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ABSTRACT
In previous work, stable approximately axisymmetric equilibrium configurations for magnetic

stars were found by numerical simulation. Here, I investigate the conditions under which

more complex, non-axisymmetric configurations can form. I present numerical simulations of

the formation of stable equilibria from turbulent initial conditions and demonstrate the exis-

tence of non-axisymmetric equilibria consisting of twisted flux tubes lying horizontally below

the surface of the star, meandering around the star in random patterns. Whether such a non-

axisymmetric equilibrium or a simple axisymmetric equilibrium forms depends on the radial

profile of the strength of the initial magnetic field. The results could explain observations of

non-dipolar fields on stars such as the B0.2 main-sequence star τ Sco or the pulsar 1E 1207.4-

5209. The secular evolution of these equilibria due to Ohmic and buoyancy processes is also

examined.

Key words: MHD – stars: chemically peculiar – stars: magnetic fields – stars: neutron – white

dwarfs.

1 I N T RO D U C T I O N

Convective stars of various types tend to have small-scale, time-

varying magnetic fields, which are interpreted as dynamo action

driven by differential rotation and convection/buoyancy instabilities.

Stars which lack convection tend to display large-scale, steady mag-

netic fields. Where we find magnetic fields in upper-main-sequence

(MS) stars (>1.5 M�), which are radiative apart from a small con-

vective core, they are large-scale and steady at least for as long

as they have been observed (first detection by Babcock 1947, see

Mathys 2001 for a recent review). Many of these stars have roughly

dipolar fields, but many have rather more complex fields, such as τ

Sco (Donati et al. 2006). We find magnetic fields of similar geometry

and total flux in some white dwarfs (WDs; see e.g. Schmidt 2001;

Wickramasinghe & Ferrario 2005; also magnetic fields in Type-Ia

SN ejecta; see e.g. Stritzinger & Sollerman 2007). Again, many

WDs have dipolar fields and many have stronger quadrupolar and

octupolar components (Beuermann et al. 2007), although none has

very small scale fields in the same way that convective stars do.

In neutron stars (NSs), there is little observational constraint on

the precise geometry of the fields (see e.g. Harding & Lai 2006).

However, there is evidence in some NSs for a non-dipolar config-

uration. For instance, the pulsar 1E 1207.4-5209 has a spindown-

inferred dipole of 2–4 × 1012 G (Pavlov et al. 2002) while Sanwal

et al. (2002) find a surface field strength of 1.5 × 1014 G from ab-

sorption features in the spectrum. Similarly, Becker et al. (2003)

find dipole and mean surface field strengths of 109 and 1011 G,

respectively, in the pulsar RBS B1821-24.
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None of these non-convective stars displays differential rotation.

Given the lack of necessary ingredients for a dynamo, we infer that

the magnetic fields are ‘fossil’ remnants in some stable equilibrium

which therefore evolve not on the relatively short Alfvén time-scale

(years, hours and seconds in MS stars, WDs and NSs, respectively)

but only on longer, diffusive time-scales. The fields are stable equi-

libria which formed from the magnetic field left over from the last

convective or otherwise ‘chaotic’ period which the star experienced.

In the case of MS stars, this is the convective/accretive protostellar

phase; WDs (at least, the heavier ones which have magnetic fields)

evolve mainly from the convective cores of intermediate-mass MS

stars; NSs are born out of presumably turbulent core-collapse su-

pernovae and experience ∼100 s of neutrino-driven convection and

neutron-finger instability (see Bonanno, Urpin & Belvedere 2006).

In addition to their turbulent beginnings, two things which all these

formerly convective stars have in common are the enormous range

in field strengths between stars of the same class (10<2−5, 104−9 and

1011−15 gauss in upper-MS, WDs and NSs, respectively) and the

lack of correlation between the field strength and rotation speed

(or rather, the inferred rotation speed at birth) which is particu-

larly puzzling, given the clear correlation observed in active dy-

namos between field strength and rotation speed (see e.g. Dibyendu

2004).

On the theoretical side, the emphasis has been on finding magnetic

field configurations which are in stable equilibrium. Analytically,

one can produce an equilibrium configuration simply by making

sure all forces are balanced and then test its stability to arbitrary

perturbations either by finding a dispersion relation or, more of-

ten, by using an energy method (Bernstein et al. 1958). Unfortu-

nately, it has been easier to demonstrate the instability of various

configurations than to find stable configurations. For instance, both
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axisymmetric poloidal fields and axisymmetric toroidal fields have

been shown to be unstable (Markey & Tayler 1973; Tayler 1973;

Wright 1973; Braithwaite 2006). More recently, it has become pos-

sible to find stable equilibria using numerical methods. Braithwaite

& Nordlund (2006, hereafter Paper I; see also Braithwaite & Spruit

2004) found such a configuration by evolving an arbitrary initial

magnetic field in time and watching it find its way into a stable

equilibrium. This equilibrium is roughly axisymmetric, consisting

of both toroidal and poloidal components (which is logical, given

that both are unstable on their own) in a twisted-torus configura-

tion. From the outside, the field looks approximately dipolar, as do

the fields of many (perhaps most) upper-MS stars and WDs. It is

the main purpose of this paper to demonstrate the existence – and

explore the properties and stability – of more complex, non-dipolar

configurations.

In Section 2, I describe numerical magnetohydrodynamic simu-

lations where equilibria evolve from arbitrary initial conditions. I

then use simple analytic methods to explore the stability and shape

of these equilibria in Section 3 and then look at the slow, quasi-static

diffusive evolution of these equilibria in Section 4. In Section 5, I

discuss the results in the context of astrophysical applications and

observational consequences before concluding in Section 6.

2 N U M E R I C A L S I M U L AT I O N S

In Paper I, it was found that an arbitrary initial magnetic field can

evolve into a roughly axisymmetric twisted torus configuration.

Here, the aim is to investigate whether that is the only stable equi-

librium available or whether there are other equilibria which can be

reached from different initial conditions.

2.1 The numerical model and setup

The setup of the simulations was described in some detail in

Paper I. I give a brief summary here. The star is modelled as a

ball of self-gravitating ideal gas (ratio of specific heats γ = 5/3)

of mass M, arranged in a polytrope of index n = 3, so that specific

entropy increases with radius and the star is stably stratified. (This

has important consequences; the behaviour of a magnetic field in an

isentropic star will be explored in a forthcoming paper.) The star is

contained in a computational box of side 4.2R, where R is the stellar

radius. Surrounding the star is an atmosphere of low electrical con-

ductivity, which behaves like a vacuum in that the magnetic field

there relaxes to a potential (current-free) field. The initial magnetic

field is chosen to resemble that expected to be present at the end of

a period of convection. In other words, we want to create a chaotic,

small-scale field. To do this, the initial magnetic field is calculated

from a vector potential (thus ensuring ∇ · B = 0) which contains

wavenumbers with a flat power spectrum up to a magnitude kmax.

The vector potential is tapered so that

B ∼ ρ p, (1)

where ρ is the gas density and p is a free parameter. Note that if

the star forms out of a uniformly magnetized cloud and the same

fraction of flux is lost from all fluid elements, then we expect p =
2/3. In all cases, some magnetic flux goes through the surface of

the star; a greater amount for smaller p (see Fig. 8, where the solid

lines represent initial conditions).

The code used is the STAGGER code (Nordlund & Galsgaard

1995; Gudiksen & Nordlund 2005), a high-order finite-difference

Cartesian magnetohydrodynamic (MHD) code which uses a ‘hyper-

diffusion’ scheme, a system whereby diffusivities are scaled with

the length-scales present so that badly resolved structure near the

Nyquist spatial frequency is damped whilst preserving well-resolved

structure on longer length-scales. This, and the high-order spatial

interpolation and derivatives (sixth order) and time-stepping (third

order), increases efficiency by giving a low effective diffusivity at

modest resolution (1283 here). The code includes Ohmic as well as

thermal and kinetic diffusion. Using Cartesian coordinates avoids

problems with singularities and simplifies the boundary conditions:

periodic boundaries are used here.

As always with numerical work, one has to ensure that the rele-

vant time-scales, which are separated in reality by many orders of

magnitude, are also sufficiently separated in simulations. Here, the

three relevant time-scales are the sound-crossing time, the Alfvén

time-scale and the diffusion time-scale, with the ordering

τs � τA � τd. (2)

The short sound-crossing time ensures that the star remains in pres-

sure equilibrium or, rather, that it evolves on an Alfvén time-scale

in quasi-static pressure equilibrium, where I define the Alfvén time-

scale as τA ≡ R
√

M/2E where E is the magnetic energy in the star.

Likewise, once the magnetic forces are balanced, the star evolves

on the diffusive time-scale in quasi-static MHD (and pressure) equi-

librium. The strength of the magnetic field in the simulations must

therefore be low enough that the Alfvén speed is everywhere much

less than the sound speed: the ratio of thermal to initial magnetic

energy is thus chosen to be 400. However, the magnetic energy is

expected to fall significantly, and to stop the Alfvén time-scale from

becoming comparable to the diffusion time-scale, the strength of

the magnetic field is artificially boosted as it decays so that the to-

tal magnetic energy stays constant. To do this, a term is added to

the induction equation ∂B/∂t = . . . +aB, where a is calculated at

every time-step. A record is kept of the degree of boosting so that

the ‘actual’ magnetic energy can be retrieved – it is this quantity

E′ which is plotted in Fig. 7, where E′ is calculated from ∂E′/∂t =
−2aE ′. This holds E and therefore τA constant and maintains the

time-scale ordering in (2).

2.2 Formation of equilibria

The evolution in time of the magnetic field is followed in the sim-

ulations. The value of kmax was set to 36R−1 and various values of

p were tried: 0, 1/3, 2/3 and 1. In all cases, a stable equilibrium is

reached after a few Alfvén crossing times, but both the geometry

and energy of the equilibrium are found to vary. Two types of equi-

librium are found: simple axisymmetric (as found in Paper I) and

more complex non-axisymmetric.

Fig. 1 shows the initial conditions (of the p = 1 run). Note that the

star takes up only a small part of the box – this wastes some compu-

tational power but is necessary to ensure an approximately correct

treatment of the potential field outside the star. For the run with p =
1, the magnetic field after around nine Alfvén crossing times is dis-

played in Fig. 2. The configuration is roughly axisymmetric and

contains both toroidal and poloidal components.

When p = 0, a non-axisymmetric equilibrium is reached. This is

displayed in Fig. 3; the figure shows the star from both sides. The

configuration consists of twisted flux tubes below the surface of the

star. The flux tubes lie horizontally and meander around the star at

some distance below its surface.
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Figure 1. The initial conditions: the top left shows the whole computational

domain; the main picture shows just the star, which is represented by blue

shading.

Figure 2. The simplest of the equilibria which form when the initial mag-

netic field is sufficiently concentrated into the centre of the star. The config-

uration is roughly axisymmetric, with a twisted flux tube looped around the

equator and a poloidal field passing through the middle of the star.

3 S TA B I L I T Y O F N O N - A X I S Y M M E T R I C
F I E L D S

In this section, the structure and stability properties of the non-

axisymmetric field will be examined, and predictions made about

how the nature of the equilibrium depend on the conserved param-

eters energy, helicity and flux.

Figure 3. A non-axisymmetric equilibrium viewed from opposite sides of

the star. The equilibria consist of one or more twisted flux tubes buried just

below the surface of the star. This kind of equilibrium forms if the initial

magnetic field is not concentrated into the centre of the star. In making this

figure, the ‘opacity’ of the star (blue shading) was set so that the field lines

just below the surface can be seen but that lines further inside cannot, as a

visual aid.

3.1 The structure of a twisted flux tube

Consider a twisted flux tube of length s and width (at the surface

of the star) αR whose axis lies at some constant radius inside a

star of radius R, so that α is the angle subtended by the flux tube

at the centre of the star. The cross-section of such a flux tube is

illustrated in the lower part of Fig. 4. It is assumed that α � 1

(see Section 3.2). The three components of the magnetic field are
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Figure 4. Cross-sections of a twisted flux tube below the surface of a star

of radius R. Above, the axisymmetric case where the flux tube is a circle

around the equator; below, the non-axisymmetric case where the flux tube

meanders around the star in some more complex fashion. The directions of

Bl and Br are indicated by the arrows in the lower part of the figure; Bt is

directed into the page. The poloidal field lines are marked with arrows; it can

be seen that the boundaries of the wedge are magnetic surfaces. The toroidal

field (direction into/out of the paper, shaded area) is confined to the poloidal

lines which are closed within the star.

toroidal (parallel to the length of the flux tube), radial and latitudinal;

average values are denoted, respectively, by Bt, Bl and Br. The radial

and latitudinal components will be collectively referred to as the

poloidal component. (Note that this coordinate system is local to

each position along the flux tube.) Since the flux tube cannot have

any ends, it must be joined in a loop. This loop can be wrapped

around the star in any fashion; it is assumed below that the radius

of curvature is significantly greater than the tube’s width.

We can immediately compare this picture to the simulations. In

Fig. 5, we have five flux-tube cross-sections from the run with p =
0 at time t = 17τA. The upper three frames are centred on different

parts of one flux tube; the lower two frames on different flux tubes.

In each case, the axis of the flux tube is perpendicular to the page.

Toroidal field is represented by blue/red shading and poloidal field is

represented by arrows as well as by contours of the scalar potential

ψ (see e.g. equation 3.6 of Markey & Tayler 1973) defined as

∂ψ

∂z
= −� B� and

∂ψ

∂�
= � Bz . (3)

Here, it is more correct to use cylindrical coordinates � and z, as

opposed to the spherical r and l above, although the two sets are

the same in the limit of small α. The axis of the flux tube lies on

(and in fact defines the location of) both the z and l axes, so that

Figure 5. Cross-sections of flux tubes in the run with p = 0 at time t =
17τA. The curved grey line towards the right-hand side is the surface of the

star and the centre of the star is on the left-hand side. The blue/red shading

represents the toroidal field component (out of/into the page) multiplied by

� , the horizontal coordinate in these cross-sections, the cylindrical radius.

The poloidal component is represented by the arrows and by contours of its

scalar potential. It can be seen that the arrows are very nearly parallel to the

contours of the scalar potential, showing that the length-scale of variation in

the direction perpendicular to the page is much greater than the length-scale

in the plane of the page, i.e. that the flux tubes meander around the star over

scales much greater than their width.
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both these coordinate systems are local, as opposed to the usual

cylindrical system, for instance, where z has the same direction at

every location. Now, this scalar potential is only meaningful if the

divergence of the poloidal field is negligible, i.e. that the relevant

length-scale along the flux tube (i.e. its radius of curvature) is much

greater than the tube’s width. That the arrows in Fig. 5 (representing

the real direction of the poloidal field) and contours of ψ are roughly

parallel confirms that this is a reasonable approximation.

Mestel (1961, see also Roxburgh 1966) found that in a star with

an axisymmetric field, the condition that the azimuthal component

of the Lorentz force vanishes (necessary since it cannot be balanced

by the pressure gradient) gives the condition

Bp · ∇(� Bt) = 0, (4)

where Bp is the poloidal field, Bt is the azimuthal (toroidal) compo-

nent and � is the cylindrical radius. In other words, poloidal field

lines are contours of �Bt. In the non-axisymmetric case, the same

argument applies: � in this context is the distance from the line pass-

ing through the centre of the star, perpendicular both to the flux tube

axis and to a line connecting the centre of the flux tube to the centre

of the star (i.e. the dotted line on the left-hand side of Fig. 4). It is also

shown in Fig. 4 that the toroidal component of the field is confined

to the volume enclosed by the largest poloidal line closed within the

star, and is zero outside this volume. The reason for this is that long-

lasting currents cannot exist outside the star and consequently the

toroidal field outside the star has to be zero, and that �Bφ has to have

the same value along a given poloidal line. A hand-waving argument

as to how the toroidal field outside the largest closed poloidal line

is destroyed is as follows. A poloidal line, which crosses the stellar

surface, would ‘unwind’ if it contained any toroidal component. In

this process, toroidal field is redistributed along the whole of the

poloidal line. Toroidal field in the atmosphere is then destroyed by

reconnection on a short time-scale, and the toroidal field inside the

star is redistributed along the poloidal line to where it has been

lost. This occurs on the Alfvén time-scale. In this way, all toroidal

field on the poloidal line is quickly transferred into and destroyed in

the atmosphere. By analogy, one can think of twisted elastic bands:

those which are connected up in a loop stay wound, while those with

free ends unwind.

These two properties are consistent with the results from the sim-

ulations described in the previous section – in Fig. 5 we see that the

poloidal field lines do roughly coincide with contours of �Bt, and

that the toroidal field is very weak outside of the last closed poloidal

line. In the figure, the contours are evenly (linearly) spaced, and

weak Bt of either direction is coloured white.

3.2 Reaching equilibrium: energy considerations

The volume of the flux tube is sαR2/3 and the magnetic energy it

contains is

E =
∫

B2

8π
dV ≈ sαR2

3

1

8π

[
B2

t + B2
l +

(
1 + 3a2

r α

2π

)
B2

r

]
, (5)

where s is the length of the tube (the length on the surface of the

star), α is the angle subtended at the centre of the star and R is the

radius of the star. The first two terms in the square brackets and

the first term in curved brackets represent the field energy inside the

star from each of the three components, and the last term represents

the field energy outside the star. The field outside the star is potential

(current-free) and can be calculated by solving the Laplace equation,

given Br at the surface. The form of Br at the surface is not known, so

I have simply assumed a basic sinusoidal form with the coefficient

ar (of the order of, but less than, unity) relating the mean radial field

component inside the flux tube to the radial field component on the

surface. It will be seen below that the energy above the surface is

not important unless α is very small.

We now allow the length and width of the flux tube to change

adiabatically. The flux tube will stretch or contract until ∂E/∂α =
0, i.e. an equilibrium is reached.1 Now, we are considering a star

where the magnetic pressure is everywhere very much less than the

thermal, so magnetic forces can have only a negligible effect on

the gas pressure. Also, the star is stably stratified so that energy is

required to move fluid elements in the radial direction since work

has to be done against the buoyant restoring force, and again, the

magnetic forces are weak in comparison to the buoyancy force. We,

therefore, have the following restrictions on the displacements ξ
which take place during this adjustment to equilibrium:

∇ · ξ ≈ 0 and r · ξ ≈ 0. (6)

In other words, weak magnetic forces have to avoid doing work

against stronger forces. These approximations are standard in the

analysis of MHD instabilities in stars (e.g. Pitts & Tayler 1986;

Spruit 2002). The consequence of these restrictions is that as long

as only reversible processes are allowed, the surface-field factor ar

stays constant as does the volume of the flux tube, since no matter

can leave or enter it, which can be expressed by stating that the area

of the flux tube on the stellar surface F = sαR = const. The radial

distribution of magnetic energy also cannot change since gas and

therefore the magnetic energy frozen into it cannot be transported

in the radial direction. In addition, we have

∂ ln Bt

∂ ln α
= −1 ,

∂ ln Bl

∂ ln α
= 1 and

∂ ln Br

∂ ln α
= 0, (7)

which follow simply from flux-freezing as well as from equation (6).

We can now differentiate equation (5) with respect to α and set

∂E/∂ α = 0, giving

B2
t ≈ B2

l + 3a2
r α

4π
B2

r ≈ B2
l

(
1 + 3a2

r

4πα

)
, (8)

where we have noted from the geometry that Bl ≈ αBr to arrive at

the part on the right-hand side. Remembering that ar is somewhat

less than one, we now look at the case where α is large enough so

that the term in equation (8) containing it can be ignored. We are

left with

Bt ≈ Bl ≈ αBr. (9)

Therefore, the adjustment to equilibrium consists in stretching or

contracting until the toroidal and latitudinal components are roughly

equal. This principle is also (partially) applicable to axisymmetric

equilibria (see Section 5.2).

On the other hand, if α is very small, equation (9) becomes instead

4πα

3a2
r

Bt ≈ Bl ≈ αBr. (10)

However, at least in Ap stars there is no observational evidence for

this, i.e. for magnetic fields with very small scale structure. In any

case, a small-scale field would evolve and decay on a time-scale

shorter than the stellar lifetime. Equation (9) will be used below

instead of equation (10), although it should be noted that this point

might conceivably need to be revisited in future.

1 It is straightforward to verify that ∂2E/∂α2 > 0 at this point, i.e. that the

equilibrium is stable to stretching/contracting perturbations.
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3.3 Magnetic flux and helicity

If we define a vector potential A from B = ∇×A, it can be shown

(Woltjer 1958) that the magnetic helicity H ≡ ∫
B · AdV , which

is a global rather than local quantity, is conserved in the limit of

infinite conductivity.2

Consideration of the length-scales R, αR and R in the toroidal,

latitudinal and radial directions, respectively, and from the definition

of A, we see that

Bt ∼ Ar

αR
− Al

R
, Bl ∼ At

R
and Br ∼ At

αR
, (11)

which using equation (9) becomes At ∼ Al ∼ Ar/α ∼ RBt. The

helicity of the flux tube is now given by

H ≡
∫

B · A dV ∼ 2F Br
t ≈ 4
p
t, (12)

where 
t ≈ (1/2)αR2Bt and 
p ≈ (1/2)sαRBr = (1/2) FBr are the

toroidal and poloidal fluxes; note that all coefficients of the order of

unity are rather approximate. The helicity, as well as both 
t and


p, are conserved during adiabatic changes in α and s and evolve

only due to diffusive processes; this is described in Section 4. It will

be seen in Fig. 7 that helicity is indeed roughly conserved during

the formation of equilibria on the Alfvén time-scale, so remains a

useful tool to aid our understanding of dynamical relaxation into

equilibrium.

Using equation (9), we can now give α as a function of the con-

served quantities defined above:

α2 ≈ 2

R2


t

Br

≈ F

R2


t


p

, (13)

so that if we know the area F and the ratio of toroidal to poloidal

fluxes of a tube, we can calculate its equilibrium width αR and length

s.

The above arguments can be applied not only to the flux tube as

a whole, but also to any small length δs of the tube with area δF.

Along the length of the flux tube 
t must be constant, but Br ≈
2δ
p/δF can vary. There is no reason why a single flux tube needs

to have a uniform width – at every point along its length, there is a

local equilibrium giving α as a function of the toroidal flux and the

local value of Br [remember from equation (7) that Br is constant

during adiabatic changes in α]. This can be seen in the first three

plates in Fig. 5, which are centred on the same flux tube at different

points along its length – at the position of the third plate, α is greater

than at the other two.

Neighbouring flux tubes need to have their poloidal components

in opposite senses in order to avoid a discontinuity at the boundary

between them. If the neighbouring tubes are actually parts of the

same tube, then the toroidal components will clearly also be in

opposite senses, i.e. in the cross-section, if the toroidal field of the

tube goes into the page, the toroidal field of the neighbouring tube

section will be directed out of the page. If the neighbours are part

of other tubes, the poloidal components still need to have opposite

senses but there is no constraint on the direction of the toroidal

part. In fact, there is no way that one flux tube can ‘know’ about

the direction of the toroidal field in any of the other tubes present,

because they are insulated from one another by regions of zero

2 Magnetic helicity is gauge-independent only if the boundaries of the region

of integration are either periodic or magnetic surfaces with B · dS = 0. The

boundaries of the flux tubes here (Fig. 4) are indeed magnetic surfaces; note

that B goes to zero at infinity.

toroidal field. In the first plate of Fig. 5, we see that the two tube

sections above and below the tube in the centre have both poloidal

and toroidal fields in opposite senses to the tube in the centre, so

that all three have helicity (which is essentially just the product of

the toroidal and poloidal fluxes) of the same sign, and may in fact

be different parts of the same tube. In the second plate, the lower

tube has opposite helicity to the other two tube sections visible.

This means then that the equilibrium has lower net helicity than an

otherwise identical configuration with the toroidal field of this tube

reversed; if we also reduced the strength of this new configuration

we could make a field of equal helicity but lower energy.

Therefore, there are many stable equilibria with the same helic-

ity but different energies, and it is possible that an arbitrary initial

field will evolve on the Alfvén time-scale, whilst conserving he-

licity, into a higher-energy, local equilibrium rather than into the

lowest energy state for its helicity. Stable configurations with zero
net helicity are possible in principle. The cross-section of a simple

zero-helicity field is illustrated in Fig. 6. Whether such a higher-

energy local equilibrium can actually be reached from realistic

initial conditions is another question. Also, it is plausible that dif-

fusive evolution (where helicity is no longer conserved) on a much

longer time-scale may coax the configuration into a lower energy

equilibrium.

3.4 Simulations: a quantitative analysis

It is now informative to have a more quantitative look at the simu-

lations. First, one can measure the magnetic helicity and magnetic

energy. In Fig. 7, these are plotted for the runs with p = 0, 1/3, 2/3

and 1 (p was defined in equation 1). Time, on the horizontal axis, is

given in terms of Alfvén times τA ≡ R
√

M/2E where E is the mag-

netic energy. All runs have the following in common: the helicity

falls throughout at some low rate, while the energy falls significantly

during the first couple of Alfvén time-scales before settling down to

a similar rate of decay as the helicity. This can be interpreted as the

formation of a stable equilibrium, followed by decay of the equi-

librium configuration on a longer, diffusive time-scale. Differences

between the runs are also visible in the figure: once equilibrium has

Figure 6. The cross-section of a star containing the simplest imaginable

zero-helicity equilibrium. The shaded areas represent the toroidal component

of the field – dark (light) shading represents field going into (out of) the page.

The vertical axis is the star’s axis of symmetry.
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Figure 7. Log magnetic energy E and helicity H/8πR (thick and thin

lines, respectively) against time, for runs with various values of the central-

concentration parameter p. Helicity has been divided by 8πR to give it units

of energy and so that the ratio of the two is equal to the helicity length as a

fraction of the stellar radius, rH/R.

been reached, the runs with p = 1 and 2/3 experience a slower drop

in energy and helicity than the runs with lower values of p. This is

presumably because the length-scales in the axisymmetric config-

urations which form in the p = 1 and 2/3 runs are greater and the

diffusive time-scales correspondingly greater.

We can also look at the radial profile of the magnetic energy

density B2/8π to see where most of the energy resides. Fig. 8 are

plotted radial profiles of the magnetic energy density at different

points in time for each of the four runs with different values of p.

Figure 8. Radial profiles of magnetic energy density B2/8π (log, as a frac-

tion of the mean) at various times for the four runs with different values

of p. In each plot, the lines correspond to the times (in Alfvén time-scales)

indicated in the boxes. It can be seen that the profiles change little during

the formation of the equilibria, and change only on the longer, diffusive

time-scale.

Figure 9. The length of the Br = 0 lines on the surface of the star, divided

by the circumference of the star (denoted by W), against time, for runs with

various values of the central-concentration parameter p: 0, 1/3, 2/3 and 1.

For the higher values (centrally concentrated initial field), a dipolar field is

formed, while for the lower values of p a more complex equilibrium results.

We can see that the energy profiles change little over the Alfvén

time-scale when the equilibrium is forming, but that on a longer

time-scale it becomes shallower and eventually the energy density

peaks at around r ≈ 0.8R, where the axes of the flux tubes are

located. Transport of flux in the radial direction is hindered by the

stable stratification and can only take place on a diffusive time-scale.

Precisely which kind of diffusive process (magnetic or thermal) is

responsible, being discussed in Section 4.

It is also useful to measure the length of the flux tubes. The easiest

method is to measure the length of the lines on the surface where

Br = 0, as the flux-tube axes always lie directly below these lines.

Fig. 9 is a plot of W, the total of the lengths of all flux tubes in terms

of the stellar circumference, against time, for the runs with p =
0, 1/3, 2/3 and 1. Clearly, the runs with higher p values, which

form axisymmetric equilibria, should have values of ≈1 because

the flux tube is essentially a great circle around the star.3 The non-

axisymmetric equilibria have higher values, because the flux tubes

are longer and meander around the star in a more complex fashion;

amongst these equilibria, a lower value of p leads to longer, narrower

flux tubes. If we assume that the whole volume of the star is taken

up with flux tubes of similar width then α ≈ 2/W in the limit of

small α.

The energy in the radial component of the field as a fraction of

the total energy, Er/E, is plotted in Fig. 10. In light of equation (9),

we expect that Er/E ≈ 1/(1 + 2α2), although equation (9) is really

only valid if the radial energy profile is fairly flat. If we look, for

instance, at the p = 0 run at t = 17τA (when the cross-sections in

Fig. 5 were taken), we see that from Fig. 9 that W ≈ 4.5, so that α ≈
0.44 and we expect Er/E ≈ 0.72, which corresponds approximately

to the value of ≈0.75 in Fig. 10.

3 In fact, what I refer to here as ‘axisymmetric’ is only approximately. So the

equilibria are generally slightly offset from the centre of the star and may be

a little warped in shape. This is presumably a result of the random nature of

the initial conditions.
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1954 J. Braithwaite

Figure 10. The energy in the radial component of the field Br as a frac-

tion of the total, against time for runs with various values of the central-

concentration parameter p: 0, 1/3, 2/3 and 1. As expected, the non-

axisymmetric equilibria have greater radial energy fractions.

4 D I F F U S I V E E VO L U T I O N O F E QU I L I B R I A

First, let us assume that the electrical conductivity is high enough

and that thermal conductivity is low enough that the relevant dif-

fusive time-scales are much larger than the Alfvén time-scale, i.e.

that (αR)2/η � αR/vA and (αR)2/κ � αR/vA, where η and κ

are the magnetic and thermal diffusivities, respectively, and vA is

the Alfvén speed. Then, the flux tube remains in quasi-static equi-

librium described by equations (9) and (13) while it is evolving

diffusively. This is the case in the simulations, as we can see from

Fig. 7 that the equilibrium evolves diffusively over many Alfvén

time-scales. Furthermore, assume that the area F of the flux tube

remains constant. This is justified if the flux tube(s) have filled up

all of the available space on the surface of the star, i.e. that F =
4πR2; the simulations show this to be roughly correct, although

there are some small ‘empty’ spaces, one of which is visible in the

last plate of Fig. 5.

In the simulations, we see that the total magnetic energy in the

equilibria falls, and that the energy moves to larger radii (Figs 7 and

8), both taking place on some diffusive time-scale (rather than on the

Alfvén time-scale on which the equilibrium forms). The overall fall

in energy (and helicity, the product of toroidal and poloidal fluxes)

can be understood as an obvious consequence of finite conductivity,

which can also explain the flattening of the radial energy profile;

what is more difficult to explain is the evolution from a flat profile

into a state where the energy density is higher at larger radii than in

the centre of the star. Nor can finite conductivity easily explain why

α should fall – in Fig. 9 we see that the length of the flux tubes is

gradually increasing, and α is therefore falling. From equation (13),

we can infer from a falling α that the toroidal flux 
t is falling faster

than the poloidal flux 
p. These phenomena can perhaps be better

understood in terms of thermal diffusion.

Nevertheless, let us first look at the effect of Ohmic dissipation

on the flux tubes. Finite conductivity causes toroidal field to leak

out of the volume enclosed by the largest closed poloidal field line,

on to poloidal lines, which go through the surface of the star. Via the

mechanism described in Section 3.1, this toroidal field is quickly de-

stroyed. The effect of finite conductivity on the poloidal component

is that gradients in the radial and latitudinal directions are smeared,

causing the overall amplitude to go down. Also, since the direction

of the poloidal component is changing over shorter length-scales (in

the horizontal direction) deeper in the star, this could explain why

the field strength deeper inside the star drops faster than that further

out. Also, perhaps since the toroidal field is confined to a smaller

space than the poloidal, it should decay faster since the diffusion

time-scale is shorter for smaller length-scales, thus explaining the

fall in time of α.

4.1 Buoyancy

A more convincing explanation for the rise of flux tubes to the sur-

face and for the greater loss of toroidal than poloidal flux involves

thermal rather than magnetic diffusion. (There is an analogous pro-

cess, in the case where the stratification is due not to an entropy

gradient but to a composition gradient and the relevant diffusivity is

that of chemical elements rather than heat. Here, I will illustrate the

principle only for the case of entropy stratification and thermal dif-

fusion.) This process can cause the field to rise towards the surface

of a stably stratified star in the following way. Imagine a magnetized

region surrounded by non-magnetized plasma. It must be in pressure

equilibrium with the surroundings, so that the sum of its magnetic

and thermal pressures is equal to the thermal pressure outside. If it

has the same temperature as the surroundings, it will be less dense,

and rise. In a stability stratified star (specific entropy increasing with

radius), the magnetized region will cool adiabatically as it rises, its

temperature falling faster than the ambient temperature, and it will

eventually reach an equilibrium where its total pressure and density

are equal to those of its new surroundings. However, it will now

have a lower temperature than the surroundings, and any thermal

diffusion will cause it to absorb heat and rise further into a new equi-

librium. Now, this mechanism should cause our flux tubes to rise and

even in the absence of magnetic diffusion inside the star, could lead

to destruction of the toroidal flux as poloidal lines breach the sur-

face of the star and their toroidal component is lost to reconnection

processes in the atmosphere.

Consider a flux tube of radius a, containing toroidal (axial) and

poloidal field components Bt and Bp surrounded by an unmagnetized

gas of pressure P and temperature T. The tube is thin, so a � HP

where HP is the pressure scaleheight. The pressure exerted by the

field on the surrounding gas, which is equal to the difference in

external and internal thermal pressures, is given by

�P = − 1

2πa

∂

∂a

(
πa2

B2
t + B2

p

8π

)
= B2

t

8π
, (14)

where the expression in brackets represents the magnetic energy per

unit length of the tube. Note that the poloidal component does not

contribute, which comes from the fact that adiabatic expansion of

the tube does not change the energy of that component. Denoting

quantities internal and external to the tube by i and e, we have at all

times

ρe = ρi and Pe = Pi + �P. (15)

Assuming an ideal gas equation of state gives us �T/T = �P/P,

and the heat flow into the tube per unit length is

Q ≈ 2πa κρ
Rμ�T

a
, (16)

where Rμ = R/μ is the gas constant. After some algebra, the vertical

speed v of the flux tube is found to be

v

HP

≡ τ−1
rise ≈ 2κ

a2βt

( ∇a

∇a − ∇

)
, (17)
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where β t ≡ 8π P/B2
t � 1 and

∇ ≡ d ln T

d ln P
and ∇a ≡

(
∂ ln T

∂ ln P

)
s

(18)

are derivatives of the surroundings and of the equation of state at

constant entropy, respectively. Note that the speed becomes infinite

as the temperature gradient approaches the adiabatic gradient where

convection sets in; in reality the speed would be limited by factors

not considered here such as aerodynamic forces. Except near the

boundaries of a stably stratified zone, we can treat the expression in

brackets in (17) as a factor of the order of unity.

Strictly speaking, the flux tubes in these non-axisymmetric mag-

netic equilibria are not surrounded by a non-magnetized medium,

although there are gaps between the toroidal-field regions of neigh-

bouring flux tubes. Nor is a � HP; however, it seems likely that

expression (17) is still applicable here, albeit only rather approxi-

mately. More quantitative, local analysis and simulations (perhaps

also in 2D) could shed light on this process and on the speed at

which the flux tubes rise. Very approximately, we have

τrise ∼ (αR)2β/κ ∼ α2βτKH, (19)

where β is the ratio of thermal to magnetic energy and τKH is the

Kelvin–Helmholtz (thermal) time-scale. Whether this is longer or

shorter than the Ohmic diffusion, time-scale depends on the type

of star under consideration (see Section 5.1); in the simulations

presented here, thermal and magnetic diffusivities are equal and β

ranges from ∼104 in the centre of the star to ∼30 near the surface.

4.2 Horizontal movements

As the length and width of the flux tubes adjust quasi-statically to the

loss of toroidal flux, their arrangement under the surface of the star

can be expected to change, with tubes pushing each other around

in the horizontal direction. These movements will be slow for the

most part, but fast readjustments may also occur, particularly if stress

builds up between tubes and a different arrangement of flux tubes

becomes energetically accessible. The observational consequences

of this are not very clear; in addition to a change in the geometry

of the magnetic field, one might expect some release of energy

accompanied by an apparent perturbation to the rotational phase

(and also to the rotation period, if the moment of inertia is changed).

4.3 The depth and cross-sectional shape of the flux tubes

From (13), we can predict the width of a flux tube at every point

along its length if we know its toroidal flux and the local value of Br.

However, we still have no argument to explain the cross-sectional

shape of the tube or, rather, the shape of the part where the toroidal

field resides. Even in the same simulation at the same time-step, we

see a variety of shapes, ranging from circular to very elongated in

the radial direction (see Fig. 5), whilst the depth of the tubes does

appear fairly uniform. It looks therefore that the radial distribution

of toroidal flux, and very likely the radial distribution of energy, is

globally fairly uniform and that only the flux-tube width α varies

from place to place. This uniformity could be a result of the stable

stratification and the restrictive effect it has on the movement of

fluid and therefore magnetic flux in the radial direction, in contrast

to movements in the horizontal direction caused by changes in the

width Rα of the flux tubes. We, therefore, expect the radial distri-

bution of energy in the newly formed equilibria to be similar to that

in the initial conditions.

Once the initial equilibrium has formed, the configuration con-

tinues to evolve on a slower, diffusive time-scale as discussed in

the previous section, and as this happens, the radial distribution of

energy changes (Fig. 8). After some time, when the flux tubes have

risen sufficiently and the magnetic energy density is low in the cen-

tral part of the star, we can define a depth fR above which most of

the energy is contained, and redefine Bt, Bl and Br as the average

values in that volume within fR of the stellar surface. Equation (9)

becomes

Bt ≈ Bl ≈ α

f
Br, (20)

since the energy argument in Section 3.2 is unchanged, but the

different geometry changes the relation between the two poloidal

components. Equations (11)–(13) are changed only by factors of the

order of unity. If we now let f change while keeping α and s fixed,

we find that

∂ ln Bt

∂ ln f
= −1 ,

∂ ln Bl

∂ ln f
= −1 and

∂ ln Br

∂ ln f
= 0 (21)

and that the equilibrium condition ∂E/∂f = 0 yields

B2
t ≈ B2

r − B2
l . (22)

Combining with equation (20), we have f ≈ √
2α and

Bt ≈ Bl ≈
√

2Br. (23)

Clearly, the depth f of the flux tube cannot change adiabatically on

an Alfvén time-scale as α can, but one at least expects that diffusive

processes will tend to produce flux tubes of roughly circular or

somewhat radially elongated cross-section. This process can also

be understood in another way. In general, a circular flux tube can

be force free if the hoop stress of the poloidal field is balanced

by the force resulting from the gradient in the toroidal field. If the

tube is now squashed into a tube of elliptical cross-section whilst

maintaining its cross-sectional area, the hoop stress of the poloidal

component is still equal on the major and minor axes. However, the

gradient of toroidal field is stronger now along the minor axis than

along the major, resulting in a restoring force pushing the tube back

into its original shape. A flux tube can only be force free if it has

circular cross-section, corresponding to the lowest energy state for

a given helicity.

Looking at the simulations (Fig. 5) we see that most of the flux

tubes do indeed appear to have f similar to or somewhat greater than

α. However, the fourth frame of the figure has f significantly greater

than α. This probably comes from effects not considered here such

as pressure from neighbouring flux tubes or details of the buoyancy

mechanism, which brings the tubes upwards.

4.4 Axisymmetric equilibria

In Paper I, we found that an axisymmetric equilibrium gradually

moves outwards, the torus expanding. The rate at which the field on

the surface increases was found – in the case where the field is deeply
buried inside the star – to be proportional to the magnetic diffusivity,

which works simply to smooth out any gradients in field strength

so that any centrally concentrated field becomes more spread out,

and therefore become stronger nearer the surface although the total

energy of the field is falling.4 However, in Paper I we did not look

4 This is equivalent to metal bar which is initially hot in the centre: heat is

lost through the sides, but is also conducted along the bar so that at first the

ends become warmer despite a fall in the total thermal energy.
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at the effect of the two types of diffusivity when the axis of the

torus is closer to the surface and the radial energy profile is flatter. It

seems likely that here, magnetic diffusion alone cannot explain the

evolution and that thermal diffusion is important.

In an axisymmetric equilibrium, the buoyant-rising effect of ther-

mal diffusion is resisted by the tension of the toroidal component.

As Reisenegger (2007) points out, this is likely to be more important

when the torus is buried deep inside the star, which could explain

why magnetic diffusion may be more important in deeply buried

fields.5

As axisymmetric equilibrium with a flatter radial energy profile

diffuses outwards, it experiences the same loss of toroidal flux as

the non-axisymmetric equilibria. A purely poloidal axisymmetric

field is unstable around the neutral line, i.e. where the poloidal field

goes to zero. The instability, which drives poloidal field loops in

a direction parallel to the field’s axis of symmetry, has recently

been seen in simulations (Braithwaite & Spruit 2006, and in ro-

tating stars in Braithwaite 2007). Markey & Tayler (1973, 1974)

and Wright (1973) find that the instability can be suppressed by

addition of a toroidal field of at least ∼1/4 of the strength of the

poloidal component. This works because the instability increases

the length of the neutral line, so it has to work against the tension of

the toroidal component. The stronger the toroidal field, the smaller

azimuthal wavenumbers are stabilized and just below the threshold,

only the largest scale (m = 2) azimuthal mode is unstable. This is

because the larger wavenumbers stretch the toroidal field more than

the smaller wavenumbers, so are easier to stabilize. Therefore as

an initially stable mixed poloidal–toroidal field diffuses outwards

and loses toroidal flux, it eventually becomes unstable to this m =
2 mode. Until now, the non-linear development of this instability

had not been studied. In light of the arguments in Section 3.2, it can

be seen that once this threshold is crossed, it becomes energetically

favourable for the flux tube to become longer and narrower. In other

words, α falls from 180◦ to a smaller value and the equilibrium

becomes non-axisymmetric; in fact, exactly of the type described

above. Since the analysis given in Section 3.2 assumed small α, it is

not immediately obvious whether this transition takes place quasi-

statically or whether α falls quickly from 180◦ to an equilibrium at

some lower value. We can appeal here to simulations, which appear

to show a gradual transition on a diffusive time-scale. Fig. 11 shows

W, the length of the Br = 0 line on the stellar surface (divided by

the circumference) for an initially axisymmetric equilibrium which

crosses this threshold due to toroidal flux loss. The rise in W does

not seem sudden, but happens only on a diffusive time-scale. Fig. 12

shows the field at three times: before, just after and some time after

this transition, corresponding to t/τA = 2.9, 16.1 and 23.5 in Fig. 11.

In addition, the instability of an axisymmetric poloidal field

presents us with another way of understanding the adjustment, in

a non-axisymmetric configuration, of a narrower flux tube to equi-

librium described in Section 3.2. If the toroidal component in the

flux tube is a little too weak, there is a long-wavelength instability

around its axis, the resultant latitudinal displacements increasing

the length of the flux tube and taking energy from, and weaken-

ing, the poloidal component until stability is restored. Therefore, as

the toroidal flux is gradually lost into the atmosphere, the flux tube

adjusts quasi-statically and is always marginally unstable.

5 He also notes that in a star with a barotropic equation of state or which

is otherwise non-stably stratified, a flux tube should rise to the surface on a

dynamical time-scale. The issue of stable fields in non-stably stratified stars

will be looked at in a forthcoming paper.

Figure 11. The length of the Br = 0 line on the stellar surface (divided by

the circumference) for an initially axisymmetric equilibrium which crosses

this threshold between axisymmetric and non-axisymmetric equilibria due

to toroidal flux loss.

5 D I S C U S S I O N

In this section, I consider some applications of these results to real

stars.

5.1 Comparison to observations

As outlined in Section 1, both axisymmetric and more complex

equilibria occur in all three classes of non-convective star: upper-

MS, WDs and NSs. This implies either that the initial conditions

vary – in particular the degree of central concentration of the initial

field and/or flux connection through the star’s surface, or that all

stars form axisymmetric equilibria which then evolve after some

time into more complex configurations via the process described

in Section 4.4. Another way of looking at this is that there is a

continuous series of equilibria and that diffusive processes move the

star along this series. At the beginning of the series are deeply buried

axisymmetric fields, which evolve on the magnetic diffusion time-

scale R2/η, where η is the magnetic diffusivity. As this happens, the

field strength on the surface may increase at first and then decrease.

After that are less deeply buried axisymmetric fields with a greater

fraction of their flux going through the star’s surface; these evolve

on a time-scale of either R2/η or R2β/κ where κ is the thermal

diffusivity; the field strength on the surface is likely to fall with

time. After that come the non-axisymmetric fields which evolve

on a time-scale of α2R2β/κ or α2R2/η; since α is continuously

falling, so the time-scale of evolution falls until the field evaporates

completely. During this phase, the field strength on the surface is

likely to fall on a magnetic diffusion time-scale, but the dipole field

strength could fall more quickly. The star begins its life somewhere

on this sequence and moves along with time. It is useful now to look

at the actual time-scales in each of the classes of stably stratified

star.

In an intermediate-mass MS star, the Alfvén time-scale is

∼10 yr for a field of 1 kG and the magnetic and thermal diffusion

time-scales are R2/η ∼ 1010 yr and R2/κ ∼ 106 yr; the lifetime of

the star is typically 108–9 yr. Composition gradients in the radiative

envelope are probably unimportant and since β ∼ 106−12, the buoy-

ant rise time-scale – as given by (19) – is greater than the lifetime
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Figure 12. The successive snapshots of an initially axisymmetric equilibrium which has evolved from that in Fig. 2. A transition is made from axisymmetric

to non-axisymmetric configuration as diffusive processes destroy toroidal flux and it becomes energetically favourable for the circular flux tube to lengthen and

become narrower. The resulting equilibrium is equivalent to that reached directly from initial conditions with a flatter radial energy profile (Fig. 3).

of the star, unless the flux tubes are very narrow. Very narrow flux

tubes would be found observationally by a very strong average field

modulus compared to the average line-of-sight component, which is

not seen (see e.g. Mathys 2001). There should not therefore be any

significant evolution of the field during the main sequence. Indeed,

there is arguably no observational evidence for field evolution dur-

ing the main sequence (but see Hubrig, North & Mathys 2000). We

therefore need different initial conditions. It is possible that stars are

born with a range in central concentrations around the threshold so

that some stars develop axisymmetric fields and some more com-

plex equilibria, but still with large α. The questions of the origin of

the range in field strengths and the apparent cut-off at ∼200 gauss

(no stars are observed with fields weaker than this down to an ob-

servational limit of a few gauss – see Aurière et al. 2007) are still

open, but since the former is generic to all non-convective stars and

the latter is unique to A stars, it is likely that the solutions to these

two questions are unconnected, and that there is some mechanism

in A stars to destroy fields below a certain threshold. Whether there

is a similar cut-off in O and early B stars as that in A and late-B

stars remains to be seen.

In WDs, the Alfvén, magnetic and thermal diffusion time-scales

are a few days (field of 10 MG), ∼1010 and ∼104 yr, respectively

(Chanmugam & Gabriel 1972); Hall drift may also be important

(Muslimov, van Horn & Wood 1995). Because the thermal diffusiv-

ity is so high, the thermal buoyancy time-scale given by (19) is less

than the cooling time (109−10 yr) for the stronger fields. However, a

composition gradient can prevent buoyant rise because the species

diffusion in WDs is very low. Since carbon and oxygen have almost

exactly the same mass per electron, C–O WDs lack composition

stratification but the heavier O–Ne WDs are stratified. This could

be the reason that we observe that the magnetic WDs tend to be

heavier than the non-magnetic WDs (Wickramasinghe & Ferrario

2005). Observationally, no correlations of magnetic properties with

age have been found. As in A stars, a mix of dipole-dominated and

quadrupolar and higher-order fields are found, but none dominated

by very high order harmonics.

In NSs, the Alfvén time-scale is ∼100 s for a field of 1012 G. The

diffusive time-scales are subject to considerable uncertainly from

both the theory – because Ohmic diffusion, ambipolar diffusion and

Hall drift as well as superconductivity and superfluidity may all play

roles – and the observations. There is evidence that the fields of ra-

dio pulsars decay on time-scales of >106 yr while magnetar fields

seem to decay faster, perhaps over around 104 yr (see e.g. Woods

& Thompson 2004). Hall drift and buoyant rise provide natural ex-

planations for this as they scale with the field strength, as B and B2,

respectively. Buoyancy of flux tubes in NSs depends mainly on the

composition gradient, the difference with WDs being that not only

can chemical elements diffuse into or out of a flux tube but also

that the chemical elements can reach equilibrium via the neutrino-

emitting reaction n ↔ p + e (Reisenegger 2007). The speed of the

latter does not depend on the length-scale, so fields with narrow

flux tubes would evolve no faster than simpler fields if this were the

dominant mechanism. Some NSs are observed with rather small-

scale fields, such as 1E 1207.4-5209, whose dipole field is ≈50

times smaller than the typical field strength on the surface (Pavlov

et al. 2002; Sanwal et al. 2002). Such a field could be a low-α equi-

librium. This kind of equilibrium could provide an explanation for

the observed phenomenon of NSs with similar dipole field strengths

and rotation periods which have quite different observational prop-

erties, some being observed as radio pulsars and some as magnetars

(Morris et al. 2002). Magnetars with 1014 G dipole fields could have

a complex fields containing much more energy than the radio pul-

sars with the same dipole field strength, which could account for the

high-energy output of magnetars.

5.2 Permissible poloidal/toroidal ratios in axisymmetric fields

In an axisymmetric configuration, it is only the poloidal component

we can see on the surface and which manifests itself in various pro-

cesses taking place outside the star, such as disc accretion, torques

in a binary system, pulsar spindown, etc., and it is therefore only the

poloidal component which we observe directly. The magnetic field

inside the star, including the toroidal component, can be important,

however, in other ways, for instance as an energy source for magne-

tars and as a means of creating ‘hot spots’ on NSs via anisotropic heat

conduction. Also, the Lorentz force gives rise to a distortion of the

density field which has two main consequences: first, by changing

the moment of inertia and making the star triaxial, free precession

is expected. There is observational evidence of precession in some

stars (Akgün, Link & Wasserman 2006). Damping of this free pre-

cession results in a star with its rotation and magnetic axes either

parallel or perpendicular, depending on whether the star is oblate or

prolate, respectively. A spinning NS with non-parallel axes should

be observable via gravitational radiation (see e.g. Dall’Osso & Stella

2007, and references therein), especially a fast-spinning magnetar

as required by ‘millisecond magnetar’ models of SNe. An important
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question is therefore whether the field inside the star is dominated by

the poloidal or by the toroidal components, since the former makes

the star oblate and the latter prolate, as well as because the decay

of a large ‘hidden’ toroidal field can provide an energy source for

magnetars.

The energy argument of Section 3.2 as applied to axisym-

metric fields gives us an important clue as to the permissible

toroidal/poloidal ratios in a stable axisymmetric equilibrium: the

poloidal field cannot be much stronger than the toroidal, or it would

be energetically favourable to make a transition to non-axisymmetric

equilibrium. However, it cannot be ruled out that the poloidal field

is still strong enough that the star is oblate; more quantitative cal-

culations are required. It also cannot be ruled out that the toroidal

field can be much stronger than the poloidal; in this situation, a

non-axisymmetric equilibrium would adjust, the flux tubes becom-

ing shorter and fatter, but an axisymmetric flux tube cannot become

any shorter and fatter (α cannot go above 180◦). The question of

exactly how much stronger the toroidal field can be has to do with

an instability of the toroidal field itself (Tayler 1973); this will be

examined in a forthcoming paper.

6 C O N C L U S I O N S

Numerical magnetohydrodynamic simulations of a stably stratified

star have been performed with an initially random magnetic field.

It is found that this initial magnetic field always evolves on the

Alfvén time-scale into a stable equilibrium configuration consist-

ing of twisted flux tube(s). There are approximately axisymmetric

equilibria with one flux tube forming a circle around the equator,

and more complex, non-axisymmetric equilibria consisting of one

or more flux tubes arranged in a more complex pattern with their

axes lying at roughly constant depth under the surface of the star.

Whether an axisymmetric or non-axisymmetric equilibrium forms

depends on the radial profile of the initial field strength: a more

centrally concentrated field evolves into an axisymmetric equilib-

rium and a more spread-out field with greater flux connection to

the atmosphere evolves into a more complex equilibrium.6 Further,

higher-resolution simulations are required to better quantify this dis-

tinction in initial conditions, but it seems that in an ideal-gas star

with polytropic index n = 3, if the initial field strength is tapered as

B ∼ ρp then the threshold is p ∼ 1/2.

These equilibria evolve quasi-statically due to diffusive processes

(finite conductivity, thermal/composition diffusion). Axisymmetric

equilibria rise towards the surface and eventually make a transition

to the non-axisymmetric class; the non-axisymmetric configurations

undergo a gradual lengthening and narrowing of their flux tubes.

This is caused by the loss of toroidal flux into the atmosphere. In

configurations with more than one flux tube, each tube may have

either positive or negative magnetic helicity; whether negative or

6 A magnetized region of initially ‘turbulent’ field, embedded in an ini-

tially stationary homogenous conducting gas, is found to evolve into an

axisymmetric equilibrium. (This will be explored in a forthcoming paper.)

It seems then that non-axisymmetric equilibria form only because of the

non-conducting nature of the atmosphere.

positive has no effect on the stability. Stable zero-helicity equilibria

are possible.
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