On non-Archimedean curves omitting few components and their arithmetic analogues

Julie Tzu-Yueh Wang

Academia Sinica, Taiwan

Distribution of Rational and Holomorphic Curves in Algebraic Varieties BIRS, Banff

Let **k** an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.

 $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $|a_n z^n| \to 0$ as $n \to \infty$.

f(z) is called a **k** entire function if *f* is analytic on **k**.

Facts: A k entire function without zeros (over k) is constant.

Let **k** an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.

 $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $|a_n z^n| \to 0$ as $n \to \infty$.

f(z) is called a **k** entire function if *f* is analytic on **k**.

Facts: A k entire function without zeros (over k) is constant.

Let **k** an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.

 $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $|a_n z^n| \to 0$ as $n \to \infty$. f(z) is called a **k** entire function if *f* is analytic on **k**.

Facts: A k entire function without zeros (over k) is constant.

Let **k** an algebraically closed field complete with respect to a non-Archimedean absolute value $|\cdot|$ of arbitrary characteristic.

 $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbf{k}[[z]]$ is analytic on $z \in \mathbf{k}$ if $|a_n z^n| \to 0$ as $n \to \infty$.

f(z) is called a **k** entire function if f is analytic on **k**.

Facts: A k entire function without zeros (over k) is constant.

k hyperbolic

A variety X is said to be **k** *hyperbolic* if any analytic map from **k** to X is constant.

Julie Tzu-Yueh Wang (Academia Sinica, TaiwOn non-Archimedean curves omitting few con March 15 to March 20, 2015 3/38

$$\blacktriangleright \ \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- ► curvesof genus ≥ 1. (Berkovich 1990)
- curve omitting two points
- ▶ semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W.
 2010)

イロト 不得 トイヨト イヨト

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- ▶ semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W. 2010)

イロト 不得 トイヨト イヨト

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W.
 2010)

・ロト ・四ト ・ヨト ・ヨト

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W.
 2010)

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W.
 2010)

イロト 不得 トイヨト イヨト

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting n + 1 ample divisors in g. p. (Lin-W. 2010)

$$\blacktriangleright \mathbb{G}_m = \mathbb{A}^1 \setminus \{\mathbf{0}\} = \mathbb{P}^1 \setminus \{\mathbf{0}, \infty\}.$$

- curves of genus \geq 1. (Berkovich 1990)
- curve omitting two points
- semi-Abelian variety (Cherry 1994)
- ▶ \mathbb{P}^n omitting n + 1 hypersurfaces in g. p. (Ru 2001)
- projective variety omitting n + 1 hypersurface divisors in g. p. (An 2007)
- projective variety omitting *n* + 1 ample divisors in g. p. (Lin-W. 2010)

Theorem (Lin-W.2010, An-Levin-W. 2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If κ(D_i) > 0 for all i, then the image of an analytic map f : k → X \ D is contained in a proper subvariety of X.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W. 2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If κ(D_i) > 0 for all i, then the image of an analytic map f : k → X \ D is contained in a proper subvariety of X.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W. 2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If κ(D_i) > 0 for all i, then the image of an analytic map f : k → X \ D is contained in a proper subvariety of X.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W. 2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then the image of an analytic map $f : \mathbf{k} \to X \setminus D$ is contained in a proper subvariety of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Question:

What if the intersection of the divisors D_i 's is not empty?

Julie Tzu-Yueh Wang (Academia Sinica, TaiwOn non-Archimedean curves omitting few con March 15 to March 20, 2015 6 / 38

Let P_1 , P_2 be non-constant homogeneous polynomials in n + 1variables with degree d_1 and d_2 respectively. Assume that the divisors $D_1 = \{P_1 = 0\}$ and $D_2 = \{P_2 = 0\}$ in \mathbb{P}^n are distinct. Let $f = (f_0, \dots, f_n) : \mathbf{k} \to \mathbb{P}^n \setminus D_1 \cup D_2$ be an analytic map. Then $P_1^{d_2}(f)/P_2^{d_1}(f)$ is entire without zero and hence is constant. Consequently, the image of f is contained in a subvariety of codimension one.

Let P_1 , P_2 be non-constant homogeneous polynomials in n + 1variables with degree d_1 and d_2 respectively. Assume that the divisors $D_1 = \{P_1 = 0\}$ and $D_2 = \{P_2 = 0\}$ in \mathbb{P}^n are distinct. Let $f = (f_0, \dots, f_n) : \mathbf{k} \to \mathbb{P}^n \setminus D_1 \cup D_2$ be an analytic map. Then $P_1^{d_2}(f)/P_2^{d_1}(f)$ is entire without zero and hence is constant. Consequently, the image of f is contained in a subvariety of codimension one.

Let P_1 , P_2 be non-constant homogeneous polynomials in n + 1variables with degree d_1 and d_2 respectively. Assume that the divisors $D_1 = \{P_1 = 0\}$ and $D_2 = \{P_2 = 0\}$ in \mathbb{P}^n are distinct. Let $f = (f_0, \dots, f_n) : \mathbf{k} \to \mathbb{P}^n \setminus D_1 \cup D_2$ be an analytic map. Then $P_1^{d_2}(f)/P_2^{d_1}(f)$ is entire without zero and hence is constant. Consequently, the image of f is contained in a subvariety of codimension one.

Let P_1 , P_2 be non-constant homogeneous polynomials in n + 1variables with degree d_1 and d_2 respectively. Assume that the divisors $D_1 = \{P_1 = 0\}$ and $D_2 = \{P_2 = 0\}$ in \mathbb{P}^n are distinct. Let $f = (f_0, \dots, f_n) : \mathbf{k} \to \mathbb{P}^n \setminus D_1 \cup D_2$ be an analytic map. Then $P_1^{d_2}(f)/P_2^{d_1}(f)$ is entire without zero and hence is constant. Consequently, the image of f is contained in a subvariety of codimension one.

Theorem (An-W.-Wong 2008)

Let X be a nonsingular projective subvariety of \mathbb{P}^N of dimension n. Let P_1, \ldots, P_q be non-constant homogeneous polynomials in N + 1 variables. Let $D_i = X \cap \{P_i = 0\}, 1 \le i \le q$, be divisors of X in general position. Let f be an analytic map from **k** to $X \setminus \bigcup_{i=1}^q D_i$. Then the image of f is contained in a subvariety of X of codimension $\min\{n+1,q\} - 1$ in X. In particular, f is algebraically degenerate if $q \ge 2$, and $X \setminus \bigcup_{i=1}^q D_i$ is **k**-hyperbolic if $q \ge n + 1$.

Theorem (An-Cherry-W. 2008 & 2015)

Let Y be a closed positive dimensional subvariety of a non-singular projective variety X. Let $\{D_i\}_{i=1}^{\ell}$ be ℓ irreducible, effective, ample divisors in general position on X. Let r be the rank of the subgroup of NS(X) generated by $\{c_1(D_i)\}_{i=1}^{\ell}$. If there exists an algebraically non-degenerate analytic map from **k** to Y omitting each of the D_i that does not contain all of Y, then

 $\ell \leq \min\{r + \operatorname{codim} Y, \dim X\}.$

n-component

Theorem (An-W.-Wong 2008)

Let D_1, \ldots, D_n be nonsingular hypersurfaces in \mathbb{P}^n intersecting transversally. Then $\mathbb{P}^n \setminus \bigcup_{i=1}^n D_i$ is **k** hyperbolic if deg $D_i \ge 2$ for each $1 \le i \le n$.

Theorem (An-W.-Wong 2008)

Let D_1 and D_2 be nonsingular projective curves in \mathbb{P}^2 . Assume that D_1 and D_2 intersect transversally and deg $D_1 \leq \text{deg } D_2$. Then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is k-hyperbolic if and only if either deg D_1 , deg $D_2 \geq 2$ or deg $D_1 = 1$, deg $D_2 \geq 3$ and D_1 does not intersect D_2 at any maximal inflexion point.

Corollary

If D_1 and D_2 are two generic curves in $\mathbb{P}^2(\mathbf{k})$ with deg $D_1 + \text{deg } D_2 \ge 4$, then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **k** hyperbolic.

Julie Tzu-Yueh Wang (Academia Sinica, TaiwOn non-Archimedean curves omitting few com March 15 to March 20, 2015 10 / 38

n-component

Theorem (An-W.-Wong 2008)

Let D_1, \ldots, D_n be nonsingular hypersurfaces in \mathbb{P}^n intersecting transversally. Then $\mathbb{P}^n \setminus \bigcup_{i=1}^n D_i$ is **k** hyperbolic if deg $D_i \ge 2$ for each $1 \le i \le n$.

Theorem (An-W.-Wong 2008)

Let D_1 and D_2 be nonsingular projective curves in \mathbb{P}^2 . Assume that D_1 and D_2 intersect transversally and deg $D_1 \leq \text{deg } D_2$. Then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **k**-hyperbolic if and only if either deg D_1 , deg $D_2 \geq 2$ or deg $D_1 = 1$, deg $D_2 \geq 3$ and D_1 does not intersect D_2 at any maximal inflexion point.

Corollary

If D_1 and D_2 are two generic curves in $\mathbb{P}^2(\mathbf{k})$ with deg $D_1 + \text{deg } D_2 \ge 4$, then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **k** hyperbolic.

n-component

Theorem (An-W.-Wong 2008)

Let D_1, \ldots, D_n be nonsingular hypersurfaces in \mathbb{P}^n intersecting transversally. Then $\mathbb{P}^n \setminus \bigcup_{i=1}^n D_i$ is **k** hyperbolic if deg $D_i \ge 2$ for each $1 \le i \le n$.

Theorem (An-W.-Wong 2008)

Let D_1 and D_2 be nonsingular projective curves in \mathbb{P}^2 . Assume that D_1 and D_2 intersect transversally and deg $D_1 \leq \text{deg } D_2$. Then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is **k**-hyperbolic if and only if either deg D_1 , deg $D_2 \geq 2$ or deg $D_1 = 1$, deg $D_2 \geq 3$ and D_1 does not intersect D_2 at any maximal inflexion point.

Corollary

If D_1 and D_2 are two generic curves in $\mathbb{P}^2(\mathbf{k})$ with deg $D_1 + \text{deg } D_2 \ge 4$, then $\mathbb{P}^2 \setminus \{D_1 \cup D_2\}$ is \mathbf{k} hyperbolic.

Main Theorem 1.

Theorem (Levin-W.)

Let D_1, \ldots, D_n be effective nef divisors intersecting transversally in an *n*-dimensional nonsingular projective variety X over **k**. Let K_X denote the canonical divisor on X.

- Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X . D_i^{n-1} < 1 n$ for each $1 \le i \le n$. Then the image of an analytic map $f : \mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper subvariety of X.
- ② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset *Z* ⊂ *X* such that the image of any non-constant analytic map *f* : $\mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in *Z*.

Main Theorem 1.

Theorem (Levin-W.)

Let D_1, \ldots, D_n be effective nef divisors intersecting transversally in an *n*-dimensional nonsingular projective variety X over **k**. Let K_X denote the canonical divisor on X.

■ Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X.D_i^{n-1} < 1 - n$ for each $1 \le i \le n$. Then the image of an analytic map $f : \mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper subvariety of X.

② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset *Z* ⊂ *X* such that the image of any non-constant analytic map *f* : $\mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in *Z*.

Main Theorem 1.

Theorem (Levin-W.)

Let D_1, \ldots, D_n be effective nef divisors intersecting transversally in an *n*-dimensional nonsingular projective variety X over **k**. Let K_X denote the canonical divisor on X.

- Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X . D_i^{n-1} < 1 n$ for each $1 \le i \le n$. Then the image of an analytic map $f : \mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper subvariety of X.
- ② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset *Z* ⊂ *X* such that the image of any non-constant analytic map *f* : $\mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in *Z*.

Corollary

Let X be an n-dimensional nonsingular projective variety over **k**. Suppose that $-K_X$ is nef and

 $(-K_X)^n > (n-1)^n.$

Let D_1, \ldots, D_n be effective nef and big divisors on X intersecting transversally. Then the image of an analytic map $f : \mathbf{k} \to X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper subvariety of X.

∃ ► < ∃</p>

Remark

Let *X* be a smooth projective surface over an algebraically closed field. Then $-K_X$ is nef and $(-K_X)^2 > 1$ if and only if *X* is one of the following:

•
$$X \cong \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$$
 over \mathbb{P}^1 ;

- (2) $X \cong \mathbb{P}^2$ or $X \cong \mathbb{P}^1 \times \mathbb{P}^1$;
- If X is obtained from \mathbb{P}^2 by successively blowing up at most 7 points.

Remark

- Let *X* be a smooth projective surface over an algebraically closed field. Then $-K_X$ is nef and $(-K_X)^2 > 1$ if and only if *X* is one of the following:
 - $X \cong \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$ over \mathbb{P}^1 ;
 - 2 $X \cong \mathbb{P}^2$ or $X \cong \mathbb{P}^1 \times \mathbb{P}^1$;
 - If X is obtained from \mathbb{P}^2 by successively blowing up at most 7 points.

Remark

- Let *X* be a smooth projective surface over an algebraically closed field. Then $-K_X$ is nef and $(-K_X)^2 > 1$ if and only if *X* is one of the following:
 - $X \cong \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$ over \mathbb{P}^1 ;
 - 2 $X \cong \mathbb{P}^2$ or $X \cong \mathbb{P}^1 \times \mathbb{P}^1$;
 - **③** X is obtained from \mathbb{P}^2 by successively blowing up at most 7 points.

Question.

Is it possible to impose conditions on the self-intersection numbers of the divisors or the degrees of the divisors (in some fixed projective embedding) to ensure that $X \setminus (D_1 \cup \cdots \cup D_n)$ is **k** hyperbolic?

Ans. Unlikely!

Question.

Is it possible to impose conditions on the self-intersection numbers of the divisors or the degrees of the divisors (in some fixed projective embedding) to ensure that $X \setminus (D_1 \cup \cdots \cup D_n)$ is **k** hyperbolic?

Ans. Unlikely!

Example.

Let *m* and *n* be positive integers. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and let D_1 and D_2 be effective divisors of type (1, m) and (1, n), respectively. Let $D = D_1 + D_2$. Let *P* be a point in the intersection of the supports of D_1 and D_2 and let *L* be the line on *X* of type (0, 1) through *P*. Then since $L \setminus D = L \setminus \{P\} \cong \mathbb{A}^1$, there exists a non-constant analytic map $f : \mathbf{k} \to X \setminus D$. Note that D_1 and D_2 are very ample and $D_1^2 = 2m$, $D_2^2 = 2n$.

Main Theorem 2.

Theorem (Levin-W.)

Let X be a rational ruled surface over **k**. Let D_1 and D_2 be effective divisors intersecting transversally in X.

If D_1 and D_2 are big, then the image of an analytic map $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ is contained in a proper subvariety of *X*.

Suppose that D₁ and D₂ are ample. The image of an analytic map f : k → X \ D₁ ∪ D₂ is contained in either a fiber or a section C with C ~ C₀. X \ D₁ ∪ D₂ is k hyperbolic if and only if every fiber and every section C, C ~ C₀, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1,2.

Main Theorem 2.

Theorem (Levin-W.)

Let *X* be a rational ruled surface over **k**. Let D_1 and D_2 be effective divisors intersecting transversally in *X*.

If D_1 and D_2 are big, then the image of an analytic map $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ is contained in a proper subvariety of X.

Suppose that D₁ and D₂ are ample. The image of an analytic map f: k → X \ D₁ ∪ D₂ is contained in either a fiber or a section C with C ~ C₀. X \ D₁ ∪ D₂ is k hyperbolic if and only if every fiber and every section C, C ~ C₀, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1,2.

Main Theorem 2.

Theorem (Levin-W.)

Let *X* be a rational ruled surface over **k**. Let D_1 and D_2 be effective divisors intersecting transversally in *X*.

- If D_1 and D_2 are big, then the image of an analytic map $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ is contained in a proper subvariety of X.
- Suppose that D₁ and D₂ are ample. The image of an analytic map f: k → X \ D₁ ∪ D₂ is contained in either a fiber or a section C with C ~ C₀. X \ D₁ ∪ D₂ is k hyperbolic if and only if every fiber and every section C, C ~ C₀, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1,2.

Nevanlinna theory v.s. Diophatine approximation

Let X be a variety over a number field K.

existence of a nonconstant analytic curve in X \uparrow existence of an infinite set of integral points on X(over a finite extension of K)

Definition.

Let *X* be an affine variety over a number field *k*. Let *S* be a finite set of places of *k* containing the archimedean places and let $\mathcal{O}_{k,S}$ denote the ring of *S*-integers of *k*. We define a set $R \subset X(k)$ to be a set of $\mathcal{O}_{k,S}$ -integral points on *X* if there exists an affine embedding $\phi : X \hookrightarrow \mathbb{A}^n$ such that $\phi(R) \subset X \cap \mathbb{A}^n(\mathcal{O}_{k,S})$.

Note that k entire functions without zeros are constant.

It suggests that we should look at ring of integers of a number field k with finite unit groups.

Then $k = \mathbb{Q}$ or imaginary quadratic field.

Note that k entire functions without zeros are constant.

It suggests that we should look at ring of integers of a number field *k* with finite unit groups.

Then $k = \mathbb{Q}$ or imaginary quadratic field.

Note that **k** entire functions without zeros are constant. It suggests that we should look at ring of integers of a number field k with finite unit groups.

Then $k = \mathbb{Q}$ or imaginary quadratic field.

イロト イポト イラト イラト

Note that **k** entire functions without zeros are constant.

It suggests that we should look at ring of integers of a number field k with finite unit groups.

Then $k = \mathbb{Q}$ or imaginary quadratic field.

イロト イポト イラト イラト

\mathbb{G}_m is **k** hyperbolic.

 \mathbb{G}_m has only finitely many \mathcal{O}_k -integral points, $k = \mathbb{Q}$ or imaginary quadratic field.

existence of a nonconstant \mathbf{k} analytic curve in X

\$?

existence of an infinite set of \mathcal{O}_k integral points on X

\mathbb{G}_m is **k** hyperbolic.

 \mathbb{G}_m has only finitely many \mathcal{O}_k -integral points, $k = \mathbb{Q}$ or imaginary quadratic field.

existence of a nonconstant k analytic curve in X

\$?

existence of an infinite set of \mathcal{O}_k integral points on X

A D N A B N A B N A B

 \mathbb{G}_m is **k** hyperbolic.

 \mathbb{G}_m has only finitely many \mathcal{O}_k -integral points, $k = \mathbb{Q}$ or imaginary quadratic field.

existence of a nonconstant \mathbf{k} analytic curve in X

\$?

existence of an infinite set of \mathcal{O}_k integral points on X

4 D N 4 B N 4 B N 4 B

An Example

$C: x^2 - 2y^2 = 1$. Over $\overline{\mathbb{Q}}$, we have $C \cong \mathbb{G}_m$. *C* does admit infinitely many \mathbb{Z} -integral points, while *C* is **k** hyperbolic.

Let \tilde{C} be the projective closure of C defined in the projective plane by $x^2 - 2y^2 = z^2$. Then C has two points at infinity $P_{\pm} = (\pm \sqrt{2}, 1, 0)$. Every regular function on C over \mathbb{Q} has a pole at both P_+ and P_- on \tilde{C} . Over $\mathbb{Q}(\sqrt{2})$, however, there are regular functions on C with a pole only at, say, P_+ on \tilde{C} . One might view the problem here as being that C doesn't have enough regular functions over \mathbb{Q} to have a good notion of \mathbb{Z} -integral points.

An Example

 $C: x^2 - 2y^2 = 1$. Over $\overline{\mathbb{Q}}$, we have $C \cong \mathbb{G}_m$. *C* does admit infinitely many \mathbb{Z} -integral points, while *C* is **k** hyperbolic.

Let \tilde{C} be the projective closure of *C* defined in the projective plane by $x^2 - 2y^2 = z^2$. Then *C* has two points at infinity $P_{\pm} = (\pm \sqrt{2}, 1, 0)$. Every regular function on *C* over \mathbb{Q} has a pole at both P_+ and P_- on \tilde{C} . Over $\mathbb{Q}(\sqrt{2})$, however, there are regular functions on *C* with a pole only at, say, P_+ on \tilde{C} . One might view the problem here as being that *C* doesn't have enough regular functions over \mathbb{Q} to have a good notion of \mathbb{Z} -integral points.

A necessary condition

- Let *X* be an affine variety over *k* where $k = \mathbb{Q}$ or an imaginary quadratic field.
- Condition (*): There exists a projective closure \tilde{X} of X nonsingular at every point in $\tilde{X} \setminus X$ and such that every (geometric) irreducible component of $\tilde{X} \setminus X$ is defined over k.

イロト イポト イラト イラト

Let $k = \mathbb{Q}$ or an imaginary quadratic field and suppose that char $\mathbf{k} = 0$. If X is an affine curve over k satisfying (*) then X contains an infinite set of \mathcal{O}_k -integral points if and only if there exists a non-constant analytic map $f : \mathbf{k} \to X$ if and only if X is rational with a single point at infinity.

In the 2008 paper of An-Levin-W. more parallel statements and results (qualitative and quantitative) are made in non-Archimedean Nevanlinna theory and Diophantine approximation.

A D N A B N A B N A B

Let $k = \mathbb{Q}$ or an imaginary quadratic field and suppose that char $\mathbf{k} = 0$. If X is an affine curve over k satisfying (*) then X contains an infinite set of \mathcal{O}_k -integral points if and only if there exists a non-constant analytic map $f : \mathbf{k} \to X$ if and only if X is rational with a single point at infinity.

In the 2008 paper of An-Levin-W. more parallel statements and results (qualitative and quantitative) are made in non-Archimedean Nevanlinna theory and Diophantine approximation.

3 > 4 3

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_1, \ldots, D_n be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_X denote the canonical divisor on X. Suppose that every point in the intersection $\bigcap_{i=1}^{n} D_i$ is k-rational.

- Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X.D_i^{n-1} < 1 n$ for each $1 \le i \le n$. Then any set R of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper Zariski-closed subset of X.
- ② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset $Z \subset X$ such that for any set *R* of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^n D_i$, the set *R* \ *Z* is finite.

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_1, \ldots, D_n be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_X denote the canonical divisor on X. Suppose that every point in the intersection $\bigcap_{i=1}^{n} D_i$ is k-rational.

• Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X \cdot D_i^{n-1} < 1 - n$ for each $1 \le i \le n$. Then any set R of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper Zariski-closed subset of X.

② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset $Z \subset X$ such that for any set *R* of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^n D_i$, the set *R* \ *Z* is finite.

・ロト ・四ト ・ヨト ・ヨト

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Let D_1, \ldots, D_n be effective nef divisors on X, all defined over k, intersecting transversally in X. Let K_X denote the canonical divisor on X. Suppose that every point in the intersection $\bigcap_{i=1}^{n} D_i$ is k-rational.

- Assume that either $D_i^n > 1$ or that $D_i^n = 1$ and $K_X \cdot D_i^{n-1} < 1 n$ for each $1 \le i \le n$. Then any set R of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^n D_i$ is contained in a proper Zariski-closed subset of X.
- ② If $D_i^n > 1$ for all *i*, then there exists a proper Zariski-closed subset *Z* ⊂ *X* such that for any set *R* of \mathcal{O}_k -integral points on *X* \ $\cup_{i=1}^n D_i$, the set *R* \ *Z* is finite.

Corollary

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be an n-dimensional nonsingular projective variety over k. Suppose that $-K_X$ is nef and

 $(-K_X)^n > (n-1)^n.$

Let D_1, \ldots, D_n be effective nef and big divisors on X, all defined over k, intersecting transversally in X. Suppose that every point in the intersection $\bigcap_{i=1}^{n} D_i$ is k-rational. Then any set R of \mathcal{O}_k -integral points on $X \setminus \bigcup_{i=1}^{n} D_i$ is contained in a proper Zariski-closed subset of X.

4 3 5 4 3 5 5

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let $\pi : X \to \mathbb{P}^1$ be a rational ruled surface over k. Let D_1 and D_2 be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_1 and D_2 are defined over k and that all of the points in the intersection $D_1 \cap D_2$ are k-rational.

If D_1 and D_2 are big, then any set R of \mathcal{O}_k -integral points on $X \setminus D_1 \cup D_2$ is contained in a proper Zariski-closed subset of X.

Suppose that D₁ and D₂ are ample. Then any set R of O_k-integral points on X \ D₁ ∪ D₂ is contained in a finite union of fibers and sections C with C ~ C₀. Any set R of O_k-integral points on X \ D₁ ∪ D₂ is finite if and only if every curve C ⊂ X over k which is linearly equivalent to C₀ or a fiber F, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1, 2.

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let $\pi : X \to \mathbb{P}^1$ be a rational ruled surface over k. Let D_1 and D_2 be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_1 and D_2 are defined over k and that all of the points in the intersection $D_1 \cap D_2$ are k-rational.

• If D_1 and D_2 are big, then any set R of \mathcal{O}_k -integral points on $X \setminus D_1 \cup D_2$ is contained in a proper Zariski-closed subset of X.

Suppose that D₁ and D₂ are ample. Then any set R of O_k-integral points on X \ D₁ ∪ D₂ is contained in a finite union of fibers and sections C with C ~ C₀. Any set R of O_k-integral points on X \ D₁ ∪ D₂ is finite if and only if every curve C ⊂ X over k which is linearly equivalent to C₀ or a fiber F, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1, 2.

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let $\pi : X \to \mathbb{P}^1$ be a rational ruled surface over k. Let D_1 and D_2 be effective divisors intersecting transversally in X. Suppose that all the irreducible components of D_1 and D_2 are defined over k and that all of the points in the intersection $D_1 \cap D_2$ are k-rational.

- If D_1 and D_2 are big, then any set R of \mathcal{O}_k -integral points on $X \setminus D_1 \cup D_2$ is contained in a proper Zariski-closed subset of X.
- Suppose that D₁ and D₂ are ample. Then any set R of O_k-integral points on X \ D₁ ∪ D₂ is contained in a finite union of fibers and sections C with C ~ C₀. Any set R of O_k-integral points on X \ D₁ ∪ D₂ is finite if and only if every curve C ⊂ X over k which is linearly equivalent to C₀ or a fiber F, intersects D₁ ∪ D₂ in more than one point. In particular, this holds if D_i.F ≥ 2 and D_i.C₀ ≥ 2 for i = 1,2.

Theorem (Lin-W.2010, An-Levin-W.2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If κ(D_i) > 0 for all i, then the image of an analytic map f : k → X \ D is contained in a proper subvariety of X.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W.2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If κ(D_i) > 0 for all i, then the image of an analytic map f : k → X \ D is contained in a proper subvariety of X.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W.2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then the image of an analytic map $f : \mathbf{k} \to X \setminus D$ is contained in a proper subvariety of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Lin-W.2010, An-Levin-W.2011)

Let X be a nonsingular projective variety over **k**. Let D_1, \ldots, D_m be effective divisors on X with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then the image of an analytic map $f : \mathbf{k} \to X \setminus D$ is contained in a proper subvariety of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that the image of any non-constant analytic map f : k → X \ D is contained in Z.
- If D_i is ample for all i, then there is no non-constant analytic map from k to X \ D.

Theorem (Levin, 2008)

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_1, \ldots, D_m be effective divisors on X, defined over k, with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then any set *R* of \mathcal{O}_k -integral points on $X \setminus D$ is contained in a proper Zariski-closed subset of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that for any set R of O_k-integral points on X \ D, the set R \ Z is finite.
- If D_i is ample for all i, then all sets R of O_k-integral points on X \ D are finite.

Theorem (Levin, 2008)

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_1, \ldots, D_m be effective divisors on X, defined over k, with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then any set *R* of \mathcal{O}_k -integral points on $X \setminus D$ is contained in a proper Zariski-closed subset of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that for any set R of O_k-integral points on X \ D, the set R \ Z is finite.
- If D_i is ample for all i, then all sets R of O_k-integral points on X \ D are finite.

Theorem (Levin, 2008)

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_1, \ldots, D_m be effective divisors on X, defined over k, with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then any set *R* of \mathcal{O}_k -integral points on $X \setminus D$ is contained in a proper Zariski-closed subset of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that for any set R of O_k-integral points on X \ D, the set R \ Z is finite.
- If D_i is ample for all i, then all sets R of O_k-integral points on X \ D are finite.

Theorem (Levin, 2008)

Let $k = \mathbb{Q}$ or an imaginary quadratic field. Let X be a nonsingular projective variety over k. Let D_1, \ldots, D_m be effective divisors on X, defined over k, with empty intersection. Let $D = \sum_{i=1}^{m} D_i$.

- If $\kappa(D_i) > 0$ for all *i*, then any set *R* of \mathcal{O}_k -integral points on $X \setminus D$ is contained in a proper Zariski-closed subset of *X*.
- If D_i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that for any set R of O_k-integral points on X \ D, the set R \ Z is finite.
- If D_i is ample for all *i*, then all sets *R* of \mathcal{O}_k -integral points on $X \setminus D$ are finite.

Ideas of the proof of Main Theorem 1.

Since D_1, \ldots, D_n intersect transversally, their intersection contains only points. Let $\bigcap_{i=1}^{n} D_i = \{p_1, \cdots, p_m\}.$

Let $\pi : \tilde{X} \to X$ be the blow-up along $\mathfrak{p}_1, ..., \mathfrak{p}_m$, successively, and let $E_j := \pi^{-1}(\mathfrak{p}_j)$ be the exceptional divisor for $1 \le j \le m$. For $1 \le i \le n$ and $1 \le j \le m$, we let $G_{ij} := \pi^*(D_i) - E_j = \tilde{D}_i + E_1 + \dots + E_{j-1} + E_{j+1} + \dots + E_m$, where \tilde{D}_i the strict transform of D_i under π . Clearly, G_{ij} is effective, $\bigcap_{1 \le i \le n} G_{ij} = \emptyset$ and $\bigcup_{1 \le i \le n} G_{ij} = \bigcup_{i=1}^n \pi^{-1}(D_i)$.

When does $\kappa(G_{ij}) > 0$? When is G_{ij} big?

Ideas of the proof of Main Theorem 1.

Since D_1, \ldots, D_n intersect transversally, their intersection contains only points. Let $\bigcap_{i=1}^{n} D_i = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_m\}.$ Let $\pi: \tilde{X} \to X$ be the blow-up along $\mathfrak{p}_1, \dots, \mathfrak{p}_m$, successively, and let $E_i := \pi^{-1}(\mathfrak{p}_i)$ be the exceptional divisor for $1 \le i \le m$.

Ideas of the proof of Main Theorem 1.

Since D_1, \ldots, D_n intersect transversally, their intersection contains only points. Let $\bigcap_{i=1}^{n} D_i = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_m\}.$ Let $\pi: \tilde{X} \to X$ be the blow-up along $\mathfrak{p}_1, \dots, \mathfrak{p}_m$, successively, and let $E_i := \pi^{-1}(\mathfrak{p}_i)$ be the exceptional divisor for $1 \le j \le m$. For 1 < i < n and 1 < j < m, we let $G_{ii} := \pi^*(D_i) - E_i = \tilde{D}_i + E_1 + \dots + E_{i-1} + E_{i+1} + \dots + E_m$, where \tilde{D}_i is the strict transform of D_i under π .

Ideas of the proof of Main Theorem 1.

Since D_1, \ldots, D_n intersect transversally, their intersection contains only points. Let $\bigcap_{i=1}^{n} D_i = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_m\}.$ Let $\pi: \tilde{X} \to X$ be the blow-up along $\mathfrak{p}_1, \dots, \mathfrak{p}_m$, successively, and let $E_i := \pi^{-1}(\mathfrak{p}_i)$ be the exceptional divisor for $1 \le j \le m$. For 1 < i < n and 1 < j < m, we let $G_{ii} := \pi^*(D_i) - E_i = \tilde{D}_i + E_1 + \dots + E_{i-1} + E_{i+1} + \dots + E_m$, where \tilde{D}_i is the strict transform of D_i under π . Clearly, G_{ij} is effective, $\bigcap_{\substack{1 \le i \le n \\ 1 \le j \le m}} G_{ij} = \emptyset$ and $\bigcup_{\substack{1 \le i \le n \\ 1 \le j \le m}} G_{ij} = \bigcup_{i=1}^n \pi^{-1}(D_i)$.

Ideas of the proof of Main Theorem 1.

Since D_1, \ldots, D_n intersect transversally, their intersection contains only points. Let $\bigcap_{i=1}^{n} D_i = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_m\}.$ Let $\pi: \tilde{X} \to X$ be the blow-up along $\mathfrak{p}_1, \dots, \mathfrak{p}_m$, successively, and let $E_i := \pi^{-1}(\mathfrak{p}_i)$ be the exceptional divisor for $1 \le j \le m$. For 1 < i < n and $1 \le j \le m$, we let $G_{ii} := \pi^*(D_i) - E_i = \tilde{D}_i + E_1 + \dots + E_{i-1} + E_{i+1} + \dots + E_m$, where \tilde{D}_i is the strict transform of D_i under π . Clearly, G_{ij} is effective, $\bigcap_{\substack{1 \le i \le n \\ 1 \le j \le m}} G_{ij} = \emptyset$ and $\bigcup_{\substack{1 \le i \le n \\ 1 \le j \le m}} G_{ij} = \bigcup_{i=1}^n \pi^{-1}(D_i)$. When does $\kappa(G_{ii}) > 0$? When is G_{ii} big?

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_X denote the canonical divisor on X. Let $\pi : \tilde{X} \to X$ be the blow-up along m distinct points P_1, \ldots, P_m of X, successively, and let $E_i := \pi^{-1}(P_i)$ be the exceptional divisor for $1 \le i \le m$.

- If $D^n > 1$, then $\pi^*D E_i$ is big for each $1 \le i \le m$.
- ② If $D^n = 1$ and $K_X \cdot D^{n-1} < 1 n$, then $\kappa(\pi^* D E_i) \ge n 1$ for each 1 ≤ *i* ≤ *m*.

4 E N 4 E N

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_X denote the canonical divisor on X. Let $\pi : \tilde{X} \to X$ be the blow-up along m distinct points P_1, \ldots, P_m of X, successively, and let $E_i := \pi^{-1}(P_i)$ be the exceptional divisor for $1 \le i \le m$.

- If $D^n > 1$, then $\pi^*D E_i$ is big for each $1 \le i \le m$.
- ② If $D^n = 1$ and $K_X \cdot D^{n-1} < 1 n$, then $\kappa(\pi^* D E_i) \ge n 1$ for each 1 ≤ *i* ≤ *m*.

- A TE N - A TE N

Theorem

Let X be a nonsingular projective variety of dimension n over a field k and let D be a nef divisor on X. Let K_X denote the canonical divisor on X. Let $\pi : \tilde{X} \to X$ be the blow-up along m distinct points P_1, \ldots, P_m of X, successively, and let $E_i := \pi^{-1}(P_i)$ be the exceptional divisor for $1 \le i \le m$.

- If $D^n > 1$, then $\pi^*D E_i$ is big for each $1 \le i \le m$.
- ② If $D^n = 1$ and $K_X \cdot D^{n-1} < 1 n$, then $\kappa(\pi^* D E_i) \ge n 1$ for each 1 ≤ *i* ≤ *m*.

4 E N 4 E N

Sketch of Proof

The case of blowing-up one point: $\pi : \tilde{X} \to X$. Let $i : E \to \tilde{X}$ be the inclusion map. We have an exact sequence

$$0 \to H^{0}(\tilde{X}, \mathcal{O}(m\pi^{*}D - (j+1)E)) \to H^{0}(\tilde{X}, \mathcal{O}(m\pi^{*}D - jE))$$
$$\to H^{0}(E, i^{*}\mathcal{O}(m\pi^{*}D - jE)).$$

A standard computation shows

$$h^0(m\pi^*D) - h^0(m\pi^*D - mE) \leq rac{m^n}{n!} + rac{1}{2}rac{m^{n-1}}{(n-2)!} + O(m^{n-2}).$$

A D N A B N A B N A B N

Apply the following asymptotic Riemann-Roch formula.

Theorem (Matsusaka)

Let X be a nonsingular projective variety of dimension n and let D be a nef and big divisor on X. Then

$$h^{0}(mD) = \frac{D^{n}}{n!}m^{n} - \frac{K_{X}.D^{n-1}}{2(n-1)!}m^{n-1} + O(m^{n-2}).$$

Then

$$h^0(m\pi^*D-mE) \geq rac{D^n-1}{n!}m^n - rac{K_X \cdot D^{n-1} + (n-1)}{2(n-1)!}m^{n-1} + O(m^{n-2}).$$

Julie Tzu-Yueh Wang (Academia Sinica, TaiwOn non-Archimedean curves omitting few corr March 15 to March 20, 2015 32 / 38

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) Pic $X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve ≁ C₀, F, then a, b > 0, b ≥ ae, and D² > 0.
 - i) D is big if and only if a > 0 and b > 0.
 - ii) D is ample if and only if a > 0 and b > ae.

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

(a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.

(b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 - (2 + e)F$. In particular, $K_X^2 = 8$.

- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve ≁ C₀, F, then a, b > 0, b ≥ ae, and D² > 0.
 - i) D is big if and only if a > 0 and b > 0.
 - ii) D is ample if and only if a > 0 and b > ae.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to aC₀ + bF in PicX. Then
 (i) If D is an irreducible curve ≁ C₀, F, then a, b > 0, b ≥ ae, and D² > 0.
 - ii) D is ample if and only if a > 0 and b > ae.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve $\not\sim C_0$, F, then a, b > 0, $b \ge ae$, and $D^2 > 0$.
 - (ii) D is big if and only if a > 0 and b > 0.
 - (iii) D is ample if and only if a > 0 and b > ae.

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve $\not\sim C_0$, F, then a, b > 0, $b \ge ae$, and $D^2 > 0$.
 - (ii) D is big if and only if a > 0 and b > 0.
 - (iii) D is ample if and only if a > 0 and b > ae.

イロト イポト イヨト イヨト

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve $\not\sim C_0$, F, then a, b > 0, $b \ge ae$, and $D^2 > 0$.
 - (ii) D is big if and only if a > 0 and b > 0.
 - iii) D is ample if and only if a > 0 and b > ae.

イロト イポト イヨト イヨト

Proposition

A rational ruled surface X (over \overline{k}) is isomorphic to $X_e := \mathbf{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ over \mathbb{P}^1 for some nonnegative integer e. Let F denote a fiber on X and let C_0 denote a section of X such that $\mathcal{O}(C_0) \cong \mathcal{O}_{X_e}(1)$. Then

- (a) $\operatorname{Pic} X \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $C_0 \subset X$ and F with $C_0^2 = -e$, $F^2 = 0$, and $C_0 \cdot F = 1$.
- (b) Let K_X be the canonical divisor on X. Then $K_X \sim -2C_0 (2 + e)F$. In particular, $K_X^2 = 8$.
- (c) Let D be a divisor on X equivalent to $aC_0 + bF$ in PicX. Then
 - (i) If D is an irreducible curve $\not\sim C_0$, F, then a, b > 0, $b \ge ae$, and $D^2 > 0$.

- (ii) D is big if and only if a > 0 and b > 0.
- (iii) D is ample if and only if a > 0 and b > ae.

Suppose first that D_1 and D_2 have irreducible components E_1 and E_2 , respectively, with $E_i \not\sim C_0$, F, for i = 1, 2. Then by Proposition $E_i^2 \ge 1$ for i = 1, 2. $(K_X.E_i)^2 \ge K_X^2 E_i^2 \ge K_X^2 = 8$ and $K_X.E_i \le -3$. Then by Theorem 1, the image of an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2) \subset X \setminus (E_1 \cup E_2)$ is contained in a proper subvariety of X.

イロト イポト イラト イラト

Suppose first that D_1 and D_2 have irreducible components E_1 and E_2 , respectively, with $E_i \not\sim C_0$, *F*, for i = 1, 2.

($K_X.E_i$)² $\ge K_X^2E_i^2 \ge K_X^2 = 8$ and $K_X.E_i \le -3$. Then by Theorem 1, the image of an analytic map $f: \mathbf{k} \to X \setminus (D_1 \cup D_2) \subset X \setminus (E_1 \cup E_2)$ is contained in a proper subvariety of *X*.

Suppose first that D_1 and D_2 have irreducible components E_1 and E_2 , respectively, with $E_i \not\sim C_0$, F, for i = 1, 2. Then by Proposition $E_i^2 \ge 1$ for i = 1, 2. $(K_X \cdot E_i)^2 \ge K_X^2 E_i^2 \ge K_X^2 = 8$ and $K_X \cdot E_i \le -3$. Then by Theorem 1, the image of an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2) \subset X \setminus (E_1 \cup E_2)$ is contained in a proper subvariety of X.

Suppose first that D_1 and D_2 have irreducible components E_1 and E_2 , respectively, with $E_i \not\sim C_0$, F, for i = 1, 2. Then by Proposition $E_i^2 \ge 1$ for i = 1, 2. $(K_X.E_i)^2 \ge K_X^2 E_i^2 \ge K_X^2 = 8$ and $K_X.E_i \le -3$. Then by Theorem 1, the image of an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2) \subset X \setminus (E_1 \cup E_2)$ is contained in a proper subvariety of X.

- Since D_1 is big, by Proposition, D_1 must contain at least two irreducible components *C* and *F'* with $C \sim C_0$ and *F'* a fiber.
- Since D_2 is linearly equivalent to a positive integral linear combination
- of *C* and *F*', there exists a non-constant function $\phi \in \mathbf{k}(X)^*$ with poles and zeros only in the support of D_1 and D_2 .
- Consider an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$. Then
- $\phi \circ f : \mathbf{k} \to \mathbb{A}^1 \setminus \{0\}$ is analytic, and hence constant. It follows that the image of *f* is contained in a proper subvariety of *X*.

イロト イポト イヨト イヨト 二日

Since D_1 is big, by Proposition, D_1 must contain at least two irreducible components *C* and *F*' with $C \sim C_0$ and *F*' a fiber.

Since D_2 is linearly equivalent to a positive integral linear combination of *C* and *F'*, there exists a non-constant function $\phi \in \mathbf{k}(X)^*$ with poles and zeros only in the support of D_1 and D_2 .

Consider an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$. Then

 $\phi \circ f : \mathbf{k} \to \mathbb{A}^1 \setminus \{0\}$ is analytic, and hence constant. It follows that the image of *f* is contained in a proper subvariety of *X*.

Since D_1 is big, by Proposition, D_1 must contain at least two irreducible components *C* and *F'* with $C \sim C_0$ and *F'* a fiber.

Since D_2 is linearly equivalent to a positive integral linear combination of *C* and *F'*, there exists a non-constant function $\phi \in \mathbf{k}(X)^*$ with poles and zeros only in the support of D_1 and D_2 .

Consider an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$. Then

 $\phi \circ f : \mathbf{k} \to \mathbb{A}^1 \setminus \{0\}$ is analytic, and hence constant. It follows that the image of *f* is contained in a proper subvariety of *X*.

- Since D_1 is big, by Proposition, D_1 must contain at least two irreducible components *C* and *F'* with $C \sim C_0$ and *F'* a fiber.
- Since D_2 is linearly equivalent to a positive integral linear combination of *C* and *F'*, there exists a non-constant function $\phi \in \mathbf{k}(X)^*$ with poles and zeros only in the support of D_1 and D_2 .
- Consider an analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$. Then
- $\phi \circ f : \mathbf{k} \to \mathbb{A}^1 \setminus \{0\}$ is analytic, and hence constant. It follows that the image of *f* is contained in a proper subvariety of *X*.

- By (a), the image of a non-constant analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$ is contained in a curve in *X*.
- Let *C* be the Zariski closure of the image of *f* in *X*.
- If $C \cap (D_1 \cup D_2)$ contains more than one point, then *f* must be constant. On the other hand, $D_i \cap C \neq \emptyset$ for i = 1, 2, since D_1 and D_2 are ample. Therefore, we only need to consider when $C \cap D_1 = C \cap D_2 = \{x\}$ for some $x \in X$.

イロト イポト イラト イラト

By (a), the image of a non-constant analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$ is contained in a curve in *X*.

Let *C* be the Zariski closure of the image of *f* in *X*. If $C \cap (D_1 \cup D_2)$ contains more than one point, then *f* must be constant. On the other hand, $D_i \cap C \neq \emptyset$ for i = 1, 2, since D_1 and D_2 are ample. Therefore, we only need to consider when $C \cap D_1 = C \cap D_2 = \{x\}$ for some $x \in X$.

• □ ▶ • @ ▶ • E ▶ • E ▶ · ·

By (a), the image of a non-constant analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$ is contained in a curve in *X*.

Let C be the Zariski closure of the image of f in X.

If $C \cap (D_1 \cup D_2)$ contains more than one point, then *f* must be constant. On the other hand, $D_i \cap C \neq \emptyset$ for i = 1, 2, since D_1 and D_2 are ample. Therefore, we only need to consider when $C \cap D_1 = C \cap D_2 = \{x\}$ for some $x \in X$.

By (a), the image of a non-constant analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$ is contained in a curve in *X*.

Let C be the Zariski closure of the image of f in X.

If $C \cap (D_1 \cup D_2)$ contains more than one point, then *f* must be constant. On the other hand, $D_i \cap C \neq \emptyset$ for i = 1, 2, since D_1 and D_2 are ample. Therefore, we only need to consider when $C \cap D_1 = C \cap D_2 = \{x\}$ for some $x \in X$.

- By (a), the image of a non-constant analytic map $f : \mathbf{k} \to X \setminus (D_1 \cup D_2)$ is contained in a curve in *X*.
- Let C be the Zariski closure of the image of f in X.

If $C \cap (D_1 \cup D_2)$ contains more than one point, then *f* must be constant. On the other hand, $D_i \cap C \neq \emptyset$ for i = 1, 2, since D_1 and D_2 are ample. Therefore, we only need to consider when $C \cap D_1 = C \cap D_2 = \{x\}$ for some $x \in X$.

Let $\pi : \tilde{X} \to X$ be the blow-up of X at x with exceptional divisor E.

- Let \tilde{C} be the strict transform of C and \tilde{D}_i the strict transform of D_i , i = 1, 2.
- Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .
- Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.
- If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.
- Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.
- Consequently, $\tilde{f}: \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also

constant.

A D N A B N A B N A B

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\widetilde{f}: \mathbf{k} o \widetilde{X} \setminus \widetilde{D}_1 \cup \widetilde{D}_2$ is constant and hence f is also

constant.

イロト イポト イラト イラ

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_X > m = m_X(C) \cdot m_X(D_i)$ for i = 1, 2, then each \tilde{D}_i must

intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\tilde{f}: \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also

constant.

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\tilde{f}: \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also

constant.

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also

constant.

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also

constant.

Then $f : \mathbf{k} \to X \setminus D_1 \cup D_2$ lifts to $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ with $f = \pi \circ \tilde{f}$ and the image of \tilde{f} is contained in \tilde{C} .

Denote by $m = m_x(C)$ the multiplicity of *C* at *x*.

If $(C.D_i)_x > m = m_x(C) \cdot m_x(D_i)$ for i = 1, 2, then each \tilde{D}_i must intersect \tilde{C} at some point on \tilde{X} lying above x.

Since D_1 and D_2 intersect transversally, $\bigcap_{i=1}^2 \tilde{D}_i \cap E = \emptyset$. Thus, there must be at least two points on \tilde{C} lying above *x*.

Consequently, $\tilde{f} : \mathbf{k} \to \tilde{X} \setminus \tilde{D}_1 \cup \tilde{D}_2$ is constant and hence f is also constant.

Let $(C.D_1)_x = m$.

Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$.

Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that C is not linearly equivalent to C_0 or F.

From Proposition, we have that a, b - ae, c, d > 0.

By taking *F* to be the fiber passing through *x*, we see that $c = C.F \ge m$.

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.

Let $(C.D_1)_x = m$. Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$. Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that *C* is not linearly equivalent to C_0 or *F*. From Proposition, we have that a, b - ae, c, d > 0. By taking *F* to be the fiber passing through *x*, we see that $c = C.F \ge m$.

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.

Let $(C.D_1)_x = m$.

Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$.

Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that C is not linearly equivalent to C_0 or F.

From Proposition, we have that a, b - ae, c, d > 0.

c = C.F > m.

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.

A D K A B K A B K A B K B B

The proofs

Let $(C.D_1)_x = m$.

Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$.

Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that C is not linearly equivalent to C_0 or F.

From Proposition, we have that a, b - ae, c, d > 0.

By taking *F* to be the fiber passing through *x*, we see that $c = C.F \ge m$.

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.

イロト 不得 トイヨト イヨト 二日

The proofs

Let $(C.D_1)_x = m$.

Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$.

Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that C is not linearly equivalent to C_0 or F.

From Proposition, we have that a, b - ae, c, d > 0.

By taking *F* to be the fiber passing through *x*, we see that $c = C.F \ge m$.

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.

The proofs

Let $(C.D_1)_x = m$.

Suppose that $C \equiv cC_0 + dF$ and $D_1 \equiv aC_0 + bF$.

Then $(C.D_1)_x = C.D_1 = ad + c(b - ae)$.

Assume that C is not linearly equivalent to C_0 or F.

From Proposition, we have that a, b - ae, c, d > 0.

By taking F to be the fiber passing through x, we see that

 $c = C.F \ge m.$

Then $m = C.D_1 = ad + c(b - ae) > c \ge m$, a contradiction.