On Neutrosophic Semi-Open sets in Neutrosophic Topological Spaces

P. Iswarya ${ }^{\# 1}$, Dr. K. Bageerathi ${ }^{* 2}$
\#Assistant Professor, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, (T N), INDIA

*Assistant Professor, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, (T N), INDIA

Abstract

The purpose of this paper is to define the product related neutrosophic topological space and proved some theorems based on this. We introduce the concept of neutrosophic semiopen sets and neutrosophic semi-closed sets in neutrosophic topological spaces and derive some of their characterization. Finally, we analyze neutrosophic semi-interior and neutrosophic semi-closure operators also.

Mathematics Subject Classification : 03E72
Keywords: Neutrosophic semi-open set, Neutrosophic semi-closed set, Neutrosophic semiinterior operator and Neutrosophic semi-closure operator.

INTRODUCTION

Theory of Fuzzy sets [17], Theory of Intuitionistic fuzzy sets [2], Theory of Neutrosophic sets [9] and the theory of Interval Neutrosophic sets [11] can be considered as tools for dealing with uncertainities. However, all of these theories have their own difficulties which are pointed out in [9]. In 1965, Zadeh [17] introduced fuzzy set theory as a mathematical tool for dealing with uncertainities where each element had a degree of membership. The Intuitionistic fuzzy set was introduced by Atanassov [2] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of non-membership of each element. The neutrosophic set was introduced by Smarandache [9] and
explained, neutrosophic set is a generalization of Intuitionistic fuzzy set. In 2012, Salama, Alblowi [15], introduced the concept of Neutrosophic topological spaces. They introduced neutrosophic topological space as a generalization of Intuitionistic fuzzy topological space and a Neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree of non-membership of each element.

This paper consists of six sections. The section I consists of the basic definitions and some properties which are used in the later sections. The section II, we define product related neutrosophic topological space and proved some theorem related to this definition. The section III deals with the definition of neutrosophic semi-open set in neutrosophic topological spaces and its various properties. The section IV deals with the definition of neutrosophic semi-closed set in neutrosophic topological spaces and its various properties. The section V and VI are dealt with the concepts of neutrosophic semi-interior and neutrosophic semiclosure operators.

I. PRELIMINARIES

In this section, we give the basic definitions for neutrosophic sets and its operations.

Definition 1.1 [15] Let X be a non-empty fixed set. A neutrosophic set [$N S$ for short] A is an object having the form $A=\left\{\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$ where $\mu_{A}(x), \sigma_{A}(x)$ and $\gamma_{A}(x)$ which represents the degree of membership function, the degree
indeterminacy and the degree of non-membership function respectively of each element $x \in \mathrm{X}$ to the set A.

Remark 1.2 [15] A neutrosophic set $A=\left\{\left\langle x, \mu_{A}(x)\right.\right.$, $\left.\left.\sigma_{A}(x), \gamma_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$ can be identified to an ordered triple $\left\langle\mu_{A}, \sigma_{A}, \gamma_{A}\right\rangle$ in $]^{-} 0,1^{+}[$on X .

Remark 1.3 [15] For the sake of simplicity, we shall use the symbol $A=\left\langle x, \mu_{A}, \sigma_{A}, \gamma_{A}\right\rangle$ for the neutrosophic set $A=\left\{\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle: x \in\right.$ X $\}$.

Example 1.4 [15] Every IFS A is a non-empty set in X is obviously on NS having the form
$A=\left\{\left\langle x, \mu_{A}(x), 1-\left(\mu_{A}(x)+\gamma_{A}(x)\right), \gamma_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$. Since our main purpose is to construct the tools for developing neutrosophic set and neutrosophic topology, we must introduce the $N S 0_{\mathrm{N}}$ and 1_{N} in X as follows:
0_{N} may be defined as :
$\left(0_{1}\right) 0_{\mathrm{N}}=\{\langle x, 0,0,1\rangle: x \in \mathrm{X}\}$
$\left(0_{2}\right) 0_{\mathrm{N}}=\{\langle x, 0,1,1\rangle: x \in \mathrm{X}\}$
$\left(0_{3}\right) 0_{\mathrm{N}}=\{\langle x, 0,1,0\rangle: x \in \mathrm{X}\}$
$\left(0_{4}\right) 0_{\mathrm{N}}=\{\langle x, 0,0,0\rangle: x \in \mathrm{X}\}$
1_{N} may be defined as :
(1.) $1_{\mathrm{N}}=\{\langle x, 1,0,0\rangle: x \in \mathrm{X}\}$
(12) $1_{\mathrm{N}}=\{\langle x, 1,0,1\rangle: x \in \mathrm{X}\}$
(13) $1_{\mathrm{N}}=\{\langle x, 1,1,0\rangle: x \in \mathrm{X}\}$
(14) $1_{\mathrm{N}}=\{\langle x, 1,1,1\rangle: x \in \mathrm{X}\}$

Definition 1.5 [15] Let $A=\left\langle\mu_{A}, \sigma_{A}, \gamma_{A}\right\rangle$ be a $N S$ on X , then the complement of the set A [$\mathrm{C}(A)$ for short] may be defined as three kinds of complements :
$\left(\mathrm{C}_{1}\right) \mathrm{C}(A)=\left\{\left\langle x, 1-\mu_{A}(x), 1-\sigma_{A}(x), 1-\gamma_{A}(x)\right\rangle:\right.$
$x \in \mathrm{X}\}$
$\left(\mathrm{C}_{2}\right) \mathrm{C}(A)=\left\{\left\langle x, \gamma_{A}(x), \sigma_{A}(x), \mu_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$
$\left(\mathrm{C}_{3}\right) \mathrm{C}(A)=\left\{\left\langle x, \gamma_{A}(x), 1-\sigma_{A}(x), \mu_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$
One can define several relations and operations between NSs follows :

Definition 1.6 [15] Let x be a non-empty set, and neutrosophic sets A and B in the form $A=\{\langle x$, $\left.\left.\mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$ and $B=\left\{\left\langle x, \mu_{B}(x)\right.\right.$, $\left.\left.\sigma_{B}(x), \gamma_{B}(x)\right\rangle: x \in \mathrm{X}\right\}$. Then we may consider two possible definitions for subsets ($A \subseteq B$).
$A \subseteq B$ may be defined as :
(1) $A \subseteq B \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x), \sigma_{A}(x) \leq \sigma_{B}(x)$ and $\gamma_{A}(x) \geq \gamma_{B}(x) \forall x \in \mathrm{X}$
(2) $A \subseteq B \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x), \sigma_{A}(x) \geq \sigma_{B}(x)$ and $\gamma_{A}(x) \geq \gamma_{B}(x) \forall x \in \mathrm{X}$

Proposition 1.7 [15] For any neutrosophic set A, then the following conditions are holds :
(1) $0_{\mathrm{N}} \subseteq A, 0_{\mathrm{N}} \subseteq 0_{\mathrm{N}}$
(2) $A \subseteq 1_{N}, 1_{N} \subseteq 1_{N}$

Definition 1.8 [15] Let X be a non-empty set, and A $=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\left\langle x, \mu_{B}(x), \sigma_{B}(x), \gamma_{B}(x)\right\rangle$ are NSs. Then
(1) $A \cap B$ may be defined as :
(I $\left.\mathrm{I}_{1}\right) \quad A \cap B=\left\langle x, \mu_{A}(x) \wedge \mu_{B}(x), \sigma_{A}(x) \wedge \sigma_{B}(x)\right.$ and $\left.\gamma_{A}(x) \bigvee \gamma_{B}(x)\right\rangle$
($\left.\mathrm{I}_{2}\right) A \cap B=\left\langle x, \mu_{A}(x) \wedge \mu_{B}(x), \sigma_{A}(x) \vee \sigma_{B}(x)\right.$ and $\left.\gamma_{A}(x) \bigvee \gamma_{B}(x)\right\rangle$
(2) $A \cup B$ may be defined as:
$\left(\mathrm{U}_{1}\right) A \cup B=\left\langle x, \mu_{A}(x) \vee \mu_{B}(x), \sigma_{A}(x) \vee \sigma_{B}(x)\right.$ and $\left.\gamma_{A}(x) \wedge \gamma_{B}(x)\right\rangle$
$\left(\mathrm{U}_{2}\right) A \cup B=\left\langle x, \mu_{A}(x) \vee \mu_{B}(x), \sigma_{A}(x) \wedge \sigma_{B}(x)\right.$ and $\left.\gamma_{A}(x) \wedge \gamma_{B}(x)\right\rangle$

We can easily generalize the operations of intersection and union in Definition 1.8 to arbitrary family of NSs as follows :

Definition 1.9 [15] Let $\left\{A_{j}: j \in J\right\}$ be a arbitrary family of NSs in X, then
(1) $\cap A_{j}$ may be defined as :
(i) $\cap A_{j}=\left\langle x, \wedge_{j \in J} \mu_{A_{j}}(x), \wedge_{j \in J} \sigma_{A_{j}}(x), \bigvee_{j \in J} \gamma_{A_{j}}(x)\right\rangle$
(ii) $\cap A_{j}=\left\langle x, \wedge_{j \in J} \mu_{A_{j}}(x), \bigvee_{j \in J} \sigma_{A_{j}}(x), \vee_{j \in J} \gamma_{A_{j}}(x)\right\rangle$
(2) $\cup A_{j}$ may be defined as:
(i) $\cup A_{j}=\langle x, \vee, \vee, \wedge\rangle$
(ii) $\cup A_{j}=\langle x, \vee, \wedge, \wedge\rangle$

Proposition 1.10 [15] For all A and B are two neutrosophic sets then the following conditions are true :
(1) $\mathrm{C}(A \cap B)=\mathrm{C}(A) \cup \mathrm{C}(B)$
(2) $\mathrm{C}(A \cup B)=\mathrm{C}(A) \cap \mathrm{C}(B)$.

Here we extend the concepts of fuzzy topological space [5] and Intuitionistic fuzzy topological space $[6,7]$ to the case of neutrosophic sets.

Definition 1.11 [15] A neutrosophic topology [NT for short] is a non-empty set X is a family τ of neutrosophic subsets in X satisfying the following axioms :
$\left(\mathrm{NT}_{1}\right) 0_{\mathrm{N}}, 1_{\mathrm{N}} \in \tau$,
$\left(\mathrm{NT}_{2}\right) \mathrm{G}_{1} \cap \mathrm{G}_{2} \in \tau$ for any $\mathrm{G}_{1}, \mathrm{G}_{2} \in \tau$,
$\left(\mathrm{NT}_{3}\right) \cup \mathrm{G}_{\mathrm{i}} \in \tau$ for every $\left\{\mathrm{G}_{\mathrm{i}}: \mathrm{i} \in \mathrm{J}\right\} \subseteq \tau$

In this case the pair (X, τ) is called a neutrosophic topological space [NTS for short]. The elements of τ are called neutrosophic open sets [NOS for short]. A neutrosophic set F is closed if and only if $C(F)$ is neutrosophic open.

Example 1.12 [15] Any fuzzy topological space (X, τ_{0}) in the sense of Chang is obviously a NTS in the form $\tau=\left\{A: \mu_{A} \in \tau_{0}\right\}$ wherever we identify a fuzzy set in X whose membership function is μ_{A} with its counterpart.

Remark 1.13 [15] Neutrosophic topological spaces are very natural generalizations of fuzzy topological spaces allow more general functions to be members of fuzzy topology.

Example 1.14 [15] Let $\mathrm{X}=\{x\}$ and
$A=\{\langle x, 0.5,0.5,0.4\rangle: x \in \mathrm{X}\}$
$B=\{\langle x, 0.4,0.6,0.8\rangle: x \in \mathrm{X}\}$
$D=\{\langle x, 0.5,0.6,0.4\rangle: x \in \mathrm{X}\}$
$C=\{\langle x, 0.4,0.5,0.8\rangle: x \in \mathrm{X}\}$
Then the family $\tau=\left\{0_{\mathrm{N}}, A, B, C, D, 1_{\mathrm{N}}\right\}$ of $\mathrm{N} S s$ in X is neutrosophic topology on X .

Definition 1.15 [15] The complement of A [C (A) for short] of NOS is called a neutrosophic closed set [NCS for short] in X .

Now, we define neutrosophic closure and neutrosophic interior operations in neutrosophic topological spaces :

Definition 1.16 [15] Let (X, τ) be $N T S$ and $A=\langle x$, $\left.\mu_{A}(x), \quad \sigma_{A}(x), \gamma_{A}(x)\right\rangle$ be a $N S$ in X . Then the neutrosophic closure and neutrosophic interior of A are defined by
$N C l(A)=\cap\{\mathrm{K}: \mathrm{K}$ is a $N C S$ in X and $A \subseteq \mathrm{~K}\}$
$\operatorname{NInt}(A)=\cup\{\mathrm{G}: \mathrm{G}$ is a NOS in X and $\mathrm{G} \subseteq A\}$.
It can be also shown that $N C l(A)$ is $N C S$ and $N I n t(A)$ is a $N O S$ in X .
a) A is $N O S$ if and only if $A=\operatorname{NInt}(A)$.
b) A is $N C S$ if and only if $A=N C l(A)$.

Proposition 1.17 [15] For any neutrosophic set A in (X, τ) we have
(a) $\operatorname{NCl}(\mathrm{C}(A))=\mathrm{C}(\operatorname{NInt}(A))$,
(b) NInt $(\mathrm{C}(A))=\mathrm{C}(N C l(A))$.

Proposition 1.18 [15] Let (X, τ) be a $N T S$ and A, B be two neutrosophic sets in X. Then the following properties are holds :
(a) $\operatorname{NInt}(A) \subseteq A$,
(b) $A \subseteq N C l(A)$,
(c) $A \subseteq B \Rightarrow \operatorname{NInt}(A) \subseteq \operatorname{NInt}(B)$,
(d) $A \subseteq B \Rightarrow N C l(A) \subseteq N C l(B)$,
(e) $\operatorname{NInt}(\operatorname{NInt}(A))=\operatorname{NInt}(A)$,
(f) $N C l(N C l(A))=N C l(A)$,
(g) $\operatorname{NInt}(A \cap B))=\operatorname{NInt}(A) \cap \operatorname{NInt}(B)$,
(h) $N C l(A \cup B)=N C l(A) \cup N C l(B)$,
(i) $\operatorname{NInt}\left(0_{\mathrm{N}}\right)=0_{\mathrm{N}}$,
(j) $\operatorname{NInt}\left(1_{\mathrm{N}}\right)=1_{\mathrm{N}}$,
(k) $\operatorname{NCl}\left(0_{\mathrm{N}}\right)=0_{\mathrm{N}}$,
(l) $\operatorname{NCl}\left(1_{\mathrm{N}}\right)=1_{\mathrm{N}}$,
(m) $A \subseteq B \Rightarrow \mathrm{C}(B) \subseteq \mathrm{C}(A)$,
(n) $\mathrm{NCl}(A \cap B) \subseteq N C l(A) \cap N C l(B)$,
(o) NInt $(A \cup B) \supseteq N \operatorname{NInt}(A) \cup N \operatorname{Int}(B)$.

II. PRODUCT RELATED NEUTROSOPHIC TOPOLOGICAL SPACES

In this section, we define some basic and important results which are very useful in later sections. In order topology, the product of the closure is equal to the closure of the product and product of the interior is equal to the interior of the product. But this result is not true in neutrosophic topological space. For this reason, we define the product related neutrosophic topological space. Using this definition, we prove the above mentioned result.

Definition 2.1 A subfamily β of $N T S(\mathrm{X}, \tau)$ is called a base for τ if each $N S$ of τ is a union of some members of β.

Definition 2.2 Let X, Y be nonempty neutrosophic sets and $A=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\left\langle y, \mu_{B}(y)\right.$, $\left.\sigma_{B}(y), \gamma_{B}(y)\right\rangle N S s$ of X and Y respectively. Then $\mathrm{A} \times \mathrm{B}$ is a $N S$ of $\mathrm{X} \times \mathrm{Y}$ is defined by

```
(P}\mp@subsup{\textrm{P}}{1}{})(A\timesB)(x,y)=\langle(x,y),min ( \mp@subsup{\mu}{A}{}(x),\mp@subsup{\mu}{B}{}(y))
    min}(\mp@subsup{\sigma}{A}{}(x),\mp@subsup{\sigma}{B}{}(y)),max ( \mp@subsup{\gamma}{A}{}(x),\mp@subsup{\gamma}{B}{}(y))
(P}\mp@subsup{\textrm{P}}{2}{})(A\timesB)(x,y)=\langle(x,y),min ( \mp@subsup{\mu}{A}{}(x),\mp@subsup{\mu}{B}{}(y))
    max ( }\mp@subsup{\sigma}{A}{}(x),\mp@subsup{\sigma}{B}{}(y)),\operatorname{max}(\mp@subsup{\gamma}{A}{}(x),\mp@subsup{\gamma}{B}{}(y))
```

Notice that

$$
\begin{aligned}
\left(\mathrm{CP}_{1}\right) & \mathrm{C}((A \times B)(x, y))=\left\langle(x, y), \max \left(\mu_{A}(x),\right.\right. \\
& \left.\left.\mu_{B}(y)\right), \max \left(\sigma_{A}(x), \sigma_{B}(y)\right), \min \left(\gamma_{A}(x), \gamma_{B}(y)\right)\right\rangle \\
\left(\mathrm{CP}_{2}\right) & \mathrm{C}((A \times B)(x, y))=\left\langle(x, y), \max \left(\mu_{A}(x),\right.\right. \\
& \left.\left.\mu_{B}(y)\right), \min \left(\sigma_{A}(x), \sigma_{B}(y)\right), \min \left(\gamma_{A}(x), \gamma_{B}(y)\right)\right\rangle
\end{aligned}
$$

Lemma 2.3 If A is the $N S$ of X and B is the $N S$ of Y, then
(i) $\left(A \times 1_{\mathrm{N}}\right) \cap\left(1_{\mathrm{N}} \times B\right)=A \times B$,
(ii) $\left(A \times 1_{\mathrm{N}}\right) \cup\left(1_{\mathrm{N}} \times B\right)=\mathrm{C}(\mathrm{C}(A) \times \mathrm{C}(B))$,
(iii) $\mathrm{C}(A \times B)=\left(\mathrm{C}(A) \times 1_{\mathrm{N}}\right) \cup\left(1_{\mathrm{N}} \times \mathrm{C}(B)\right.$.

Proof : Let $A=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\langle y$, $\left.\mu_{B}(y), \sigma_{B}(y), \gamma_{B}(y)\right\rangle$.
(i) Since $A \times 1_{\mathrm{N}}=\left\langle x, \min \left(\mu_{A}, 1_{\mathrm{N}}\right)\right.$, min $\left(\sigma_{A}, 1_{\mathrm{N}}\right)$, $\left.\max \left(\gamma_{A}, 0_{\mathrm{N}}\right)\right\rangle=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle=A$ and similarly $1_{\mathrm{N}} \times B=\left\langle y, \min \left(1_{\mathrm{N}}, \mu_{B}\right), \min \left(1_{\mathrm{N}}, \sigma_{B}\right)\right.$, $\left.\max \left(0_{\mathrm{N}}, \gamma_{B}\right)\right\rangle=B$, we have $\left(A \times 1_{\mathrm{N}}\right) \cap\left(1_{\mathrm{N}} \times B\right)=$ $A(x) \cap B(y)=\left\langle(x, y), \mu_{A}(x) \wedge \mu_{B}(y), \sigma_{A}(x) \wedge \sigma_{B}(y)\right.$, $\left.\gamma_{A}(x) \bigvee \gamma_{B}(y)\right\rangle=A \times B$.
(ii) Similarly to (i).
(iii) Obvious by putting A, B instead of $\mathrm{C}(A), \mathrm{C}(B)$ in (ii).

Definition 2.4 Let X and Y be two nonempty neutrosophic sets and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a neutrosophic function. (i) If $B=\left\{\left\langle y, \mu_{B}(y), \sigma_{B}(y), \gamma_{B}(y)\right\rangle: y \in \mathrm{Y}\right\}$ is a $N S$ in Y , then the pre image of B under f is denoted and defined by $f^{-1}(B)=\left\{\left\langle x, f^{-1}\left(\mu_{B}\right)(x)\right.\right.$, $\left.\left.f^{-1}\left(\sigma_{B}\right)(x), f^{-1}\left(\gamma_{B}\right)(x)\right\rangle: x \in \mathrm{X}\right\}$.
(ii) If $A=\left\{\left\langle x, \alpha_{A}(x), \delta_{A}(x), \lambda_{A}(x)\right\rangle: x \in \mathrm{X}\right\}$ is a $N S$ in X , then the image of A under f is denoted and defined by $f(A)=\left\{\left\langle y, f\left(\alpha_{A}\right)(y), f\left(\delta_{A}\right)(y), f _\left(\lambda_{A}\right)(y)\right\rangle\right.$ $: y \in \mathrm{Y}\}$ where $f_{-}\left(\lambda_{A}\right)=\mathrm{C}(f(\mathrm{C}(A)))$.
In (i), (ii), since $\mu_{B}, \sigma_{B}, \gamma_{B}, \alpha_{A}, \delta_{A}, \lambda_{A}$ are neutrosophic sets, we explain that $f^{-1}\left(\mu_{B}\right)(x)=\mu_{B}(f(x))$,
and $f\left(\alpha_{A}\right)(y)= \begin{cases}\sup \alpha_{A}(\mathrm{x}) & \text { if } \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{y}) \\ 0 & \text { Otherwise }\end{cases}$
Definition 2.5 Let (X, τ) and (Y, σ) be NTSs. The neutrosophic product topological space [NPTS for short] of (X, τ) and (Y, σ) is the cartesian product X $\times \mathrm{Y}$ of $N S s \mathrm{X}$ and Y together with the $N T \xi$ of $\mathrm{X} \times \mathrm{Y}$ which is generated by the family $\left\{\mathrm{P}_{1}^{-1}\left(A_{i}\right), \mathrm{P}_{2}^{-1}\left(B_{j}\right)\right.$ $: A_{i} \in \tau, B_{j} \in \sigma$ and $\mathrm{P}_{1}, \mathrm{P}_{2}$ are projections of $\mathrm{X} \times \mathrm{Y}$ onto X and Y respectively $\}$ (i.e. the family $\left\{\mathrm{P}_{1}^{-1}\left(A_{i}\right)\right.$, $\left.\mathrm{P}_{2}^{-1}\left(B_{j}\right): A_{i} \in \tau, B_{j} \in \sigma\right\}$ is a subbase for $N T \xi$ of $\mathrm{X} \times \mathrm{Y})$.

Remark 2.6 In the above definition, since $\mathrm{P}_{1}^{-1}\left(A_{i}\right)=$ $A_{i} \times 1_{\mathrm{N}}$ and $\mathrm{P}_{2}^{-1}\left(B_{j}\right)=1_{\mathrm{N}} \times B_{j}$ and $A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}=$ $A_{i} \times B_{j}$, the family $\beta=\left\{A_{i} \times B_{j}: A_{i} \in \tau, B_{j} \in \sigma\right\}$ forms a base for NPTS ξ of $\mathrm{X} \times \mathrm{Y}$.

Definition 2.7 Let $f_{1}: \mathrm{X}_{1} \rightarrow \mathrm{Y}_{1}$ and $f_{2}: \mathrm{X}_{2} \rightarrow \mathrm{Y}_{2}$ be the two neutrosophic functions. Then the neutrosophic product $f_{1} \times f_{2}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}$ is defined by $\left(f_{1} \times f_{2}\right)\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ for all $\left(x_{1}, x_{2}\right) \in \mathrm{X}_{1} \times \mathrm{X}_{2}$.

Definition 2.8 Let $A, A_{i}(i \in \mathrm{~J})$ be $N S s$ in X and B, $B_{j}(j \in \mathrm{~K})$ be $N S s$ in Y and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be the neutrosophic function. Then
(i) $f^{-1}\left(\cup B_{j}\right)=\cup f^{-1}\left(B_{j}\right)$,
(ii) $f^{-1}\left(\cap B_{j}\right)=\cap f^{-1}\left(B_{j}\right)$,
(iii) $f^{-1}\left(1_{\mathrm{N}}\right)=1_{\mathrm{N}}, f^{-1}\left(0_{\mathrm{N}}\right)=0_{\mathrm{N}}$,
(iv) $f^{-1}(\mathrm{C}(B))=\mathrm{C}\left(f^{-1}(B)\right)$,
(v) $f\left(\cup A_{i}\right)=\cup f\left(A_{i}\right)$.

Definition 2.9 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be the neutrosophic function. Then the neutrosophic graph $g: \mathrm{X} \rightarrow \mathrm{X} \times \mathrm{Y}$ of f is defined by $g(x)=(x, f(x))$ for all $x \in \mathrm{X}$.

Lemma 2.10 Let $f_{i}: \mathrm{X}_{i} \rightarrow \mathrm{Y}_{i}(i=1,2)$ be the neutrosophic functions and A, B be $N S s$ of $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ respectively. Then $\left(f_{1} \times f_{2}\right)^{-1}=f_{1}^{-1}(A) \times f_{2}^{-1}(B)$.
Proof : Let $A=\left\langle x_{1}, \mu_{A}\left(x_{1}\right), \sigma_{A}\left(x_{1}\right), \gamma_{A}\left(x_{1}\right)\right\rangle, B=\left\langle x_{2}\right.$, $\left.\mu_{B}\left(x_{2}\right), \sigma_{B}\left(x_{2}\right), \gamma_{B}\left(x_{2}\right)\right\rangle$. For each $\left(x_{1}, x_{2}\right) \in \mathrm{X}_{1} \times \mathrm{X}_{2}$, we have $\left(f_{1} \times f_{2}\right)^{-1}(A, B)\left(x_{1}, x_{2}\right)=(A \times B)\left(f_{1} \times f_{2}\right)$ $\left(x_{1}, x_{2}\right)=(A \times B)\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)=\left\langle\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)\right.$, $\min \left(\mu_{A}\left(f_{1}\left(x_{1}\right)\right), \mu_{B}\left(f_{2}\left(x_{2}\right)\right)\right), \min \left(\sigma_{A}\left(f_{1}\left(x_{1}\right)\right)\right.$, $\left.\left.\sigma_{B}\left(f_{2}\left(x_{2}\right)\right)\right), \max \left(\gamma_{A}\left(f_{1}\left(x_{1}\right)\right), \gamma_{B}\left(f_{2}\left(x_{2}\right)\right)\right)\right\rangle=\left\langle\left(x_{1}\right.\right.$, $\left.x_{2}\right), \min \left(f_{1}^{-1}\left(\mu_{A}\right)\left(x_{1}\right), f_{2}^{-1}\left(\mu_{B}\right)\left(x_{2}\right)\right), \min \left(f_{1}^{-1}\left(\sigma_{A}\right)\right.$ $\left.\left.\left(x_{1}\right), f_{2}^{-1}\left(\sigma_{B}\right)\left(x_{2}\right)\right), \max \left(f_{1}^{-1}\left(\gamma_{A}\right)\left(x_{1}\right), f_{2}^{-1}\left(\gamma_{B}\right)\left(x_{2}\right)\right)\right\rangle=$ $\left(f_{1}^{-1}(A) \times f_{2}^{-1}(B)\right)\left(x_{1}, x_{2}\right)$.

Lemma 2.11 Let $g: \mathrm{X} \rightarrow \mathrm{X} \times \mathrm{Y}$ be the neutrosophic graph of the neutrosophic function $f: \mathrm{X} \rightarrow \mathrm{Y}$. If A is the $N S$ of X and B is the $N S$ of Y , then
$g^{-1}(A \times B)(x)=\left(A \cap f^{-1}(B)\right)(x)$.
Proof : Let $A=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\langle x$, $\left.\mu_{B}(x), \sigma_{B}(x), \gamma_{B}(x)\right\rangle$. For each $x \in \mathrm{X}$, we have
$g^{-1}(A \times B)(x)=(A \times B) g(x)=(A \times B)(x, f(x))$ $=\left\langle(x, f(x)), \min \left(\mu_{A}(x), \mu_{B}(f(x))\right), \min \left(\sigma_{A}(x)\right.\right.$, $\left.\left.\sigma_{B}(f(x))\right), \max \left(\gamma_{A}(x), \gamma_{B}(f(x))\right)\right\rangle=\langle(x, f(x))$, $\min \left(\mu_{A}(x), f^{-1}\left(\mu_{B}\right)(x)\right), \min \left(\sigma_{A}(x), f^{-1}\left(\sigma_{B}\right)(x)\right)$, $\left.\max \left(\gamma_{A}(x), f^{-1}\left(\gamma_{B}\right)(x)\right)\right\rangle=\left(A \cap f^{-1}(B)\right)(x)$.

Lemma 2.12 Let A, B, C and D be $N S s$ in X . Then $A \subseteq B, C \subseteq D \Rightarrow A \times C \subseteq B \times D$.
Proof : Let $A=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\langle x$, $\left.\mu_{B}(x), \sigma_{B}(x), \gamma_{B}(x)\right\rangle, C=\left\langle x, \mu_{C}(x), \sigma_{C}(x), \gamma_{C}(x)\right\rangle$ and $D=\left\langle x, \mu_{D}(x), \sigma_{D}(x), \gamma_{D}(x)\right\rangle$ be NSs. Since $A \subseteq B \Rightarrow$ $\mu_{A} \leq \mu_{B}, \sigma_{A} \leq \sigma_{B}, \gamma_{A} \geq \gamma_{B}$ and also $C \subseteq D \Rightarrow \mu_{C} \leq \mu_{D}$, $\sigma_{C} \leq \sigma_{D}, \gamma_{C} \geq \gamma_{D}$, we have $\min \left(\mu_{A}, \mu_{C}\right) \leq \min \left(\mu_{B}\right.$, $\left.\mu_{D}\right), \min \left(\sigma_{A}, \sigma_{C}\right) \leq \min \left(\sigma_{B}, \sigma_{D}\right)$ and $\max \left(\gamma_{A}, \gamma_{C}\right)$ $\geq \max \left(\gamma_{B}, \gamma_{D}\right)$. Hence the result.

Lemma 2.13 Let (X, τ) and (Y, σ) be any two $N T S s$ such that X is neutrosophic product relative to Y . Let A and B be NCSs in NTSs X and Y respectively. Then $A \times B$ is the NCS in the NPTS of $\mathrm{X} \times \mathrm{Y}$.
Proof : Let $A=\left\langle x, \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x)\right\rangle, B=\langle y$, $\left.\mu_{B}(y), \sigma_{B}(y), \gamma_{B}(y)\right\rangle$. From Lemma 2.3,C $(A \times B)(x, y)$ $=\left(\mathrm{C}(A) \times 1_{\mathrm{N}}\right) \cup\left(1_{\mathrm{N}} \times \mathrm{C}(B)\right)(x, y)$. Since C $(A) \times$ 1_{N} and $1_{\mathrm{N}} \times \mathrm{C}(B)$ are NOSs in X and Y respectively. Hence $\mathrm{C}(A) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}(B)$ is $N O S$ of $\mathrm{X} \times \mathrm{Y}$. Hence $\mathrm{C}(A \times B)$ is a $N O S$ of $\mathrm{X} \times \mathrm{Y}$ and consequently $A \times B$ is the $N C S$ of $\mathrm{X} \times \mathrm{Y}$.

Theorem 2.14 If A and B are $N S s$ of $N T S s \mathrm{X}$ and Y respectively, then
(i) $N C l(A) \times N C l(B) \supseteq N C l(A \times B)$,
(ii) $\operatorname{NInt}(A) \times N \operatorname{Int}(B) \subseteq \operatorname{NInt}(A \times B)$.

Proof : (i) Since $A \subseteq N C l(A)$ and $B \subseteq N C l(B)$, hence $A \times B \subseteq N C l(A) \times N C l(B)$. This implies that $\mathrm{NCl}(A \times B) \subseteq \mathrm{NCl}(\mathrm{NCl}(A) \times \mathrm{NCl}(B))$ and from Lemma 2.13, $N C l(A \times B) \subseteq N C l(A) \times N C l(B)$. (ii) follows from (i) and the fact that $\operatorname{NInt}(\mathrm{C}(A))=$ $\mathrm{C}(\mathrm{NCl}(\mathrm{A}))$.

Definition 2.15 Let $(\mathrm{X}, \tau),(\mathrm{Y}, \sigma)$ be $N T S s$ and $A \in \tau$, $B \in \sigma$. We say that (X, τ) is neutrosophic product related to (Y, σ) if for any $N S s C$ of X and D of Y , whenever $\mathrm{C}(A) \nsupseteq C$ and $\mathrm{C}(B) \nsupseteq D \Rightarrow \mathrm{C}(A) \times 1_{\mathrm{N}} \cup$ $1_{\mathrm{N}} \times \mathrm{C}(B) \supseteq C \times D$, there exist $A_{1} \in \tau, B_{1} \in \sigma$ such that $\mathrm{C}\left(A_{1}\right) \supseteq C$ or $\mathrm{C}\left(B_{1}\right) \supseteq D$ and $\mathrm{C}\left(A_{1}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times$ $\mathrm{C}\left(B_{1}\right)=\mathrm{C}(A) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}(B)$.

Lemma 2.16 For $N S s A_{i}$'s and B_{j} 's of NTSs X and Y respectively, we have
(i) $\cap\left\{A_{i}, B_{j}\right\}=\min \left(\cap A_{i}, \cap B_{j}\right)$;
$\cup\left\{A_{i}, B_{j}\right\}=\max \left(\cup A_{i}, \cup B_{j}\right)$.
(ii) $\cap\left\{A_{i}, 1_{\mathrm{N}}\right\}=\left(\cap A_{i}\right) \times 1_{\mathrm{N}}$; $\cup\left\{A_{i}, 1_{\mathrm{N}}\right\}=\left(\cup A_{i}\right) \times 1_{\mathrm{N}}$.
(iii) $\cap\left\{1_{\mathrm{N}} \times B_{j}\right\}=1_{\mathrm{N}} \times\left(\cap B_{j}\right)$; $\cup\left\{1_{\mathrm{N}} \times B_{j}\right\}=1_{\mathrm{N}} \times\left(\cup B_{j}\right)$.
Proof: Obvious.
Theorem 2.17 Let (X, τ) and (Y, σ) be $N T S s$ such that X is neutrosophic product related to Y . Then for $N S s A$ of X and B of Y , we have
(i) $\mathrm{NCl}(A \times B)=\mathrm{NCl}(A) \times \mathrm{NCl}(B)$,
(ii) $\operatorname{NInt}(A \times B)=N \operatorname{Int}(A) \times N \operatorname{Int}(B)$.

Proof : (i) Since $N C l(A \times B) \subseteq N C l(A) \times N C l(B)$ (By Theorem 2.14) it is sufficient to show that $\mathrm{NCl}(A \times B) \supseteq \mathrm{NCl}(A) \times \mathrm{NCl}(B)$. Let $A_{i} \in \tau$ and $B_{j} \in \sigma$. Then $N C l(A \times B)=\left\langle(\mathrm{x}, \mathrm{y}), \cap \mathrm{C}\left(\left\{A_{i} \times B_{j}\right\}\right)\right.$ $: \mathrm{C}\left(\left\{A_{i} \times B_{j}\right\}\right) \supseteq A \times B, \cup\left\{A_{i} \times B_{j}\right\}:\left\{A_{i} \times B_{j}\right\} \subseteq$ $A \times B\rangle=\left\langle(x, y), \cap\left(\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right)\right):\right.$
$\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right) \supseteq A \times B, \cup\left(A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times\right.$
$\left.\left.B_{j}\right): A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j} \subseteq A \times B\right\rangle=\left\langle(x, y), \cap\left(\mathrm{C}\left(A_{i}\right)\right.\right.$
$\left.\times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right)\right): \mathrm{C}\left(A_{i}\right) \supseteq A$ or $\mathrm{C}\left(B_{j}\right) \supseteq B, \cup\left(A_{i}\right.$
$\left.\times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}\right): A_{i} \subseteq A$ and $\left.B_{j} \subseteq B\right\rangle=\langle(x, y), \min ($ $\cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(A_{i}\right) \supseteq A\right\}, \cap\left\{\mathrm{C}\left(A_{i}\right)\right.$ $\left.\left.\times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right), \max \left(\cup\left\{A_{i} \times 1_{\mathrm{N}}\right.\right.$ $\left.\left.\cap 1_{\mathrm{N}} \times B_{j}: A_{i} \subseteq A\right\}, \cup\left\{A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right)$
\rangle. Since $\left\langle(x, y), \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(A_{i}\right)\right.\right.$
$\left.\supseteq A\}, \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right\rangle$ $\supseteq\left\langle(x, y), \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}}: \mathrm{C}\left(A_{i}\right) \supseteq A\right\}, \cap\left\{1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right)\right.\right.$ $\left.\left.: \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right\rangle=\left\langle(x, y), \cap\left\{\mathrm{C}\left(A_{i}\right): \mathrm{C}\left(A_{i}\right) \supseteq A\right\} \times 1_{\mathrm{N}}\right.$, $\left.1_{\mathrm{N}} \times \cap\left\{\mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right\rangle=\langle(x, y), N C l(A) \times$
$\left.1_{\mathrm{N}}, 1_{\mathrm{N}} \times N C l(B)\right\rangle$ and $\left\langle(x, y), \cup\left\{A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}\right.\right.$ $\left.: A_{i} \subseteq A, \cup\left\{A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right\rangle \subseteq\langle(x, y)$, $\left.\cup\left\{A_{i} \times 1_{\mathrm{N}}: A_{i} \subseteq A\right\}, \cup\left\{1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right\rangle=\langle(x, y)$, $\left.\cup\left\{A_{i}: A_{i} \subseteq A\right\} \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times \cup\left\{B_{j}: B_{j} \subseteq B\right\}\right\rangle=\langle(x$, y), $\left.\operatorname{NInt}(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times \operatorname{NInt}(B)\right\rangle$, we have $\operatorname{NCl}(A \times$ $B) \supseteq\left\langle(x, y), \min \left(N C l(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times N C l(B)\right), \max \right.$ $\left.\left(\operatorname{NInt}(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times \operatorname{NInt}(B)\right)\right\rangle=\langle(x, y), \min (N C l$ $(A), N C l(B)), \max (N \operatorname{Nint}(A), N \operatorname{NInt}(B))\rangle=N C l(A) \times$ $\mathrm{NCl}(\mathrm{B})$.
(ii) follows from (i).

III. NEUTROSOPHIC SEMI-OPEN SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

In this section, the concepts of the neutrosophic semi-open set is introduced and also discussed their characterizations.

Definition 3.1 Let A be $N S$ of a $N T S$ X. Then A is said to be neutrosophic semi-open [written $N S O$] set of X if there exists a neutrosophic open set NO such that $\mathrm{NO} \subseteq A \subseteq N C l(\mathrm{NO})$.

The following theorem is the characterization of NSO set in NTS.

Theorem 3.2 A subset A in a $N T S \mathrm{X}$ is $N S O$ set if and only if $A \subseteq N C l(N I n t(A))$.
Proof : Sufficiency: Let $A \subseteq N C l(N I n t(A))$. Then for $\mathrm{NO}=N I n t(A)$, we have $\mathrm{NO} \subseteq A \subseteq N C l(\mathrm{NO})$. Necessity: Let A be $N S O$ set in X. Then $\mathrm{NO} \subseteq A \subseteq$ $N C l(\mathrm{NO})$ for some neutrosophic open set NO. But $\mathrm{NO} \subseteq N I n t(A)$ and thus $N C l(\mathrm{NO}) \subseteq N C l(N I n t(A))$. Hence $A \subseteq N C l(\mathrm{NO}) \subseteq N C l(N I n t(A))$.

Theorem 3.3 Let (X, τ) be a $N T S$. Then union of two NSO sets is a NSO set in the NTS X.
Proof : Let A and B are $N S O$ sets in X . Then $A \subseteq$ $\mathrm{NCl}(\operatorname{NInt}(A))$ and $B \subseteq N C l(N I n t(B))$. Therefore
$A \cup B \subseteq N C l(N I n t(A)) \cup N C l(N I n t(B))=N C l$ $(N \operatorname{lnt}(A) \cup N \operatorname{lnt}(B)) \subseteq N C l(N I n t(A \cup B))$ [By Proposition $1.18(\mathrm{o})]$. Hence $A \cup B$ is $N S O$ set in X.

Theorem 3.4 Let (X, τ) be a $N T S$. If $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ is a collection of NSO sets in a NTS X. Then $\mathrm{U}_{\alpha \in \Delta} A_{\alpha}$ is NSO set in X.
Proof : For each $\alpha \in \Delta$, we have a neutrosophic open set NO_{α} such that $\mathrm{NO}_{\alpha} \subseteq A_{\alpha} \subseteq N C l\left(\mathrm{NO}_{\alpha}\right)$. Then $\mathrm{U}_{\alpha \in \Delta} N O_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Delta} A_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Delta} N C l\left(N O_{\alpha}\right) \subseteq \mathrm{NCl}$ $\left(\mathrm{U}_{\alpha \in \Delta} N O_{\alpha}\right)$. Hence let $\mathrm{NO}=\mathrm{U}_{\alpha \in \Delta} N O_{\alpha}$.

Remark 3.5 The intersection of any two NSO sets need not be a $N S O$ set in X as shown by the following example.

Example 3.6 Let $\mathrm{X}=\{a, b\}$ and
$\mathrm{A}=\langle(0.3,0.5,0.4),(0.6,0.2,0.5)\rangle$
$B=\langle(0.2,0.6,0.7),(0.5,0.3,0.1)\rangle$
$\mathrm{C}=\langle(0.3,0.6,0.4),(0.6,0.3,0.1)\rangle$
$\mathrm{D}=\langle(0.2,0.5,0.7),(0.5,0.2,0.5)\rangle$.
Then $\tau=\left\{0_{\mathrm{N}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, 1_{\mathrm{N}}\right\}$ is NTS on X. Now, we define the two NSO sets as follows:
$\mathrm{A}_{1}=\langle(0.4,0.6,0.4),(0.8,0.3,0.4)\rangle$ and
$\mathrm{A}_{2}=\langle(1,0.9,0.2),(0.5,0.7,0)\rangle$. Here $\operatorname{NInt}\left(\mathrm{A}_{1}\right)=$ $\mathrm{A}, \operatorname{NCl}\left(\operatorname{NInt}\left(\mathrm{A}_{1}\right)\right)=1_{\mathrm{N}}$ and $\operatorname{NInt}\left(\mathrm{A}_{2}\right)=\mathrm{B}$,
$\operatorname{NCl}\left(\operatorname{NInt}\left(\mathrm{A}_{2}\right)\right)=1_{\mathrm{N}}$. But $\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\langle(0.4,0.6,0.4)$, $(0.5,0.3,0.4)\rangle$ is not a $N S O$ set in X.

Theorem 3.7 Let A be $N S O$ set in the NTS X and suppose $A \subseteq B \subseteq N C l(A)$. Then B is $N S O$ set in X .
Proof : There exists a neutrosophic open set NO such that $\mathrm{NO} \subseteq A \subseteq N C l(\mathrm{NO})$. Then $\mathrm{NO} \subseteq B$. But $N C l(A) \subseteq N C l(\mathrm{NO})$ and thus $B \subseteq N C l(\mathrm{NO})$. Hence $\mathrm{NO} \subseteq B \subseteq N C l(\mathrm{NO})$ and B is $N S O$ set in X .

Theorem 3.8 Every neutrosophic open set in the $N T S \mathrm{X}$ is $N S O$ set in X .
Proof : Let A be neutrosophic open set in NTS X. Then $A=\operatorname{NInt}(A)$. Also NInt $(A) \subseteq N C l(N I n t(A))$. This implies that $A \subseteq N C l(N I n t(A))$. Hence by Theorem 3.2, A is NSO set in X.

Remark 3.9 The converse of the above theorem need not be true as shown by the following example.

Example 3.10 Let $\mathrm{X}=\{a, b, c\}$ with $\tau=\left\{0_{\mathrm{N}}\right.$, A , $\left.\mathrm{B}, 1_{\mathrm{N}}\right\}$. Some of the NSO sets are
$\mathrm{A}=\langle(0.4,0.5,0.2),(0.3,0.2,0.1),(0.9,0.6,0.8)\rangle$
$B=\langle(0.2,0.4,0.5),(0.1,0.1,0.2),(0.6,0.5,0.8)\rangle$
$\mathrm{C}=\langle(0.5,0.6,0.1),(0.4,0.3,0.1),(0.9,0.8,0.5)\rangle$
$\mathrm{D}=\langle(0.3,0.5,0.4),(0.1,0.6,0.2),(0.7,0.5,0.8)\rangle$
$\mathrm{E}=\langle(0.5,0.6,0.1),(0.4,0.6,0.1),(0.9,0.8,0.5)\rangle$
$\mathrm{F}=\langle(0.3,0.5,0.4),(0.1,0.3,0.2),(0.7,0.5,0.8)\rangle$
$\mathrm{G}=\langle(0.4,0.5,0.2),(0.3,0.6,0.1),(0.9,0.6,0.8)\rangle$
$\mathrm{H}=\langle(0.3,0.5,0.4),(0.1,0.2,0.2),(0.7,0.5,0.8)\rangle$
$I=\langle(0.4,0.5,0.2),(0.3,0.3,0.1),(0.9,0.6,0.8)\rangle$
$\mathrm{J}=\langle(0.3,0.5,0.4),(0.1,0.2,0.2),(0.7,0.5,0.8)\rangle$.

Here C, D, E, F, G, H, I and J are NSO sets but are not neutrosophic open sets.

Proposition 3.11 If X and Y are $N T S$ such that X is neutrosophic product related to Y. Then the neutrosophic product $A \times B$ of a neutrosophic semiopen set A of X and a neutrosophic semi-open set B of Y is a neutrosophic semi-open set of the neutrosophic product topological space $\mathrm{X} \times \mathrm{Y}$.
Proof : Let $\mathrm{O}_{1} \subseteq A \subseteq N C l\left(\mathrm{O}_{1}\right)$ and $\mathrm{O}_{2} \subseteq B \subseteq N C l$ $\left(\mathrm{O}_{2}\right)$ where O_{1} and O_{2} are neutrosophic open sets in X and Y respectively. Then, $\mathrm{O}_{1} \times \mathrm{O}_{2} \subseteq A \times B \subseteq N C l$ $\left(\mathrm{O}_{1}\right) \times N C l\left(\mathrm{O}_{2}\right)$. By Theorem 2.17 (i), $N C l\left(\mathrm{O}_{1}\right) \times$ $N C l\left(\mathrm{O}_{2}\right)=N C l\left(\mathrm{O}_{1} \times \mathrm{O}_{2}\right)$. Therefore $\mathrm{O}_{1} \times \mathrm{O}_{2} \subseteq A \times$ $B \subseteq \operatorname{NCl}\left(\mathrm{O}_{1} \times \mathrm{O}_{2}\right)$. Hence by Theorem 3.1, $\mathrm{A} \times \mathrm{B}$ is neutrosophic semi-open set in $\mathrm{X} \times \mathrm{Y}$.

IV. NEUTROSOPHIC SEMI-CLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

In this section, the neutrosophic semi-closed set is introduced and studied their properties.

Definition 4.1 Let A be $N S$ of a $N T S$ X. Then A is said to be neutrosophic semi-closed [written NSC] set of X if there exists a neutrosophic closed set NC such that NInt $(\mathrm{NC}) \subseteq A \subseteq \mathrm{NC}$.

Theorem 4.2 A subset A in a $N T S \mathrm{X}$ is $N C S$ set if and only if $\operatorname{NInt}(N C l(A)) \subseteq A$.
Proof : Sufficiency: Let NInt $(\mathrm{NCl}(\mathrm{A})) \subseteq A$. Then for $\mathrm{NC}=N C l(A)$, we have NInt $(\mathrm{NC}) \subseteq A \subseteq \mathrm{NC}$. Necessity: Let A be $N S C$ set in X. Then $\operatorname{NInt}(\mathrm{NC}) \subseteq$ $A \subseteq \mathrm{NC}$ for some neutrosophic closed set NC. But $\mathrm{NCl}(A) \subseteq \mathrm{NC}$ and thus $\operatorname{NInt}(\mathrm{NCl}(A)) \subseteq \operatorname{NInt}(\mathrm{NC}))$. Hence $N \operatorname{Int}(N C l(A)) \subseteq N \operatorname{Int}(N C) \subseteq A$.

Proposition 4.3 Let (X, τ) be a $N T S$ and A be a neutrosophic subset of X . Then A is NSC set if and only if $\mathrm{C}(A)$ is $N S O$ set in X .
Proof : Let A be a neutrosophic semi-closed subset of X. Then by Theorem 4.2 , NInt $(N C l(A)) \subseteq A$. Taking complement on both sides, $\mathrm{C}(A) \subseteq \mathrm{C}$ (NInt $(N C l(A)))=N C l(\mathrm{C}(N C l(A)))$. By using Proposition 1.17 (b), C $(A) \subseteq N C l$ (NInt (C (A))). By Theorem 3.2, $\mathrm{C}(A)$ is neutrosophic semi-open. Conversely let $\mathrm{C}(A)$ is neutrosophic semi-open. By Theorem 3.2,
$\mathrm{C}(A) \subseteq \mathrm{NCl}($ NInt $(\mathrm{C}(A)))$. Taking complement on both sides, $A \supseteq \mathrm{C}(N C l(\operatorname{NInt}(\mathrm{C}(A)))=\operatorname{NInt}(\mathrm{C}(N I n t$ (C (A))). By using Proposition 1.17 (b), $A \supseteq$ NInt ($\mathrm{NCl}(\mathrm{A})$). By Theorem 4.2, A is neutrosophic semiclosed set.

Theorem 4.4 Let (X, τ) be a NTS. Then intersection of two NSC sets is a NSC set in the NTS X.
Proof : Let A and B are NSC sets in X. Then NInt $(N C l(A)) \subseteq A$ and $N I n t(N C l(B)) \subseteq B$. Therefore
$A \cap B \supseteq \operatorname{NInt}(\mathrm{NCl}(A)) \cap \operatorname{NInt}(\mathrm{NCl}(B))=N I n t$ $(\mathrm{NCl}(A) \cap \mathrm{NCl}(\mathrm{B})) \supseteq \mathrm{NInt}(\mathrm{NCl}(A \cap B))$ [By Proposition $1.18(\mathrm{n})]$. Hence $A \cap B$ is $N S C$ set in X.

Theorem 4.5 Let $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ be a collection of NSC sets in a NTS X. Then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is NSC set in X.
Proof : For each $\alpha \in \Delta$, we have a neutrosophic closed set NC_{α} such that NInt $\left(\mathrm{NC}_{\alpha}\right) \subseteq A_{\alpha} \subseteq N C_{\alpha}$. Then NInt $\left(\bigcap_{\alpha \in \Delta} N C_{\alpha}\right) \subseteq \bigcap_{\alpha \in \Delta} N \operatorname{Int}\left(N C_{\alpha}\right) \subseteq$ $\bigcap_{\alpha \in \Delta} A_{\alpha} \subseteq \bigcap_{\alpha \in \Delta} N C_{\alpha}$ Hence let $\mathrm{NC}=\bigcap_{\alpha \in \Delta} N C_{\alpha}$.

Remark 4.6 The union of any two $N S C$ sets need not be a NSC set in X as shown by the following example.

Example 4.7 Let $\mathrm{X}=\{a\}$ and
$\mathrm{A}=\langle(1,0.5,0.7)\rangle$
$\mathrm{B}=\langle(0,0.9,0.2)\rangle$
$\mathrm{C}=\langle(1,0.9,0.2)\rangle$
$\mathrm{D}=\langle(0,0.5,0.7)\rangle$.
Then $\tau=\left\{0_{\mathrm{N}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, 1_{\mathrm{N}}\right\}$ is NTS on X. Now, we define the two NSC sets as follows :
$\mathrm{A}_{1}=\langle(0.4,0.5,1)\rangle$ and
$\mathrm{A}_{2}=\langle(0.2,0,0.8)\rangle$. Here $\operatorname{NCl}\left(\mathrm{A}_{1}\right)=\langle(0.7,0.5,1$
$)\rangle, \operatorname{NInt}\left(N C l\left(\mathrm{~A}_{1}\right)\right)=0_{\mathrm{N}}$ and $\operatorname{NCl}\left(\mathrm{A}_{2}\right)=\langle(0.2,0.1,0$
$)\rangle, \operatorname{NInt}\left(\operatorname{NCl}\left(\mathrm{A}_{2}\right)\right)=0_{\mathrm{N}}$. But $\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\langle(0.4,0.5$, $0.8)\rangle$ is not a $N S C$ set in X .

Theorem 4.8 Let A be $N S C$ set in the $N T S \mathrm{X}$ and suppose $\operatorname{NInt}(A) \subseteq B \subseteq A$. Then B is $N S C$ set in X.
Proof: There exists a neutrosophic closed set NC such that NInt $(\mathrm{NC}) \subseteq A \subseteq \mathrm{NC}$. Then $B \subseteq \mathrm{NC}$. But $N \operatorname{Int}(\mathrm{NC}) \subseteq N \operatorname{Int}(A)$ and thus NInt $(\mathrm{NC}) \subseteq B$. Hence NInt $(\mathrm{NC}) \subseteq B \subseteq \mathrm{NC}$ and B is NSC set in X.

Theorem 4.9 Every neutrosophic closed set in the $N T S \mathrm{X}$ is NSC set in X .

Proof : Let A be neutrosophic closed set in $N T S$ X. Then $A=N C l(A)$. Also NInt $(N C l(A)) \subseteq N C l(A)$. This implies that NInt $(N C l(A)) \subseteq A$. Hence by Theorem 4.2 , A is $N S C$ set in X.

Remark 4.10 The converse of the above theorem need not be true as shown by the following example.

Example 4.11 Let $\mathrm{X}=\{a, b, c\}$ with $\tau=\left\{0_{\mathrm{N}}\right.$, A , $\left.B, 1_{N}\right\}$ and $C(\tau)=\left\{1_{N}, C, D, 0_{N}\right\}$ where $\mathrm{A}=\langle(0.5,0.6,0.3),(0.1,0.7,0.9),(1,0.6,0.4)\rangle$ $B=\langle(0,0.4,0.7),(0.1,0.6,0.9),(0.5,0.5,0.8)\rangle$ $\mathrm{C}=\langle(0.3,0.4,0.5),(0.9,0.3,0.1),(0.4,0.4,1)\rangle$ $\mathrm{D}=\langle(0.7,0.6,0),(0.9,0.4,0.1),(0.8,0.5,0.5)\rangle$.
$\mathrm{E}=\langle(0.2,0.4,0.9),(0,0.2,0.9),(0.3,0.2,1)\rangle$.
Here the $N S C$ sets are C, D and E .
Also E is NSC set but is not neutrosophic closed set.

Proposition 4.12 If X and Y are neutrosophic spaces such that X is neutrosophic product related to Y . Then the neutrosophic product $A \times B$ of a neutrosophic semi-closed set A of X and a neutrosophic semi-closed set B of Y is a neutrosophic semi-closed set of the neutrosophic product topological space $\mathrm{X} \times \mathrm{Y}$.
Proof : Let NInt $\left(\mathrm{C}_{1}\right) \subseteq A \subseteq \mathrm{C}_{1}$ and $\operatorname{NInt}\left(\mathrm{C}_{2}\right) \subseteq B \subseteq$ C_{2} where C_{1} and C_{2} are neutrosophic closed sets in X and Y respectively. Then $\operatorname{NInt}\left(\mathrm{C}_{1}\right) \times \operatorname{NInt}\left(\mathrm{C}_{2}\right) \subseteq A \times$ $B \subseteq \mathrm{C}_{1} \times \mathrm{C}_{2}$. By Theorem 2.17 (ii), NInt $\left(\mathrm{C}_{1}\right) \times$ NInt $\left(\mathrm{C}_{2}\right)=\operatorname{NInt}\left(\mathrm{C}_{1} \times \mathrm{C}_{2}\right)$. Therefore $\operatorname{NInt}\left(\mathrm{C}_{1} \times \mathrm{C}_{2}\right) \subseteq A \times$ $B \subseteq \mathrm{C}_{1} \times \mathrm{C}_{2}$. Hence by Theorem 4.1, $\mathrm{A} \times \mathrm{B}$ is neutrosophic semi-closed set in $\mathrm{X} \times \mathrm{Y}$.

V. NEUTROSOPHIC SEMI-INTERIOR IN NEUTROSOPHIC TOPOLOGICAL SPACES

In this section, we introduce the neutrosophic semi-interior operator and their properties in neutrosophic topological space.

Definition 5.1 Let (X, τ) be a $N T S$. Then for a neutrosophic subset A of X , the neutrosophic semiinterior of A [NS Int (A) for short] is the union of all neutrosophic semi-open sets of X contained in A. That is, NS Int $(A)=\cup\{\mathrm{G}: \mathrm{G}$ is a $N S O$ set in X and $\mathrm{G} \subseteq A\}$.

Proposition 5.2 Let (X, τ) be a $N T S$. Then for any neutrosophic subsets A and B of a $N T S \mathrm{X}$ we have
(i) $\operatorname{NS} \operatorname{Int}(A) \subseteq A$
(ii) A is $N S O$ set in $\mathrm{X} \Leftrightarrow N S \operatorname{Int}(A)=A$
(iii) $N S \operatorname{Int}(N S \operatorname{Int}(A))=N S \operatorname{Int}(A)$
(iv) If $A \subseteq B$ then $N S \operatorname{Int}(A) \subseteq N S \operatorname{Int}(B)$

Proof : (i) follows from Definition 5.1.
Let A be $N S O$ set in X . Then $A \subseteq N S$ Int (A). By using (i) we get $A=N S$ Int (A). Conversely assume that $A=N S$ Int (A). By using Definition 5.1, A is $N S O$ set in X. Thus (ii) is proved.
By using (ii), NS Int $(N S$ Int $(A))=N S$ Int (A). This proves (iii).
Since $A \subseteq B$, by using (i), NS Int $(A) \subseteq A \subseteq B$. That is $N S \operatorname{Int}(A) \subseteq B$. $\mathrm{By}(\mathrm{iii}), N S \operatorname{Int}(N S \operatorname{Int}(A)) \subseteq$
$N S$ Int (B). Thus $N S$ Int $(A) \subseteq N S$ Int (B). This proves (iv).

Theorem 5.3 Let (X, τ) be a $N T S$. Then for any neutrosophic subset A and B of a NTS, we have
(i) NS Int $(A \cap B)=N S$ Int $(A) \cap N S$ Int (B)
(ii) NS Int $(A \cup B) \supseteq N S$ Int $(A) \cup N S$ Int (B).

Proof : Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by using Proposition 5.2 (iv), NS Int $(A \cap B) \subseteq N S$ Int (A) and $N S$ Int $(A \cap B) \subseteq N S \operatorname{Int}(B)$. This implies that $N S$ Int $(A \cap B) \subseteq N S$ Int $(A) \cap N S$ Int $(B)----(1)$. By using Proposition 5.2 (i), NS Int $(A) \subseteq A$ and $N S \operatorname{Int}(B) \subseteq$ B. This implies that $N S \operatorname{Int}(A) \cap N S \operatorname{Int}(B) \subseteq A \cap B$. Now applying Proposition 5.2 (iv), NS Int ((NS Int $(A) \cap N S$ Int $(B)) \subseteq N S$ Int $(A \cap B)$. By (1), NS Int $(N S$ Int $(A)) \cap N S$ Int $(N S$ Int $(B)) \subseteq N S$ Int $(A \cap B)$. By Proposition 5.2 (iii), NS Int $(A) \cap N S \operatorname{Int}(B) \subseteq N S$ Int $(A \cap B) \cdots---(2)$. From (1) and (2), NS Int $(A \cap B)$ $=N S$ Int $(A) \cap N S$ Int (B). This implies (i).
Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by using Proposition 5.2 (iv), $N S \operatorname{Int}(A) \subseteq N S \operatorname{Int}(A \cup B)$ and
$N S$ Int $(B) \subseteq N S$ Int $(A \cup B)$. This implies that $N S$ Int $(A) \cup N S$ Int $(B) \subseteq N S$ Int $(A \cup B)$. Hence (ii).

The following example shows that the equality need not be hold in Theorem 5.3 (ii).

Example 5.4 Let $\mathrm{X}=\{a, b, c\}$ and $\tau=\left\{0_{\mathrm{N}}, \mathrm{A}, \mathrm{B}\right.$, $\left.\mathrm{C}, \mathrm{D}, 1_{\mathrm{N}}\right\}$ where
$A=\langle(0.4,0.7,0.1),(0.5,0.6,0.2),(0.9,0.7,0.3)\rangle$,
$B=\langle(0.4,0.6,0.1),(0.7,0.7,0.2),(0.9,0.5,0.1)\rangle$,
$\mathrm{C}=\langle(0.4,0.7,0.1),(0.7,0.7,0.2),(0.9,0.7,0.1)\rangle$,
$\mathrm{D}=\langle(0.4,0.6,0.1),(0.5,0.6,0.2),(0.9,0.5,0.3)\rangle$.
Then (X, τ) is a $N T S$. Consider the NSs are
$\mathrm{E}=\langle(0.7,0.6,0.1),(0.7,0.6,0.1),(0.9,0.5,0)\rangle$ and $\mathrm{F}=\langle(0.4,0.6,0.1),(0.5,0.7,0.2),(1,0.7,0.1$ $)\rangle$. Then NS Int $(\mathrm{E})=\mathrm{D}$ and NS Int $(\mathrm{F})=\mathrm{D}$. This implies that $N S \operatorname{Int}(\mathrm{E}) \cup N S \operatorname{Int}(\mathrm{~F})=\mathrm{D}$. Now,
$\mathrm{E} \cup \mathrm{F}=\langle(0.7,0.6,0.1),(0.7,0.7,0.1),(1,0.7,0$ $)\rangle$, it follows that NS Int $(\mathrm{E} \cup \mathrm{F})=\mathrm{B}$. Then NS Int $(\mathrm{E} \cup \mathrm{F}) \nsubseteq N S$ Int $(\mathrm{E}) \cup N S \operatorname{Int}(\mathrm{~F})$.

VI.NEUTROSOPHIC SEMI-CLOSURE IN NEUTROSOPHIC TOPOLOGICAL SPACES

In this section, we introduce the concept of neutrosophic semi-closure operators in a NTS.

Definition 6.1 Let (X, τ) be a $N T S$. Then for a neutrosophic subset A of X , the neutrosophic semiclosure of A [$\mathrm{NSCl}(\mathrm{A})$ for short] is the intersection of all neutrosophic semi-closed sets of X contained in A. That is, $N S C l(A)=\cap\{\mathrm{K}: \mathrm{K}$ is a $N S C$ set in X and $\mathrm{K} \supseteq A$ \}.

Proposition 6.2 Let (X, τ) be a $N T S$. Then for any neutrosophic subsets A of X ,
(i) $\mathrm{C}(N S$ Int $(A))=N S C l(\mathrm{C}(A))$,
(ii) $\mathrm{C}(N S C l(A))=N S \operatorname{Int}(\mathrm{C}(A))$.

Proof : By using Definition 5.1, NS Int $(A)=\cup\{\mathrm{G}$: G is a $N S O$ set in X and $\mathrm{G} \subseteq A\}$. Taking complement on both sides, $\mathrm{C}(\mathrm{NS} \operatorname{Int}(\mathrm{A}))=\mathrm{C}(\cup\{\mathrm{G}: \mathrm{G}$ is a $N S O$ set in X and $\mathrm{G} \subseteq A\})=\cap\{\mathrm{C}(\mathrm{G}): \mathrm{C}(\mathrm{G})$ is a $N S C$ set in X and $\mathrm{C}(A) \subseteq \mathrm{C}(\mathrm{G})\}$. Replacing $\mathrm{C}(\mathrm{G})$ by K, we get $\mathrm{C}(\operatorname{NS} \operatorname{Int}(A))=\cap\{\mathrm{K}: \mathrm{K}$ is a NSC set in X and $\mathrm{K} \supseteq \mathrm{C}(A)$ \}. By Definition 6.1, $\mathrm{C}(N S$ Int $(A))=N S C l(\mathrm{C}(A))$. This proves (i).
By using (i), $\mathrm{C}(N S \operatorname{Int}(\mathrm{C}(A)))=N S C l(\mathrm{C}(\mathrm{C}(A)))=$ $N S C l(A)$. Taking complement on both sides, we get $N S$ Int $(\mathrm{C}(A))=\mathrm{C}(N S C l(A))$. Hence proved (ii).

Proposition 6.3 Let (X, τ) be a $N T S$. Then for any neutrosophic subsets A and B of a $N T S \mathrm{X}$ we have
(i) $A \subseteq N S C l(A)$
(ii) A is $N S C$ set in $\mathrm{X} \Leftrightarrow \operatorname{NSCl}(A)=A$
(iii) $\mathrm{NSCl}(\mathrm{NSCl}(A))=\mathrm{NSCl}(A)$
(iv) If $A \subseteq B$ then $N S C l(A) \subseteq N S C l(B)$

Proof : (i) follows from Definition 6.1.
Let A be NSC set in X. By using Proposition 4.3, $\mathrm{C}(A)$ is $N S O$ set in X . By Proposition 6.2 (ii),
$N S$ Int $(\mathrm{C}(A))=\mathrm{C}(A) \Leftrightarrow \mathrm{C}(N S C l(A))=\mathrm{C}(A) \Leftrightarrow$ $N S C l(A)=A$. Thus proved (ii).
By using (ii), $N S C l(N S C l(A))=N S C l(A)$. This proves (iii).
Since $A \subseteq B, \mathrm{C}(B) \subseteq \mathrm{C}(A)$. By using Proposition 5.2 (iv), NS Int $(\mathrm{C}(B)) \subseteq N S$ Int ($\mathrm{C}(A))$. Taking complement on both sides, $\mathrm{C}(\operatorname{NS} \operatorname{Int}(\mathrm{C}(B))) \supseteq$ $\mathrm{C}(N S$ Int ($\mathrm{C}(A)))$. By Proposition 6.2 (ii), $\mathrm{NS} \mathrm{Cl}(A)$ $\subseteq N S C l(B)$. This proves (iv).

Proposition 6.4 Let A be a neutrosophic set in a NTS X . Then NInt $(A) \subseteq N S$ Int $(A) \subseteq A \subseteq N S C l(A) \subseteq$ $\mathrm{NCl}(\mathrm{A})$.
Proof : It follows from the definitions of corresponding operators.

Proposition 6.5 Let (X, τ) be a $N T S$. Then for a neutrosophic subset A and B of a NTS X, we have
(i) $N S C l(A \cup B)=N S C l(A) \cup N S C l(B)$ and
(ii) $N S C l(A \cap B) \subseteq N S C l(A) \cap N S C l(B)$.

Proof : Since $N S C l(A \cup B)=N S C l(\mathrm{C}(\mathrm{C}(A \cup$ $B)$)) , by using Proposition 6.2 (i), $N S C l(A \cup B)=$ $\mathrm{C}(N S$ Int $(\mathrm{C}(A \cup B)))=\mathrm{C}(N S$ Int $(\mathrm{C}(A) \cap \mathrm{C}(B)))$. Again using Proposition 5.3 (i), $N S C l(A \cup B)=$ $\mathrm{C}(N S \operatorname{Int}(\mathrm{C}(A)) \cap N S \operatorname{Int}(\mathrm{C}(B)))=\mathrm{C}(N S$ Int $(\mathrm{C}(A))) \cup \mathrm{C}(N S$ Int $(\mathrm{C}(B)))$. By using Proposition $6.2(\mathrm{i}), N S C l(A \cup B)=N S C l(\mathrm{C}(\mathrm{C}(A))) \cup N S C l$ $(\mathrm{C}(\mathrm{C}(B)))=N S C l(A) \cup N S C l(B)$. Thus proved (i). Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by using Proposition 6.3 (iv), $N S C l(A \cap B) \subseteq N S C l(A)$ and $N S C l(A \cap B) \subseteq N S C l(B)$. This implies that $N S C l$ $(A \cap B) \subseteq N S C l(A) \cap N S C l(B)$. This proves(ii).

The following example shows that the equality need not be hold in Proposition 6.5 (ii).

Example 6.6 Let $\mathrm{X}=\{a, b, c\}$ with $\tau=\left\{0_{\mathrm{N}}\right.$, A, $\left.\mathrm{B}, \mathrm{C}, \mathrm{D}, 1_{\mathrm{N}}\right\}$ and $\mathrm{C}(\tau)=\left\{1_{\mathrm{N}}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, 0_{\mathrm{N}}\right\}$ where
$\mathrm{A}=\langle(0.5,0.6,0.1),(0.6,0.7,0.1),(0.9,0.5,0.2)\rangle$
$B=\langle(0.4,0.5,0.2),(0.8,0.6,0.3),(0.9,0.7,0.3)\rangle$
$\mathrm{C}=\langle(0.4,0.5,0.2),(0.6,0.6,0.3),(0.9,0.5,0.3)\rangle$
$\mathrm{D}=\langle(0.5,0.6,0.1),(0.8,0.7,0.1),(0.9,0.7,0.2)\rangle$
$\mathrm{E}=\langle(0.1,0.4,0.5),(0.1,0.3,0.6),(0.2,0.5,0.9)\rangle$,
$\mathrm{F}=\langle(0.2,0.5,0.4),(0.3,0.4,0.8),(0.3,0.3,0.9)\rangle$,
$\mathrm{G}=\langle(0.2,0.5,0.4),(0.3,0.4,0.6),(0.3,0.5,0.9)\rangle$,
$\mathrm{H}=\langle(0.1,0.4,0.5),(0.1,0.3,0.8),(0.2,0.3,0.9)\rangle$.
Then (X, τ) is a NTS. Consider the NSs are
$\mathrm{I}=\langle(0.1,0.2,0.5),(0.2,0.3,0.7),(0.3,0.3,1)\rangle$ and $\mathrm{J}=\langle(0.2,0.4,0.8),(0.1,0.2,0.8),(0.2,0.5$, $0.9)\rangle$. Then $N S C l(\mathrm{I})=\mathrm{G}$ and $\mathrm{NSCl}(\mathrm{J})=\mathrm{G}$.
This implies that $N S C l(\mathrm{I}) \cap N S C l(\mathrm{~J})=\mathrm{G}$. Now,
$\mathrm{I} \cap \mathrm{J}=\langle(0.1,0.2,0.8),(0.1,0.2,0.8),(0.2,0.3,1$)), it follows that $\mathrm{NSCl}(\mathrm{I} \cap \mathrm{J})=\mathrm{H}$. Then $\mathrm{NSCl}(\mathrm{I}) \cap$ $N S C l(\mathrm{~J}) \nsubseteq N S C l(\mathrm{I} \cap \mathrm{J})$.

Theorem 6.7 If A and B are $N S s$ of $N T S s \mathrm{X}$ and Y respectively, then
(i) $\mathrm{NSCl}(A) \times N S C l(B) \supseteq N S C l(A \times B)$,
(ii) $N S \operatorname{Int}(A) \times N S \operatorname{Int}(B) \subseteq N S \operatorname{Int}(A \times B)$.

Proof : (i) Since $A \subseteq N S C l(A)$ and $B \subseteq N S C l(B)$, hence $A \times B \subseteq N S C l(A) \times N S C l(B)$. This implies
that $\mathrm{NSCl}(A \times B) \subseteq \mathrm{NSCl}(\mathrm{NSCl}(A) \times \mathrm{NSCl}(B))$ and From Proposition 4.12, $N S C l(A \times B) \subseteq$ $N S C l(A) \times N S C l(B)$.
(ii) follows from (i) and the fact that $N S$ Int $(\mathrm{C}(A))=$ $\mathrm{C}(\mathrm{NS} \mathrm{Cl}(A))$.

Lemma 6.8 For $N S s A_{i}$'s and B_{j} 's of $N T S s \mathrm{X}$ and Y respectively, we have
(i) $\cap\left\{A_{i}, B_{j}\right\}=\min \left(\cap A_{i}, \cap B_{j}\right)$;
$\cup\left\{A_{i}, B_{j}\right\}=\max \left(\cup A_{i}, \cup B_{j}\right)$.
(ii) $\cap\left\{A_{i}, 1_{\mathrm{N}}\right\}=\left(\cap A_{i}\right) \times 1_{\mathrm{N}}$;
$\cup\left\{A_{i}, 1_{\mathrm{N}}\right\}=\left(\cup A_{i}\right) \times 1_{\mathrm{N}}$.
(iii) $\cap\left\{1_{\mathrm{N}} \times B_{j}\right\}=1_{\mathrm{N}} \times\left(\cap B_{j}\right)$;
$\cup\left\{1_{\mathrm{N}} \times B_{j}\right\}=1_{\mathrm{N}} \times\left(\cup B_{j}\right)$.
Proof : Obvious.

Theorem 6.9 Let (X, τ) and (Y, σ) be $N T S s$ such that X is neutrosophic product related to Y . Then for $N S s A$ of X and B of Y , we have
(i) $\mathrm{NSCl}(A \times B)=N S C l(A) \times N S C l(B)$,
(ii) $N S$ Int $(A \times B)=N S$ Int $(A) \times N S$ Int (B).

Proof : (i) Since $\mathrm{NSCl}(A \times B) \subseteq N S C l(A) \times N S C l$
(B) (By Theorem 6.7 (i)) it is sufficient to show that $N S C l(A \times B) \supseteq N S C l(A) \times N S C l(B)$. Let $A_{i} \in \tau$ and $B_{j} \in \sigma$. Then NS $C l(A \times B)=\left\langle(\mathrm{x}, \mathrm{y}), \cap \mathrm{C}\left(\left\{A_{i}\right.\right.\right.$ $\left.\left.\times B_{j}\right\}\right): \mathrm{C}\left(\left\{A_{i} \times B_{j}\right\}\right) \supseteq A \times B, \cup\left\{A_{i} \times B_{j}\right\}:\left\{A_{i}\right.$ $\left.\left.\times B_{j}\right\} \subseteq A \times B\right\rangle=\left\langle(x, y), \cap\left(\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times\right.\right.$ $\left.\mathrm{C}\left(B_{j}\right)\right): \mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right) \supseteq A \times B, \cup\left(A_{i} \times\right.$ $\left.\left.1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}\right): A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j} \subseteq A \times B\right\rangle=\langle(x, y)$, $\cap\left(\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right)\right): \mathrm{C}\left(A_{i}\right) \supseteq A$ or $\mathrm{C}\left(B_{j}\right)$ $\supseteq B, \cup\left(A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}\right): A_{i} \subseteq A$ and $\left.B_{j} \subseteq B\right\rangle=$ $\left\langle(x, y), \min \left(\cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(A_{i}\right) \supseteq\right.\right.\right.$ $\left.A\}, \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right)$, $\max \left(\cup\left\{A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}: A_{i} \subseteq A\right\}, \cup\left\{A_{i} \times 1_{\mathrm{N}}\right.\right.$ $\left.\left.\left.\cap 1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right)\right\rangle$. Since $\left\langle(x, y), \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}}\right.\right.$ $\left.\cup 1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(A_{i}\right) \supseteq A\right\}, \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}} \cup 1_{\mathrm{N}} \times\right.$ $\left.\left.\mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right\rangle \supseteq\left\langle(x, y), \cap\left\{\mathrm{C}\left(A_{i}\right) \times 1_{\mathrm{N}}\right.\right.$:
$\left.\left.\mathrm{C}\left(A_{i}\right) \supseteq A\right\}, \cap\left\{1_{\mathrm{N}} \times \mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right) \supseteq B\right\}\right\rangle=\langle(x, y)$, $\cap\left\{\mathrm{C}\left(A_{i}\right): \mathrm{C}\left(A_{i}\right) \supseteq A\right\} \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times \cap\left\{\mathrm{C}\left(B_{j}\right): \mathrm{C}\left(B_{j}\right)\right.$ $\supseteq B\}\rangle=\left\langle(x, y), N S C l(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times N S C l(B)\right\rangle$ and $\left\langle(x, y), \cup\left\{A_{i} \times 1_{\mathrm{N}} \cap 1_{\mathrm{N}} \times B_{j}: A_{i} \subseteq A, \cup\left\{A_{i} \times 1_{\mathrm{N}}\right.\right.\right.$ $\left.\left.\cap 1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right\rangle \subseteq\left\langle(x, y), \cup\left\{A_{i} \times 1_{\mathrm{N}}: A_{i} \subseteq A\right\}\right.$, $\left.\cup\left\{1_{\mathrm{N}} \times B_{j}: B_{j} \subseteq B\right\}\right\rangle=\left\langle(x, y), \cup\left\{A_{i}: A_{i} \subseteq A\right\} \times 1_{\mathrm{N}}\right.$, $\left.1_{\mathrm{N}} \times \cup\left\{B_{j}: B_{j} \subseteq B\right\}\right\rangle=\left\langle(x, y)\right.$, NS Int $(A) \times 1_{\mathrm{N}}$, $1_{\mathrm{N}} \times N S$ Int $\left.(B)\right\rangle$, we have $N S C l(A \times B) \supseteq\langle(x, y)$, $\min \left(N S C l(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times N S C l(B)\right), \max (N S$ Int $(A) \times 1_{\mathrm{N}}, 1_{\mathrm{N}} \times N S$ Int $\left.\left.(B)\right)\right\rangle=\langle(x, y), \min (N S C l$ (A), $N S C l(B)), \max (\operatorname{NS} \operatorname{Int}(A), N S \operatorname{Int}(B))\rangle=$ $\mathrm{NSCl}(A) \times \mathrm{NSCl}(\mathrm{B})$.
(ii) follows from (i).

Theorem 6.10 Let (X, τ) be a $N T S$. Then for a neutrosophic subset A and B of X we have,
(i) $\mathrm{NSCl}(A) \supseteq A \cup N S C l(N S$ Int $(A))$,
(ii) $N S$ Int $(A) \subseteq A \cap N S$ Int $(N S C l(A))$,
(iii) $\operatorname{NInt}(\mathrm{NSCl}(A)) \subseteq \operatorname{NInt}(\mathrm{NCl}(A))$,
(iv) $\operatorname{NInt}(N S C l(A)) \supseteq N \operatorname{NInt}(N S C l(N S I n t(A)))$.

Proof : By Proposition 6.3 (i), $\mathrm{A} \subseteq \mathrm{NS} \mathrm{Cl}(A)$----(1). Again using Proposition 5.2 (i), NS Int $(A) \subseteq A$. Then $N S C l(N S$ Int $(A)) \subseteq N S C l(A)----$ (2). By (1) $\&(2)$ we have, $A \cup N S C l(N S$ Int $(A)) \subseteq N S C l(A)$. This proves (i).
By Proposition 5.2 (i), NS Int $(A) \subseteq A$----- (1). Again using proposition 6.3 (i), $A \subseteq N S C l(A)$. Then $N S$ Int $(A) \subseteq N S$ Int (NS Cl (A)) ----- (2). From (1) \& (2), we have NS Int $(A) \subseteq A \cap N S$ Int (NS Cl(A)). This proves(ii).

By Proposition 6.4, $\mathrm{NS} \mathrm{Cl}(\mathrm{A}) \subseteq \mathrm{NCl}(\mathrm{A})$. We get $N \operatorname{Int}(N S C l(A)) \subseteq N \operatorname{NInt}(N C l(A))$. Hence (iii).
By (i), $N S C l(A) \supseteq A \cup N S C l(N S$ Int $(A))$. We have NInt $(N S C l(A) \supseteq N \operatorname{NInt}(A \cup N S C l(N S$ Int $(A)))$. Since NInt $(A \cup B) \supseteq \operatorname{NInt}(A) \cup N \operatorname{NInt}(B), N I n t(N S$ $C l(A) \supseteq N \operatorname{Int}(A) \cup N \operatorname{Int}(N S C l(N S \operatorname{Int}(A))) \supseteq$ $N \operatorname{lnt}(N S C l(N S ~ I n t(A)))$. Hence (iv).

REFERENCES

[1] K. Atanassov, Intuitionistic fuzzy sets, in V.Sgurev, ed.,Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg.Academy of Sciences (1984)).
[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
[3] K. Atanassov, Review and new result on intuitionistic fuzzy sets , preprint IM-MFAIS-1-88, Sofia, 1988.
[4] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl 82 (1981), 14-32.
[5] C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
[6] Dogan Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
[7] Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA (2002), smarand@unm.edu
[8] Floretin Smarandache, A Unifying Field in Logics : Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
[9] Floretin Smaradache, Neutrosophic Set :- A Generalization of Intuitionistic Fuzzy set, Journal of Defense Resourses Management. 1 (2010), 107-116.
[10] I. M. Hanafy, Completely continuous functions in intutionistic fuzzy topological spaces, Czechoslovak Mathematics journal, Vol . 53 (2003), No.4, 793-803.
[11] F. G. Lupianez, Interval Neutrosophic Sets and Topology, Proceedings of $13^{\text {th }}$ WSEAS, International conference on Applied Mathematics (MATH'08) Kybernetes, 38 (2009), 621-624.
[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
[13] Reza Saadati, Jin HanPark, On the intuitionistic fuzzy topological space, Chaos, Solitons and Fractals 27 (2006), 331-344.
[14] A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces, Journal computer Sci. Engineering, Vol. (2) No. (7) (2012).
[15] A.A.Salama and S.A.Alblowi, Neutrosophic set and neutrosophic topological space, ISOR J. mathematics, Vol.(3), Issue(4), (2012). pp-31-35.
[16] R. Usha Parameswari, K. Bageerathi, On fuzzy γ-semi open sets and fuzzy γ-semi closed sets in fuzzy topological spaces, IOSR Journal of Mathematics, Vol 7 (2013), 63-70.
[17] L.A. Zadeh, Fuzzy Sets, Inform and Control 8 (1965), 338353.

