ON NON-COMMUTATIVE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

TERUO KANZAKI

(Received January 30, 1973)

Let A be a ring with the identity element and B an extension ring of A with the common identity element. B is called a quadratic extension of A, if the residue module B/A is an invertible A-A-bimodule, i.e. $B/A \otimes_A \operatorname{Hom}_A(B/A, A)$ $\approx \operatorname{Hom}_{A}(B|A, A) \otimes_{A} B|A \approx A$. In [4], [5] and [9], one has studied about commutative quadratic extensions. We like to extend these results to non-commutative quadratic extensions. But, in general, it is difficult. In this note, we shall study non-commutative quadratic extensions of a commutative ring. Let A be a commutative ring with the identity element. Let D be an A-algebra with the identity element such that D is a quadratic extension of a commutative subring B and B is a separable quadratic extension of A. In the section 1, we shall show that if Ahas no idempotents other than 0 and 1, then such an A-algebra D is either a commutative ring or a central A-algebra having B as a maximal commutative subring. We shall say that A-algebra D is a quaternion A-algebra with a maximal commutative and separable subalgebra B, if D is an A-algebra mensioned above and is a central separable A-algebra. In the section 2, we shall show that a quaternion A-algebra with a maximal commutative and separable subalgebra B is characterized by the separable quadratic extension B of A and a non-degenerate hermitian B-module (V, Φ) of rank one. Let (V, q) be a non-degenerate quadratic A-module such that V is a finitely generated projective A-module with a constant rank two. Then the Clifford algebra $C(V, q) = C_0(V, q) \oplus C_1(V, q)$ is a quaternion A-algebra with a maximal commutative and separable subalgebra $C_0(V, q)$. And, the quadratic A-module (V, q) is hyperbolic if and only if $[C_0(V, q)] = 1$ in $Q_s(A)$, where $Q_s(A)$ is the group of separable quadratic extensions of A (cf. [4], [5] and [9]).

1. Let A be a commutative ring with the identity element, and B a commutative and separable quadratic extension of A. Then B is characterized by an invertible A-module U, an A-linear map $f: U \rightarrow A$ and a quadratic form $q: U \rightarrow$ A, as $B=A \oplus U$ and $x^2=f(x)x+q(x)$ for $x \in U$ (cf. [4]). Let τ be an A-algebra automorphism of B defined by $\tau(a+x)=a+f(x)-x$ for $a \in A, x \in U$. Then we have $B^{\tau}=A$. Because, if x is in U and $\tau(x)=x$, then f(x)=0, and 2x=0. From the fact that a bilinear form $D_{f,q}: U \times U \rightarrow A$; $(x, y) \longrightarrow f(x) f(y)+2B_q(x, y)$ T. KANZAKI

is non-degenerate (Theorem 1 in [4]), x is 0, consequently we have $B^{\tau} = A$. Therefore, B is a Galois extension of A with the Galois group $G(B|A) = \{I, \tau\}$. If A has no idempotents other than 0 and 1, then $G(B|A) = \{I, \tau\}$ is the group of all A-algebra automorphisms of B.

Let D be an A-algebra which is a quadratic extension of B. Then we have

(1.1) **Theorem.** Let D and B be as above. If A has no idempotents other than 0 and 1, then D is either a commutative ring or a central A-algebra having the subalgebra B as a maximal commutative subring.

Since the residue B-B-bimodule D/B is invertible, there exists an Proof. A-algebra automorphism σ of B such that $xb \equiv \sigma(b)x \pmod{B}$ for all $x \in D$ and $b \in B$. Then σ is either I or τ . If $\sigma = I$, then for each x in D, $d_x(b) = xb - bx$ is in B for all $b \in B$. The map $d_x: B \rightarrow B$ becomes a derivation of B over A. B is seprable over over A, hence every derivation of B over A is 0, and so $d_x=0$. Therefore, D is a B-algebra. Since D is a quadratic extension of B, D is a commutative ring. If $\sigma = \tau$, then for each $x \in D$, $d_x(b) = xb - \tau(b)x$ is in B for all $b \in B$, and the map $d_x: B \to B$ is a (τ, I) -derivation of B over A, i.e. $d_x(b_1, b_2) =$ $d_x(b_1)b_2+\tau(b_1)d_x(b_2)$ for b_1 , b_2 in B, (cf. p. 170 in [6]). Since D/B is a projective left B-module, the exact sequence $0 \rightarrow B \rightarrow D \rightarrow D/B \rightarrow 0$ is split, i.e. there exists an invertible left B-submodule V of D such that $D=B\oplus V$. We consider the commutator ring $V_D(B) = \{x \in D; xb = bx \text{ for all } b \in B\}$, then $V_D(B) \supset B$. Now, we shall show $V_D(B) \cap V = 0$. If x is in $V_D(B) \cap V$, we have $d_x(b) = xb - \tau(b)x$ $=bx-\tau(b)x\in B\cap V=0$, and so $\tau(b)x=bx$ for all $b\in B$. Since $B\supset A$ is a Galois extension with the Galois group $G(B/A) = \{I, \tau\}$, there exist b_1, b_2, \dots, b_r and c_1 , $c_2, \cdots c_r$ in B such that $\sum_i c_i b_i = 1$ and $\sum_i c_i \tau(b_i) = 0$. Then $x = \sum_i c_i b_i x = \sum_i c_i \tau(b_i)$ x=0. Consequently, we get $V_D(B)=B$, i.e. B is a maximal commutative subring of D. Finally, we shall show that the center of D is A. Let c be an element of the center. c is contained in $B = V_D(B)$. For any $x \in V$, $cx = xc = d_x(c) + \tau(c)x$ in $B \oplus V = D$. Therefore, we have $cx = \tau(c)x$. Since V is faithful over B, $c=\tau(c)$, and c is contained in $B^{G(B/A)}=A$. Therefore, A is the center of D.

2. Let B be a commutative and separable quadratic extension of A, and D an A-algebra such that D is a quadratic extension of B. If D is central separable over A, then B is a maximal commutative subring of D. Because, when we regard D as $D \bigotimes_A B$ -left module by $d \bigotimes b \cdot x = dxb$ for $d \bigotimes b \in D \bigotimes_A B$ and $x \in D$, D is a finitely generated projective $D \bigotimes_A B$ -module and $\operatorname{Hom}_{D \otimes B}(D, D) \approx V_D(B) \supset B$. For every maximal ideal m of A, $\operatorname{Hom}_{D \otimes B}(D, D) \bigotimes_A A_{\mathfrak{m}} \approx \operatorname{Hom}_{D\mathfrak{m} \otimes B_{\mathfrak{m}}}(D\mathfrak{m}, D\mathfrak{m}) \approx$ $V_{D\mathfrak{m}}(B\mathfrak{m}) \supset B\mathfrak{m}$. But, $A\mathfrak{m}$ has no idempotents without 0 and 1, $V_{D\mathfrak{m}}(B\mathfrak{m}) = B\mathfrak{m}$. Therefore, $V_D(B) = B$. B is a maximal commutative subring of D. We shall say that D is a quaternion A-algebra with a maximal commutative and separable subalgebra B, if D is an A-algebra defined above and is central separable over A. If A has no idempotents other than 0 and 1, and if D is non-commutative

and separable over A, then by (1.1), D is a quaternion A-algebra with a maximal commutative and separable subalgebra B.

(2.1) **Proposition.** Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. Then D is a generalized crossed product of B and G(B|A) (defined in [3]). Therefore, there exists an invertible B-B-submodule of D such that $D=B \oplus V$ and $B=V \cdot V \approx V \otimes_B V$.

Proof. D is a central separable A-algebra and contains a maximal commutative subalgebra B which is a Galois extension of A with the Galois group $G(B|A) = \{I, \tau\}$. By Proposition 3 in [3], D is a generalized crossed product of B and G(B|A), and so D is written as $D = J_I \oplus J_\tau$, where $J_I = B$ and $J_\tau = \{x \in D;$ $\tau(b)x = xb$ for all $b \in B\}$ are invertible B-B-bimodules. Furthermore, the map $f_{\tau,\tau}: J_\tau \otimes_B J_\tau \to J_I; x \otimes y \longrightarrow xy$ is a B-B-isomorphism. Put $V = J_\tau, V$ is the required B-B-bimodule.

DEFINITION. Let $B \supset A$ be a commutative and separable quadratic extension which is a Galois extension with Galois group $G(B|A) = \{I, \tau\}$. For a left *B*-module *M* with an *A*-bilinear form $\Phi: M \times M \rightarrow B$, we shall call (M, Φ) a hermitian *B*-module if it satisfies

1)
$$\Phi(bx, y) = b\Phi(x, y)$$

2) $\Phi(x, y) = \tau(\Phi(y, x))$ for every $b \in B$ and $x, y \in M$.

We shall say that a hermitian B-module (M, Φ) is non-degenerate, if the A-linear map $M \rightarrow \operatorname{Hom}_B(M, B)$; $x \leftrightarrow \to \Phi(-, x)$ is an isomphism. Let (M_1, Φ_1) and (M_2, Φ_2) be hiermitian B-modules. The product $(M_1, \Phi_1) \otimes (M_2, \Phi_2)$ is defined by $(M_1 \otimes_B M_2, \Phi_1 \otimes \Phi_2)$ where $\Phi_1 \otimes \Phi_2 : (M_1 \otimes_B M_2) \times (M_1 \otimes_B M_2) \rightarrow B$; $(x_1 \otimes x_2, y_1 \otimes y_2) \leftrightarrow \to \Phi_1(x_1, y_1) \cdot \Phi_2(x_2, y_2)$. We denote by (B, I) a hermitian B-module defined by $I(b, b') = b \cdot \tau(b')$ for $b, b' \in B$.

If M_1 and M_2 are finitely generated projective *B*-modules, and if (M_1, Φ_1) and (M_2, Φ_2) are non-degenerate hermitian *B*-modules, then the product $(M_1, \Phi_1) \otimes (M_2, \Phi_2)$ is also non-degenerate.

(2.2) **Theorem.** Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. Then there exists a non-degenerate hermitian Bmodule (V, Φ) with an invertible B-bimodule V such that $D=B\oplus V$, $xb=\tau(b)x$ for $b \in B$, $x \in V$ and $xy=\Phi(x, y)$ for $x, y \in V$. Conversely, if (V, Φ) is any nondegenerate hermitian B-module with an invertible B-left module V, then an A-algebra $D=B\oplus V$ which is defined by $(b+x) \cdot (b'+x')=bb'+\Phi(x, x')+bx'+\tau$ (b')x for b, $b' \in B$ and $x, x' \in V$, is a quaternion A-algebra with a maximal commutative and separable subalgebra B.

Proof. Let D be a quaternion A-algebra with a maximal commutative and separable subalgebra B. By (2.1), there exists an invertible B-B-bimodule V

T. KANZAKI

such that $D=B\oplus V$ and $V \cdot V=B$. We define an A-bilinear map $\Phi: V \times V \rightarrow B$ by $\Phi(x, y) = xy$ for $x, y \in V$. We shall show that (V, Φ) is a non-degenerate hermitian B-module. Put $\Psi(x, y) = \Phi(x, y) - \tau(\Phi(y, x))$ for x, y in V. For any maximal ideal m of A, the localization $B_{\mathfrak{m}}$ is a semilocal ring, therefore $V_{\mathfrak{m}}$ is a free B_m-module of rank 1. Let $V_m = B_m v$, $\Psi_m = \Psi \otimes I_m$, $\Phi_m = \Phi \otimes I_m$ and $\tau_m =$ $\tau \otimes I_{\mathfrak{m}}$ Then we have $\Psi_{\mathfrak{m}}(bv, b'v)v = \Phi_{\mathfrak{m}}(bv, b'v)v - \tau_{\mathfrak{m}}(\Phi_{\mathfrak{m}}(b'v, bv))v = (vb'v)v$ $-v(b'vbv) = b\tau_m(b')v^3 - \tau_m(b')bv^3 = 0$ in D_m . Therefore, we have $\Psi_m = 0$ for any maximal ideal m of A, and so $\Psi = 0$, i.e. $\Phi(x, y) = \tau(\Phi(y, x))$ for every x, y in V. Since $V \otimes_B V \rightarrow B$; $x \otimes y \longrightarrow xy$ is B-B-isomorphism from (2.1), (V, Φ) is nondegenerate. Conversely, let (V, Φ) be any non-degenerate hermitian B-module with an invertible left B-module V. We can make a B-B-bimodule V by xb = $\tau(b)x$ for $b \in B$, $x \in V$. Since (V, Φ) is non-degenerate, the map $f_{\tau,\tau} : V \otimes_B V \to$ B; $x \otimes y \longrightarrow \Phi(x, y)$ is a B-B-isomorphism as B-B-bimodules. By [3], we can construct a generalized crossed prduct $\Delta(f, B, \Psi, G)$ of B and G = G(B/A) ={I, τ } provided Ψ ; Ψ (I)=B, Ψ (τ)=V, and a factor set $f = \{I = f_{I,I}, f_{\tau,I}, f_{I,\tau}, f_{\tau,\tau}\}$, where $f_{I,\tau}: B \otimes_B V \to V$; $b \otimes x \longrightarrow bx$, $f_{\tau,I}: V \otimes_B B \to V$; $x \otimes b \longrightarrow xb$. To show the commutativity of the diagrams of the factor set, we need only to show the following commutative diagram:

$$V \otimes_{B} V \otimes_{B} V \xrightarrow{I \otimes f_{\tau,\tau}} V \otimes_{B} B$$

$$\downarrow f_{\tau,\tau} \otimes I \qquad \qquad \downarrow f_{\tau,I}$$

$$B \otimes_{B} V \xrightarrow{f_{I,\tau}} V$$

we shall show it by taking the localization with respect to a maximal ideal m of A. Then we have $f_{\tau,I} \circ (I \otimes f_{\tau,\tau}) (av \otimes bv \otimes cv) = f_{\tau,I} (av \otimes f_{\tau,\tau} (bv \otimes cv)) = av \cdot \Phi$ $(bv, cv) = a\tau(b)c\tau(\Phi(v, v))v = a\tau(b)c\Phi(v, v)v = \Phi(av, bv)cv = f_{\tau,\tau}(av \otimes bv)cv = f_{I,\tau} \circ$ $(f_{\tau,\tau} \otimes I) (av \otimes bv \otimes cv)$ for all av, bv, cv in $V_{\mathfrak{m}} = A_{\mathfrak{m}}v$. Therefore, the diagram is commutative. Thus, $D = B \oplus V = \Delta(f, B, \Psi, G)$ is an A-algebra defined the multiplication by $(b+x) \cdot (b'+x') = bb' + \Phi(x, x') + bx' + \tau(b')x$ for b+x, b'+x' in $B \oplus V = D$. By Proposition 3 in [3], D is an Azumaya A-algebra, accordingly $D = B \oplus V$ is a quaternion A-algebra with a maximal commutative and separable subalgebra B.

We shall call (V, Φ) a non-degenerate hermitian *B*-module of rank 1 if (V, Φ) is a non-degenerate hermitian *B*-module and *V* is an invertible left *B*-module. For a non-degenerate hermitian *B*-module of rank 1, we denote by $D(B, V, \Phi)$ the quaternion *A*-algebra *D* with a maximal commutative and separable sabalgebra *B* defined by (V, Φ) in (2.2)

(2.3) Corollary. Let (V, Φ) and (V', Φ') be non-degenerate hermitian Bmodules of rank 1. Then (V, Φ) and (V', Φ') are isometric if and only if there exists an A-algebra isomorphism of $D(B, V, \Phi)$ to $D(B, V' \Phi')$ which is idetity map on B.

Let (P, q) be a quadratic A-module with a quadratic form $q: P \rightarrow A$. We shall call that (P, q) is a non-degenrate quadratic A-module of rank n, if P is a finitely generated projective A-module with constant rank n, i.e. $[P_m: A_m] = n$ for every maximal ideal m of A, and $q: P \rightarrow A$ is non-degenetate.

(2.4) **Proposition.** Let (V, q) be a non-degenerate A-module of rank 2. Then the Clifford algebra $C(V, q)=C_0(V, q)\oplus C_1(V, q)$ is a quaternion A-algebra with a maximal commutative and separable subalgebra $C_0(V, q)$, where $C_0(V, q)$ (resp. $C_1(V, q)$) is the subalgebra of C(V, q) of homogeneous elements of degree 0 (resp. degree 1.)

Proof. C(V, q) is an Azumaya A-algrbra, and $C_0(V, q)$ is a commutative and separable quadratic extension of A (Lemma 6 in [7]). Therefore, $V \approx C_1$ (V, q) is a finitely generated projective $C_0(V, q)$ -module. We shall show that $C_1(V, q)$ is an invertible $C_0(V, q)$ -module. It suffices to show that for the case where A is a local ring. Assume that A is a local ring. Then, $V=Au\oplus Av$ is a free A-module of rank 2. Since (V, q) is non-degenerate, we may assume that q(u) is invertible in A. Then we have $C_0(V, q)=A\oplus Auv$ and $C_1(V, q)\approx V=$ $Au\oplus Av=C_1(V, q) u$. Since u is invertible in $C(V, q), C_1(V, q)$ is a free $C_0(V, q)$ -module of rank 1.

(2.5) **Lemma.** Let Λ be a Galois extension of a ring Γ with a Galois group G, and P a Λ -module. Then we have $Hom_{\Gamma}(P, \Gamma) = Tr \circ Hom_{\Lambda}(P, \Lambda)$, where $Tr(x) = \sum_{\sigma \in \sigma} \sigma(x)$ for $x \in \Lambda$.

Proof. Since $\Lambda \supset \Gamma$ is a Galois extension with a Galois group G, there exist x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n in Λ such that $\sum_i \sigma(x_i) y_i = \begin{cases} 1, \sigma = I \\ 0, \sigma \neq I \end{cases}$. Then, for f in $\operatorname{Hom}_{\Gamma}(P, \Gamma), F(-) = \sum_i x_i f(y_i -)$ is contained in $\operatorname{Hom}_{\Lambda}(P, \Lambda)$, and $\operatorname{Tr} \circ F(z) = \sum_i \operatorname{Tr}(x_i f(y_i z)) = f(\sum_i \operatorname{Tr}(x_i) y_i z) = f(z)$ for all $z \in P$. Therefore, f is in $\operatorname{Tr} \circ \operatorname{Hom}_{\Lambda}(P, \Lambda)$. The converse is clear.

(2.6) **Lemma.** Let (P, Φ) be a non-degenerate hermitian B-dmodule. Then $(P, Tr \circ \Phi)$ is a non-degenerate bilinear A-module.

Proof. $\operatorname{Tr}\circ\Phi: P\times P\to A$; $(x, y)\longrightarrow \operatorname{Tr}(\Phi(x, y))=\Phi(x, y)+\tau(\Phi(x, y))$ is an *A*-bilinear form. We show that $P\to \operatorname{Hom}_A(P, A)$; $x \longrightarrow \operatorname{Tr}(\Phi(-, x))$ is an *A*isomorphism. If x is in P such that $\operatorname{Tr}(\Phi(-, x))=0$, $\Phi(P, x)$ is an ideal of B and $\operatorname{Tr}(\Phi(P, x))=0$. Let $b_1, b_2, \cdots b_n$ and $b_1', b_2', \cdots b_n'$ be elements in B such that $\sum_i b_i b_i'=1$ and $\sum_i \tau(b_i) b_i'=0$. Then, we have $b=\sum_i \operatorname{Tr}(bb_i) b_i'=0$ for every b in $\Phi(P, x)$, hence $\Phi(P, x)=0$. Therefore, x=0. From Lemma (2.5), $(P, \operatorname{Tr}\circ\Phi)$ is non-degenerate.

(2.7) **Theorem.** Let $D=D(B, V, \Phi)$ be quaternion A-algebra with a maximal

T. KANZAKI

commutactive and separable subalgebra B. Then there exists an involution $\sigma: D \rightarrow D$ which is defined by $\sigma(b+v)=\tau(b)-v$ for $b \in B$, $v \in V$. We put $N(x)=x \cdot \sigma(x)$ and $T(x)=x+\sigma(x)$ for x in D. Then $N: D \rightarrow A$ is a qduaratic form, (D, N) is a nondegenerate quadratic A-module of rank 4, and $D=B \perp V$. $T: D \rightarrow A$ is an A-linear map and $B_N(x, y)=T(x \cdot \sigma(y))$ for x, $y \in D$.

Proof. Let x=b+v and x'=b'+v' be elements in $D=B\oplus V$. Then we have $\sigma(xx') = \sigma(bb'+\Phi(v, v')+bv'+\tau(b')v) = \tau(bb'+\Phi(v, v')) - (bv'+\tau(b')v) =$ $\tau(b)\cdot\tau(b')+\Phi(v,v')-v'\tau(b)-\tau(b')v=\sigma(x')\cdot\sigma(x)$, and $\sigma^2(x)=x$. Therefore, σ is an involution. Furthermore, $N(b+v)=b\sigma(b)-\Phi(v, v)$ and $T(b+v)=b+\tau(b)$ are contained in $B^{c}=A$, hence $N: D \to A$ is a quadratic form, and the bilinear form is $B_{N}(x, x')=N(x+x')-N(x)-N(x')=x\sigma(x')+x'\sigma(x)=T(x\sigma(x))$ for $x, x'\in D$. Therefore, we have $D=B\perp V$. To prove that (D, N) is non-degenerate, it suffices to show that (B, N|B) and (V, N|V) are non-degenerate. From Lemma (2.6), $Tr\circ\Phi$ and $Tr\circ I$ are non-degenerate, and $B_{N}(b, b')=T(b\tau(b'))=Tr(b\tau(b'))=Tr\circ I$ (b, b') for $b, b'\in B$ and $B_{N}(v, v')=T(v(-v'))=T(-\Phi(v, v'))=-Tr\circ\Phi(v, v')$ for $v, v'\in V$, hence (B, N|B) and (V, N|V) are non-degenerate.

In Theorem (2.7), we put Q=-N | V. Then (V, Q) is a non-degenerate quadratic A-module of rank 2.

(2.8) **Theorem.** Let $D(B, V, \Phi)$ be a quaternion A-algebra with a maximal commutative and separable subalgebra B, and $N:D \rightarrow A$ and Q = -N | V as defined before. Then $D(B, V, \Phi)$ is a isomorphic to the Clifford algebra C(V, Q) of the quadratic module (V, Q) as A-algebras.

Proof. Since Q(x) is equal to $x^2 = N(x)$ in $D(B, V, \Phi)$ for every $x \in V$, the inclusion map $V \to D(B, V, \Phi) = B \oplus V$ can be extended to an A-algebra homomorphism $\rho: C(V, Q) \to D(B, V, \Phi)$. From the fact that C(V, Q) and $D(B, V, \Phi)$ are Azumaya algebras over A and are generated by V, we obtain that ρ is an A-isomorphism.

(2.9) **Lemma.** Let V be any invertible B-module. Then for any f in Hom_B (V, B) and x, y in V, we have f(x)y=f(y)x.

Proof. Put $\Psi(x, y)=f(y)x-f(x)y$ for every $x, y \in V$, then $\Psi: V \times V \rightarrow V$ is a *B*-bilinear form. By taking the loclization of *V* with respect to a maximal ideal m of *A*, we get easily $\Psi_m=0$. Therefore, $\Psi=0$.

(2.10) **Proposition.** Let (V, Φ) be a non-degenerate hermitian B-module of rank 1. Then, the quaternion A-algebra $D(B, V \otimes_B V, \Phi \otimes \Phi)$ which is determined by $(V, \Phi) \otimes (V, \Phi) = (V \otimes_B V, \Phi \otimes \Phi)$, is A-algebra isomorphic to $Hom_A(V, V)$, and this isomorphism preserves the structure of B-modules.

Proof. We can define a map θ : D(B, $V \otimes_B V$, $\Phi \otimes \Phi$)=B $\oplus V \otimes_B V \rightarrow Hom_A$ (V, V) as follows: $\theta(b)(x) = bx$ for $b \in B$, $x \in V$, and $\theta(u \otimes v)(x) = \Phi(u, x) v$ for $u \otimes v \in V \otimes_B V$, $x \in V$. Then θ is an A-algebra homomorphism. Because, for $b \in B$, $u \otimes v \in V \otimes_B V$ and $x \in V$, we have $\theta(b u \otimes v)(x) = \Phi(bu, x)v = b \Phi(u, x)v =$ $\theta(b) \circ \theta(u \otimes v)$ (x) and $\theta(u \otimes v b)$ (x)= $\Phi(u, x) vb = \tau(b) \Phi(u, x)v = \Phi(u, bx)v =$ $\theta(u \otimes v) \circ \theta(b)$ (x). And, for $u \otimes v$, $u' \otimes v' \in V \otimes_B V$ and $x \in V$, $\theta(u \otimes v) \circ \theta(u' \otimes v')$ $(x) = \theta(u \otimes v) (\Phi(u', x') v') = \Phi(u, \Phi(u', x) v') v = \Phi(u, v') \Phi(x, u'))v.$ On the other hand, $\Phi(-, v')$ and $\Phi(-, u')$ are in Hom_B(V, B), by Lemma (2.9) we get $\Phi(x, u')\Phi(u, v')v = \Phi(x, u')\Phi(v, v')u = \Phi(u, u')\Phi(v, v')x = \theta(\Phi(u, u')\Phi(v, v'))(x)$ $=\theta((u\otimes v) (u'\otimes v'))(x)$. Thus, θ is an A-algebra homomorphism. Now we check that θ is an epimorphism. From Lemma (2.5), we have Hom_A $(V, V) \approx$ $\operatorname{Hom}_{A}(V, A) \otimes_{A} V \approx \operatorname{Tr} \circ \operatorname{Hom}_{B}(V, B) \otimes_{A} V \approx (\operatorname{Tr} \circ \Phi(-, V)) \otimes_{A} V.$ Therefore, any element f in Hom_A(V, V) is written as $f = \sum_{i} \text{Tr} \circ \Phi(-, u_i) v_i = \sum_{i} (\Phi(-, u_i) v_i) v_i$ $+\Phi(u_i, -)v_i)$ for some $u_i, v_i \in V$, and by Lemma (2.9), $f(x) = \sum_i \Phi(x, u_i)v_i + \sum_i \Phi(x, u_i)v_i$ $\Phi(u_i, x)v_i = \sum_i \Phi(v_i, u_i)x + \theta(\sum_i u_i \otimes v_i)$ (x) for $x \in V$. Thus, we get $f = \theta(\sum_i \Phi)$ $(v_i, u_i) + \sum u_i \otimes v_i$). Since $D(B, V \otimes_B V, \Phi \otimes \Phi)$ and $\operatorname{Hom}_A(V, V)$ are Azumaya A-algrebras, θ is an A-algebra isomorphism.

(2.11) Corollary. $D(B, B, I) \approx Hom_A(B, B)$ as A-algebras.

(2.12) Corollary. For any non-degenerate hermitian B-modules of rank 1 (V, Φ) and (V, Φ') , $(V \otimes_B V, \Phi \otimes \Phi)$ and $(V \otimes_B V, \Phi' \otimes \Phi')$ are isometric.

(2.13) **Theorem.** Let $D(B, V, \Phi)$ be a quaternion A-algebra with a maximal commutative and separable subalgebra B, and (V, Q) a non-degenerate quadratic A-module of rank 2 defined by $D(B, V, \Phi)$ in (2.8). Then, (V, Q) is hyperbolic if and only if [B]=1 in $Q_s(A)$ (cf. [4]).

Proof. In (2.8), we obtained $D(B, V, \Phi)=C(V, Q)=B\oplus V$, $C_0(V, Q)=B$ and $C_1(V, Q)=V$. We assume that (V, Q) is hyperbolic. Then we may assume that $V=P\oplus P^*$ for some invertible A-module P and $P^*=\text{Hom}_A(P, A)$, and Q (x+f)=f(x) for $x\in P, f\in P^*$. Since $P\cdot P=P^*\cdot P^*=0$ in C(V, Q), we get C_0 $(V, Q)=A\oplus P\cdot P^*\approx A\oplus P\otimes_A P^*$. For any $\sum_i x_i f_i$ in $P\cdot P^*$, we have $(\sum_i x_i f_i)^2$ $=\sum_{i,j} x_i f_i x_j f_j=\sum_{i,j} x_i (f_i(x_j)-x_j f_i)f_j=\sum_{i,j} f_i (x_j)x_i f_j=\sum_{i,j} f_i(x_i)x_j f_j=$ $(\sum_i f_i(x_i))$ $(\sum_i x_i f_i)$ using Lemma (2.9). We condisder an A-isomorphism μ : $P\cdot P^*(\approx P\otimes_B P^*) \rightarrow A$ defined by μ $(\sum_i x_i f_i)=\sum_i f_i (x_i)$ for $\sum_i x_i f_i$ in $P\cdot P^*$. Then we have $(\sum_i x_i f_i)^2=\mu$ $(\sum_i x_i f_i)\sum_i x_i f_i$ for every $\sum_i x_i f_i$ in $P\cdot P^*$, hence $B=C_0(V, Q)\approx (P\otimes_A P^*, \mu, 0)\approx (A, 1, 0)$ as A-algebras (cf. [4]). Accordingly, [B]=1 in $Q_S(A)$. Conversely, we assume [B]=1 in $Q_S(A)$. Then the quadratic extension B of A has idempotents e_1 and e_2 such that $1=e_1+e_2, e_1e_2=0$ and B= $Ae_1\oplus Ae_2$. Furthermore, A-module V is written as a direct sum of A-submodules e_1V and e_2V . Since the Galois group $G=G(B|A)=\{I, \tau\}$ is permutations of $\{e_1, e_2\}$, we have $Q(e_1 x)=\Phi(e_1 x, e_1 x)=e_1 \tau(e_1)\Phi(x, x)=e_1e_2 \Phi(x, x)=0$ for every $x \in V$. Therefore, $e_1 V$ is totally isotropic. We have $(e_1 V)^{\perp} = e_1 V$, because, for $e_1 y + e_2 z \in (e_2 V)^{\perp}$, $0 = B_Q(e_1 y + e_2 z, e_1 x) = \Phi(e_1 y + e_2 z, e_1 x) + \Phi(e_1 x, e_1 y + e_2 z) = \Phi(e_2 z, e_1 x) + \Phi(e_1 x, e_2 z) = e_2 \Phi(z, x) + e_1 \Phi(x, z)$ in $e_2 A \oplus e_1 A = B$, hence $e_1 \Phi(x, z) = \Phi(x, e_2 z) = 0$ for all z in V. Therefore, we get $e_2 z = 0$. Accordingly, (V, Q) is hyperbolic (cf. [2]).

(2.14) Corollary. Let (P, q) be any non-degenerate quadratic A-module of rank 2. Then (P, q) is hyperbolic if and only if $[C_0(P, q)]=1$ in $Q_s(A)$.

(2.15) Corollary. If B is a quadratic extension of A such that [B]=1 in $Q_s(A)$, then every quaternion A-algebra $D(B, V, \Phi)$ with a maximal commutative and separable subalgebra B is split, i.e. $[D(B, V, \Phi)]=1$ in the Brauer group B(A).

(2.16) Corollary. If A is commutative ring such that $Q_s(A)=1$, then every non-degenerate quadratic A-module of rank 2 is hyperbolic.

(2.17) EXAMPLE. If A is the integers Z or the gaussian intgers Z[i], then every non-degenerate quadratic A-module of rank 2 is hyperbolic (cf. [5], [7]).

(2.18) REMARK. Let K be a field, and (V, q) and (V', q') non-degenerate quadratic K-mdoules of rank 2. Then, (V, q) and (V', q') are isometric if and only if [C(V, q)] = [C(V', q')] in the Brauer group B(K) and $[C_0(V, q)] = [C_0(V', q')]$ in $Q_s(A)$.

Proof. For a field of characteristic ± 2 , this is obtained from Theorem 58:4 in [8], and for a field of characteristic 2, is obtained from Theorem 3 in [1].

OSAKA CITY UNIVERSITY

References

- [1] C. Arf: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, J. Reine Angew. Math. 183 (1941), 148–167.
- [2] H. Bass: Lectures on Topics in Algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.
- [3] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175–188.
- [4] ——: On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127–141.
- [5] K. Kitamura: On free quadratic extensions over a commutative ring, Osaka J. Math. 10 (1973), 15-20.
- [6] N. Jacobson: Structure of Rings, Providence, R.I., 1964.
- [7] A. Micali and O.E. Villamayor: Sur les algebres de Clifford. II, J. Reine Angew. Math. 242 (1970), 61-90.

- [8] O.T. O'Meara: Introduction to Quadratic Forms, Berlin-Göttingen-Heidelberg: Springer, 1963.
- [9] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83-105.