ON NON-COMMUTATIVE REGULAR LOCAL RINGS
by P. F. SMITH
(Received 16 January, 1975)

Let R be a ring (with identity). We shall call R a local ring if R is a right noetherian ring
such that the Jacobson radical M is a maximal ideal (and so is the only maximal ideal),

() M" =0 and R/M is a simple artinian ring. A local ring R with maximal ideal M is called
n=1
regular if there exists a chain

M=MyoM oM,>...o0M,=0

of ideals M; of R such that M;_,/M; is generated by a central regular element of R/M;
(1 £i<n). Forsuch a ring R, Walker [6, Theorem 2.7) proved that R is prime and n is the
right global dimension of R, the Krull dimension of R, the homological dimension of the
R-module R/M and the supremum of the lengths of chains of prime ideals of R. Such
regular local rings will be called n-dimensional. The aim of this note is to give examples of
regular local rings. These arise as localizations of universal enveloping algebras of nilpotent
Lie algebras over fields and localizations of group algebras of certain finitely generated
finite-by-nilpotent groups.

An ideal I of a ring R is called a central ideal if I can be generated by central elements
of R. More generally an ideal I is polycentral if there exists a chain

0=10§IIE...(-_—-IM=1

of ideals /; of R such that /;/I;_, is a central ideal of R/I;_, (1 =j=<m). The ring R is
polycentral if every ideal of R is polycentral. If P is a prime ideal of a right noetherian
polycentral ring R, and

%(P) = {ceR:c+P is a regular element of R/P},
then R satisfies the right Ore condition with respect to €(P) [5, Theorem 2.2]. It follows that if
K = {reR:rc =0 for some ce4(P)}

then K is an ideal of R and ¢+ K is a regular element of R/K for all ¢ in #(P). Moreover the
partial right quotient ring of R/K with respect to {c+ K:ce@(P)} is a local ring and will be
denoted by R,. A right noetherian polycentral ring R will be called super-regular (after
[2, p. 120]) if R, is a regular local ring for all prime ideals P of R. We shall prove the
following result.

THEOREM A. Let U be the universal enveloping algebra of a finite dimensional nilpotent Lie
algebra g over a field k. Then U is a right and left noetherian super-regular polycentral integral
domain. Moreover for any prime ideal P of U the dimension of U, is at most dim,g.

The result we shall prove for group rings is similar. If we make the convention that a
simple artinian ring is a O-dimensional regular local ring then it is well known that any semi-
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simple artinian ring is a super-regular polycentral ring. In particular if k is a field and G is a
finite group whose order is a unit in k then the group algebra kG is super-regular. Our second
theorem is the following one.

THEOREM B. Let R be a commutative noetherian super-regular ring and G be a finitely
generated group with a normal subgroup H such that G[H is torsion-free nilpotent and the order
of H is a unit in R. Then the group ring S = RG is a right and left noetherian super-regular
polycentral ring.

1. Proof of Theorem A. Let U be the universal enveloping algebra of a finite dimensional
nilpotent Lie algebra g over a field k. Then U is isomorphic to the ring k[X, X, ..., X,] of
polynomials in non-commuting indeterminates X, X5, ..., X, where forall 1 £i<j<n,

(X Xj] = X\ X;— X;X;ek[Xy, X3, ..y Xioy] (1
We are concerned with the following subrings of k[X, X, ..., X,]:
So =k, S;=k[X\, Xp,.., Xi] (15iZn).

That is, for each 1 £i < n, S; is an Ore extension of S;_, by X; and hence every element of S
can be written uniquely as a polynomial in X; over S;_,.

Let 1£ign If aeS; and 1 £j<n then it follows immediately from (1) that
[X;,aleS;-, =S;. Anideal I of §; is called a g-ideal if [X;, alel for all ael, 1 Sj<n.
The ring S; is called g-hypercentral if whenever I, o I, are g-ideals of S; there exists an
element ceI,\I, such that [X;, c]el, (1 £j < n).

LEmMA 1.1. Ifi=1and S;_, is g-hypercentral then S; is g-hypercentral.

Proof. Let I, o I, be g-ideals of S;. For convenience let T denote S;_, and X denote X,.
Let m be the least positive integer such that

LT +XT+X*T+...+X"T) o L (T+XT+ X>T+...+ X™T).

Forj=1,2let
K;= {teT:X"eT+XT+...+ X" 'T+I}}.

Then it can easily be checked that K, = K, are g-ideals of T. By hypothesis there exists ¢ in
K,\K, such that [X, c]eK, (1 £j < n). There exist elements £y, ¢, ..., t,,_; of T such that if

d=to+Xt;+ X+ ... + X" "1,,_ +X"c
then del,. Clearly d¢l,. 1f 1 <j < nthen
[X;, d]leT+XT+ ... +X""'T+X"[X,, ]
and so [X;, dlel,. The result follows.
COROLLARY 1.2 (see [3, 2.6 and 2.7]). U is a right and left noetherian polycentral domain.

Proof. That U is a right and left noetherian domain is well known. By the lemma and
induction on i, U is g-hypercentral. Clearly it follows that U is polycentral.
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LEMMA 1.3. Let P be a prime ideal of U, P, = PnS; and P, = PnS;_, for somel i< n.
Then P, and S;P, are g-ideals of S;. Moreover either P, = S, P, or there exists an element p in
P\SP, such that

(i) [X;, pleSP, (1 Sj S n),
(i) if seS; and pse S;P, then se S;P,, and
(iii) for all ge P, there exists ce €(P) such that gce S;P,+ S,p.

Proof. That P, and S;P, are g-ideals of S; follows from (1) above. Clearly P, 2 S;P;.
For convenience let T'denote S;_, and X denote X;. If P, > S;P, then let m = 1 be the least
positive integer such that

P.A(T+XT+...+X"T) o (S;P)(T+XT+...+ X™T).
By the proof of Lemma 1.1 there exist elements a,, a,, a,, ..., a,, of T such that the element
p= Z X'a, belongs to P,\S;P, and satisfies [X;, p]eS;P, = Z X'P,(1 £jEn).
By ), [X;,a,]eP, £ P (1 £ i< n)and since a, ¢ P it follows that a,,€¥(P). Suppose
that (ii) is false and let s = Z X's,eS,;, with 5,e T (0 £ t < u), be of least degree in X over T

such that pse S;P, and s¢SiP2 Then a,s,e P, by (1) and hence s,e P,, contradicting the
choice of s. Thus (ii) holds.
To establish (iii) let ¢ = Y X'q,eP,. If ¢¢S,P, then v = m. Itis clear that
t=0
v—1

qa,—X"""q,pe Y X'T.
=0

By induction on v there exists f€.5; such that
m-=1
ga, "*'—fpe ) X'T.
1=0

By the choice of m,ga% ™*'eS,P,+S;p. Since a,, € ¥(P), (i) holds and the element p has
the properties (i), (ii), (iii).
A prime ideal P of a ring R is regularly localizable if there is a chain

P=P 2P, 2..2P,=0 )

of ideals of R such that if 0 <i<m—1 and Pj/P;,, is not generated by a central regular
element of R/P;,, then for all pe P; there exists ce €(P) such that pce P,,,. The proof of
[5, Theorem 2.2] can easily be adapted to show that if P is a regularly localizable prime ideal of
a right noetherian ring R then R has the right Ore condition with respect to €(P).

LemMMA 1.4. If a prime ideal P of a prime right noetherian ring R is regularly localizable
then Ry is a regular local ring.

Proof. With the above notation the chain (2) gives rise to the chain
PR, =PoR,2 P\Rp2...2 PR, =0
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of ideals of R, such thatforall0 i< m—1, P;Rp = P;,;Rp or P;R,/P;,Rp is generated by
a central regular element of Rp. It follows that R, is a regular local ring.

Proof of Theorem A. Let P be a prime ideal of U and consider the chain
P=Py2P 2..2P,=0

of ideals of U where P;= U(PnS,-;). Suppose 0<i<n-1 and P;> P,.,. Then
PnS, ;2 S,-(PnS,_;—,). Since U is a free S,_;-module we infer from Lemma 1.3 (i), (ii)
that there exists pe (PNS,- )\S,-(PNS,_;-,) such that p+ P, , is a central regular element
of U/P;,,. It follows by Lemma 1.3 (iii) that P is regularly localizable. By Lemma 1.4,
U, is a regular local ring and it is clear that the dimension of U, is at most n.

In our consideration of the ring k[X,, X, ..., X,] the fact that k is a field has not played a
prominent role. Indeed the above methods give the following generalization of [2,
Theorem 171].

THEOREM 1.5. Let R be a right noetherian super-regular polycentral ring and S be the ring
RIXy, X, ..., X,] of polynomials in the non-commuting indeterminates X, X,, ..., X, where
[X, X;JeR(X(, X;, ..., X;—1) (1 Si<j<n). Then S is a right noetherian super-regular
polycentral ring.

2. Proof of Theorem B. Let R be a commutative noetherian super-regular ring, G be a
group and S be the group ring RG. If Pis a prime ideal of S then Q = PnR is a prime ideal
of R. By passing to the group ring R,G it is clear that we can suppose that R is a regular
local ring with maximal ideal Q = PAR. It is also clear that, by passing to the group ring
(R/Q)G, we can suppose in Theorem B that R is a field which we shall denote by k.

Let k be a field and G be a finitely generated group which has a finite normal subgroup H
such that G/H is a torsion-free nilpotent group and the order of H is a unit in k. The group
ring S = kG is right and left noetherian by methods of P. Hall [1, Theorem 1} and is
polycentral by [4].

Since G/H is a finitely generated torsion-free nilpotent group, there exists a chain

H=FycF,cF,c..cF,=G
of normal subgroups F; of G, such that for each 1 £i < n, [F;, G] < F;-; and F,/F;_, is an
infinite cyclic group. Let S; denote the group ring kF; (0 <i<n). Anideal Jof S;is a
G-ideal if I* = x™'Ix = I'for all x in G. The following analogue of Lemma 1.3 can be proved
by adapting and combining the proofs of Lemma 1.3 and [4, Lemma 7].

LemMa 2.1. Let P be a prime ideal of S, P, = PnS;and P, = PnS;_ for some 1 < i< n.

Then P, and S;P, are G-ideals of S;. Moreover either P, = S;P, or there exists an element p
in P\S;P, such that

(i) p»—peS,P, forall y in G,
(1) if seS; and pse S;P, then se S;P,, and
(iii) for all g P, there exists ce €(P) such that gce S;P,+ S;p.

If A4 is an ideal of S then we denote by %(4) the set of elements s of .S such that s+ 4 is
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a regular element of S/4. If P is a prime ideal of S and 4 = {se S:sc.= 0 for some c in €(P)}
then, as we remarked above, €(P) < %(4). It follows that 4 = {se€S:cs =0 for some ¢
in (P)}. Since kH is a semisimple artinian ring there exists a unique central idempotent
element e of kH which generates PnkH. From the uniqueness of e it follows that e* = e for
all x in G and hence e is a central element of S. Thus B = S(PnkH) is an ideal of § and
B(1—e¢) =0. We have the following lemma.

LemMa 2.2. With the above notation B = A and €(B) < €(A).

Proof. 1Tt is clear that B< A. 1If ce¥(B) and xeS§ satisfy cxeA then there exists
de%(P) such that cxd = 0. Therefore xde B < A and hence xe 4. The result follows.

Theorem B follows from Lemma 2.1 in roughly the same way as Theorem A followed
from Lemma 1.3. Let P be a prime ideal of S. If P is generated by the element e introduced
above then certainly P is regularly localizable. Otherwise, since in the above notation S is a
free S;-module (0 < i £ n) it follows by Lemmas 2.1 and 2.2 that there exist i = 1 and ce PnS;
such that ¢+ 4 is a central regular element of S/A, where by 4 we mean the set defined above.
It follows by Lemma 2.1 that P is regularly localizable. By Lemma 1.4 S; is a regular local
ring. Thus S is a right and left noetherian super-regular polycentral ring. This completes the
proof of Theorem B.

Let R be a commutative noetherian super-regular ring, G be a finitely generated group
which has a finite normal subgroup H such that the order of H is a unit in R and G/H is
torsion-free nilpotent. If S is the group ring RG, let P be a prime ideal of § and Q = PnR.
Then the proof of Theorem B makes it clear that the dimension of S, does not exceed the sum
of the dimension of R, and the Hirsch number of G.
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