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Let R be a ring (with identity). We shall call R a local ring if R is a right noetherian ring
such that the Jacobson radical M is a maximal ideal (and so is the only maximal ideal),

CO

f] M" = 0 and RIM is a simple artinian ring. A local ring R with maximal ideal M is called

regular if there exists a chain

M = Mn => M, => M, r> ... =3 Mn = 0
of ideals Mt of /? such that Mj. j /Mj is generated by a central regular element of
(1 ^ / ^ n). For such a ring R, Walker [6, Theorem 2.7] proved that R is prime and n is the
right global dimension of R, the Krull dimension of R, the homological dimension of the
i?-module RjM and the supremum of the lengths of chains of prime ideals of R. Such
regular local rings will be called n-dimensional. The aim of this note is to give examples of
regular local rings. These arise as localizations of universal enveloping algebras of nilpotent
Lie algebras over fields and localizations of group algebras of certain finitely generated
finite-by-nilpotent groups.

An ideal / of a ring R is called a central ideal if / can be generated by central elements
of R. More generally an ideal / is polycentral if there exists a chain

0 = / , c / 1 c . . . S / , = /

of ideals /,- of R such that /;///-1 is a central ideal of R/Ij-i (1 ̂ J ^ m). The ring R is
polycentral if every ideal of R is polycentral. If P is a prime ideal of a right noetherian
polycentral ring R, and

= {ceR:c+P\sa. regular element of R/P},

then R satisfies the right Ore condition with respect to <g(P) [5, Theorem 2.2]. It follows that if

K= {reR:rc = 0 for some ce<£(P)}

then K is an ideal of R and c+K is a regular element of R/K for all c in ^(P). Moreover the
partial right quotient ring of RjK with respect to {c+K: ce^(P)} is a local ring and will be
denoted by RP. A right noetherian polycentral ring R will be called super-regular (after
[2, p. 120]) if RP is a regular local ring for all prime ideals P of R. We shall prove the
following result.

THEOREM A. Let U be the universal enveloping algebra of a finite dimensional nilpotent Lie
algebra g over afield k. Then U is a right and left noetherian super-regular polycentral integral
domain. Moreover for any prime ideal PofU the dimension of UP is at most dim40.

The result we shall prove for group rings is similar. If we make the convention that a
simple artinian ring is a 0-dimensional regular local ring then it is well known that any semi-
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simple artinian ring is a super-regular polycentral ring. In particular if k is a field and G is a
finite group whose order is a unit in k then the group algebra kG is super-regular. Our second
theorem is the following one.

THEOREM B. Let R be a commutative noetherian super-regular ring and G be a finitely
generated group with a normal subgroup H such that GIH is torsion-free nilpotent and the order
of H is a unit in R. Then the group ring S = RG is a right and left noetherian super-regular
polycentral ring.

1. Proof of Theorem A. Let U be the universal enveloping algebra of a finite dimensional
nilpotent Lie algebra g over a field k. Then U is isomorphic to the ring k[Xt, X2, ..., Xn] of
polynomials in non-commuting indeterminates Xu X2, ..., Xn where for all 1 ̂  i <j g n,

[Xh Xj] = X.Xj-XjX^klX,, X2, ..., * , _ , ] . (1)

We are concerned with the following subrings of k[X1; X2, ..., Xn]\

So = k,St = k[Xu X2,..., Xt] (1 g / rg n).

That is, for each 1 ̂  i' ̂  n, St is an Ore extension of Sf_ i by Xt and hence every element of S
can be written uniquely as a polynomial in Xt over Si-^

Let l£i£n. If a eS f and l^j^n then it follows immediately from (1) that
[Xj, a]eSi-i £ S,. An ideal / of S, is called a g-ideal if [Xj, d]el for all a el, 1 ̂  j£ n.
The ring St is called g-hypercentral if whenever It => I2 are g-ideals of S( there exists an
element ce / i \ / 2 such that [Xj, c]el2 (1 ^j^ n).

LEMMA 1.1. Ifi^l and S^^ is g-hypercentral then St is g-hypercentral.

Proof. Let It o 12 be ̂ -ideals of S,. For convenience let Tdenote Si^1 and Zdenote Xt.
Let m be the least positive integer such that

Iln(T+XT+X2T+... +XmT) => I2n(T+XT+X2T+... +XmT).

Forj= 1, 2 let
Kj ={teT: XmteT+XT+...+Xm-lT+Ij}.

Then it can easily be checked that K1 :o K2 are ^-ideals of T. By hypothesis there exists c in
Kt\K2 such that [Xj, c]eK2 (1 ^j ^ n). There exist elements t0, tu ..., tm.L of T such that if

d = to+Xtl+X2t2+ ... +Xm-Itm_l + X'"c

then rfe/i. Clearly d$I2. If 1 ^j^n then

[jf,, rf] e r+ ; s r r+ . . . + xm~x r + xm[xj, c]

and so [Xj,d]el2. The result follows.

COROLLARY 1.2 (see [3, 2.6 and 2.7]). U is a right and left noetherian polycentral domain.

Proof. That U is a right and left noetherian domain is well known. By the lemma and
induction on i, U is #-hypercentral. Clearly it follows that U is polycentral.
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LEMMA 1.3. LetPbeaprime idealofU, Pt = PriSt andP2 = PnSj- i for some 1 g i g n.
Then Pt and StP2 are g-ideals o/S;. Moreover either Px = SjP2

 o r there exists an element p in
Pi\StP2 such that

(i) [Z
(ii) if seS{ andpseSiP2 then seStP2, and

(iii) for all qePx there exists ce<£{P) such that qceS{P2 + Stp.

Proof. That Pt and SjP2 are 0-ideals of St follows from (1) above. Clearly PV 2 StP2.
For convenience let Tdenote Si.l and Xdenote Xt. If Pj ^ SjP2 then let m ^ 1 be the least
positive integer such that

Pln(T+XT+...+XmT)=>(SiP2)n(T+XT+...+XmT).

By the proof of Lemma 1.1 there exist elements a0, a1>a2,...,amofT such that the element

p=Yu x'at belongs to P^Sfo and satisfies [Xj,p~]eSiP2 = £ X'P2(l g j g n).
r=0 i=O

By (1), [Xj, am]eP2 ^ P (I ^ i ^ n) and since am$P it follows that am<z<G(P). Suppose
u

that (ii) is false and let s = £ X'steSt, with s ( e r ( 0 ^ ^ a ) , be of least degree in X over T
f = O

such that/weS,/^ a n d s$StP2. Then amsueP2 by (1) and hence sueP2, contradicting the
choice of s. Thus (ii) holds.

V

To establish (iii) let q = ^ * '9«ei \ . If ?05,P2 then u ̂  m. It is clear that
( = 0

By induction on v there exists / e 5 f such that
m-l

qa°m-m+1-fpe J XT.
( = 0

By the choice of m,qa^1~m+16SjP2 + S1p. Since ame<6{P), (iii) holds and the element /> has
the properties (i), (ii), (iii).

A prime ideal P of a ring R is regularly localizable if there is a chain

P = P o 2 P l 2 . . . 2 P m = 0 (2)

of ideals of R such that if 0 ^ i; ^ m - 1 and P,/PI+i is not generated by a central regular
element of RIPi+1 then for all pePt there exists ce#(P) such that pcePi+l. The proof of
[5, Theorem 2.2] can easily be adapted to show that if P is a regularly localizable prime ideal of
a right noetherian ring R then R has the right Ore condition with respect to

LEMMA 1.4. If a prime ideal P of a prime right noetherian ring R is regularly localizable
then RP is a regular local ring.

Proof. With the above notation the chain (2) gives rise to the chain

PRP = P0RP 2 PtRp 2 ... 2 PmRP = 0
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of ideals of RP such that for all 0 ^ i ^ m— 1, P(RP = Pi+1RP or P,RPIPi+lRP is generated by
a central regular element of RP. It follows that RP is a regular local ring.

Proof of Theorem A. Let P be a prime ideal of U and consider the chain

of ideals of U where Pf = t/(PnSn_f). Suppose 0 | / ^ n - l and Pf=>Pj+1. Then
•PnSn_j ^ 5n_i(PnSn_(_j). Since C/ is a free 5n_(-module we infer from Lemma 1.3 (i), (ii)
that there exists />e(i>nS,1_j)\S,l_j(.PnS',,_j_1) such that/>+Pj+1 is a central regular element
of U/Pi+l. It follows by Lemma 1.3 (iii) that P is regularly localizable. By Lemma 1.4,
UP is a regular local ring and it is clear that the dimension of UP is at most n.

In our consideration of the ring k[Xu X2, ..., Xn] the fact that A: is a field has not played a
prominent role. Indeed the above methods give the following generalization of [2,
Theorem 171].

THEOREM 1.5. Let Rbe a right noetherian super-regular polycentral ring and S be the ring
R[XiyX2, ...,Xn] of polynomials in the non-commuting indeterminates XUX2, ••-,Xn where
[Xb Xj]eR[Xi, X2, ..., Xi-t] (1 ^ i <j ^ n). Then S is a right noetherian super-regular
polycentral ring.

2. Proof of Theorem B. Let R be a commutative noetherian super-regular ring, G be a
group and S be the group ring RG. If P is a prime ideal of S then Q = Pr\R is a prime ideal
of R. By passing to the group ring RQG it is clear that we can suppose that R is a regular
local ring with maximal ideal Q = PnR. It is also clear that, by passing to the group ring
{RjQ)G, we can suppose in Theorem B that R is a field which we shall denote by k.

Let k be a field and G be a finitely generated group which has a finite normal subgroup H
such that G\H is a torsion-free nilpotent group and the order of H is a unit in k. The group
ring S = kG is right and left noetherian by methods of P. Hall [1, Theorem 1] and is
polycentral by [4].

Since GjH is a finitely generated torsion-free nilpotent group, there exists a chain

H = Fo<= Fy<=. F2 <=...<= Fn = G

of normal subgroups Ft of G, such that for each 1 ^ i ^ n, [Fh G] £ Fi-1 and FJFt-i is an
infinite cyclic group. Let St denote the group ring kFt (0 ^ i ^ «). An ideal / of St is a
G-ideal if' F = x~lIx = I for all x in G. The following analogue of Lemma 1.3 can be proved
by adapting and combining the proofs of Lemma 1.3 and [4, Lemma 7].

LEMMA 2.1. Let Pbeaprime ideal ofS, Pt = PnSt andP2 = PnSi-i for some 1 g i g n.
Then Pl and StP2 are G-ideals of S;. Moreover either Pj = StP2 or there exists an element p
in P1\S,P2 such that

(i) py—peSiP2for all y in G,
(ii) ifseSi andpseStP2 then seSiP2, and
(iii) for all qePt there exists ce<&(P) such that qceSiP2 + Stp.

If A is an ideal of S then we denote by ^(A) the set of elements 5 of S such that s+A is

https://doi.org/10.1017/S0017089500002792 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002792


102 P. F. SMITH

a regular element of S/A. If P is a prime ideal of S and A = {s e S: sc = 0 for some c in
then, as we remarked above, #(P) s < (̂/4). It follows that /4 = {5e5:c5 = 0 for some c
in #(/")}. Since A:# is a semisimple artinian ring there exists a unique central idempotent
element e of fc# which generates PnkH. From the uniqueness of e it follows that ex = e for
all x in G and hence e is a central element of S. Thus B = S(Pr\kH) is an ideal of S and
-6(1 — e) = 0. We have the following lemma.

LEMMA 2.2. With the above notation B^A and<g(B) £

Proof. It is clear that BQA. If cet>(B) and x e S satisfy exsA then there exists
de<£(P) such that cxrf = 0. Therefore xdeB £ ^ and hence xeA. The result follows.

Theorem B follows from Lemma 2.1 in roughly the same way as Theorem A followed
from Lemma 1.3. Let P be a prime ideal of S. If P is generated by the element e introduced
above then certainly P is regularly localizable. Otherwise, since in the above notation S is a
free Srmodule (0 ^ i ^ n) it follows by Lemmas 2.1 and 2.2 that there exist i ^ 1 and cePnSi
such that c+A is a central regular element of SI A, where by A we mean the set denned above.
It follows by Lemma 2.1 that P is regularly localizable. By Lemma 1.4 SP is a regular local
ring. Thus 5 is a right and left noetherian super-regular polycentral ring. This completes the
proof of Theorem B.

Let R be a commutative noetherian super-regular ring, G be a finitely generated group
which has a finite normal subgroup H such that the order of H is a unit in R and GjH is
torsion-free nilpotent. If S is the group ring RG, let P be a prime ideal of S and g = PnR.
Then the proof of Theorem B makes it clear that the dimension of SP does not exceed the sum
of the dimension of RQ and the Hirsch number of G.
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