
On Non-Functional Requirements

Martin Glinz
Department of Informatics, University of Zurich, Switzerland

glinz@ifi.uzh.ch

Abstract

Although the term ‘non-functional requirement’ has
been in use for more than 20 years, there is still no
consensus in the requirements engineering community
what non-functional requirements are and how we
should elicit, document, and validate them. On the
other hand, there is a unanimous consensus that non-
functional requirements are important and can be
critical for the success of a project.

This paper surveys the existing definitions of the
term, highlights and discusses the problems with the
current definitions, and contributes concepts for over-
coming these problems.

1. Introduction

If you want to trigger a hot debate among a group of
requirements engineering people, just let them talk
about non-functional requirements. Although this term
has been in use for more than two decades, there is still
no consensus about the nature of non-functional re-
quirements and how to document them in requirements
specifications.

This paper is an attempt to work out and discuss the
problems that we have with the notion of non-func-
tional requirements and to contribute concepts for
overcoming these problems. The focus is on system (or
product) requirements; the role of non-functional re-
quirements in the software process is not discussed
[16].

The paper is organized as follows. Section 2 sur-
veys typical definitions for the terms ‘functional re-
quirement’ and ‘non-functional requirement’. The
problems with these definitions are discussed in Sec-
tion 3. Section 4 presents concepts about how these
problems can be overcome or at least alleviated. The
paper ends with a discussion of these concepts.

2. Defining the term

In every current requirements classification (for ex-
ample [7], [11], [12]), we find a distinction between

requirements concerning the functionality of a system
and other requirements.

There is a rather broad consensus about how to de-
fine the term ‘functional requirements’. The existing
definitions follow two threads that coincide to a large
extent. In the first thread, the emphasis is on functions:
a functional requirement specifies “a function that a
system (...) must be able to perform” [6], “what the
product must do” [18], “what the system should do”
[20]. The second thread emphasizes behavior: func-
tional requirements “describe the behavioral aspects of
a system” [1]; behavioral requirements are “those re-
quirements that specify the inputs (stimuli) to the sys-
tem, the outputs (responses) from the system, and be-
havioral relationships between them; also called func-
tional or operational requirements.” [3].

Wiegers as well as Jacobson, Rumbaugh and Booch
try a synthesis: “A statement of a piece of required
functionality or a behavior that a system will exhibit
under specific conditions.” [21]; “A requirement that
specifies an action that a system must be able to per-
form, without considering physical constraints; a re-
quirement that specifies input/output behavior of a
system.” [10].

There is only one semantic difference that may arise
between the different definitions: timing requirements
may be viewed as behavioral, while they are not func-
tional. However, most publications in RE consider
timing requirements to be performance requirements
which in turn are classified as non-functional require-
ments.

On the other hand, there is no such consensus for
non-functional requirements. Table 1 gives an over-
view of selected definitions from the literature or the
web, which – in my opinion – are representative of the
definitions that exist.

3. Where is the problem?

The problems that we currently have with the notion
of non-functional requirements can be divided into
definition problems, classification problems and repre-
sentation problems.

15th IEEE International Requirements Engineering Conference

1090-705X/07 $25.00 © 2007 IEEE
DOI 10.1109/RE.2007.45

21

Table 1. Definitions of the term non-functional requirement(s) (listed in alphabetical order of sources)
Source Definition
Antón [1] Describe the nonbehavioral aspects of a system, capturing the properties and constraints under

which a system must operate.

Davis [3] The required overall attributes of the system, including portability, reliability, efficiency, human
engineering, testability, understandability, and modifiability.

IEEE 610.12 [6] Term is not defined. The standard distinguishes design requirements, implementation requirements,
interface requirements, performance requirements, and physical requirements.

IEEE 830-1998 [7] Term is not defined. The standard defines the categories functionality, external interfaces,
performance, attributes (portability, security, etc.), and design constraints. Project requirements
(such as schedule, cost, or development requirements) are explicitly excluded.

Jacobson, Booch and
Rumbaugh [10]

A requirement that specifies system properties, such as environmental and implementation
constraints, performance, platform dependencies, maintainability, extensibility, and reliability. A
requirement that specifies physical constraints on a functional requirement.

Kotonya and Sommerville
[11]

Requirements which are not specifically concerned with the functionality of a system. They place
restrictions on the product being developed and the development process, and they specify external
constraints that the product must meet.

Mylopoulos, Chung and
Nixon [16]

“... global requirements on its development or operational cost, performance, reliability,
maintainability, portability, robustness, and the like. (...) There is not a formal definition or a
complete list of nonfunctional requirements.”

Ncube [17] The behavioral properties that the specified functions must have, such as performance, usability.

Robertson and Robertson
[18]

A property, or quality, that the product must have, such as an appearance, or a speed or accuracy
property.

SCREEN Glossary [19] A requirement on a service that does not have a bearing on its functionality, but describes attributes,
constraints, performance considerations, design, quality of service, environmental considerations,
failure and recovery.

Wiegers [21] A description of a property or characteristic that a software system must exhibit or a constraint that
it must respect, other than an observable system behavior.

Wikipedia: Non-Func-
tional Requirements [22]

Requirements which specify criteria that can be used to judge the operation of a system, rather than
specific behaviors.

Wikipedia: Requirements
Analysis [23]

Requirements which impose constraints on the design or implementation (such as performance
requirements, quality standards, or design constraints).

3.1. Definition problems

When analyzing the definitions in Table 1, we find
not only terminological, but also major conceptual
discrepancies. Basically, all definitions build on the
following terms: property or characteristic, attribute,
quality, constraint, and performance. However, there is
no consensus about the concepts that these terms de-
note. There are also cases where the meaning is not
clear, because terms are used without a definition or a
clarifying example.

Property and characteristic seem to be used in their
general meaning, i.e. they denote something that the
system must have, which typically includes specific
qualities such as usability or reliability, but excludes
any functional quality. There is no consensus whether
constraints also are properties: Jacobson, Booch and
Rumbaugh [10] include them, others, e.g. Wiegers [21]
and Antón [1] exclude them.

Attribute is a term that is used both with a broad and
a narrow meaning. In IEEE 830-1998 [7], attributes are
a collection of specific qualities, excluding perform-

ance and constraints. On the other hand, in the defini-
tion by Davis [3], every non-functional requirement is
an attribute of the system.

Every requirement (including all functional ones)
can be regarded as a quality, because, according to ISO
9000:2000 [8], quality is the “degree to which a set of
inherent characteristics fulfils requirements”. Simi-
larly, every requirement can be regarded as a con-
straint, because it constrains the space of potential
solutions to those that meet this requirement.

Hence, in all definitions that mention the term qual-
ity, its meaning is restricted to a set of specific qualities
other than functionality: usability, reliability, security,
etc.

Correspondingly, it is clear that constraint in the
context of non-functional requirements must have a
restricted meaning. However, there is no consensus
among the existing definitions what precisely this re-
striction should be. For example, IEEE 830-1998 [7] or
Jacobson, Booch and Rumbaugh [10] restrict the
meaning of constraint to design constraints and physi-

22

cal constraints. Others, for example the definition in
the Wikipedia article on requirements analysis [23], do
not treat constraints as a sub-category of non-func-
tional requirements, but consider every non-functional
requirement to be a constraint. Davis [3] does not
mention constraints at all when discussing non-func-
tional requirements. Robertson and Robertson [18]
have a rather specific view of constraints: they con-
sider operational, cultural, and legal constraints to be
non-functional properties, whereas design constraints
are regarded as a concept that is different from both
functional and non-functional requirements.

Performance is treated as a quality or attribute in
many definitions. Others, e.g. IEEE 830-1998 [7] and
Wikipedia [23] consider it as a separate category.

Another discrepancy exists in the scope of non-
functional requirements. Some definitions emphasize
that non-functional requirements have, by definition, a
global scope: “global requirements” (Mylopoulos,
Chung and Nixon [16]), “overall attributes” (Davis
[3]). Accordingly, proponents of this global view
separate functional and non-functional requirements
completely. For example, in the Volere template [18]
they are documented in two separate top-level sections.
On the other hand, Jacobson, Booch and Rumbaugh
[10] emphasize that there are both local non-functional
requirements (e.g. most performance requirements) and
global requirements such as security or reliability.

Most definitions refer to system requirements (also
called product requirements) only and exclude project
and process requirements either explicitly [7] or im-
plicitly. However, in the definition by Kotonya and
Sommerville [11], project requirements are considered
to be non-functional requirements.

Finally, the variety and divergence of concepts used
in the definitions of non-functional requirements also
lead to definitions containing elements that are obvi-
ously misconceived. For example, the SCREEN glos-
sary [19] lists failure and recovery as non-functional
properties, while behavior in the case of failure and
recovery from failures are clearly functional issues.
Ncube [17] even defines non-functional requirements
as “the behavioral properties...”. Although this is more
likely a severe typo than a misconception, the fact that
this error went unnoticed in a PhD thesis illustrates the
fuzziness of the current notions of non-functional re-
quirements and the need for a clear and concise defini-
tion. The worst example is the definition in the Wiki-
pedia article on non-functional requirements [22],
which is so vague that it could mean almost anything.

3.2. Classification problems

When analyzing the definitions given in Table 1, we
also find rather divergent concepts for sub-classifying

non-functional requirements. Davis [3] regards them as
qualities and uses Boehm’s quality tree [2] as a sub-
classification for non-functional requirements. The
IEEE standard 830-1998 on Software Requirements
Specifications [7] sub-classifies non-functional re-
quirements into external interface requirements, per-
formance requirements, attributes and design con-
straints, where the attributes are a set of qualities such
as reliability, availability, security, etc. The IEEE
Standard Glossary of Software Engineering Terminol-
ogy [6] distinguishes functional requirements on the
one hand and design requirements, implementation
requirements, interface requirements, performance re-
quirements, and physical requirements on the other.
Sommerville [20] uses a sub-classification into product
requirements, organizational requirements and external
requirements.

More classification problems arise due to mixing
three concepts that should better be separated. These
are the concepts of kind (should a given requirement be
regarded as a function, a quality, a constraint, etc.),
representation (see below), and satisfaction (hard vs.
soft requirements). For an in-depth discussion of this
problem, see [5].

3.3. Representation problems

As long as we regard any requirement that describes
a function or behavior as a functional requirement, the
notion of non-functional requirements is represen-
tation-dependent. Consider the following example: A
particular security requirement could be expressed as
“The system shall prevent any unauthorized access to
the customer data”, which, according to all definitions
given in Table 1 is a non-functional requirement. If we
represent this requirement in a more concrete form, for
example as “The probability for successful access to
the customer data by an unauthorized person shall be
smaller than 10-5”, this is still a non-functional re-
quirement. However, if we refine the original require-
ment to “The database shall grant access to the cus-
tomer data only to those users that have been author-
ized by their user name and password”, we have a
functional requirement, albeit it is still a security re-
quirement. In a nutshell, the kind of a requirement
depends on the way we represent it.

A second representational problem is the lack of
consensus where to document non-functional require-
ments. As discussed above, some authors recommend
the documentation of functional and non-functional
requirements in separate chapters of the software re-
quirements specification. The Volere template [18] is a
prominent example for this documentation style. In
IEEE 830-1998 [7], seven of the eight proposed SRS
templates also separate the functional requirements

23

completely from the non-functional ones. On the other
hand, when documenting requirements in a use-case-
oriented style according to the Rational Unified Proc-
ess [10], non-functional requirements are attached to
use case as far as possible. Only the remaining (global)
non-functional requirements are documented sepa-
rately as so-called supplementary requirements.

However, there are also cases where a non-func-
tional requirement affects neither a single functional
requirement nor the system as a whole. Instead, it per-
tains to a specific set of functional requirements. For
example, some subset of the set of all use cases may
need secure communication, while the other use cases
do not. Such a case cannot be documented adequately
with classic requirements specification templates and
must be handled by setting explicit traceability links.
As we will see in the next chapter, aspect-orientation
provides a solution for this problem.

4. Elements of a solution

4.1. A faceted classification

In [5], I have proposed that the classification prob-
lems, and – in a radical sense – also the definition
problems be overcome by introducing a faceted classi-
fication for requirements (Fig. 1) where the terms
‘functional requirement’ and ‘non-functional require-
ment’ no longer appear.

Separating the concepts of kind, representation,
satisfaction, and role has several advantages, for
example: (i) It is the representation of a requirement
(not its kind!) that determines the way in which we can
verify that the system satisfies a requirement (Table 2).
(ii) Decoupling the kind and satisfaction facets reflects
the fact that functional requirements are not always
hard and non-functional requirements not always soft.
(iii) The role facet allows a clear distinction of (pre-
scriptive) system requirements and (normative or
assumptive) domain requirements.

Figure 1. A faceted classification of requirements

(from [5])

However, when using this classification it turned

out that the idea of getting rid of the terms ‘functional

requirement’ and ‘non-functional requirement’ is too
radical. When practicing requirements engineering,
there is a need to distinguish functional concerns from
other, “non-functional” concerns and there is also a
need for a sub-classification of the “non-functional”
concerns in a clear and comprehensible way. In the
next section, such a definition is presented.

Table 2. Representation determines verification [5]
Representation Type of verification
Operational Review, test or formal verification

Quantitative Measurement (at least on an ordinal scale)

Qualitative No direct verification. May be done by
subjective stakeholder judgment of de-
ployed system, by prototypes or indirectly
by goal refinement or derived metrics

Declarative Review

4.2. A definition based on concerns

We define a taxonomy of terms that is based on the
concept of concerns, which makes it independent of
the chosen representation. We assume a requirements
engineering context, where system is the entity whose
requirements have to be specified.

Furthermore, the taxonomy concentrates on system
requirements. As project and process requirements are
conceptually different from system requirements, they
should be distinguished at the root level and not in a
sub-category such as non-functional requirements.

DEFINITION. A concern is a matter of interest in a sys-
tem. A concern is a functional or behavioral concern if
its matter of interest is primarily the expected behavior
of a system or system component in terms of its reac-
tion to given input stimuli and the functions and data
required for processing the stimuli and producing the
reaction. A concern is a performance concern if its
matter of interest is timing, speed, volume or through-
put. A concern is a quality concern if its matter of in-
terest is a quality of the kind enumerated in ISO/IEC
9126 [9].

DEFINITION. The set of all requirements of a system is
partitioned into functional requirements, performance
requirements, specific quality requirements, and con-
straints.

A functional requirement is a requirement that per-
tains to a functional concern.

A performance requirement is a requirement that
pertains to a performance concern.

A specific quality requirement is a requirement that
pertains to a quality concern other than the quality of
meeting the functional requirements.

A constraint is a requirement that constrains the
solution space beyond what is necessary for meeting

24

the given functional, performance, and specific quality
requirements.

An attribute is a performance requirement or a spe-
cific quality requirement.

The taxonomy defined above is visualized in Figure
2. In my opinion, this structure is sufficient and useful
both for theoretical and practical work. For persons
who do not want to dispose of the term ‘non-functional
requirement’, we can define this term additionally as
follows.

DEFINITION. A non-functional requirement is an attrib-
ute of or a constraint on a system.

Functionality
and behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability

Physical
Legal
Cultural
Environmental
Design&Im-
plementation
Interface

... ...

Functional
requirement

System
requirement

Attribute Constraint

Performance
requirement

Specific quality
requirement

Requirement

Project
requirement

Process
requirement

Figure 2. A concern-based taxonomy of require-
ments

Performance is a category of its own in our taxonomy
(as well as in the IEEE standards [6] [7]) because per-
formance requirements are typically treated separately
in practice. This is probably due to the fact that meas-
uring performance is not difficult a priori, while meas-
uring other attributes is: there is a broad consensus to
measure performance in terms of time, volume, and
volume per unit of time. For any other attribute, there
are no such generally agreed measures, which means
that the task of eliciting specific qualities always im-
plies finding an agreement among the stakeholders
how to measure these qualities.

Interfaces, which are a separate category in the
IEEE standards [6] [7], no longer appear in the termi-
nology defined above. An interface requirement is
classified according to the concern it pertains to as
functional, performance, specific quality, or constraint.

Due to the systematic construction of our taxonomy,
the task of classifying a given requirement becomes
easier and less ambiguous. The often heard rule ‘What

the system does functional requirement; How the
system behaves non-functional requirement’ [4] is
too coarse and leads to mis-classifications when attrib-
utes and constraints are represented functionally or
when they are very important1.

Table 3 gives the classification rules for the taxon-
omy laid out in Figure 2.

Table 3. Classification rules

No1 Question Result
 Was this requirement stated because we

need to specify...

1 ... some of the system’s behavior, data,
input, or reaction to input stimuli – re-
gardless of the way how this is done?

Functional

2 ... restrictions about timing, processing
or reaction speed, data volume, or
throughput?

Performance

3 ... a specific quality that the system or a
component shall have?

Specific
quality

4 ... any other restriction about what the
system shall do, how it shall do it, or any
prescribed solution or solution element?

Constraint

1 Questions must be applied in this order

4.3. Aspect-oriented representation

As soon as we structure the functional requirements
specification systematically (by using a text template
or by modeling requirements), the question about
structuring the non-functional requirements comes up.
Structuring attributes and constraints into sub-kinds
according to a documentation template is helpful here,
but clearly this is not enough; in particular when we
have attributes and constraints that are neither com-
pletely local nor fully global, but pertain to some spe-
cific parts of the system.

An aspect-oriented representation of requirements,
in particular of attributes and constraints, helps over-
come this problem. A multi-dimensional separation of
concerns [15] allows every concern to be modeled
separately. Thus, all concerns are treated equally,
which looks clean and elegant from an academic view-
point. However, in practice, there is almost always a
dominant concern, which is typically a functional one.
This concern is crosscut by other concerns, both func-
tional and non-functional ones.

In my research group, we have developed an aspect-
oriented-extension for a hierarchical modeling lan-

1 For example, in particle physics, the detectors of contemporary
accelerators produce enormous amounts of data in real time. When
asked a ‘what shall the system do’ question about the data processing
software for such a detector, one of the first answers a physicist typi-
cally would give would be that the system must be able to cope with
the data volume. However, this is a performance requirement.

25

guage [13], [14] where we identify a dominant func-
tional concern and decompose the system model hier-
archically according to the structure of this concern.
All other concerns are modeled as aspects of this pri-
mary model. Aspect composition is supported by for-
mal model weaving semantics.

Thus we can document attributes and constraints as
separate entities, but, at the same time, attach them
systematically to those elements in the primary model
hierarchy where they apply. Global attributes and con-
straints are attached to the root of the decomposition
hierarchy, while an attribute or constraint that restricts
only some parts of the model is attached exactly to
these parts by modeling join relationship from the as-
pect to the affected parts of the primary model.

5. Discussion

The analysis of the definitions given in Table 1 re-
veals the deficiencies of the current terminology. The
new definitions proposed in this paper
• are more systematically constructed than any exist-

ing definitions that I am aware of,
• are representation-independent; i.e. the kind of a

requirement is always the same, regardless of its rep-
resentation,

• make it easier to classify a given requirement: with
the classification criteria given in Table 3, the clas-
sification is much less ambiguous than with tradi-
tional definitions,

• better support the evolution of a requirements speci-
fication, because the classification of a requirement
remains invariant under refinement and change as
long as the concern to which the requirements per-
tains remains the same.
With an aspect-oriented documentation of attributes

and constraints, the documentation and traceability
problems of non-functional requirements are allevi-
ated.

As this is mainly theoretical work, the validation of
the theoretical soundness and usefulness of these ideas
will be the extent to which other researchers find these
ideas useful and adopt or build upon them.

The systematic exploration of the practical useful-
ness is a topic for further investigation.

References
[1] A. Antón (1997). Goal Identification and Refinement in

the Specification of Information Systems. PhD Thesis,
Georgia Institute of Technology.

[2] B. Boehm et al. (1976). Quantitative Evaluation of
Software Quality. Proc. 2nd IEEE International Con-
ference on Software Engineering. 592-605.

[3] A. Davis (1993). Software Requirements: Objects, Func-
tions and States. Prentice Hall.

[4] X. Franch (1998). Systematic Formulation of Non-
Functional Characteristics of Software. Proc. 3rd Int'l
Conf. Requirements Engineering (ICRE’98). 174-181.

[5] M. Glinz (2005). Rethinking the Notion of Non-Func-
tional Requirements. Proc. Third World Congress for
Software Quality (3WCSQ 2005), Munich, Germany,
Vol. II. 55-64.

[6] IEEE (1990). Standard Glossary of Software Engineer-
ing Terminology. IEEE Standard 610.12-1990.

[7] IEEE (1998). IEEE Recommended Practice for Soft-
ware Requirements Specifications. IEEE Std. 830-1998.

[8] ISO 9000 (2000). Quality Management Systems – Fun-
damentals and Vocabulary. International Organization
for Standardization.

[9] ISO/IEC 9126-1 (2001). Software Engineering – Prod-
uct Quality – Part 1: Quality Model. International Or-
ganization for Standardization.

[10] I. Jacobson, G. Booch, and J. Rumbaugh (1999). The
Unified Software Development Process. Reading,
Mass.: Addison Wesley.

[11] G. Kotonya, I. Sommerville (1998). Requirements Engi-
neering: Processes and Techniques. John Wiley & Sons.

[12] A. van Lamsweerde (2001). Goal-Oriented Require-
ments Engineering: A Guided Tour. Proc. 5th Interna-
tional Symposium on Requirements Engineering
(RE’01), Toronto. 249-261.

[13] S. Meier, T. Reinhard, C. Seybold, and M. Glinz
(2006). Aspect-Oriented Modeling with Integrated Ob-
ject Models. Proc. Modellierung 2006, Innsbruck,
Austria. 129-144.

[14] S. Meier, T. Reinhard, R. Stoiber, M. Glinz (2007).
Modeling and Evolving Crosscutting Concerns in
ADORA. Proc. Early Aspects at ICSE: Workshop in As-
pect-Oriented Requirements Engineering and Archi-
tecture Design.

[15] A. Moreira, A. Rashid, and J. Araújo (2005). Multi-
Dimensional Separation of Concerns in Requirements
Engineering. Proc. 13th IEEE International Require-
ments Engineering Conference (RE’05). 285-296.

[16] J. Mylopoulos, L. Chung, B. Nixon (1992). Represent-
ing and Using Nonfunctional Requirements: A Process-
Oriented Approach. IEEE Transactions on Software
Engineering 18, 6 (June 1992). 483-497.

[17] C. Ncube (2000). A Requirements Engineering Method
for COTS-Based Systems Development. PhD Thesis,
City University London.

[18] S. Robertson and J. Robertson (1999). Mastering the
Requirements Process. ACM Press.

[19] SCREEN (1999). Glossary of EU SCREEN Project.
http://cordis.europa.eu/infowin/acts/rus/projects/screen/
glossary/glossary.htm (visited 2007-07-05)

[20] I. Sommerville (2004). Software Engineering, Seventh
Edition. Pearson Education.

[21] K. Wiegers (2003). Software Requirements, 2nd edition.
Microsoft Press.

[22] Wikipedia: Non-Functional Requirements
http://en.wikipedia.org/wiki/Non-functional_requirements
(visited 2007-07-05)

[23] Wikipedia: Requirements Analysis http://en.wikipedia.org
/wiki/Requirements_analysis (visited 2007-07-05)

26

