On non-Archimedean curves omitting few components and their arithmetic analogues

Julie Tzu-Yueh Wang

Academia Sinica, Taiwan

Distribution of Rational and Holomorphic Curves
in Algebraic Varieties
BIRS, Banff

A motivating example.

Let \mathbf{k} an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $\left|a_{n} z^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
$f(z)$ is called a \mathbf{k} entire function if f is analytic on \mathbf{k}.
Facts: A k entire function without zeros (over k) is constant.

A motivating example.

Let \mathbf{k} an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $\left|a_{n} z^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
$f(z)$ is called a \mathbf{k} entire function if f is analytic on \mathbf{k}.
Facts: A \mathbf{k} entire function without zeros (over \mathbf{k}) is constant.

A motivating example.

Let \mathbf{k} an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $\left|a_{n} z^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
$f(z)$ is called a \mathbf{k} entire function if f is analytic on \mathbf{k}.
Facts: A k entire function without zeros (over k) is constant.

A motivating example.

Let \mathbf{k} an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $\left|a_{n} z^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
$f(z)$ is called a \mathbf{k} entire function if f is analytic on \mathbf{k}.
Facts: A \mathbf{k} entire function without zeros (over \mathbf{k}) is constant.

k hyperbolic

A variety X is said to be \mathbf{k} hyperbolic if any analytic map from \mathbf{k} to X is constant.

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- \mathbb{P}^{n} omitting $n+1$ hypersurfaces in g. p. (Ru 2001)

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- \mathbb{P}^{n} omitting $n+1$ hypersurfaces in g. p. (Ru 2001)
- projective variety omitting $n+1$ hypersurface divisors in g. p. (An 2007)

Some examples of \mathbf{k} hyperbolic varieties.

- $\mathbb{G}_{m}=\mathbb{A}^{1} \backslash\{0\}=\mathbb{P}^{1} \backslash\{0, \infty\}$.
- curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- \mathbb{P}^{n} omitting $n+1$ hypersurfaces in g. p. (Ru 2001)
- projective variety omitting $n+1$ hypersurface divisors in g. p. (An 2007)
- projective variety omitting $n+1$ ample divisors in g. p. (Lin-W. 2010)

Further results.

Theorem (Lin-W.2010, An-Levin-W. 2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.

Further results.

Theorem (Lin-W.2010, An-Levin-W. 2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.

Further results.

Theorem (Lin-W.2010, An-Levin-W. 2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that the image of any non-constant analytic map
$f: \mathbf{k} \rightarrow X \backslash D$ is contained in Z.
(3) If D_{i} is ample for all i, then there is no non-constant analytic map
from \mathbf{k} to $X \backslash D$.

Further results.

Theorem (Lin-W.2010, An-Levin-W. 2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that the image of any non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in Z.
(3) If D_{i} is ample for all i, then there is no non-constant analytic map from \mathbf{k} to $X \backslash D$.

Question:

What if the intersection of the divisors D_{i} 's is not empty?

A simple observation.

Let P_{1}, P_{2} be non-constant homogeneous polynomials in $n+1$ variables with degree d_{1} and d_{2} respectively. Assume that the divisors $D_{1}=\left\{P_{1}=0\right\}$ and $D_{2}=\left\{P_{2}=0\right\}$ in \mathbb{P}^{n} are distinct.

Let $f=\left(f_{0}, \cdots, f_{n}\right): \mathbf{k} \rightarrow \mathbb{P}^{n} \backslash D_{1} \cup D_{2}$ be an analytic map. Then $P_{1}^{d_{2}}(f) / P_{2}^{d_{1}}(f)$ is entire without zero and hence is constant. Consequently, the image of f is contained in a subvariety of codimension one.

A simple observation.

Let P_{1}, P_{2} be non-constant homogeneous polynomials in $n+1$ variables with degree d_{1} and d_{2} respectively. Assume that the divisors
$D_{1}=\left\{P_{1}=0\right\}$ and $D_{2}=\left\{P_{2}=0\right\}$ in \mathbb{P}^{n} are distinct.
Let $f=\left(f_{0}, \cdots, f_{n}\right): \mathbf{k} \rightarrow \mathbb{P}^{n} \backslash D_{1} \cup D_{2}$ be an analytic map.
Then $P_{1}^{d_{2}}(f) / P_{2}^{d_{1}}(f)$ is entire without zero and hence is constant.
Consequently, the image of f is contained in a subvariety of
codimension one.

A simple observation.

Let P_{1}, P_{2} be non-constant homogeneous polynomials in $n+1$ variables with degree d_{1} and d_{2} respectively. Assume that the divisors
$D_{1}=\left\{P_{1}=0\right\}$ and $D_{2}=\left\{P_{2}=0\right\}$ in \mathbb{P}^{n} are distinct.
Let $f=\left(f_{0}, \cdots, f_{n}\right): \mathbf{k} \rightarrow \mathbb{P}^{n} \backslash D_{1} \cup D_{2}$ be an analytic map.
Then $P_{1}^{d_{2}}(f) / P_{2}^{d_{1}}(f)$ is entire without zero and hence is constant.
Consequently, the image of f is contained in a subvariety of
codimension one.

A simple observation.

Let P_{1}, P_{2} be non-constant homogeneous polynomials in $n+1$
variables with degree d_{1} and d_{2} respectively. Assume that the divisors
$D_{1}=\left\{P_{1}=0\right\}$ and $D_{2}=\left\{P_{2}=0\right\}$ in \mathbb{P}^{n} are distinct.
Let $f=\left(f_{0}, \cdots, f_{n}\right): \mathbf{k} \rightarrow \mathbb{P}^{n} \backslash D_{1} \cup D_{2}$ be an analytic map.
Then $P_{1}^{d_{2}}(f) / P_{2}^{d_{1}}(f)$ is entire without zero and hence is constant.
Consequently, the image of f is contained in a subvariety of codimension one.

Theorem (An-W.-Wong 2008)

Let X be a nonsingular projective subvariety of \mathbb{P}^{N} of dimension n. Let P_{1}, \ldots, P_{q} be non-constant homogeneous polynomials in $N+1$ variables. Let $D_{i}=X \cap\left\{P_{i}=0\right\}, 1 \leq i \leq q$, be divisors of X in general position. Let f be an analytic map from \mathbf{k} to $X \backslash \cup_{i=1}^{q} D_{i}$. Then the image of f is contained in a subvariety of X of codimension $\min \{n+1, q\}-1$ in X. In particular, f is algebraically degenerate if $q \geq 2$, and $X \backslash \cup_{i=1}^{q} D_{i}$ is \mathbf{k}-hyperbolic if $q \geq n+1$.

Theorem (An-Cherry-W. 2008 \& 2015)

Let Y be a closed positive dimensional subvariety of a non-singular projective variety X. Let $\left\{D_{i}\right\}_{i=1}^{\ell}$ be ℓ irreducible, effective, ample divisors in general position on X. Let r be the rank of the subgroup of $\mathrm{NS}(X)$ generated by $\left\{c_{1}\left(D_{i}\right)\right\}_{i=1}^{\ell}$. If there exists an algebraically non-degenerate analytic map from \mathbf{k} to Y omitting each of the D_{i} that does not contain all of Y, then

$$
\ell \leq \min \{r+\operatorname{codim} Y, \operatorname{dim} X\}
$$

n-component

Theorem (An-W.-Wong 2008)
Let D_{1}, \ldots, D_{n} be nonsingular hypersurfaces in \mathbb{P}^{n} intersecting transversally. Then $\mathbb{P}^{n} \backslash \cup_{i=1}^{n} D_{i}$ is \mathbf{k} hyperbolic if deg $D_{i} \geq 2$ for each $1 \leq i \leq n$.

Corollary
If D_{1} and D_{2} are two generic curves in $\mathbb{P}^{2}(k)$ with deg $D_{1}+\operatorname{deg} D_{2} \geq 4$, then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is k hyperbolic.

n-component

Theorem (An-W.-Wong 2008)
Let D_{1}, \ldots, D_{n} be nonsingular hypersurfaces in \mathbb{P}^{n} intersecting transversally. Then $\mathbb{P}^{n} \backslash \cup_{i=1}^{n} D_{i}$ is \mathbf{k} hyperbolic if deg $D_{i} \geq 2$ for each $1 \leq i \leq n$.

Theorem (An-W.-Wong 2008)
Let D_{1} and D_{2} be nonsingular projective curves in \mathbb{P}^{2}. Assume that D_{1} and D_{2} intersect transversally and $\operatorname{deg} D_{1} \leq \operatorname{deg} D_{2}$. Then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is \mathbf{k}-hyperbolic if and only if either $\operatorname{deg} D_{1}, \operatorname{deg} D_{2} \geq 2$ or $\operatorname{deg} D_{1}=1$, $\operatorname{deg} D_{2} \geq 3$ and D_{1} does not intersect D_{2} at any maximal inflexion point.

n-component

Theorem (An-W.-Wong 2008)

Let D_{1}, \ldots, D_{n} be nonsingular hypersurfaces in \mathbb{P}^{n} intersecting transversally. Then $\mathbb{P}^{n} \backslash \cup_{i=1}^{n} D_{i}$ is \mathbf{k} hyperbolic if deg $D_{i} \geq 2$ for each $1 \leq i \leq n$.

Theorem (An-W.-Wong 2008)
Let D_{1} and D_{2} be nonsingular projective curves in \mathbb{P}^{2}. Assume that D_{1} and D_{2} intersect transversally and $\operatorname{deg} D_{1} \leq \operatorname{deg} D_{2}$. Then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is \mathbf{k}-hyperbolic if and only if either $\operatorname{deg} D_{1}, \operatorname{deg} D_{2} \geq 2$ or $\operatorname{deg} D_{1}=1$, $\operatorname{deg} D_{2} \geq 3$ and D_{1} does not intersect D_{2} at any maximal inflexion point.

Corollary

If D_{1} and D_{2} are two generic curves in $\mathbb{P}^{2}(\mathbf{k})$ with $\operatorname{deg} D_{1}+\operatorname{deg} D_{2} \geq 4$, then $\mathbb{P}^{2} \backslash\left\{D_{1} \cup D_{2}\right\}$ is \mathbf{k} hyperbolic.

Main Theorem 1.

Theorem (Levin-W.)
Let D_{1}, \ldots, D_{n} be effective nef divisors intersecting transversally in an n-dimensional nonsingular projective variety X over \mathbf{k}. Let K_{X} denote the canonical divisor on X.

Main Theorem 1.

Theorem (Levin-W.)
Let D_{1}, \ldots, D_{n} be effective nef divisors intersecting transversally in an n-dimensional nonsingular projective variety X over \mathbf{k}. Let K_{X} denote the canonical divisor on X.
(1) Assume that either $D_{i}^{n}>1$ or that $D_{i}^{n}=1$ and $K_{X} \cdot D_{i}^{n-1}<1-n$ for each $1 \leq i \leq n$. Then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper subvariety of X.

\circ
$Z \subset X$ such that the image of any non-constant analytic map
\square

Main Theorem 1.

Theorem (Levin-W.)

Let D_{1}, \ldots, D_{n} be effective nef divisors intersecting transversally in an n-dimensional nonsingular projective variety X over \mathbf{k}. Let K_{X} denote the canonical divisor on X.
(1) Assume that either $D_{i}^{n}>1$ or that $D_{i}^{n}=1$ and $K_{X} \cdot D_{i}^{n-1}<1-n$ for each $1 \leq i \leq n$. Then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper subvariety of X.
(2) If $D_{i}^{n}>1$ for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that the image of any non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash \cup_{i=1}^{n} D_{i}$ is contained in Z.

Corollary

Let X be an n-dimensional nonsingular projective variety over \mathbf{k}. Suppose that $-K_{X}$ is nef and

$$
\left(-K_{X}\right)^{n}>(n-1)^{n} .
$$

Let D_{1}, \ldots, D_{n} be effective nef and big divisors on X intersecting transversally. Then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper subvariety of X.

Remark

Let X be a smooth projective surface over an algebraically closed field.
Then $-K_{X}$ is nef and $\left(-K_{X}\right)^{2}>1$ if and only if X is one of the following:
(1) $X \cong \mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)\right)$ over \mathbb{P}^{1};
(2) $X \cong \mathbb{P}^{2}$ or $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(3) X is obtained from \mathbb{P}^{2} by successively blowing up at most 7 points.

Remark

Let X be a smooth projective surface over an algebraically closed field.
Then $-K_{X}$ is nef and $\left(-K_{X}\right)^{2}>1$ if and only if X is one of the following:
(1) $X \cong \mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)\right)$ over \mathbb{P}^{1};
(2) $X \cong \mathbb{P}^{2}$ or $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(3) X is obtained from \mathbb{P}^{2} by successively blowing up at most 7 points.

Remark

Let X be a smooth projective surface over an algebraically closed field.
Then $-K_{X}$ is nef and $\left(-K_{X}\right)^{2}>1$ if and only if X is one of the following:
(1) $X \cong \mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(2)\right)$ over \mathbb{P}^{1};
(2) $X \cong \mathbb{P}^{2}$ or $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(3) X is obtained from \mathbb{P}^{2} by successively blowing up at most 7 points.

Question.

Is it possible to impose conditions on the self-intersection numbers of the divisors or the degrees of the divisors (in some fixed projective embedding) to ensure that $X \backslash\left(D_{1} \cup \cdots \cup D_{n}\right)$ is \mathbf{k} hyperbolic?

Ans. Unlikely!

Question.

Is it possible to impose conditions on the self-intersection numbers of the divisors or the degrees of the divisors (in some fixed projective embedding) to ensure that $X \backslash\left(D_{1} \cup \cdots \cup D_{n}\right)$ is \mathbf{k} hyperbolic?

Ans. Unlikely!

Example.

Let m and n be positive integers. Let $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and let D_{1} and D_{2} be effective divisors of type $(1, m)$ and $(1, n)$, respectively. Let
$D=D_{1}+D_{2}$. Let P be a point in the intersection of the supports of D_{1} and D_{2} and let L be the line on X of type $(0,1)$ through P. Then since $L \backslash D=L \backslash\{P\} \cong \mathbb{A}^{1}$, there exists a non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash D$. Note that D_{1} and D_{2} are very ample and $D_{1}^{2}=2 m$, $D_{2}^{2}=2 n$.

Main Theorem 2.

Theorem (Levin-W.)
Let X be a rational ruled surface over \mathbf{k}. Let D_{1} and D_{2} be effective divisors intersecting transversally in X.

Main Theorem 2.

Theorem (Levin-W.)
Let X be a rational ruled surface over \mathbf{k}. Let D_{1} and D_{2} be effective divisors intersecting transversally in X.
(1) If D_{1} and D_{2} are big, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ is contained in a proper subvariety of X.
(2) Suppose that D_{1} and D_{2} are ample. The image of an analytic map $f: k \rightarrow X \backslash D_{1} \cup D_{2}$ is contained in either a fiber or a section C
with $C \sim C_{0} . X \backslash D_{1} \cup D_{2}$ is \mathbf{k} hyperbolic if and only if every fiber
and every section $C, C \sim C_{0}$, intersects $D_{1} \cup D_{2}$ in more than one point. In particular, this holds if $D_{i} . F \geq 2$ and $D_{i} . C_{0} \geq 2$ for $i=1,2$.

Main Theorem 2.

Theorem (Levin-W.)
Let X be a rational ruled surface over \mathbf{k}. Let D_{1} and D_{2} be effective divisors intersecting transversally in X.
(1) If D_{1} and D_{2} are big, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ is contained in a proper subvariety of X.
(2) Suppose that D_{1} and D_{2} are ample. The image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ is contained in either a fiber or a section C with $C \sim C_{0} . X \backslash D_{1} \cup D_{2}$ is \mathbf{k} hyperbolic if and only if every fiber and every section $C, C \sim C_{0}$, intersects $D_{1} \cup D_{2}$ in more than one point. In particular, this holds if $D_{i} . F \geq 2$ and $D_{i} . C_{0} \geq 2$ for $i=1,2$.

Nevanlinna theory v.s. Diophatine approximation

Let X be a variety over a number field K.
existence of a nonconstant analytic curve in X
\downarrow
existence of an infinite set of integral points on X (over a finite extension of K)

Definition.

Let X be an affine variety over a number field k. Let S be a finite set of places of k containing the archimedean places and let $\mathcal{O}_{k, S}$ denote the ring of S-integers of k. We define a set $R \subset X(k)$ to be a set of $\mathcal{O}_{k, s}$-integral points on X if there exists an affine embedding $\phi: X \hookrightarrow \mathbb{A}^{n}$ such that $\phi(R) \subset X \cap \mathbb{A}^{n}\left(\mathcal{O}_{k, s}\right)$.

non-Archimedean Nevanlinna theory \leftrightarrow ?

Note that \mathbf{k} entire functions without zeros are constant.
 It suggests that we should look at ring of integers of a number field k with finite unit groups.
 Then $k=\mathbb{Q}$ or imaginary quadratic field.

non-Archimedean Nevanlinna theory \leftrightarrow ?

Note that \mathbf{k} entire functions without zeros are constant.
It suggests that we should look at ring of integers of a number field k
with finite unit groups.
Then $k=\mathbb{O}$ or imaginary quadratic field.

non-Archimedean Nevanlinna theory \leftrightarrow ?

Note that \mathbf{k} entire functions without zeros are constant.
It suggests that we should look at ring of integers of a number field k with finite unit groups.

Then $k=\mathbb{Q}$ or imaginary quadratic field.
non-Archimedean Nevanlinna theory \leftrightarrow ?

Note that \mathbf{k} entire functions without zeros are constant.
It suggests that we should look at ring of integers of a number field k with finite unit groups.

Then $k=\mathbb{Q}$ or imaginary quadratic field.

\mathbb{G}_{m} is \mathbf{k} hyperbolic.

\mathbb{G}_{m} has only finitely many \mathcal{O}_{k}-integral points, $k=\mathbb{Q}$ or imaginary

quadratic field.

existence of a nonconstant k analytic curve in X

existence of an infinite set of \mathcal{O}_{k} integral points on X

\mathbb{G}_{m} is \mathbf{k} hyperbolic.

\mathbb{G}_{m} has only finitely many \mathcal{O}_{k}-integral points, $k=\mathbb{Q}$ or imaginary quadratic field.

existence of a nonconstant k analytic curve in X

existence of an infinite set of \mathcal{O}_{k} integral points on X

\mathbb{G}_{m} is \mathbf{k} hyperbolic.
\mathbb{G}_{m} has only finitely many \mathcal{O}_{k}-integral points, $k=\mathbb{Q}$ or imaginary quadratic field.
existence of a nonconstant \mathbf{k} analytic curve in X

$$
\downarrow ?
$$

existence of an infinite set of \mathcal{O}_{k} integral points on X

An Example

$C: x^{2}-2 y^{2}=1$. Over $\overline{\mathbb{Q}}$, we have $C \cong \mathbb{G}_{m} . C$ does admit infinitely many \mathbb{Z}-integral points, while C is \mathbf{k} hyperbolic.

Let \tilde{C} be the projective closure of C defined in the projective plane by $x^{2}-2 y^{2}=z^{2}$. Then C has two points at infinity $P_{ \pm}=(\pm \sqrt{2}, 1,0)$. Fvery regular function on C over (1) has a pole at both P and P on \tilde{C}. Over $\mathbb{Q}(\sqrt{2})$, however, there are regular functions on C with a pole only at, say, P_{+}on \tilde{C}. One might view the problem here as being that C doesn't have enough regular functions over $\mathbb{(D)}$ to have a good notion of \mathbb{Z}-integral points.

An Example

$C: x^{2}-2 y^{2}=1$. Over $\overline{\mathbb{Q}}$, we have $C \cong \mathbb{G}_{m} . C$ does admit infinitely many \mathbb{Z}-integral points, while C is \mathbf{k} hyperbolic.
Let \tilde{C} be the projective closure of C defined in the projective plane by $x^{2}-2 y^{2}=z^{2}$. Then C has two points at infinity $P_{ \pm}=(\pm \sqrt{2}, 1,0)$. Every regular function on C over \mathbb{Q} has a pole at both P_{+}and P_{-}on \tilde{C}. Over $\mathbb{Q}(\sqrt{2})$, however, there are regular functions on C with a pole only at, say, P_{+}on \tilde{C}. One might view the problem here as being that C doesn't have enough regular functions over \mathbb{Q} to have a good notion of \mathbb{Z}-integral points.

A necessary condition

Let X be an affine variety over k where $k=\mathbb{Q}$ or an imaginary quadratic field.

Condition (*): There exists a projective closure \tilde{X} of X nonsingular at every point in $\tilde{X} \backslash X$ and such that every (geometric) irreducible component of $\tilde{X} \backslash X$ is defined over k.
TheoremLet $k=\mathbb{Q}$ or an imaginary quadratic field and suppose that char $\mathbf{k}=0$.If X is an affine curve over k satisfying (*) then X contains an infiniteset of \mathcal{O}_{k}-integral points if and only if there exists a non-constantanalytic map $f: \mathbf{k} \rightarrow X$ if and only if X is rational with a single point atinfinity.
In the 2008 paper of An-Levin-W. more parallel statements and results
\squareNevanlinna theory and Diophantine approximation.

> Theorem
> Let $k=\mathbb{Q}$ or an imaginary quadratic field and suppose that char $\mathbf{k}=0$. If X is an affine curve over k satisfying (*) then X contains an infinite set of \mathcal{O}_{k}-integral points if and only if there exists a non-constant analytic map $f: \mathbf{k} \rightarrow X$ if and only if X is rational with a single point at infinity.

In the 2008 paper of An-Levin-W. more parallel statements and results (qualitative and quantitative) are made in non-Archimedean

Nevanlinna theory and Diophantine approximation.

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_{1}, \ldots, D_{n} be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_{X} denote the canonical divisor on X. Suppose that every point in the intersection $\cap_{i=1}^{n} D_{i}$ is k-rational.

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_{1}, \ldots, D_{n} be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_{X} denote the canonical divisor on X. Suppose that every point in the intersection $\cap_{i=1}^{n} D_{i}$ is k-rational.
(1) Assume that either $D_{i}^{n}>1$ or that $D_{i}^{n}=1$ and $K_{X} . D_{i}^{n-1}<1-n$ for each $1 \leq i \leq n$. Then any set R of \mathcal{O}_{k}-integral points on $X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper Zariski-closed subset of X.

\circ \square the set $R \backslash Z$ is finite.

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_{1}, \ldots, D_{n} be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_{X} denote the canonical divisor on X. Suppose that every point in the intersection $\cap_{i=1}^{n} D_{i}$ is k-rational.
(1) Assume that either $D_{i}^{n}>1$ or that $D_{i}^{n}=1$ and $K_{X} \cdot D_{i}^{n-1}<1-n$ for each $1 \leq i \leq n$. Then any set R of \mathcal{O}_{k}-integral points on $X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper Zariski-closed subset of X.
(2) If $D_{i}^{n}>1$ for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that for any set R of \mathcal{O}_{k}-integral points on $X \backslash \cup_{i=1}^{n} D_{i}$, the set $R \backslash Z$ is finite.

Corollary

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Suppose that $-K_{X}$ is nef and

$$
\left(-K_{X}\right)^{n}>(n-1)^{n}
$$

Let D_{1}, \ldots, D_{n} be effective nef and big divisors on X, all defined over k, intersecting transversally in X. Suppose that every point in the intersection $\cap{ }_{i=1}^{n} D_{i}$ is k-rational. Then any set R of \mathcal{O}_{k}-integral points on $X \backslash \cup_{i=1}^{n} D_{i}$ is contained in a proper Zariski-closed subset of X.

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a rational ruled surface over k. Let D_{1} and D_{2} be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_{1} and D_{2} are defined over k and that all of the points in the intersection $D_{1} \cap D_{2}$ are k-rational.

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a rational ruled surface over k. Let D_{1} and D_{2} be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_{1} and D_{2} are defined over k and that all of the points in the intersection $D_{1} \cap D_{2}$ are k-rational.
(1) If D_{1} and D_{2} are big, then any set R of \mathcal{O}_{k}-integral points on $X \backslash D_{1} \cup D_{2}$ is contained in a proper Zariski-closed subset of X.
 points on $X \backslash D_{1} \cup D_{2}$ is contained in a finite union of fibers and sections C with $C \sim C_{0}$. Any set R of \mathcal{O}_{k}-integral points on is linearly equivalent to C_{0} or a fiber F, intersects $D_{1} \cup D_{2}$ in more than one point. In particular, this holds if $D_{i} . F \geq 2$ and $D_{i} . C_{0} \geq 2$

Theorem

Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a rational ruled surface over k. Let D_{1} and D_{2} be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_{1} and D_{2} are defined over k and that all of the points in the intersection $D_{1} \cap D_{2}$ are k-rational.
(1) If D_{1} and D_{2} are big, then any set R of \mathcal{O}_{k}-integral points on $X \backslash D_{1} \cup D_{2}$ is contained in a proper Zariski-closed subset of X.
(2) Suppose that D_{1} and D_{2} are ample. Then any set R of \mathcal{O}_{k}-integral points on $X \backslash D_{1} \cup D_{2}$ is contained in a finite union of fibers and sections C with $C \sim C_{0}$. Any set R of \mathcal{O}_{k}-integral points on $X \backslash D_{1} \cup D_{2}$ is finite if and only if every curve $C \subset X$ over k which is linearly equivalent to C_{0} or a fiber F, intersects $D_{1} \cup D_{2}$ in more than one point. In particular, this holds if $D_{i} . F \geq 2$ and $D_{i} . C_{0} \geq 2$ for $i=1,2$.

Basic ingredient for the non-Archimedean case

Theorem (Lin-W.2010, An-Levin-W.2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.

Basic ingredient for the non-Archimedean case

Theorem (Lin-W.2010, An-Levin-W.2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.

Basic ingredient for the non-Archimedean case

Theorem (Lin-W.2010, An-Levin-W.2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that the image of any non-constant analytic map
$f: \mathbf{k} \rightarrow X \backslash D$ is contained in Z.
(3) If D_{i} is ample for all i, then there is no non-constant analytic map from k to $X \backslash D$.

Basic ingredient for the non-Archimedean case

Theorem (Lin-W.2010, An-Levin-W.2011)
Let X be a nonsingular projective variety over \mathbf{k}. Let D_{1}, \ldots, D_{m} be effective divisors on X with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then the image of an analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in a proper subvariety of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that the image of any non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash D$ is contained in Z.
(3) If D_{i} is ample for all i, then there is no non-constant analytic map from \mathbf{k} to $X \backslash D$.

Basic ingredient for the arithmetic case

Theorem (Levin, 2008)
Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_{1}, \ldots, D_{m} be effective divisors on X, defined over k, with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.

Basic ingredient for the arithmetic case

Theorem (Levin, 2008)
Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_{1}, \ldots, D_{m} be effective divisors on X, defined over k, with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then any set R of \mathcal{O}_{k}-integral points on $X \backslash D$ is contained in a proper Zariski-closed subset of X.

are finite.

Basic ingredient for the arithmetic case

Theorem (Levin, 2008)
Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_{1}, \ldots, D_{m} be effective divisors on X, defined over k, with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then any set R of \mathcal{O}_{k}-integral points on $X \backslash D$ is contained in a proper Zariski-closed subset of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that for any set R of \mathcal{O}_{k}-integral points on $X \backslash D$, the set $R \backslash Z$ is finite.
(3) If D_{i} is ample for all i, then all sets R of \mathcal{O}_{k}-integral points on X are finite.

Basic ingredient for the arithmetic case

Theorem (Levin, 2008)
Let $k=\mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_{1}, \ldots, D_{m} be effective divisors on X, defined over k, with empty intersection. Let $D=\sum_{i=1}^{m} D_{i}$.
(1) If $\kappa\left(D_{i}\right)>0$ for all i, then any set R of \mathcal{O}_{k}-integral points on $X \backslash D$ is contained in a proper Zariski-closed subset of X.
(2) If D_{i} is big for all i, then there exists a proper Zariski-closed subset $Z \subset X$ such that for any set R of \mathcal{O}_{k}-integral points on $X \backslash D$, the set $R \backslash Z$ is finite.
(3) If D_{i} is ample for all i, then all sets R of \mathcal{O}_{k}-integral points on $X \backslash D$ are finite.

Ideas of the proof of Main Theorem 1.

Since D_{1}, \ldots, D_{n} intersect transversally, their intersection contains only points. Let $\cap_{i=1}^{n} D_{i}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}\right\}$.
Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along p_{1}, \ldots, p_{m}, successively, and let
$E_{j}:=\pi^{-1}\left(\mathfrak{p}_{j}\right)$ be the exceptional divisor for $1 \leq j \leq m$.
For $1 \leq i \leq n$ and $1 \leq i \leq m$, we let
$G_{i j}:=\pi^{*}\left(D_{i}\right)-E_{j}=\tilde{D}_{i}+E_{1}+\cdots+E_{j-1}+E_{j+1}+\cdots+E_{m}$, where \tilde{D}_{i} is the strict transform of D_{i} under π.

Clearly, $G_{i j}$ is effective, $\cap_{1 \leq i \leq n}^{1 \leq j \leq m} G_{i j}=\emptyset$ and $\cup_{1 \leq i \leq n}^{1 \leq j \leq m} G_{i j}=\cup_{i=1}^{n} \pi^{-1}\left(D_{i}\right)$. When does $\kappa\left(G_{i j}\right)>0$? When is $G_{i j}$ big?

Ideas of the proof of Main Theorem 1.

Since D_{1}, \ldots, D_{n} intersect transversally, their intersection contains only points. Let $\cap_{i=1}^{n} D_{i}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}\right\}$.
Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$, successively, and let $E_{j}:=\pi^{-1}\left(\mathfrak{p}_{j}\right)$ be the exceptional divisor for $1 \leq j \leq m$.
For $1 \leq i \leq n$ and $1 \leq j \leq m$, we let
$G_{i j}:=\pi^{*}\left(D_{i}\right)-E_{j}=\tilde{D}_{i}+E_{1}+\cdots+E_{j-1}+E_{j+1}+\cdots+E_{m}$, where \tilde{D}_{i} is the strict transform of D_{i} under π. Clearly, $G_{i j}$ is effective, $\cap_{1 \leq i \leq n} G_{i j}=\emptyset$ and $\cup_{1 \leq i \leq n} G_{i j}=\cup_{i=1}^{n} \pi^{-1}\left(D_{i}\right)$. When does $\kappa\left(G_{i j}\right)>0$? When is $G_{i j}$ big?

Ideas of the proof of Main Theorem 1.

Since D_{1}, \ldots, D_{n} intersect transversally, their intersection contains only points. Let $\cap_{i=1}^{n} D_{i}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}\right\}$.
Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$, successively, and let $E_{j}:=\pi^{-1}\left(\mathfrak{p}_{j}\right)$ be the exceptional divisor for $1 \leq j \leq m$.
For $1 \leq i \leq n$ and $1 \leq j \leq m$, we let
$G_{i j}:=\pi^{*}\left(D_{i}\right)-E_{j}=\tilde{D}_{i}+E_{1}+\cdots+E_{j-1}+E_{j+1}+\cdots+E_{m}$, where \tilde{D}_{i} is the strict transform of D_{i} under π.

Clearly, $G_{i j}$ is effective, $\cap_{1 \leq i \leq n} G_{i j}=\emptyset$ and $\cup_{1 \leq i \leq n} G_{i j}=\cup_{i=1}^{n} \pi^{-1}\left(D_{i}\right)$. When does $\kappa\left(G_{i j}\right)>0$? When is $G_{i j}$ big?

Ideas of the proof of Main Theorem 1.

Since D_{1}, \ldots, D_{n} intersect transversally, their intersection contains only points. Let $\cap_{i=1}^{n} D_{i}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}\right\}$.
Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$, successively, and let
$E_{j}:=\pi^{-1}\left(\mathfrak{p}_{j}\right)$ be the exceptional divisor for $1 \leq j \leq m$.
For $1 \leq i \leq n$ and $1 \leq j \leq m$, we let
$G_{i j}:=\pi^{*}\left(D_{i}\right)-E_{j}=\tilde{D}_{i}+E_{1}+\cdots+E_{j-1}+E_{j+1}+\cdots+E_{m}$, where \tilde{D}_{i} is the strict transform of D_{i} under π.
Clearly, $G_{i j}$ is effective, $\cap_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} G_{i j}=\emptyset$ and $\cup_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} G_{i j}=\cup_{i=1}^{n} \pi^{-1}\left(D_{i}\right)$.
When does $k\left(G_{i j}\right)>0$? When is $G_{i j}$ big?

Ideas of the proof of Main Theorem 1.

Since D_{1}, \ldots, D_{n} intersect transversally, their intersection contains only points. Let $\cap_{i=1}^{n} D_{i}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}\right\}$.
Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$, successively, and let
$E_{j}:=\pi^{-1}\left(\mathfrak{p}_{j}\right)$ be the exceptional divisor for $1 \leq j \leq m$.
For $1 \leq i \leq n$ and $1 \leq j \leq m$, we let
$G_{i j}:=\pi^{*}\left(D_{i}\right)-E_{j}=\tilde{D}_{i}+E_{1}+\cdots+E_{j-1}+E_{j+1}+\cdots+E_{m}$, where \tilde{D}_{i} is the strict transform of D_{i} under π.
Clearly, $G_{i j}$ is effective, $\cap_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} G_{i j}=\emptyset$ and $\cup_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} G_{i j}=\cup_{i=1}^{n} \pi^{-1}\left(D_{i}\right)$. When does $k\left(G_{i j}\right)>0$? When is $G_{i j}$ big?

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_{X} denote the canonical divisor on X. Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along m distinct points P_{1}, \ldots, P_{m} of X, successively, and let $E_{i}:=\pi^{-1}\left(P_{i}\right)$ be the exceptional divisor for $1 \leq i \leq m$.

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_{X} denote the canonical divisor on X. Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along m distinct points P_{1}, \ldots, P_{m} of X, successively, and let $E_{i}:=\pi^{-1}\left(P_{i}\right)$ be the exceptional divisor for $1 \leq i \leq m$.
(1) If $D^{n}>1$, then $\pi^{*} D-E_{i}$ is big for each $1 \leq i \leq m$.

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_{X} denote the canonical divisor on X. Let $\pi: \tilde{X} \rightarrow X$ be the blow-up along m distinct points P_{1}, \ldots, P_{m} of X, successively, and let $E_{i}:=\pi^{-1}\left(P_{i}\right)$ be the exceptional divisor for $1 \leq i \leq m$.
(1) If $D^{n}>1$, then $\pi^{*} D-E_{i}$ is big for each $1 \leq i \leq m$.
(2) If $D^{n}=1$ and $K_{X} \cdot D^{n-1}<1-n$, then $\kappa\left(\pi^{*} D-E_{i}\right) \geq n-1$ for each $1 \leq i \leq m$.

Sketch of Proof

The case of blowing-up one point: $\pi: \tilde{X} \rightarrow X$. Let $i: E \rightarrow \tilde{X}$ be the inclusion map. We have an exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\tilde{X}, \mathcal{O}\left(m \pi^{*} D-(j+1) E\right)\right) \rightarrow H^{0}\left(\tilde{X}, \mathcal{O}\left(m \pi^{*} D-j E\right)\right) \\
& \rightarrow H^{0}\left(E, i^{*} \mathcal{O}\left(m \pi^{*} D-j E\right)\right) .
\end{aligned}
$$

A standard computation shows
$h^{0}\left(m \pi^{*} D\right)-h^{0}\left(m \pi^{*} D-m E\right) \leq \frac{m^{n}}{n!}+\frac{1}{2} \frac{m^{n-1}}{(n-2)!}+O\left(m^{n-2}\right)$.

Apply the following asymptotic Riemann-Roch formula.
Theorem (Matsusaka)
Let X be a nonsingular projective variety of dimension n and let D be a nef and big divisor on X. Then

$$
h^{0}(m D)=\frac{D^{n}}{n!} m^{n}-\frac{K_{X} \cdot D^{n-1}}{2(n-1)!} m^{n-1}+O\left(m^{n-2}\right)
$$

Then

$$
h^{0}\left(m \pi^{*} D-m E\right) \geq \frac{D^{n}-1}{n!} m^{n}-\frac{K_{X} \cdot D^{n-1}+(n-1)}{2(n-1)!} m^{n-1}+O\left(m^{n-2}\right)
$$

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to $X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to $X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.
(c) Let D be a divisor on X equivalent to $a C_{0}+b F$ in Pic X. Then

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to
$X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to
$X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.
(c) Let D be a divisor on X equivalent to $a C_{0}+b F$ in $\operatorname{Pic} X$. Then

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to
$X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{\theta}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.
(c) Let D be a divisor on X equivalent to $a C_{0}+b F$ in $\operatorname{Pic} X$. Then
(i) If D is an irreducible curve $\nsim C_{0}, F$, then $a, b>0, b \geq a e$, and $D^{2}>0$.

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to
$X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.
(c) Let D be a divisor on X equivalent to $a C_{0}+b F$ in $\operatorname{Pic} X$. Then
(i) If D is an irreducible curve $\nsim C_{0}, F$, then $a, b>0, b \geq a e$, and $D^{2}>0$.
(ii) D is big if and only if $a>0$ and $b>0$.

Basics of rational ruled surfaces

Proposition

A rational ruled surface X (over \bar{k}) is isomorphic to
$X_{e}:=\mathbf{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-e)\right)$ over \mathbb{P}^{1} for some nonnegative integer e. Let F denote a fiber on X and let C_{0} denote a section of X such that $\mathcal{O}\left(C_{0}\right) \cong \mathcal{O}_{X_{e}}(1)$. Then
(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_{0} \subset X$ and F with $C_{0}^{2}=-e, F^{2}=0$, and $C_{0} \cdot F=1$.
(b) Let K_{X} be the canonical divisor on X. Then
$K_{X} \sim-2 C_{0}-(2+e) F$. In particular, $K_{X}^{2}=8$.
(c) Let D be a divisor on X equivalent to $a C_{0}+b F$ in $\operatorname{Pic} X$. Then
(i) If D is an irreducible curve $\nsim C_{0}, F$, then $a, b>0, b \geq a e$, and $D^{2}>0$.
(ii) D is big if and only if $a>0$ and $b>0$.
(iii) D is ample if and only if $a>0$ and $b>a e$.

Let D_{1} and D_{2} be big effective divisors on X.
Suppose first that D_{1} and D_{2} have irreducible components E_{1} and E_{2},
respectively, with $E_{i} \nsucc C_{0}, F$, for $i=1,2$.
Then by Proposition $E^{2} \geq 1$ for $i=12$.
$\left(K_{X} \cdot E_{i}\right)^{2} \geq K_{X}^{2} E_{i}^{2} \geq K_{X}^{2}=8$ and $K_{X} \cdot E_{i} \leq-3$.
Then by Theorem 1, the image of an analytic map
$f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right) \subset X \backslash\left(E_{1} \cup E_{2}\right)$ is contained in a proper subvariety of X.

Let D_{1} and D_{2} be big effective divisors on X.
Suppose first that D_{1} and D_{2} have irreducible components E_{1} and E_{2}, respectively, with $E_{i} \nsim C_{0}, F$, for $i=1,2$.

Then by Proposition $E_{i}^{2} \geq 1$ for $i=1,2$.
$\left(K_{X} \cdot E_{i}\right)^{2} \geq K_{X}^{2} E_{i}^{2} \geq K_{X}^{2}=8$ and $K_{X} \cdot E_{i} \leq-3$.
Then by Theorem 1, the image of an analytic map
$f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right) \subset X \backslash\left(E_{1} \cup E_{2}\right)$ is contained in a proper subvariety of X.

Let D_{1} and D_{2} be big effective divisors on X.
Suppose first that D_{1} and D_{2} have irreducible components E_{1} and E_{2}, respectively, with $E_{i} \nsim C_{0}, F$, for $i=1,2$.

Then by Proposition $E_{i}^{2} \geq 1$ for $i=1,2$.
$\left(K_{X} \cdot E_{i}\right)^{2} \geq K_{X}^{2} E_{i}^{2} \geq K_{X}^{2}=8$ and $K_{X} \cdot E_{i} \leq-3$.
Then by Theorem 1, the image of an analytic map
$f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right) \subset X \backslash\left(E_{1} \cup E_{2}\right)$ is contained in a proper subvariety of X.

Let D_{1} and D_{2} be big effective divisors on X.
Suppose first that D_{1} and D_{2} have irreducible components E_{1} and E_{2}, respectively, with $E_{i} \nsim C_{0}, F$, for $i=1,2$.

Then by Proposition $E_{i}^{2} \geq 1$ for $i=1,2$.
$\left(K_{X} \cdot E_{i}\right)^{2} \geq K_{X}^{2} E_{i}^{2} \geq K_{X}^{2}=8$ and $K_{X} \cdot E_{i} \leq-3$.
Then by Theorem 1, the image of an analytic map
$f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right) \subset X \backslash\left(E_{1} \cup E_{2}\right)$ is contained in a proper subvariety of X.

Suppose now that, say, D_{1} has every irreducible component linearly equivalent to either C_{0} or F.

Since D_{1} is big, by Proposition, D_{1} must contain at least two irreducible components C and F^{\prime} with $C \sim C_{0}$ and F^{\prime} a fiber.

Since D_{2} is linearly equivalent to a positive integral linear combination of C and F^{\prime}, there exists a non-constant function $\phi \in \mathbf{k}(X)^{*}$ with poles and zeros only in the support of D_{1} and D_{2}.

Consider an analytic man $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$. Then $\phi \circ f: \mathbf{k} \rightarrow \mathbb{A}^{1} \backslash\{0\}$ is analytic, and hence constant. It follows that the image of f is contained in a proper subvariety of X.

Suppose now that, say, D_{1} has every irreducible component linearly equivalent to either C_{0} or F.

Since D_{1} is big, by Proposition, D_{1} must contain at least two irreducible components C and F^{\prime} with $C \sim C_{0}$ and F^{\prime} a fiber.

Since D_{2} is linearly equivalent to a positive integral linear combination of C and F^{\prime}, there exists a non-constant function $\phi \in \mathbf{k}(X)^{*}$ with poles and zeros only in the support of D_{1} and D_{2}. Consider an analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$. Then $\phi \circ f: \mathbf{k} \rightarrow \mathbb{A}^{1} \backslash\{0\}$ is analytic, and hence constant. It follows that the image of f is contained in a proner subvariety of X.

Suppose now that, say, D_{1} has every irreducible component linearly equivalent to either C_{0} or F.

Since D_{1} is big, by Proposition, D_{1} must contain at least two irreducible components C and F^{\prime} with $C \sim C_{0}$ and F^{\prime} a fiber.

Since D_{2} is linearly equivalent to a positive integral linear combination of C and F^{\prime}, there exists a non-constant function $\phi \in \mathbf{k}(X)^{*}$ with poles and zeros only in the support of D_{1} and D_{2}.

image of f is contained in a proper subvariety of X.

Suppose now that, say, D_{1} has every irreducible component linearly equivalent to either C_{0} or F.
Since D_{1} is big, by Proposition, D_{1} must contain at least two irreducible components C and F^{\prime} with $C \sim C_{0}$ and F^{\prime} a fiber.

Since D_{2} is linearly equivalent to a positive integral linear combination of C and F^{\prime}, there exists a non-constant function $\phi \in \mathbf{k}(X)^{*}$ with poles and zeros only in the support of D_{1} and D_{2}.

Consider an analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$. Then
$\phi \circ f: \mathbf{k} \rightarrow \mathbb{A}^{1} \backslash\{0\}$ is analytic, and hence constant. It follows that the image of f is contained in a proper subvariety of X.

Assume furthermore that D_{1} and D_{2} are ample.

By (a), the image of a non-constant analytic map $f: k \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$ is contained in a curve in X. Let C be the Zariski closure of the image of f in X. If $C \cap\left(D_{1} \cup D_{2}\right)$ contains more than one point, then f must be constant. On the other hand, $D_{i} \cap C \neq \emptyset$ for $i=1,2$, since D_{1} and D_{2} are ample. Therefore, we only need to consider when $C \cap D_{1}=C \cap D_{2}=\{x\}$ for some $x \in X$.

Assume furthermore that D_{1} and D_{2} are ample.
By (a), the image of a non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$ is contained in a curve in X.

Let C be the Zariski closure of the image of f in X.
 If $C \cap\left(D_{1} \cup D_{2}\right)$ contains more than one point, then f must be constant.
 On the other hand, $D_{i} \cap C \neq \emptyset$ for $i=1,2$, since D_{1} and D_{2} are ample.
 Therefore, we only need to consider when $C \cap D_{1}=C \cap D_{2}=\{x\}$ for

 some $x \in X$.Assume furthermore that D_{1} and D_{2} are ample.
By (a), the image of a non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$ is contained in a curve in X.

Let C be the Zariski closure of the image of f in X.
If $C \cap\left(D_{1} \cup D_{2}\right)$ contains more than one point, then f must be constant.
On the other hand, $D_{i} \cap C \neq \emptyset$ for $i=1,2$, since D_{1} and D_{2} are ample.
Therefore, we only need to consider when $C \cap D_{1}=C \cap D_{2}=\{x\}$ for
some $x \in X$.

Assume furthermore that D_{1} and D_{2} are ample.
By (a), the image of a non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$ is contained in a curve in X.

Let C be the Zariski closure of the image of f in X.
If $C \cap\left(D_{1} \cup D_{2}\right)$ contains more than one point, then f must be constant.
On the other hand, $D_{i} \cap C \neq \emptyset$ for $i=1,2$, since D_{1} and D_{2} are ample.
Therefore, we only need to consider when $C \cap D_{1}=C \cap D_{2}=\{x\}$ for
some $x \in X$.

Assume furthermore that D_{1} and D_{2} are ample.
By (a), the image of a non-constant analytic map $f: \mathbf{k} \rightarrow X \backslash\left(D_{1} \cup D_{2}\right)$ is contained in a curve in X.

Let C be the Zariski closure of the image of f in X.
If $C \cap\left(D_{1} \cup D_{2}\right)$ contains more than one point, then f must be constant.
On the other hand, $D_{i} \cap C \neq \emptyset$ for $i=1,2$, since D_{1} and D_{2} are ample.
Therefore, we only need to consider when $C \cap D_{1}=C \cap D_{2}=\{x\}$ for some $x \in X$.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E.

Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i},
$i=1$, 2 .
Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: k \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.

Denote by $m=m_{x}(C)$ the multiplicity of C at x.
If $\left(C . D_{i}\right)_{x}>m=m_{x}(C) \cdot m_{x}\left(D_{i}\right)$ for $i=1,2$, then each \tilde{D}_{i} must
intersect \tilde{C} at some point on \tilde{X} lying above x.
Since D_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there must be at least two points on \tilde{C} lying above x.
Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also constant.

```
Let \pi:\tilde{X}->X\mathrm{ be the blow-up of }X\mathrm{ at }x\mathrm{ with exceptional divisor }E\mathrm{ .}
Let \tilde{C}}\mathrm{ be the strict transform of C and }\mp@subsup{\tilde{D}}{i}{}\mathrm{ the strict transform of D}\mp@subsup{D}{i}{}\mathrm{ ,
i=1,2.
Then f:k}->X\\mp@subsup{D}{1}{}\cup\mp@subsup{D}{2}{}\mathrm{ lifts to }\tilde{f}:k->\tilde{X}\\mp@subsup{\tilde{D}}{1}{}\cup\mp@subsup{\tilde{D}}{2}{}\mathrm{ with }f=\pi\circ\tilde{f}\mathrm{ and
the image of \tilde{f}\mathrm{ is contained in }\tilde{C}\mathrm{ .}
Denote by m}=\mp@subsup{m}{x}{}(C)\mathrm{ the multiplicity of C at }x\mathrm{ .
If (C.D}\mp@subsup{D}{i}{}\mp@subsup{)}{x}{}>m=\mp@subsup{m}{x}{}(C)\cdot\mp@subsup{m}{x}{}(\mp@subsup{D}{i}{})\mathrm{ for }i=1,2\mathrm{ , then each }\mp@subsup{\tilde{D}}{i}{}\mathrm{ must
intersect \tilde{C}}\mathrm{ at some point on }\tilde{X}\mathrm{ lying above }x\mathrm{ .
Since D}\mp@subsup{D}{1}{}\mathrm{ and D}\mp@subsup{D}{2}{}\mathrm{ intersect transversally, }\mp@subsup{\cap}{i=1}{2}\mp@subsup{\tilde{D}}{i}{}\capE=\emptyset\mathrm{ . Thus, there
must be at least two points on \tilde{C}}\mathrm{ lying above x
Consequently, \tilde{f}:\mathbf{k}->\tilde{X}\\mp@subsup{\tilde{D}}{1}{}\cup\mp@subsup{\tilde{D}}{2}{}\mathrm{ is constant and hence }f\mathrm{ is also}
```

constant.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E.
Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i}, $i=1$, 2 .

Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.

Denote by $m=m_{x}(C)$ the multiplicity of C at x.
If $\left(C . D_{i}\right)_{x}>m=m_{x}(C) \cdot m_{x}\left(D_{i}\right)$ for $i=1,2$, then each \tilde{D}_{i} must
intersect \tilde{C} at some point on \tilde{X} lying above x.
Since D_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there
must be at least two points on \tilde{C} lying above x.
Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also
constant.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E.
Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i}, $i=1,2$.
Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.
Denote by $m=m_{x}(C)$ the multiplicity of C at x.

intersect \tilde{C} at some point on \tilde{X} lying above x.
Since \square_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there
must be at least two points on \tilde{C} lying above x.
Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also
constant.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E.
Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i}, $i=1,2$.
Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.
Denote by $m=m_{x}(C)$ the multiplicity of C at x.
If $\left(C . D_{i}\right)_{x}>m=m_{x}(C) \cdot m_{x}\left(D_{i}\right)$ for $i=1,2$, then each \tilde{D}_{i} must intersect \tilde{C} at some point on \tilde{X} lying above x.
Since D_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there must be at least two points on \tilde{C} lying above x. Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also constant.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E.
Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i},
$i=1,2$.
Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.
Denote by $m=m_{x}(C)$ the multiplicity of C at x.
If $\left(C . D_{i}\right)_{x}>m=m_{x}(C) \cdot m_{x}\left(D_{i}\right)$ for $i=1,2$, then each \tilde{D}_{i} must intersect \tilde{C} at some point on \tilde{X} lying above x.
Since D_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there must be at least two points on \tilde{C} lying above x.

Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also
constant.

Let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at x with exceptional divisor E. Let \tilde{C} be the strict transform of C and \tilde{D}_{i} the strict transform of D_{i}, $i=1,2$.
Then $f: \mathbf{k} \rightarrow X \backslash D_{1} \cup D_{2}$ lifts to $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ with $f=\pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C}.
Denote by $m=m_{x}(C)$ the multiplicity of C at x.
If $\left(C . D_{i}\right)_{x}>m=m_{x}(C) \cdot m_{x}\left(D_{i}\right)$ for $i=1,2$, then each \tilde{D}_{i} must intersect \tilde{C} at some point on \tilde{X} lying above x.
Since D_{1} and D_{2} intersect transversally, $\cap_{i=1}^{2} \tilde{D}_{i} \cap E=\emptyset$. Thus, there must be at least two points on \tilde{C} lying above x.
Consequently, $\tilde{f}: \mathbf{k} \rightarrow \tilde{X} \backslash \tilde{D}_{1} \cup \tilde{D}_{2}$ is constant and hence f is also constant.

Let $\left(C . D_{1}\right)_{x}=m$.

Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.
Assume that C is not linearly equivalent to C_{0} or F.
From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that
$c=C F>m$.
Then $m=C \cdot D_{1}=a d+c(b-a e)>c \geq m, a$ contradiction.

Let $\left(C . D_{1}\right)_{x}=m$.
Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.

Assume that C is not linearly equivalent to C_{0} or F.

From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that
$c=C . F \geq m$.
Then $m=C . D_{1}=a d+c(b-a e)>c \geq m$, a contradiction.

Let $\left(C . D_{1}\right)_{x}=m$.
Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.
Assume that C is not linearly equivalent to C_{0} or F.
From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that
$c=C F>m$.
Then $m=C \cdot D_{1}=a d+c(b-a e)>c \geq m$, a contradiction.

Let $\left(C . D_{1}\right)_{x}=m$.
Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.
Assume that C is not linearly equivalent to C_{0} or F.
From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that
$c=C . F \geq m$.
Then $m=c \cdot D_{1}=a d+c(b-a e)>c \geq m$, a contradiction.

Let $\left(C . D_{1}\right)_{x}=m$.
Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.
Assume that C is not linearly equivalent to C_{0} or F.
From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that $c=C . F \geq m$.

Then $m=C \cdot D_{1}=a d+c(b-a e)>c \geq m$, a contradiction.

Let $\left(C . D_{1}\right)_{x}=m$.
Suppose that $C \equiv c C_{0}+d F$ and $D_{1} \equiv a C_{0}+b F$.
Then $\left(C . D_{1}\right)_{x}=C . D_{1}=a d+c(b-a e)$.
Assume that C is not linearly equivalent to C_{0} or F.
From Proposition, we have that $a, b-a e, c, d>0$.
By taking F to be the fiber passing through x, we see that $c=C . F \geq m$.

Then $m=C . D_{1}=a d+c(b-a e)>c \geq m$, a contradiction.

