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ON_NEWTON-LIKE ITERATION FUNCTIONS: GENERAL CONVERGENCE THENREMS
AND A SPECIFIC ALGCRITHM

KENNETH M. BROWNJ') and J. E. DENNIS, JR.2)

1. Introduction.

As more and more physical phenomena are being represented as
nonlinear mathematical formulations, increasing attention is being paid
to the solution of systems of nonlinear equaticns. MNewton's method [11]
has long been a popular tool for the solution of such s}.'stens , but
computationally simpler variants of Newton's method have been proposed
recently. See for example [11, [2], (3], (4], [12], (16], and [17].

In this paper we give convergence theorems for a class of these methods.
We also present an algorithm suggested by the theory and include several

numerical examples.

l) Department of Computer Science; Cornell University; Ithaca, N.Y. 14650
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2. Notation and Preliminaries.

Let F be definedon 2, QCE and F : R=E . Let %%
be the closure of an cpen convex set in E“ with 20 C 2 and let Q0o
be bounded. We seek solutions of F(x) = 0 and consider the class
of iterative methods

(1) y-n+l = xn - G-l(xn) * F(xn) » n=0, 1, ...,

with G{x") an N x N metrix and c'l(x“) 3 [G(x‘"‘)]'l . Define
s coe P = ‘e cee = O 'a

X = (xl’ » x!\') ’ =5y » tN) ’ fij H Ofi/ x,j and

J(xn)

[fij(xn)] » the Juoobien matrix of F at x° . If in (1)

G(xn) = J(xn) , we have the standard Newton's method. As G(xn) is
alloved to vary from J (xn) in a controlled manner, one has a class
of "perturbed” Newton methods whose convergence will be studied in
the next section.

N(x,r) will denote the open ball centered at x with radius
r and cl N(x,r) will be its closure.

Finally, F"(x) will denote the N x N x N array [f‘; J] R

k aefk

where !‘id z 'Fx—i?x— . HP"(x)H2 is then bounded by

J
N N 2\1/2
Yyl .

=]l 1=l j=1

2=
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3. Convergence bf a Class of Perturbed Newton Methods.

The following is a specialization of a theorem due to Dennis {71.

THECREM 1. Let the following conditions be satisfied:
1) For every x € a , G'l(x) exists and ||G-1(x)|| $B.

1) For every x €0 , ||F'(x)|| sx.

111) 0 < ||F(x°)]| s n, for some x° ¢ Q.

n+l

iv) For every n such that x -x" - G'l(xn)l?(xn) is defined,

N1 - 36 2™ s 8 <1 .
2

B X1
v) h-lT< 2.

o BN .h
vi) N(x,r?cno,where r =75 and a-b+(1-6)§.

Then F(x) = O has a solution ¢, ||o - Lll<r, to which the

iteration defined by equation (1) converges and the speed of convergence

n
n Ba
1s given by ||x '°”<T-'a-'

Corollary 1. Let C = BZK"I . Then hypothesis v) of Theorem 1 allows the

replacement of h' = (—c—)—é by the smaller h = i% in Theorem U4 of
1-3

(8], a convergence theorem for the Newton-Jacobi iteration (see (2) below).

In the next two theorems || . || will denote the 4, rorm.

THECREM 2. Let A(x) be defined as the positive square root of the smallest
*

eigenvalue of G(x)G(x) , and let w(x) be defined as the positive square

root of the largest eigenvalue of [J(x) - G(x))[J(x) - G(x)]. , where

J(x) denotes the Jacoblian of F at x .
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Ir
1) Fe ca(no) and Vx €a , |F"()|]sx;

1) 3 e > |IFO)]]| 515

111) A(x) > 0 for every x € 2, 3

x 3
iv) %&%<1 for every x eﬂo H

then G-l(x) exists for every x € 8, , and

Ho.l(x)ll i m—lxm 2EB<w.
xell

Furthermore, ||I - J(x)G-l(x)H s gamxo‘i{% 58<¢l.

*

Proof. Zero is not an eigenvalue of H(x) = G(x)G(x) ; hence H(x) 1is
in -1 * ) -1 :

vertible and G “(x) = G(x) H "(x) . Thus || ™ (x)|] = 1/A(x) . (See

for example (6, p. 173].) Now A(x) 1s continuous (in x ) on the compact

set O, and hence min A(x) exists and is positive since zero is not in
xeh
°

the range of A ; but ||J(x) - G(x)|| = u(x) , so that

HT - 36 )| = 16(x) - 3(x)] - 67X ||
)
ForFTotl

and 3 <1, since 1 1is not in the range %-88- .

THECREM 3. If in addition to 1) - iv) of the previous theorem, it is true

that

821('1
1-8

v) ham <2 and N(x°,r) c .,
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N h
where r-igz,a-bq-(l-o)é.'

then the iteration (1) is defined for every n and converges to a point
oeq  with F(o) = 0, at a rate given by =" - ol| s rd® .

Proof. Follows directly from Theorems 1 and 2.

In the problem of minimizing a positive function P(x) , one often
examines the zeros of the gradient function, VP , as candidates for yielding
the minimum. If P 48 twice continuously differentiable, the Jacobien

matrix JP(x) » of UP at x (i.e., the Hessisn of P ) will be Hermitean.

If G(x) 4s chosen to be Hermitean, the foregoing theorems simplify with
A(x) being the minimum modulus of the eigenvalues of G(x) and u(x)

being the meximum modulus of the eigenvalues of JP(x) - G6(x) .

If G(x) 1is e diagonel matrix with diag G(x) = diag J(x) then (1)
becomes the Newton-Jacobi iteration

(2 . Xy - £,(5) / 8,65 , 1 a1, Nk a0,,...,

whose convergence has been studied by several asuthors [5], (8], eana [13].

The method was originally proposed by Lieberstein [12].

N
Remark 1. If J(x) is Hermitean and ix‘niixsnnl{u(x)l > max E Ifu(x)l R
. ey
JH
then 111) and iv) of Theorem 2 hold for the Newton-Jacobi iteration .(2).

Proof. G(x) 1is the diagonal of J(x) which, by hypothesis, has no

zero diagonal elements. The eigenvalues of G(x) are its nonzero elements
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and so A(x) 1s greater than zero and is the minimum over { of lfu(x)l .

Now by the Gerschgorin Theorem,

N
u(x) s wax Z ]fU(x)l . Thus,
=1

3
I

N
max Z EAES]
J=1

x) o J#
A(x min |fn(x)|

<1l.

The following very nice result, which we particularize to the present
setting, is due to Rheinboldt [15, p. 16].

THECREM 4. IF: 1) [|3(x) - 3| s 7|]x - y|| , for x,y € .

1) [l6(x) - el snllx-x°ll, xeqn ,

111) ||o(x) - 6(x)|| s & , xef ,
-1, 0
w) |6 s8,

v) 116NOIFCO) ] 5 o end

oBYa

vi) B8 <l, ha—=
{1-88)

% 1/2;0 = mnx(l,l}) and

» _1-J12n @ :
h

o
clN(x,t)cﬂo, t i

) n o *
THEN: the sequence (x') given by (1) is defined, remains in c N(x°,t )
and converges to 0 3F(0) = 0 and o 1is unique in

o = 14+J12n [°
Nx,t ), t -
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L. An Algorithm for the Solution of Nonlinear Systems of Equations.

The foregoing theorems suggest that if in (1) G(x®) is close to
the Jacobian patrix at each step of the iteration, then e numerical
method based on (1) will converge if the Jacobian matrix is not too
ill-conditioned [6] near the root. Now as the root is approached,
the successive iterates and hence the elements of the Jacobian matrix
(assumed well conditioned) show less change from step to step. An
algorithm is suggested, therefore, in which those elerents of the
Jacobian matrix which show little inclination to change are held
constant during further iterations. We detail the algorithm as follows:

1. Use any method or combination of methods until‘ a roint xX® is
obtained for which a normalized value of ||F(x™)|| is small; e.g.,

HFG™ |
< it o< ||Fr(x®)]] s 1
HFG) ]
or HFGH(] < 2 it HEE) ] > 1.

2. Compute and store J(x®) and form x°* using the standard

Newton iteration
4+ -
S e )
rid(xnﬂ') , of J(xnﬂ') one at a time
comparing them with the corresponding elements of J(x®) . If. fi J(

3 Form the elements,
n+l
x )

and ti J(xn) agree in & relative sense to within a specified tolerance

T , record the subscript pair (i,j) in a list £ . If the tolerance

is not met make no such record. In any event after meking the comparison,

replace. f, J(xn) in storage by tid(xnﬂ') .

L. Form xm'2 » again using the standard Newton iteration.

5. Now form the elements, tij(xn*a) , of J(xn+2) one at a time.
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It (1,)) £L£, make no ccmparison test. If (i,J) € £, compare

rid(xmz) with fid(xm'l) using the same test given sbove; i.e.,
n+2 n+l n+2
- H
is 'fi.j(x ) fij(x ) T Ifij(x )| ?
n+2

(Note, if fi:j(x ) =0 , an absolute error test can be used.)

If the test is not met, delete the subscript peir (2,j) from the
list £ . If the test is met, allow the subscript pair (1,3) to

- N2
rexain in the list L£ . In either case, store f ix ) in

al
place of ¢ .

i

6. Caleulzte o3

from the standard Newton iteration.
T Set k=n+ 3.

8. Porm =% from the relation

£ LK. (6(x%) 7t F(x5) , vhere

G(x5) = [513(xk)] is formed as either

n+2
)

gn(xk) = fi,j(x (stored) , (1,J) €L, or

8y, () = £, (5, (L) £ L.

9. Replace k by k +1 .

10. Repeat steps 8 and 9 until convergence occurs.

Remark 1. Obviously any implementation of this algorithm
will include tests for convergence after s'céps 2, 4 and 6 .

Remark 2. The foregoing algorithm represents a kind of middle
ground between a) the stationary [11] (or periodically-stationary
{41, [9]) Hewton's method and b) the standard Newton's method [11].
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Remark 3. In many problems it is inconvenient to give explicit
enalytic expressions for the pertial derivatives. The algorithm
presented in this section can also be implemented using differences
to approximate the exact partial derivatives; e.g.,

ti(xn + heey) - fi(x")
h 2

2,08 =

vhere ed is the jth unit vector and h is a small purber which
may depend on i, j and n .

-9~
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5. Numerical Results.

The method of section 4 was tested on a number of systems
of small order with uniformly good results: convergence to the
saxe accuracy which Newton's method yielded with fewer or at most
the same number of function evaluations required. A typical
example was the 2 X 2 system considered first by Freudenstein

and Roth [10] end later by Broyden (4] and Brown and Conte [3] :

£ (% ,x,) = <13 + x) + [(-x, + 5)x, - 2]x,

ra(xl,xz) = =29 + X + [(x2 + .’l.)x2 - 1h]x2. .
Using initial values of
x3mb5,  xebk3,

Newton's method required 24 total evaluations ( 8 function evaluations
and 16 partial derivative evaluations) to produce the solution (5,4)

to 14 digits of accuracy. The algorithm presented herein produced

14 digits of accuracy after 20 total evaluations ( 8 function
evaluations and 12 partial derivative evaluations).

Since we conjectured that the practical advantage of the algorithm
would show when solving a large, computationally complex system, it
seemed only fair to test the method on a demanding example. We chose
the 24 x 24 system of highly nonlinear equations considered by
Peck and Swan [14] in explaining a certain magneto-gasdynamic flow.
These equations involve considerable computations as the following
"average” (in terms of amount of computation required) equation of the

system shows:

fs(x) = .5(1 - xg) + .016(1 = xﬁ/xé) + (1 - x7/x6)
= (+016/sin :&) (97814 - xsxkcos(x2 - x3) ]sin(xl - .20044) .

Robinson [16] has solved this system numerically with his

method, a generalization of the secant method to nonlinear systems.
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Using a copy of the progrem with which Robinson solved this 24 x 24
system, we were able to ccmpare the results obtained by implementing
the algorithm of section U4 with his results. In the implementation,
first differences were used to approximete the partial derivatives.
Robinson's starting guess was used for each of the methods tested
and for that starting guess, x°, ||F(x0)||_ = max|fy(x°)| = .303 .

1sis2L

We summarize the results in Table 1.

Table 1

Method Total Number Final Value  Ccmputer Time |
of Evaluations of ||F||_ Used (Relative)

Robinson 410k 9.65 x 1077 1.87

Newton with anelytic

derivatives (reported not reported ~10 7 ~3.6
in [16] )

: -10
Algorithm of section & 1933 6.12 x 10 1

(discretized form)

The tolerance value, T , used was 0.1 (see steps 3 and §
of the algorithm in section 4 ).
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