vectors was set at
approximately one-third of the total number of pattern samples
in each data set. Then the algorithms were trained using both
the larger and the smaller training sets. An adequate number
of iterations was arrived at for each data set that resulted in
convergence for both training sets.

The important free parameter in LVQ1 was the learning
rate. This was varied from 0.1–1 in steps of 0.01. The highest
accuracies were attained at a learning rate of 0.05 (this was
for an threshold value of 0.005). LVQ1 is used to provide
an “initial” solution and other LVQ algorithms can be used to
improve the learning done by the LVQ1 algorithm. We adopt
this strategy for our experiments.

OLVQ1 was subsequently trained and was found to improve
the accuracy earlier obtained by LVQ1. The LVQ2 algorithm
depends on the window width parameter i.e., the relative
“width” of the window into which the training data must fall.
We varied the window width parameter from 0.1–0.5 and also
the learning rate as mentioned in the LVQ1 experiment. It
was observed that the optimal performance was achieved at
a window width of around 0.3 and a learning rate of around
0.2. The LVQ3 algorithm can be used for an additional fine-
tuning stage in learning. The relative learning rate parameter

is used (multiplied by the parameter), when both the
nearest codebook vectors belong to the same class. Again, as
in the LVQ3 experiment, the relative window width parameter
determines the “box” into which the training data must fall.
Again, a window size of 0.3 was used and the relative learning
rate parameter was set at 0.1.

The performance of the LVQ algorithms for the seven
data sets is given in Table II. It can be seen that OLVQ1
consistently out performs all the other LVQ algorithms. Also,
in five out of the seven instances, LVQ2’s performance was
found to be as good as that of OLVQ1. It was observed that
though LVQ3 improves the initial codebook, it does not give
results better than the OLVQ1 algorithm.

Neuro-Fuzzy Classifiers:For each of the data sets, the
following experiments were conducted.

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 27

1) Effect of : In this set of experiments, the max hyper-
box size was varied continuously and its effect on other
variables were studied. In particular, it is observed that
when was increased, a lesser number of hyperboxes
needed to be formed, i.e., when tends to one, the
number of hyperboxes formed tends to the number of
classes in the domain. Also performance on the training
set and the test set steadily improved aswas decreased.
Performance on the training set was, expectedly, better
than that on the test set. For instance, an “optimal” error
was found to be achieved at avalue of around 0.005 for
the IRIS data set and 0.003 25 for the PYTHIA dataset.
When was greater than the “optimal” value so found,
the error increased on both the sets and whenwas
less, the networkoverfit the training data so that its
performance on the test set started to decline.

2) Effect of : In this experiment, we set to the optimal
value and we vary by assigning to it the values 0.01,
0.02, 0.05, and 0.09. It is observed that whenwas
increased, more output nodes tend to get included in the
“reading-off” stage so that the overall error increased.
For all the datasets, we found a value of 0.01 forto
be appropriate.

3) On-Line Adaptation: The last series of experiments
conducted were to test the fuzzy min–max NN for its
on-line adaptation, i.e., each pattern was incrementally
presented to the network and the error on both sets was
recorded at each stage. It was observed that the number
of hyperboxes formed slowly increases from one to the
optimal number obtained in Item 1). Also, performance
on both sets steadily improved to the values obtained in
Item 1).

Varying the error threshold valuewas found to not alter
the accuracy of the fuzzy min–max network. Table II gives the
performance of Simpson’s fuzzy min–max algorithm and the
modified algorithm for each of the seven data sets. It can be
seen that these algorithms exhibit a difference in performance
only in the presence of mutually nonexclusive classes, in this
case, the PYTHIA data set. Also, these algorithms appear
to achieve high accuracies consistently for all the data sets,
much like the Rprop algorithm discussed previously. Table II
summarizes the classification accuracies of these algorithms.

B. Overall Comparison

Table III provides an overall comparison of the 24 clas-
sification algorithms used in this experimental study. The
first column besides the algorithms describe the number of
instances in which it produced the optimal classification. The
next column indicates the number of times it was ranked
second. The final column indicates the % error range within
which it produced the classifications, compared to the best
algorithm.

It is seen that the traditional method using the centroid
of the known samples performs very poorly, and the highest
accuracy achieved by it on a data set is 61%. The statistical
routines performed better, with discriminant analysis faring
better than simple forms of regression analysis. Regression

TABLE III
SUMMARY OF THE RELATIVE PERFORMANCE OF THE24 CLASSIFICATION

ALGORITHMS. THE COUNTS FOR THEBEST AND SECOND BEST PERFORMANCEARE

GIVEN ALONG WITH THE RANGE OF ERROR OBSERVED IN THE CLASSIFICATIONS

using logistic functions performed as well as discriminant
analysis. It should be noted that more complicated forms
of regression, possibly leading to better accuracy, can be
applied if more information is known about the data sets.
Discriminant analysis is a more natural statistical way to
perform pattern classification and its accuracy was in the range
87–95 except for the echocardiogram database, which was a
particularly difficult data set among those considered here.
Among the AI algorithms, the best ones discussed here are IB
and C4.5. Together they accounted for four of the seven best
classifications. Their performance was further enhanced by a
feature subset selection inducer. However, these algorithms
did not fare well with the PYTHIA data set which contained
mutually nonexclusive classes.

Feedforward NN’s, in general, performed quite well, with
more complicated training schemes like enhanced BP, Quick-
prop, and Rprop clearly winning over plain error BP. For
higher error threshold values (say 0.2), all these learning
techniques gave values close to each other. However, when
the error threshold levels were lowered (to, say, 0.005),
Rprop clearly won out on all the other methods. The same
observations can be made by looking at the mean and median
of the error values. While the mean for Rprop is slightly lower
than that of others, the median is significantly lower. This
indicates that Rprop classifies most patterns correctly with
almost zero error, but has few outliers. The other methods
have the errors spread more “evenly,” which leads to a
degradation in their performance as compared to Rprop. Rprop
also counted for three out of the seven optimal classifications.
The variants of the LVQ method (LVQ1, OLVQ1, LVQ2, and
LVQ3) that we tried performed about average. While they

28 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

were better than the naive classifier, their performance was
in the 80–95% range (for an error threshold value of
0.005). Increasing the error threshold value did not serve
to improve the accuracy. Finally, the neuro-fuzzy techniques
that we tried out performed quite well. In fact, they performed
almost as well as Rprop, in terms of % accuracy, mean
error and median error. Like Rprop, and unlike the other
feedforward NN’s, increasing the error threshold did not
significantly alter the performance. Considering that unlike
Rprop, these techniques allow on-line adaptation (i.e., new
data do not require retraining on the old data), they are
advantageous in this context.

V. DESCRIPTION OFCLUSTERING TECHNIQUES

Clustering is another fundamental procedure in pattern
recognition. It can be regarded as a form of unsupervised
inductive learning that looks for regularities in training ex-
emplars. The clustering problem [4], [16] can be formally
described as follows:

Input: A set of patterns .
Output: A -partition of that exhibits categorically

homogeneous subsets, where .

Different clustering methods have been proposed that rep-
resent clusters in different ways—for example, using a repre-
sentative exemplar of a cluster, a probability distribution over
a space of attribute values, as well as necessary and sufficient
conditions for cluster membership, etc. [4]. Various algorithms
for clustering data are also described in [23]. To represent a
cluster by a collection of training exemplars and to “assign”
new samples to existing clusters, we use some form of a
utility measure. This is normally based on some mathematical
property such as distance, angle, curvature, symmetry, and
intensity, which are exhibited by the members of. It has
been recognized [54] thatno universal clustering criterion can
exist and that selection of any such criterion is subjective and
depends on the domain of application under question.

A. SAS Routines

The SAS/STAT package provides a lot of interesting rou-
tines for pattern clustering. It offers both hierarchical clustering
and determination of disjoint clusters. There are three basic
clustering algorithms provided in SAS/STAT.

Cluster: Procedure CLUSTER performs hierarchical clus-
tering of observations using eleven agglomerative methods
applied to coordinate data. All of these are based on the usual
agglomerative clustering procedure. Initially, each observation
starts as an independent cluster. Then, the two closest clusters
are merged to form a new cluster that replaces the two old
clusters. Merging is discontinued when there are no clusters
“close enough” to be combined.

FASTCLUS: The CLUSTER procedure is not appropri-
ate for handling large data sets because the time taken for
clustering varies as the cube of the number of observations
in practical data sets. The FASTCLUS procedure [19], [35]
finds disjoint clusters of observations using a-means method
applied to coordinate data. This efficient algorithm for disjoint
clustering is composed of an effective algorithm for finding

initial clusters and a standard iterative method for minimizing
the sum of squared distances from the cluster means.

VARCLUS: Procedure VARCLUS performs both hierar-
chical and disjoint clustering by multiple-group component
analysis. The set of numeric variables is split into either
disjoint/hierarchical clusters. A linear combination of the vari-
ables in it is then associated with each cluster. The choice
of this linear combination is usually either the first principal
component or the centroid component. Then, VARCLUS tries
to minimize the sum across clusters of the variance of the
original variables that is explained by the cluster components.

B. AutoClass C++

AutoClass C++ [7] is an unsupervised Bayesian system
that seeks a maximum posterior probability clustering of the
pattern exemplars. It is based on the classical mixture model,
supplemented by a Bayesian method to determine the optimal
clusters. While the authors of AutoClass C++ emphasize that
the discovery of clusters in data is rarely “one-shot,” we were
interested in determining the accuracy of the so-called “initial
approximations” provided by AutoClass C++. The various
models provided with this package are the single multinomial
model, single normal CN model, single normal CM model,
and the multinormal CN model.

VI. EXPERIMENTAL RESULTS FROMCLUSTERING

In this section, we detail the results obtained by applying the
above clustering algorithms to the seven real-world data sets
discussed previously. The clustering experiments were carried
out in the following manner: No constraint is initially set on
the number of clusters detected by a particular algorithm.
After these clusters are formed, they are “mapped” to the
physical clusters known to be present in the data. In other
words, each cluster detected is analyzed as to which physical
cluster is maximally represented by it. (This means that two or
more clusters detected may map to the same physical cluster.)
Confusion Matrices are then generated from this mapping
data. The rows of the confusion matrix represent the clusters
detected by the algorithm. The columns denote the actual
clusters known to exist in the data. An entry in the
position of the table represents the degree to which cluster
faithfully represents the actual data in cluster. These matrices
determine the number of pattern samples associated with a
“wrong” cluster. Thus, the performances of the clustering
algorithms are determined by the number of misclustered
pattern samples.

SAS/STAT Routines:The procedure CLUSTER encom-
passes a number of models and we found the most appropriate
one to be Ward’s minimum-variance method (error sum of
squares) [61].

Procedure FASTCLUS is meant for clustering of very
large data sets and we noted that it finds reasonable clusters
in two or three passes over the data. The parameters for
this procedure are the maximum number of clusters and,
optionally, the minimum radius of the clusters. FASTCLUS
uses a nearest centroid sorting technique in which a set of
points called cluster seeds is selected as a first guess of

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 29

TABLE IV
THE PERFORMANCE (% ACCURACY IN CLUSTERING) OF THE SIX CLUSTERING ALGORITHMS

the means of the clusters. Each observation is assigned to
the nearest seed to form temporary clusters. The seeds are
then replaced by the means of the temporary clusters, and
the process is repeated until no further changes occur in the
clusters. The above initialization scheme sometimes makes
FASTCLUS very sensitive to outliers. VARCLUS, on the other
hand, attempts to divide a set of variables into nonoverlapping
clusters in such a way that each cluster can be interpreted
as essentially unidimensional. For each cluster, VARCLUS
computes a component that can be either the first principal
component or the centroid component and tries to maximize
the sum across clusters of the variation accounted for by
the cluster components. The one important parameter for
VARCLUS is the stopping criterion. We chose the default
criterion that stops when each cluster has only a single
eigenvalue greater than one. This is most appropriate because
it determines the sufficiency of a single underlying factor
dimension.

Table IV presents the results of applying these routines to
the seven data sets. It can be seen that VARCLUS falls consis-
tently into the last place and that CLUSTER and FASTCLUS
together account for the best clustering results.

AutoClass C++ Routines:The two most useful models in
AutoClass C++ were found to be the single normal CM model
for data sets that had missing values and the multinormal
CN model for other data sets. Table IV depicts the results
for the seven data sets. AutoClass utilizes several different
search strategies—convergesearch3, convergesearch4 and
converge. We found convergesearch3 to be the most useful
because the other two methods did substantially worse on the
data sets.

Nuero–Fuzzy Systems:The two hybrid neuro–fuzzy algo-
rithms discussed were Simpson’s fuzzy min–max algorithm
and our multiresolution fuzzy clustering algorithm. Table IV
gives the results for the seven data sets. The original fuzzy
min–max clustering algorithm performed reasonably well. The
clustering accuracy varied very much with the hyperbox size

. This is because each hyperbox was labeled as a separate
cluster and hence, a lowerresulted in a better clustering.

Our multiresolution clustering algorithm consistently per-
formed better than Simpson’s. We obtained encouraging re-
sults for all the data sets except the PYTHIA data set which
contained mutually nonexclusive classes. The neuro–fuzzy
scheme does not allow hyperbox clusters to overlap and hence,
each pattern sample gets associated with only one cluster. This
causes the accuracy to drop down. It was observed that while
most data sets require only two levels on the multiresolution

TABLE V
SUMMARY OF THE RELATIVE PERFORMANCE OF THESIX CLUSTERING

ALGORITHMS. THE COUNTS FOR THEBEST AND SECOND BEST PERFORMANCEARE

GIVEN ALONG W[W]ITH THE RANGE OF ERROR OBSERVED IN THE CLUSTERING

pyramid, the echocardiogram data set needed a three-level
pyramid to obtain the reported accuracy. The clustering ac-
curacy did not vary with the hyperbox size as much as
in the case of Simpson’s original fuzzy min–max clustering
algorithm. However, a greater accuracy was observed at small
values of .

A. Overall Comparison

Table V summarizes the comparative performance of the
various clustering algorithms. It can be readily seen that the
fuzzy clustering algorithms and SAS/STAT routines account
for a majority of the optimal clusterings. The AutoClass
routines also perform well, though they account only for three
of the best clusterings. Simpson’s fuzzy min–max network,
though performing very good clustering, does not obtain the
optimal clustering in any of the data sets considered in this
paper. It manages to obtain second place for only one of the
seven data sets. Our multiresolution algorithm performs very
well and accounts for three of the best classifications, more
than any other algorithm. Also, it provides an error range
almost identical to that provided by the SAS/STAT routines.
The error ranges of the SAS/STAT and the multiresolution
clustering algorithm indicate that these routines perform well
on the datasets considered in this paper. This is because
our algorithm is similar to the CLUSTER procedure in SAS
(using centroid-based merging). Unlike CLUSTER, however,
our technique has inherent parallelism which can be exploited
to reduce the time complexity of the process.

VII. CONCLUSIONS

In this paper, we have described two hybrid neuro-fuzzy
schemes—one for pattern classification and the other for
clustering. Both these schemes utilize fuzzy hyperboxes to
represent pattern classes. The clustering scheme is motivated
by the human visual system. These schemes were extensively

30 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

compared with traditional, statistical, neural and machine
learning algorithms by experimenting with real-world data
sets. The classification algorithm performs as well as some of
the better algorithms discussed here like—C4.5, IB, OC1, and
Rprop. Besides, this algorithm has the ability to provide on-
line adaptation. The clustering algorithm borrows ideas from
computer vision to partition the pattern space in a hierarchical
manner. It has been found that this simple technique yields
very good results. It was seen that the performance of this
algorithm is very good on clustering real world data sets.
We feel that our clustering scheme provides good support
for pattern recognition applications in real-world domains.
Our detailed experiments also indicate that regardless of the
underlying paradigm, the more sophisticated methods tended
to out perform the simpler ones. Moreover, the best methods
from each paradigm perform about as well as one another,
with minor variations depending on the nature of the data.
Our neuro–fuzzy techniques are important in this respect, since
they tend to be amongst the best performing methods, and have
the added advantage of single-pass learning.

REFERENCES

[1] D. W. Aha, “Tolerating noisy, irrelevant attributes in instance-based
learning algorithms,”Int. J. Man-Machine Studies,vol. 36, no. 1, pp.
267–287, 1992.

[2] S. Amari, “Neural networks: A review from a statistical perspec-
tive—Comment,”Statist. Sci.,vol. 9, no. 1, pp. 31–32, 1994.

[3] P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, and P. A. Lewis, “A
study of the classification capabilities of neural networks using unsuper-
vised learning: A comparison withk-means clustering,”Psychometrika,
vol. 59, no. 4, pp. 509–525, 1994.

[4] J. Bezdek,Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[5] M. Boden, The Philosophy of Artificial Intelligence.Oxford, U.K.:
Oxford Univ. Press, 1990.

[6] H. Braun and M. Riedmiller, “Rprop: A fast and robust backpropagation
learning strategy,” inProc. ACNN,1993.

[7] P. Cheeseman and J. Stutz, “Autoclass: A Bayesian classification
system” in Proc. 5th Int. Conf. Mach. Learning.San Mateo, CA:
Morgan Kaufmann, 1988, pp. 55–64.

[8] B. Cheng and D. M. Titterington, “Neural networks: A review from a
statistical perspective,”Statist. Sci.,vol. 9, no. 1, pp. 2–54, 1994.

[9] W. W. Cooley and P. R. Lohnes,Multivariate Data Analysis. New
York: Wiley, 1971.

[10] J. Daugman, “Pattern and motion vision without Laplacian zero cross-
ings,” J. Opt. Soc. Amer. A,vol. 5, pp. 1142–1148, 1988.

[11] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and
unsupervised discretization of continuous features,” inMachine
Learning: Proc. 12th Int. Conf., 1995 [Online]. Available
ftp://starry.stanford.edu/pub/ronnyk/disc.ps

[12] N. Draper and H. Smith,Applied Regression Analysis.New York:
Wiley, 1981.

[13] R. P. W. Duin, “A note on comparing classifiers,”Pattern Recognition
Lett., vol. 1, pp. 529–536, 1996.

[14] C. Enroth-Cugell and J. Robson, “The contrast sensitivity of retinal
ganglion cells of the cat,”J. Physiol., vol. 187, pp. 517–522, 1966.

[15] S. E. Fahlman, “Faster-learning variations on backpropagation: An
empirical study,” inProc. 1988 Connectionist Models Summer School,
T. J. Sejnowski, G. E. Hinton, and D. S. Touretzky, Eds. San Mateo,
CA: Morgan Kaufmann, 1988.

[16] R. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugenics,vol. 7, no. 2, pp. 179–188, 1936.

[17] E. Gallopoulos, E. Houstis, and J. R. Rice, “Computer as thinker/doer:
Problem-solving environments for computational science,”IEEE Com-
puta. Sci. Eng.,vol. 1, no. 2, pp. 11–23, 1994.

[18] H. H. Harman,Modern Factor Analysis. Chicago, IL: Univ. Chicago
Press, 1976.

[19] J. A. Hartigan,Clustering Algorithms. New York: Wiley, 1975.
[20] D. O. Hebb, The Organization of Behavior: A Neuropsychological

Theory. New York: Wiley, 1949.

[21] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,”Machine Learning,vol. 11, pp. 63–90, 1993.

[22] D. O. Hubel,Eye, Brain, and Vision. New York: Sci. Amer. Library,
1988.

[23] A. K. Jain and R. C. Dubes,Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

[24] A. K. Jain and J. Mao, “Neural networks and pattern recognition,” in
Computational Intell. Imitating Life,J. M. Zurada, R. J. Marks, II, and
E. G. Robinson, Eds. Piscataway, NJ: IEEE Press, 1994, pp. 194–212.

[25] J. M. Jolion and A. Rosenfel,A Pyramid Framework for Early Vision.
Boston, MA: Kluwer, 1994.

[26] A. Joshi and C. H. Lee, “Backpropagation learns Marr’s operator,”Biol.
Cybern.,vol. 70, 1993.

[27] A. Joshi, S. Weerawarana, and E. N. Houstis, “The use of neural
networks to support ‘intelligent’ scientific computing,” inProc. Int.
Conf. Neural Networks, World Congr. Computa. Intell.,Orlando, FL,
vol. IV, 1994, pp. 411–416.

[28] A. Joshi, S. Weerawarana, N. Ramakrishnan, E. N. Houstis, and J. R.
Rice, “Neuro-fuzzy support for problem solving environments,”IEEE
Computa. Sci. Eng.,Spring 1996.

[29] R. Kohavi, “Bottom-up induction of oblivious, read-once
decision graphs: Strengths and limitations,” inProc. 12th Nat.
Conf. Artificial Intel., 1994, pp. 613–618 [Online]. Available
FTP://starry.stanford.edu/pub/ronnyk/aaai94.ps

[30] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger, “MLC++: A
machine learning library in C++,” inTools With Artificial Intelligence.
Washington, D.C.: IEEE Comput. Soc. Press, 1994, pp. 740–743 [On-
line]. Available FTP://starry.stanford.edu/pub/ronnyk/mlc/toolsmlc.ps

[31] T. Kohonen, J. Kangas, J. Laaksoonen, and K. Torkolla, “LVQ-PAK
learning vector quantization program package,” Lab. Comput. Inform.
Sci., Rakentajanaukio, Finland, Tech. Rep. 2C, 1992.

[32] P. Langley, W. Iba, and K. Thompson, “An analysis of Bayesian
classifiers,” inProc. 10th Nat. Conf. Artificial Intell. Cambridge, MA:
MIT Press, 1992, pp. 223–228.

[33] P. Langley and S. Sage, “Induction of selective Bayesian classifiers,”
in Proc. 10th Conf. Uncertainty in Artificial Intell. Seattle, WA, 1994,
pp. 399–406.

[34] M. Livingstone and D. O. Hubel, “Segregation of form, color, move-
ment, and depth: Anatomy, physiology, and perception,”Sci.,vol. 240,
pp. 740–749, 1988.

[35] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” inProc. 5th Berkeley Symp. Math. Statist.
Probability, 1967, pp. 281–297.

[36] R. J. Marks, II, “Intelligence: Computational versus artificial,”IEEE
Trans. Neural Networks,vol. 4, 1993.

[37] D. Marr and E. Hilderth, “The theory of edge detection,” inProc. Roy.
Soc. London, B,vol. 207, 1980, pp. 187–217.

[38] J. L. McClelland, “Comment—Neural networks and cognitive science:
Motivations and applications,”Statist Sci.,vol. 9, no. 1, pp. 42–45,
1994.

[39] W. S. McCulloch and W. Pitts, “A logical calculus of ideas immanent
in nervous activity,”Bull. Math. Biophys.,vol. 5, pp. 115–133, 1943.

[40] D. Michie, D. J. Spiefelhalter, and C. C. Taylor,Machine Learning,
Neural and Statistical Classification.New York: Ellis Horwood, 1994.

[41] P. M. Murphy and D. W. Aha, “Repository of machine learn-
ing databases,” Univ. California, Irvine, 1994 [Online]. Available
http://www.ics.uci.edu/ mlearn/MLRepository.html

[42] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for the induction of
oblique decision trees,”J. Artificial Intell. Res.,vol. 2, pp. 1–33, 1994.

[43] R. M. Nosofsky, “Tests of a generalized MDS-choice model of stimulus
identification,” Indiana Univ. Cognitive Sci. Program, Bloomington, IN,
Tech. Rep. 83, 1992.

[44] Z. Pizlo, A. Rosenfeld, and J. Epelboim, “An exponential pyramid
model of the time course of size processing,”Vision Res.,vol. 35, pp.
1089–1107, 1995.

[45] J. R. Quinlan, “Induction of decision trees,”Machine Learning,vol. 1,
pp. 81–106, 1986.

[46] , C4.5: Programs for Machine Learning.San Mateo, CA: Mor-
gan Kaufmann, 1993.

[47] N. Ramakrishnan, A. Joshi, S. Weerawarana, E. N. Houstis, and J.
R. Rice, “Neuro-fuzzy systems for intelligent scientific computing,” in
Proc. Artificial Neural Networks Eng. ANNIE ’95,1995, pp. 279–284.

[48] B. D. Ripley, “Statistical aspects of neural networks,” inProc. Neu-
ral Networks Chaos—Statist. Probabilistic Aspects. London: Chapman
and Hall, 1993, pp. 40–123.

[49] , “Neural networks: A review from a statistical perspec-
tive—Comment,”Statist. Sci.,vol. 9, no. 1, pp. 45–48, 1994.

[50] B. D. Ripley, “Neural networks and related methods for classification,”
J. Roy. Statist. Soc.,vol. 56, 1994.

JOSHI et al.: NEUROBIOLOGICAL, NEURO-FUZZY, MACHINE LEARNING, AND STATISTICAL PATTERN RECOGNITION 31

[51] F. Rosenblatt,Principles of Neurodynamics.New York: Spartan, 1962.
[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” inParallel Distributed Process-
ing: Explorations in the Microstructure of Cognition,D. E. Rumelhart
and J. L. McClelland, Eds., vol. I. Cambridge, MA: MIT Press, 1986.

[53] D. E. Rumelhart and J. L. McClelland,Parallel Distributed Processing:
Explorations in the Microstructure of Cognition.Cambridge, MA: MIT
Press, 1986.

[54] E. Ruspini, “A new approach to clustering,”Inf. Cont., vol. 15, pp.
22–32, 1969.

[55] W. S. Sarle, “Neural networks and statistical models,” inProc. 19th
Annu. SAS Users Group Int. Conf.,1994.

[56] SAS/STAT User’s Guide: Version 6.Cary, NC: SAS Instit. Inc., 1990.
[57] I. K. Sethi and A. K. Jain,Artificial Neural Networks and Statistical

Pattern Recognition. Amsterdam, The Netherlands: North Holland,
1991.

[58] P. K. Simpson, “Fuzzy min–max neural networks—Part 1: Classifica-
tion,” IEEE Trans. Neural Networks,vol. 3, pp. 776–786, 1992.

[59] , “Fuzzy min–max neural networks–Part 2: Clustering,”IEEE
Trans. Fuzzy Syst.,vol. 1, pp. 32–45, 1993.

[60] M. M. Tatsouka,Multivariate Analysis. New York: Wiley, 1971.
[61] J. H. Ward, “Hierarchial grouping to optimize an objective function,”J.

Amer. Statist. Assoc.,vol. 58, pp. 236–244.
[62] S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, and C. E.

Houstis, “PYTHIA: A knowledge-based system for intelligent scientific
computing,” ACM Trans. Math. Software, vol. 22, to appear.

[63] S. Weisberg,Applied Linear Regression.New York: Wiley, 1985.
[64] D. Wettschreck, “A study of distance-based machine learning algo-

rithms,” Ph.D. dissertation, Oregon State Univ., Corvallis, 1994.
[65] A. Zell, N. Mache, R. Hubner, G. Mamier, M. Vogt, K. Herrmann,

M. Schmalzl, T. Sommer, A. Hatzigeorgiou, S. Doring, and D. Posselt,
“SNNS: Stuttgart neural-network simulator,” Inst. Parallel Distributed
High-Performance Syst., Univ. Stuttgart, Germany, Tech. Rep. 3/93,
1993.

Anupam Joshi (S’87–M’89) received the B.Tech
degree in electrical engineering from the Indian
Institute of Technology, Delhi, in 1989, and the
Ph.D. degree in computer science from Purdue
University, West Lafayette, IN, in 1993.

From August 1993 to August 1996, he was a
member of the Research Faculty at the Department
of Computer Sciences at Purdue University. He
is currently an Assistant Professor of Computer
Engineering and Computer Science at the Univer-
sity of Missouri, Columbia. His research interests

include artificial and computational intelligence, concentrating on neuro-
fuzzy techniques, multiagent systems, computer vision, mobile and networked
computing, and computer mediated learning. He has done work in using
AI/CI techniques to help create Problem Solving Environments for Scientific
Computing.

Dr. Joshi is a Member of the IEEE Computer Society, ACM, and Upsilon
Pi Epsilon.

Narendran Ramakrishnan (M’96) received the
M.E. degree in computer science and engineering
from the Anna University, Madras, India. He is
working toward the Ph.D. degree at the Department
of Computer Sciences at Purdue University, West
Lafayette, IN.

He has worked in the areas of computational
models for pattern recognition and prediction. Prior
to coming to Purdue, he was with the Software
Consultancy Division of Tata Consultancy Services,
Madras, India. His current research addresses the

role of intelligence in problem solving environments for scientific computing.
Mr. Ramakrishnan is a Member of the IEEE Computer Society, ACM,

ACM SIGART, and Upsilon Pi Epsilon.

Elias N. Houstis received the Ph.D. degree from
Purdue University, West Lafayette, IN, in 1974.

He is a Professor of Computer Science and Di-
rector of the computational science and engineering
program at Purdue University. His research inter-
ests include parallel computing, neural computing
and computational intelligence for scientific appli-
cations. He is currently working on the design of
a problem solving environment called PDELab for
applications modeled by partial differential equa-
tions and implemented on a parallel virtual machine

environment.
Dr. Houstis is a Member of the ACM and the International Federation for

Information Processing (IFIP) Working Group 2.5 (Numerical Software).

John R. Rice received the Ph.D. degree in math-
ematics from the California University of Technol-
ogy, Pasadena, in 1959.

He joined the faculty of Purdue University, West
Lafayette, IN, in 1964, and was Head of the De-
partment of Computer Sciences there from 1983
to 1996. He is W. Brooks Fortune Professor of
Computer Sciences at Purdue University. He is the
author of several books on approximation theory,
numerical analysis, computer science, and mathe-
matical and scientific software.

Dr. Rice founded theACM Transactions on Mathematical Softwarein 1975
and remained as its Editor until 1993. He is a Member of the National
Academy of Engineering, the IEEE Computer Society, IMACS, and SIAM.
He is a Fellow of the ACM and AAAS.

