
In: Proceedings of the Twelfth IEEE Real-Time Systems Symposium, San
Antonio, Texas, December 1991, IEEE Computer Society Press, pp. 129-139.

On Non-Preemptive Scheduling of Periodic and
Sporadic Tasks

Kevin Jeffay* Donald F. Stanat

University of North Carolina at Chapel Hill
Department of Computer Science

Charles U. Martel**

University of California at Davis
Computer Science Division

Abstract: This paper examines a fundamental problem in
the theory of real-time scheduling, that of scheduling a set
of periodic or sporadic tasks on a uniprocessor without
preemption and without inserted idle time. We exhibit a
necessary and sufficient set of conditions C for a set of
periodic or sporadic tasks to be schedulable for arbitrary
release times of the tasks. We then show that any set of
periodic or sporadic tasks that satisfies conditions C can
be scheduled with an earliest deadline first (EDF)
scheduling algorithm.

We also address the question of schedulability of a set of
tasks with specified release times. For sets of sporadic
tasks with specified release times, we show that the
conditions C are again necessary and sufficient for
schedulability. However, for sets of periodic tasks with
specified release times, the conditions C, while sufficient,
are not necessary. In fact, we show that determining
whether a set of periodic tasks with specified release times
is schedulable is intractable (i.e., NP-hard in the strong
sense). Moreover, we show that the existence of a
universal algorithm for scheduling periodic tasks with
specified release times would imply that P = NP.

1 . Introduction

The concept of a task that is invoked repeatedly is central
to both the design and analysis of real-time systems. In
particular, formal studies of real-time systems frequently
represent the time-constrained processing requirements of
the system as a set of periodic or sporadic tasks with
deadlines [Liu & Layland 73, Leung & Merrill 80, Mok
83]. A periodic task is invoked at regular intervals, while a
sporadic task is invoked at arbitrary times but with a
specified minimum time interval between invocations.

* Supported in parts by grants from the National Science
Foundation (number CCR-9110938), and from Digital
Equipment Corporation.
** Supported by a grant from the National Science Foundation
(number CCR-9023727).

In practice, periodic tasks are commonly found in
applications such as avionics and process control when
accurate control requires continual sampling and
processing of data. Sporadic tasks are associated with
event-driven processing such as responding to user inputs
or non-periodic device interrupts; these events occur
repeatedly, but the time interval between consecutive
occurrences varies and can be arbitrarily large. Periodic and
sporadic tasks were used, for example, to represent the
timing constraints in an interactive 3-dimensional graphics
display system used for research in virtual worlds [Chung
et al. 89, Jeffay 91]. The graphics system uses a head-
mounted display system consisting of a helmet with
miniature television monitors embedded in it, and hardware
for tracking the position of the helmet and a hand-held
pointing device. A computer generated image of a 3-
dimensional “virtual world” is displayed on the television
monitors in the helmet. The goal of the system is to track
the user’s head and the pointing device in real-time and to
update the image displayed in the helmet so as to maintain
the illusion that the user is immersed in an artificial
world. There are two separate real-time concerns in this
application. First, the system must provide an image to
update the display approximately every 30 milliseconds.
Generating a new image is naturally represented as a
periodic process. Second, as the user’s head or the pointing
device is moved, the motions must be tracked and the
consequences incorporated into the generation of the next
image. Because both the user’s head and the pointing
device may remain stationary for some time, the process
associated with tracking them is invoked sporadically.

Given a real-time system, the goal is to schedule the
system’s tasks on a processor, or processors, so that each
task completes execution before a specified deadline. In
this paper we consider a fundamental real-time scheduling
problem, that of non-preemptive scheduling of a set of
periodic or sporadic tasks on a uniprocessor. Non-
preemptive scheduling on a uniprocessor is important for a
variety of reasons:

2

• In many practical real-time scheduling problems such
as I/O scheduling, properties of device hardware and
software either make preemption impossible or
prohibitively expensive.

• Non-preemptive scheduling algorithms are easier to
implement than preemptive algorithms, and can exhibit
dramatically lower overhead at run-time.

• The overhead of preemptive algorithms is more
difficult to characterize and predict than that of non-
preemptive algorithms. Since scheduling overhead is
often ignored in scheduling models (including ours), an
implementation of a non-preemptive scheduler will be
closer to the formal model than an implementation of a
preemptive scheduler.

• Non-preemptive scheduling on a uni-processor
naturally guarantees exclusive access to shared
resources and data, thus eliminating both the need for
synchronization and its associated overhead.

• The problem of scheduling all tasks without
preemption forms the theoretical basis for more general
tasking models that include shared resources [Jeffay
89b, 90].

Many others have looked at variations of this problem;
most describe sufficient conditions for scheduling tasks.
We give necessary and sufficient conditions. Furthermore,
we show that a particular algorithm can always be used for
scheduling a large class of sets of tasks. (We will review
related work in more detail in Section 3.)

The remainder of this paper is composed of five major
sections. The following section presents our scheduling
model. Section 3 briefly reviews the literature in real-time
scheduling. Section 4 proves the non-preemptive EDF
algorithm is universal for sets of tasks, whether they be
periodic or sporadic. Section 5 demonstrates the absence of
a universal algorithm for periodic tasks with specified
release times and proves that the problem of deciding
schedulability of a set of concrete periodic tasks is
intractable. Section 6 discusses these results.

2 . The Model

A task is a sequential program that is invoked by each
occurrence of a particular event. An event is a stimulus
generated by a process that is either external to the system
(e.g., interrupts from a device) or internal to the system
(e.g., clock ticks). We assume that events are generated
repeatedly with some maximum frequency; thus, the time
interval between successive invocations of a task will be
of some minimal length. Each invocation of a task results
in a single execution of the task at a time specified by a
scheduling algorithm.

Formally, a task T is a pair (c, p) where

• c is the computational cost: the maximum amount of
processor time required to execute (the sequential
program of) task T to completion on a dedicated
uniprocessor, and

• p is the period : the minimal interval between
invocations of task T.

Throughout this paper we assume time is discrete and
clock ticks are indexed by the natural numbers. Task
invocations occur and task executions begin at clock ticks;
each of the parameters c and p is expressed as a multiple of
(the interval between) clock ticks. If a task with cost c
begins execution at time t and is executed without
interruption on a uniprocessor, then the execution is
completed at time t + c.

We consider two paradigms of task invocation: periodic
and sporadic. If T is periodic, the period p specifies a
constant interval between invocations. If T is sporadic, p
specifies a minimum interval between invocations.

The definition of the behavior of a task depends on
whether it is periodic or sporadic. The behavior of a
periodic task T = (c, p) is given by the following rules
for the invocation and execution of T. If tk is the time of
the kth invocation of task T, then

i) The (k+1)th invocation of task T will occur at time
tk+1 = tk + p.

ii) The kth execution of task T must begin no earlier than
tk and be completed no later than the deadline of tk + p.
This requires that c units of processor time be allocated
to the execution of T in the interval [tk, tk + p].

The behavior of a sporadic task is slightly less constrained
than that of a periodic task. The b e h a v i o r of a
sporadic task T = (c, p) is given by the following rules
for the invocation and execution of T. If tk is the time of
the kth invocation of task T, then

i) The (k+1)th invocation of T will occur no earlier than
time tk + p; thus, tk+1 ≥ tk + p.

ii) The kth execution of task T must begin no earlier than
tk and be completed no later than the deadline of tk + p.

Thus the behaviors of periodic and sporadic tasks differ
only in the first rule. We assume invocations of sporadic
tasks are independent in the sense that the time a sporadic
task is invoked depends only upon the time of its last
invocation and not upon the invocation times of any other
task.

3

Note that the worst case behavior of a sporadic task T =
(c, p) (“worst” in the sense of requiring the most processor
time), occurs when T behaves like a periodic task, that is,
T is invoked every p time steps.

We wish to investigate the scheduling of sets of tasks that
compete for processing resources. The difficulty of
scheduling tasks can be affected by the times that tasks are
first invoked. A concrete task is a pair (T, R), where T
is a task, and R is a non-negative integer that is the time
of the first invocation, or the release time, of T. The
behavior of (T , R) is the behavior of T constrained
further by the rule that the first invocation of T occurs at
time R . Once released, tasks are invoked repeatedly
forever.

A set of periodic (sporadic) tasks τ = {T 1, T 2, ...,
Tn} is a set of tasks indexed from 1 to n, where for each i,
1 ≤ i ≤ n , T i = (c i, p i). A concrete set of per iodic
(sporadic) tasks ω = {(T1,R1), (T2,R2) ..., (Tn,Rn)} is a
set of concrete tasks indexed from 1 to n, where Ri is the
release time of task Ti.1 There is a natural many-to-one
relation between concrete tasks and tasks. We say the task
T generates a concrete task (T, R) and a concrete task (T,
R) is generated from the task T. This relation extends
naturally to a relation between concrete task sets and task
sets. Let τ = {T1, T2, ..., Tn} be a task set and let ω =
{(T1,R1), (T2,R2) ..., (Tn,Rn)} be a concrete task set. Then
the task set τ generates the concrete task set ω and ω is
generated from τ.

If an execution of a task has a deadline of time td, and
execution is not complete at time td, then we say the task
has missed a deadl ine . A scheduling algorithm
specifies, at each time t, which task if any shall begin,
continue, or resume execution. A concrete task set ω is
schedulable if it is possible to schedule the executions
of tasks of ω so that no task ever misses a deadline when
tasks are released at their specified release times. A task set
τ is schedulable if every concrete task set ω generated
from τ is schedulable. A scheduling algorithm schedules
a concrete task set ω if no task of ω ever misses a deadline
when the algorithm is applied.

In this paper, we restrict ourselves to the case of non-
preemptive scheduling on a uniprocessor; that is, we
assume a scheduling algorithm that does not interrupt the
execution of any task once it has begun. We also restrict

1 More properly, τ and ω are multisets since there can exist
more than one task in τ with the same cost and period and
more than one task in ω with the same cost, period, and
release time.

ourselves to scheduling on a uniprocessor without inserted
idle time; which means that the scheduling algorithm does
not permit the processor to be idle if there is a task that
has been invoked but has not completed execution. To
save space and avoid tedium, we will not mention these
restrictions in the remainder of the paper.

Note that a task set is schedulable if and only if the tasks
can be scheduled for any set of release times. In contrast,
each member of a concrete task set has a specified release
time, and showing that a concrete task set is schedulable
only establishes that its specified release times can be
accommodated. For example, under the restrictions of no
preemption and no inserted idle time, a periodic task set
that is not schedulable may generate sets of concrete tasks
that are schedulable as well as sets which are not. For
example, the set of two periodic tasks τ = {(3, 5), (4, 10)}
generates both schedulable and unschedulable concrete task
sets: the set consisting of ω' = {((3,5), 0), ((4,10), 0)} is
schedulable but the set consisting of ω" = {((3,5), 1),
((4,10), 0)} is not.

A scheduling algorithm is said to be universal for
concrete periodic (sporadic) tasks if the algorithm
schedules every schedulable set of concrete periodic
(sporadic) tasks. A scheduling algorithm is said to be
universal for p e r i o d i c (s p o r a d i c) t a s k s if the
algorithm schedules any concrete periodic (sporadic) task
set generated from a set of schedulable tasks. We will
show that a deadline-driven scheduling algorithm that is a
non-preemptive version of the earliest deadline first (EDF)
algorithm [Liu & Layland 73], is universal for either
periodic or sporadic tasks as well as for concrete sporadic
tasks. For concrete periodic tasks, however, things are
more complex. If a set of concrete periodic tasks ω is
generated from a periodic task set τ that is schedulable,
then ω is schedulable (and indeed can be scheduled by the
EDF algorithm). But if τ is not schedulable, then ω may
or not be schedulable. In the general case, we show that
determining whether ω is schedulable is NP-hard in the
strong sense. Moreover, we establish that if there exists a
universal scheduling algorithm for concrete periodic tasks
that takes only a polynomial amount of time to make each
scheduling decision, then P = NP. Thus it is unlikely that
there exists a universal algorithm for scheduling concrete
periodic tasks.

3 . Previous Work

Previous work in the area of real-time scheduling has
mainly focused on the analysis of preemptive scheduling
algorithms. A well-known result is that the preemptive

4

EDF algorithm is universal for all sets of concrete periodic
tasks for which the release times are all 0 [Liu & Layland
73]. This result generalizes to all periodic task sets (i.e.,
for concrete periodic tasks with arbitrary release times)
[Jeffay 89a]. The extension of the preemptive problem to
multiprocessors was considered in [Dhall & Liu 78] and
[Bertossi & Bonuccelli 83].

Work with non-preemptive scheduling algorithms has
typically been confined to consideration of models where
processes are invoked only once, there is a precedence order
between the processes, and each process requires only a
single unit of computation time and must be completed
before a deadline [Garey et al. 81, Frederickson 83].

A more general characterization of periodic tasks has been
considered in [Leung & Merrill 80], [Lawler & Martel 81],
[Leung & Whitehead 82], and [Mok 83]. In these works,
when a task is invoked, it may have a deadline nearer than
the time of the next task invocation. For this more general
model, Mok has shown that the problem of deciding
schedulability of a set of periodic tasks which use
semaphores to enforce mutual exclusion constraints is NP-
hard [Mok 83]. Our paper demonstrates the intractability
of deciding schedulability for an even simpler characteriza-
tion of periodic tasks and additionally provides strong
evidence that there may not exist a universal non-
preemptive scheduling algorithm for periodic tasks with
specified release times.

4 . Non-Preemptive Scheduling of
Periodic and Sporadic Tasks

We first consider the problem of scheduling a set of
periodic or sporadic tasks non-preemptively on a single
processor. We begin by developing a set of relations on
the costs and periods of tasks that must hold if a task set
is to be schedulable. If the elements of a task set do not
satisfy these relationships then no scheduling algorithm
can schedule the tasks. We show that periodic and sporadic
task sets have the same requirements for schedulability.
Having identified necessary conditions for schedulability,
we then exhibit an algorithm which schedules any set of
periodic or sporadic tasks that satisfy the necessity
conditions. This establishes directly that the algorithm is
universal for scheduling sets of tasks and proves that the
necessary conditions are also sufficient.

The following theorem establishes necessary conditions
for schedulability for a periodic task set. Our development
of these conditions is motivated by the early work of
Sorenson [Sorenson 74, Sorenson & Hamacher 75].

Theorem 4.1: Let τp = {T1, T2, ..., Tn}, where Ti = (ci,
pi), be a set of periodic tasks sorted in non-decreasing order
by period (i.e., for any pair of tasks Ti and Tj, if i > j,
then pi ≥ pj). If τp is schedulable then

1) ∑
i=1

n ci

pi
 ≤ 1,

2) ∀i, 1 < i ≤ n; ∀L, p1 < L < pi:

L ≥ ci + ∑
j=1

i–1

L – 1
pj

cj .

Informally, condition (1) can be thought of as a
requirement that the processor not be overloaded. If a
periodic task T has a cost c and period p, then c/p is the
fraction of processor time consumed by T over the lifetime
of the system (i.e., the utilization of the processor by T).
The first condition simply stipulates that the cumulative
processor utilization cannot exceed unity; reflecting our
restriction to a uniprocessor.2

Condition (2) reflects our restriction to non-preemptive
scheduling without inserted idle time. The right hand side
of the inequality in condition (2) is a least upper bound on
the processor demand that can be realized in an interval of
length L starting at the time an invocation of a task Ti is
scheduled, and ending sometime before the deadline for the
invocation. For a set of tasks to be schedulable, the
demand in the interval L must always be less than or equal
to the length of the interval. Although this is semantically
similar to the requirement that the processor not be over-
utilized, it can easily be shown that conditions (1) and (2)
are in fact not related. It is possible to conceive of both
schedulable task sets that have a processor utilization of
1.0, and unschedulable task sets that have arbitrarily small
processor utilization.

Proof: We prove the contrapositive of the Theorem: if a
set of periodic tasks τp does not satisfy condition (1) or
condition (2) then there exists a concrete set of periodic
tasks, generated from τp that is not schedulable.

For a concrete set of tasks ω, define the processor demand
in the time interval [a, b], written da,b, as the maximum
amount of processing time required by ω in the interval
[a, b] to complete execution of all invocations of tasks
with deadlines in the interval [a, b]. The processor demand

2 In [Liu & Layland 73] it was shown that a concrete set of
periodic tasks ωp = {(T1,R1), (T2,R2), ..., (Tn,Rn), } where
R i = 0 for all i (i.e., all tasks are released at time 0), is
schedulable on a uniprocessor when preemption is allowed at
arbitrary points in time if and only if condition (1) alone is
satisfied.

5

T1

T2
 :
 :

Ti–1

Ti

Ti+1
 :
 :

Tn

Time

...

...

...

...

...

...

0 1 ci pi

Figure 4.1

in the interval [a, b] will be a function of costs and periods
of the tasks in ω, the length of the interval, the invocation
times of tasks prior to or at time a, and the amount of
computation time required to complete execution of task
invocations that occurred prior to time a with deadlines at
or before time b that have not completed execution by
time a. ω is schedulable if and only if for all intervals
[a, b], da,b ≤ b – a.

Consider the concrete set of periodic tasks ωp = {(T1,R1),
(T2,R2), ..., (Tn,Rn)}, generated from τp where Ri = 0 for
all i, 1 ≤ i ≤ n (i.e., the concrete set of tasks wherein all
tasks are released at time 0). Let t = p1p2… pn. In the

interval [0,t], task i must receive
t
pi

 ci units of processor

time to ensure it does not miss a deadline in the interval
[0, t]. Therefore, in the interval [0, t]

d0,t = ∑
i=1

n t
pi

 ci ,

and hence
d0,t

t
 = ∑

i=1

n ci

pi
 .

If condition (1) does not hold then d0,t > t, and hence ωp is
not schedulable.

For condition (2), consider the concrete set of periodic
tasks ωp = {(T1,R1), (T2,R2), ..., (Tn,Rn)} generated from
τp, where for some value of i, 1 < i ≤ n, Ri = 0, and Rj =
1 for 1 ≤ j ≤ n, j ≠ i. This gives rise to the pattern of task
invocations shown in Figure 4.1. Since neither
preemption nor inserted idle time are allowed, task Ti must
execute in the interval [0, ci]. For all L, p1 < L < pi, in
the interval [0, L], the processor demand, d0,L, is given by

d0,L = ci + ∑
j=1

i–1

L –1
pj

cj .

The demand consists of the cost of executing the initial
invocation of task Ti plus the processor demand due to
tasks 1 through i–1 in the interval [1, L]. (Note that tasks
with periods greater than or equal to p i have no
invocations with deadlines in the interval [0, L] and hence
do not contribute to the processor demand in the interval
[0, L].)

If condition (2) does not hold then d0,L > L, and hence ωp

is not schedulable.

Conditions (1) and (2) from Theorem 4.1 are also
necessary for scheduling a set of sporadic tasks non-
preemptively.

Corollary 4.2: If a set of sporadic tasks τs = {T1, T2,
..., Tn}, sorted in non-decreasing order by period, is

schedulable then τs satisfies conditions (1) and (2) from
Theorem 4.1.

Proof: This can be proved independently of Theorem 4.1,
however, it follows from Theorem 4.1 using the fact that
one of the behaviors of a concrete set of sporadic tasks is
as a concrete set of periodic tasks.

The constructions used in the proof of Theorem 4.1, in
fact, precisely characterize the worst case pattern of task
invocations for any set of tasks. We will show that if a set
of tasks can be scheduled (without preemption) when
invoked as shown in Figure 4.1, then the tasks are indeed
schedulable. Specifically, we demonstrate the existence of
a non-preemptive scheduling algorithm which is
guaranteed to schedule any periodic or sporadic task set
that satisfies the necessity conditions.

The basic scheduling algorithm we consider is the earliest
deadline first (EDF) algorithm [Liu & Layland 73]. When
selecting a task for execution, an EDF scheduling
algorithm chooses the task with an uncompleted
invocation with the earliest deadline. Ties between tasks
with identical deadlines are broken arbitrarily. With a non-
preemptive formulation of the EDF algorithm, once a task
is selected, the task is immediately executed to
completion. Unless the processor is idle, such a scheduler
will make dispatching decisions only when a task
terminates an execution. If the processor is idle then the
first task to be invoked is scheduled. If multiple tasks are
invoked simultaneously then the one with the nearest
deadline is scheduled. We assume that both the task
selection process and the process of dispatching a task take
no time in our discrete time system.

We next demonstrate the universality of the EDF
algorithm for scheduling sporadic tasks without
preemption. This means if any non-preemptive algorithm
schedules a set of sporadic tasks, then the EDF algorithm

6

will as well. To prove universality, it suffices to show
that conditions (1) and (2) are sufficient to ensure that the
EDF algorithm schedules any concrete set of sporadic
tasks generated from a set of schedulable sporadic tasks.

Theorem 4.3: Let τs be a set of sporadic tasks {(c1, p1),
(c2, p2), ..., (cn, pn)} sorted in non-decreasing order by
period. If τs satisfies conditions (1) and (2) from Theorem
4.1 then the non-preemptive EDF scheduling algorithm
will schedule any concrete set of sporadic tasks generated
from τs.

Proof: By contradiction. Assume the contrary, i.e., that
τs satisfies conditions (1) and (2) from Theorem 4.1 and
yet there exists a concrete set of sporadic tasks ω s

generated from τs, such that a task in ωs misses a deadline
at some point in time when ωs is scheduled by the EDF
algorithm. The proof proceeds by deriving upper bounds
on the processor demand for an interval ending at the time
at which a task misses a deadline.

Let td be the earliest point in time at which a deadline is
missed. ωs can be partitioned into three disjoint subsets:

S1 = the set of tasks that have an invocation with a
deadline at time td,

S2 = the set of tasks that have an invocation occurring
prior to time td with deadline after td, and

S3 = the set of tasks not in S1 or S2.

Tasks in S3 either have a release time greater than td, or
they have not been invoked immediately prior to time td.
As will shortly become apparent, to bound the processor
demand prior to td, it suffices to concentrate on the tasks
in S 2 . Let b 1 , b 2 , ..., b k be the invocation times
immediately prior to td of the tasks in S2. There are two
cases to consider.

Case 1: None of the invocations of tasks in S2 occurring
at times b1, b2, ..., bk are scheduled prior to td.

Let t0 be the end of the last period prior to td in which the
processor was idle. If the processor has never been idle let
t0 = 0. In the interval [t0, td], the processor demand is the
total processing requirement of the tasks that are invoked
at or after time t0, with deadlines at or before time td. This
gives

dt0,td
 ≤ ∑

j=1

n

 td – t0

pj
cj .

(Equality holds if all tasks are invoked at time t0.) Since
there is no idle period in the interval [t0, td] and since a
task misses a deadline at td, it follows that dt0,td

 > td – t0.

Therefore

td – t0 < ∑
j=1

n

 td – t0

pj
cj ≤ ∑

j=1

n td – t0

pj
 cj ,

and hence

1 < ∑
j=1

n cj

pj
 .

However, this contradicts condition (1) and establishes the
theorem for Case 1.

Case 2: Some of the invocations of tasks in S2 occurring
at times b1, b2, ..., bk are scheduled prior to td.

Let Ti be the last task in S2 scheduled prior to time td. Let
ti < td be the point in time at which the invocation of Ti

occurring immediately prior to td commences execution.
Note that if the processor is ever idle in the interval [ti,
td], then the analysis of Case 1 can be applied directly to
the interval [t0, td], where ti < t0 < td is the end of the last
idle period prior to time td, to reach a contradiction of
condition (1). Therefore, assume the processor is fully
utilized during the interval [ti, td].

Let Tk be a task that misses a deadline at time td. Because
of our choice of task Ti and our use of EDF scheduling, it
follows that ti < td – pk. That is, the invocation of the
task Tk that does not complete execution by time td occurs
within the interval [ti, td]. We now show that if the
invocation in question of task Ti is scheduled prior to time
td, then there must have existed enough processor time in
[ti, td] to schedule all invocations of tasks occurring after
time ti with deadlines at or before time td. To begin, we
derive an upper bound on dti,td

, the processor demand for
the interval [ti, td].

The following facts hold for Case 2:

i) Other than task Ti, no task with period greater than
or equal to td – ti executes in the interval [ti, td].

Since the invocation of task Ti scheduled at time ti has a
deadline after time td and is the last such invocation
scheduled prior to to td, every other task executed in [ti, td]
must have a deadline at or before td because of the EDF
discipline.

ii) Other than task Ti, no task which is scheduled in
[ti, td] could have been invoked at time ti.

Again, as a consequence of the definition of task Ti, other
than Ti, every task scheduled in [ti, td] has a deadline at or
before td. Therefore, if a task Ti', that is scheduled in [ti,
td] had been invoked at ti, the EDF algorithm would have
scheduled task Ti' instead of task Ti at time ti.

7

Since pi > td – ti, fact (i) above indicates that only tasks
T1 ... Ti need be considered in computing dti,td

. Since the
invocation of task Ti that is scheduled at time ti has a
deadline after time td, all task invocations occurring prior
to time ti with deadlines at or before td must have been
satisfied by ti and hence do not contribute to dti,td

.
Similarly, since Ti has the last invocation with deadline
after td that executes prior to td, all invocations of tasks
T1 - Ti–1 occurring prior to time td with deadlines after td,
need not be considered. Lastly, since none of the
invocations of tasks T1 - Ti–1 that are scheduled in the
interval [ti, td] occurred at time ti, the demand due to tasks
T1 - Ti–1 in the interval [ti, td] is the same as in the
interval [ti + 1, td]. These observations, plus the fact the
invocation of task T i scheduled at time ti must be
completed before time td, indicate that the processor
demand in [ti, td] is bounded by

dti,td
 ≤ ci + ∑

j=1

i–1

 td – (ti + 1)
pj

cj . (4.1)

Let L = td – ti. Substituting L into the (4.1) yields

dti,td
 ≤ ci + ∑

j=1

i–1

L – 1
pj

cj . (4.2)

Since there is no idle time in [ti, td], and since a task
missed a deadline at td, it follows that dti,td

 > td – ti or
simply dti,td

 > L. Combining this with (4.2) yields

L < dti,td
 ≤ ci + ∑

j=1

i–1

L – 1
pj

cj , (4.3)

Since pi > td – ti, we have pi > L. Since ti < td – pk (recall
that k is the index of a task that missed a deadline at time
td) we have td – ti > pk ≥ p1, and hence L > p1. Therefore
(4.3) contradicts condition (2) and establishes the theorem
for Case 2.

We have shown that in either case, if an element of a
concrete set of sporadic tasks generated from τs misses a
deadline when scheduled by the non-preemptive EDF
algorithm, then either condition (1) or condition (2) from
Theorem 4.1 must have been violated. This proves the
theorem.

The following corollary shows that the EDF scheduling
algorithm is universal for scheduling periodic tasks.

Corollary 4.4: Let τp be a set of periodic tasks {(c1,
p1), (c2, p2), ..., (cn, pn)} sorted in non-decreasing order
by period. If τp satisfies conditions (1) and (2) from
Theorem 4.1 then the non-preemptive EDF scheduling
algorithm will schedule any concrete set of periodic tasks
generated from τp.

Proof: Recall that one of the behaviors of a sporadic task
is as a periodic task. Therefore, if conditions (1) and (2) are

sufficient to guarantee the non-preemptive EDF algorithm
will schedule a concrete set of sporadic tasks, then the
conditions are also sufficient to guarantee the algorithm
will schedule a concrete set of periodic tasks.

Since the non-preemptive EDF algorithm is universal for
both periodic and sporadic tasks, in order to decide if a set
of tasks is schedulable, one need only consider if
conditions (1) and (2) from Theorem 4.1 hold. Deciding if
condition (1) holds is straightforward and can be performed
in time O(n). A set of tasks can be tested against condition
(2) in pseudo-polynomial time O(pn) by using a dynamic
programming technique [Jeffay 89a]. (Recall that pn is the
period of the “largest” task.)

5 . Non-Preemptive Scheduling of
Concrete Tasks

The non-preemptive EDF algorithm is universal for both
periodic and sporadic tasks. In this section we examine the
problem of scheduling a concrete set of periodic or
sporadic tasks. Recall that a concrete task set consists of a
task set together with release times of the tasks. For
concrete sporadic tasks we show that the non-preemptive
EDF scheduling algorithm is again universal. However,
for concrete periodic tasks the situation is more complex.
We show that the problem of deciding if a concrete set of
periodic tasks is schedulable for any non-preemptive
scheduling algorithm (including those that allow inserted
idle time) is intractable (i.e., NP-hard in the strong sense).
Moreover, we show that if a universal algorithm exists for
scheduling concrete periodic tasks without preemption
then P = NP.

To begin, we consider scheduling concrete sporadic tasks.
By the definition of schedulability, if a set of sporadic
tasks τs is schedulable then any set of concrete sporadic
tasks ωs generated from τs is schedulable. The following
theorem demonstrates that the schedulability of a concrete
set of sporadic tasks is not a function of the assignment of
release times to tasks.

Theorem 5.1: Let ωs = {(T1,R1), (T2,R2), ..., (Tn,Rn)}
be a concrete set of sporadic tasks generated from the set of
sporadic tasks τ s = {T 1 , T 2 , ..., T n}. Then ω s is
schedulable if and only if τs is schedulable.

Proof: (⇒) This follows immediately from the definition
of schedulability. (⇐) We must show that if the tasks of
τs can be scheduled so as to not miss any deadlines when
the task release times are given by R1...Rn, then the same
is true for any other set of release times. Suppose this is

8

not the case, that is, for some set of release times
R′1...R′n, there exists some pattern of task invocations for
which some task of τs must miss a deadline. By the
definition of the behavior of a sporadic task, an arbitrary
time interval may elapse between a task's deadline and its
next invocation. Let D be the maximum value of Ri + pi,
where pi is the period of task Ti. Note that all initial
invocations of tasks with release times R 1...R n are
completed at or prior to D. We can now map the pattern of
task invocations with release times of R ′1...R ′n to a
similar pattern of task invocations that begins at time D,
in effect, starting τs over again with a set of “release
times” R′i + D unrelated to the original release times.
Clearly if some pattern of task invocations could force
some task to miss a deadline for release times R′1...R′n,
the same pattern of invocations shifted in time by D will
cause some task of the concrete task set ωs to miss a
deadline sometime after D . But this contradicts the
hypotheses that ωs is schedulable and establishes the
theorem.

Theorem 5.1 shows that the problem of scheduling
sporadic tasks is equivalent to the problem of scheduling
concrete sporadic tasks. It follows that conditions (1) and
(2) from Theorem 4.1 are necessary and sufficient for
schedulability of concrete sporadic task sets. Moreover, the
non-preemptive EDF scheduling algorithm is universal for
these task sets.

Unlike concrete sporadic tasks, schedulability of concrete
periodic tasks is a function of the assignment of release
times. A periodic task set that is not schedulable may
generate sets of concrete tasks that are schedulable as well
as sets which are not (an example was given in Section 2).
In order to properly study the problem of scheduling
concrete periodic tasks, the definition of universality
presented in Section 2 must be refined to include some
notion of efficiency. It has been assumed that a scheduling
algorithm can select a task to execute in zero time.
Therefore, a scheduler that enumerated all possible
schedules would be a universal, albeit uninteresting,
scheduler. In addition to scheduling all schedulable sets of
tasks, a reasonable requirement for a universal scheduling
algorithm is that each scheduling decision be made in time
polynomial in the number of tasks. For this refined notion
of universality, we will show that if there exists a
universal non-preemptive scheduling discipline for
scheduling concrete periodic tasks then P = NP.

The following theorem shows that the complexity of
deciding if a set of concrete periodic tasks is schedulable
when one is allowed to consider any non-preemptive
scheduling discipline (including those that allow inserted

idle time) is NP-hard in the strong sense. This means that
unless P = NP, a pseudo-polynomial time algorithm does
not exist for deciding this question [Garey & Johnson 79].
This provides strong evidence that the problem is
intractable. This decision problem can be formally stated
as follows.

NON-PREEMPTIVE SCHEDULING OF CONCRETE
PERIODIC TASKS (SCPT): Let τp = {(c1, p1), (c2, p2), ...,
(cn, pn)} be a set of periodic tasks and let ωp = (τp, ρ) be a
set of concrete periodic tasks generated from τp. Is it
possible to schedule ωp non-preemptively?

Theorem 5.2: NON-PREEMPTIVE SCHEDULING OF
CONCRETE PERIODIC TASKS is NP-hard in the strong
sense.

Proof: We will give a polynomial time transformation
from the 3-PARTITION problem [Garey & Johnson 79] to
SCPT.

An instance of the 3-PARTITION problem consists of a
finite set A of 3m elements, a bound B ∈ Z+, and a “size”
s(a) ∈ Z+ for each a ∈ A, such that each s(a) satisfies
B/4 < s(a) < B/2, and ∑j=1

3m s(aj) = Bm. The problem is to
determine if A can be partitioned into m disjoint sets S1,
S2, ..., Sm such that, for 1 ≤ i ≤ m, ∑a∈Si

s(a) = B. (With

the above constraints on the element sizes, note that every
Si will contain exactly three elements from set A.)

The transformation is performed as follows. Let A = {a1,
a2, a3, ..., a3m}, B ∈ Z+, and s(a1), s(a2), s(a3), ..., s(a3m)
∈ Z+, constitute an arbitrary instance of the 3-PARTITION
problem. We create an instance of the SCPT problem by
constructing a set ωp of n = 3m + 2 concrete periodic
tasks. Let τp = {T1, T2, ..., T3m+2}, where (recall T =
(cost, period))

T1 = ((8B, 20B),
T2 = ((23B, 40B), and

∀j, 3 ≤ j ≤ 3m+2: Tj = ((s(aj–2), 40Bm),

be a set of sporadic tasks, and let ωp = {(T1,R1), (T2,R2),
..., (T3m+2,R3m+2)} where

R1 = 0,
R2 = 9B, and

∀j, 3 ≤ j ≤ 3m+2: Rj = 0,

be a set of concrete sporadic tasks. The construction of the
set ωp can clearly be done in polynomial time with the
largest number created in the new problem instance being
40Bm. In this instance of SCPT, note that the processor
utilization is

9

T1

T2

T3

T4

T5
 :
Tg

Th

Ti

Tj

Tk

Tl
 :

Time
0 8B 9B 40B k 40B(k+1) 40B(k+2) 40B m

9B+40Bk 9B+40B(k+1) 9B+40Bm

......

...

...

...

...

...

......
...

...

...

...

......

B B B

...

...

...

...

...

...

...

...

...

...

...

...

Figure 5.1

∑
j=1

n cj

pj
 =

8
20

 +
23
40

 +
∑ j=1

3m s(aj)

40Bm
 =

39
40

 +
Bm

40Bm
 = 1.0 .

By our choice of release times for T1 and T2, ωp can be
scheduled by a non-preemptive scheduling algorithm only
if T2 is scheduled at points in time 9B + 40Bk, for all
k ≥ 0, and all the invocations of T1 occurring at time
20B + 40Bk, are scheduled at time 40B(k+1) – 8B, for all
k ≥ 0. (See Figure 5.1.) This must be the case since if the
execution of the ith invocation of T2 is scheduled at some
time other than 9B + 40B(i–1), then the invocation of T1

occurring at time 20B + 40B(i–1) will miss its deadline.
Similarly, if the execution of an invocation of T 1

occurring at time 20B + 40Bk , for some k, k ≥ 0, is
scheduled at some time other than at 40B(k+1) – 8B, then
the invocation of T2 occurring at time 9B + 40Bk will
miss its deadline.

Note that with these scheduling constraints, if we consider
only tasks T 1 and T 2, then for all k , k > 0, in each
interval [40B(k–1), 40Bk], the processor will be idle for
exactly B time units. It follows that in the interval [0,
40Bm], there will be I disjoint idle periods, m ≤ I ≤ 2m,
whose total duration is exactly Bm time units. For
example, Figure 5.1 depicts a simulation of the scheduling
of ωp by the non-preemptive EDF algorithm. When EDF

scheduling is used, in the interval [0, 40Bm] there will be
exactly m disjoint idle periods, each of duration B. In this
case, ω p will be schedulable if and only if the EDF
algorithm can schedule tasks T3 - T3m+2 in these m idle
periods.

In the general case, ωp will be schedulable by a non-
preemptive scheduling algorithm if and only if there exists
a partition of tasks T3 - T3m+2 into m disjoint sets S1, S2,
..., Sm, such that for each set Si, ∑T

j
∈S

i
cj = B. Therefore,

a solution to SCPT can be used to solve an arbitrary
instance of the 3-PARTITION problem by simply
constructing the set of concrete periodic tasks ωp, and then
presenting these tasks to a decision procedure for SCPT.
The answer from the SCPT decision procedure is the
answer to the 3-PARTITION question for this problem
instance. Since 3-PARTITION is known to be NP-complete
in the strong sense [Garey & Johnson 79], SCPT is NP-
hard in the strong sense.

Note that the proof did not assume anything about the use
of inserted idle time.

Although one cannot efficiently decide schedulability for
concrete periodic tasks, recall that conditions (1) and (2)
are sufficient for the EDF algorithm to schedule such

10

Sets of Concrete
Tasks

Sets of Tasks Sets of Concrete
Tasks

Sets of Tasks

Sporadic Non-preemptive
EDF

Non-preemptive EDF Sporadic Pseudo-polynomial
time

Pseudo-polynomial
time

Periodic
If a polynomial
time algorithm

exists, then P = NP
Non-preemptive EDF Periodic

NP-hard in the
strong sense.

Pseudo-polynomial
time

Table 6.1: Universal scheduling algorithms. Table 6.2: Complexity of deciding schedulability.

tasks. (These conditions are, however, not necessary.)

The construction of ωp in Theorem 5.2 can be used to
show that if a universal non-preemptive scheduling
algorithm existed for scheduling concrete periodic tasks,
and this algorithm took only a polynomial amount of
time (in the length of the input) to make each scheduling
decision, then P = NP. That is, if there exists a universal
non-preemptive scheduling algorithm for concrete periodic
tasks (possibly using inserted idle time), then we can give
a pseudo-polynomial time algorithm for deciding 3-
PARTITION. The key observation is that if a 3-PARTITION
problem instance is embedded in SCPT as described above,
then only a pseudo-polynomial length portion of the
schedule generated by a universal non-preemptive
algorithm when scheduling ωp, needs to be checked in
order to decide the embedded 3-PARTITION problem
instance.

Corollary 5.3: If there exists an universal, non-
preemptive, uniprocessor scheduling algorithm for
scheduling concrete periodic tasks then P = NP.

Proof: Assume there exists such a universal scheduling
algorithm. From an instance of the 3-PA R T I T I O N
problem, construct a set ωp of concrete periodic tasks as
described in the proof of Theorem 5.2. Note that if ωp is
not schedulable, then some task in ωp will miss a deadline
in the interval [0, 9B+40Bm]. Therefore we can simulate
the universal scheduling algorithm on ωp over the interval
[0, 9B+40Bm] and simply check to see if any tasks miss a
deadline in this interval. The simulation and the checking
of the schedule produced by the universal algorithm can
clearly be performed in time proportional to Bm. By the
reasoning employed in the proof of Theorem 5.2, if some
task missed a deadline then there is a negative answer to
the 3-PARTITION problem instance. If no task missed a
deadline then there is an affirmative answer. Therefore,
since 3-PARTITION is NP-complete in the strong sense

and since we have given a pseudo-polynomial time
algorithm for deciding 3-PARTITION, P = NP.

Unless P = NP, Corollary 5.3 shows that we will not be
able to develop a universal non-preemptive scheduling
algorithm for scheduling concrete periodic tasks.

6 . Summary

Non-preemptive scheduling problems arise in many forms
in concurrent and real-time systems. Moreover, as non-
preemptive schedulers are easier to implement and analyze
(e.g., assess the overhead of scheduling), it is important to
understand the requirements of scheduling tasks non-
preemptively. In this paper we have examined the problem
of scheduling a set of periodic or sporadic tasks without
preemption on a uniprocessor. The following fundamental
results have been demonstrated. The earliest deadline first
algorithm is universal for sets of sporadic and periodic
tasks and for sets of concrete sporadic tasks. The
universality is with respect to the class of scheduling
algorithms that do not use inserted idle time. Unless P =
NP, there does not exist a universal non-preemptive
scheduling algorithm for concrete periodic tasks.

Given a set of sporadic, periodic, or concrete sporadic
tasks, one can efficiently determine if the tasks will be
schedulable. The problem of deciding schedulability for a
set of concrete periodic tasks is intractable (NP-hard in the
strong sense).

These results demonstrate that a fundamental distinction
exists between periodic and sporadic tasking models.
Specifically, the schedulability of a set of concrete
sporadic tasks is not a function of their release times.

Our results are further summarized in the Tables 6.1 and
6.2.

11

7 . Acknowledgements

We are indebted to Richard Anderson for suggesting the
construction used in the proof of Theorem 5.2.

8 . References

Bertossi, A.A., Bonuccelli, M.A. (1983). Preemptive
Scheduling of Periodic Jobs in Uniform
M u l t i p r o c e s s o r S y s t e m s , I n f o r m a t i o n
Processing Letters, Vol. 16, No. 1, (January
1983), pp. 3-6.

Chung, J.C., Haris, M.R., Brooks, F.P., Fuchs, H.,
Kelley, M.T., Hughes, J., Ouh-young, M., Cheung,
C., Holloway, R.L., Pique, M. (1989). Exploring
Virtual Worlds with Head-Mounted Displays, Non-
Holographic True 3-Dimensional Display
Technologies, SPIE Proceedings, Vol. 1083, Los
Angeles, CA, January 1989.

Dhall, S.K., Liu, C.L. (1978). On a Real-Time
Scheduling Problem, Operations Research, Vol.
26, No. 1, (January 1978), pp. 127-140.

Frederickson, G.N. (1983). Scheduling Unit-Time Tasks
with Integer Release Times and Deadlines,
Information Processing Letters, Vol. 16, No.
4, (May 1983), pp. 171-173.

Garey, M.R., Johnson, D.S. (1979). Computing and
Intractability, A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company,
New York, 1979.

Garey, M.R., Johnson, D.S., Simons, B.B., and Tarjan,
R.E. (1981). Scheduling Unit-Time Tasks with
Arbitrary Release Times and Deadlines, SIAM J.
Computing, Vol. 10, No. 2, (May 1981), pp. 256-
269.

Jeffay, K. (1989). The Real-Time Producer/Consumer
Paradigm: Towards Verifiable Real-Time
C o m p u t a t i o n s , Ph.D. Thesis, University of
Washington, Department of Computer Science,
Technical Report #89-09-15, September 1989.

Jeffay, K. (1989). Analysis of a Synchronization and
Scheduling Discipline for Real-Time Tasks with
Preemption Constraints, Proc. Tenth IEEE Real-Time
Systems Symp., Santa Monica, CA, December 1989,
pp. 295-305.

Jeffay, K. (1990). Scheduling Sporadic Tasks With Shared
Resources in Hard-Real-Time Systems, University of
North Carolina at Chapel Hill, Department of

Computer Science, Technical Report TR90-038,
August 1990. (Submitted for publication.)

Jeffay, K. (1991). The Real-Time Producer/Consumer
Paradigm: A paradigm for the construction of
efficient, predictable real-time systems, University of
North Carolina at Chapel Hill, Department of
Computer Science, April 1991. (Submitted for
publication.)

Lawler, E.L., Martel, C.U. (1981). S c h e d u l i n g
Periodically Occurring Tasks on Multiple Processors,
Information Processing Letters, Vol. 12, No.
1, (February 1981), pp.9-12.

Leung, J.Y.-T., Merrill, M.L. (1980). A Note on
Preemptive Scheduling of Periodic, Real-Time Tasks,
Information Processing Letters, Vol. 11, No.
3, (November 1980), pp.115-118.

Leung, J.Y.-T., Whitehead, J. (1982). On the Complexity
of Fixed Priority Scheduling of Periodic, Real-Time
Tasks, Performance Evaluation, Vol. 2, No. 4,
(1982), pp.237-250.

Liu, C.L., Layland, J.W. (1973). Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment, Journal of the ACM, Vol. 20, No.
1, (January 1973), pp. 46-61.

Mok, A.K.-L. (1983). Fundamental Design Problems of
Distributed Systems for the Hard Real-Time
Environment, Ph.D. Thesis, MIT, Department of EE
and CS, MIT/LCS/TR-297, May 1983.

Sorenson, P.G. (1974). A Methodology for Real-Time
System Development, Ph.D. Thesis, University of
Toronto, June 1974.

Sorenson, P.G., Hamacher, V.C. (1975). A Real-Time
Design Methodology, INFOR , Vol. 13, No. 1,
(February 1975), pp. 1-18.

