

ARNAUd PÊCHER ${ }^{1}$
Annegret Wagler

On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four

[^0]
On Non-Rank Facets of Stable Set Polytopes of Webs
 with Clique Number Four

Arnaud Pêcher ${ }^{\dagger} \quad$ Annegret Wagler ${ }^{\ddagger}$

November 4, 2003

Abstract

Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs $[8,12]$ and claw-free graphs [7, 8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it is only known that stable set polytopes of webs with clique number ≤ 3 have rank facets only $[5,15]$ while there are examples with clique number >4 having non-rank facets $[10,12,11]$. The aim of the present paper is to treat the remaining case with clique number $=4$: we provide an infinite sequence of such webs whose stable set polytopes admit non-rank facets.

Key words: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

A natural generalization of odd holes and odd antiholes are graphs with circular symmetry of their maximum cliques and stable sets, called webs: a web W_{n}^{k} is a graph with nodes $1, \ldots, n$ where $i j$ is an edge iff i and j differ by at most k (modulo n) and $i \neq j$. These graphs belong to the classes of quasi-line graphs and claw-free graphs and are, besides line graphs, relevant for describing the stable set polytopes of those larger graph classes [7, 8, 12]. All facets of the stable set polytope of line graphs are known from matching theory [6]. In contrary, we are still far from having a complete description for the stable set polytopes of webs and, therefore, of quasi-line and claw-free graphs, too.

[^1]In particular, as shown by Giles \& Trotter [8], the stable set polytopes of clawfree graphs contain facets with a much more complex structure than those defi ning the matching polytope. Oriolo [12] discussed which of them can occur in quasiline graphs. In particular, these non-rank facets rely on certain combinations of joined webs.

Several further authors studied the stable set polytopes of webs. Obviously, webs with clique number 2 are either perfect or odd holes (their stable set polytopes are known due to [2,13]). Dahl [5] studied webs with clique number 3 and showed that their stable set polytopes admit rank facets only. On the other hand, Kind [10] found (by means of the PORTA software ${ }^{1}$) examples of webs with clique number >4 whose stable set polytopes have non-rank facets. Oriolo [12] and Liebling et al. [11] presented further examples of such webs.

In [12], Oriolo asked whether the stable set polytopes of webs with clique number $=4$ admit rank facets only. The aim of the present paper is to answer that question by providing an infi nite sequence of webs with clique number $=4$ whose stable set polytopes have non-rank facets.

2 Some Known Results on Stable Set Polytopes

The stable set polytope $\operatorname{STAB}(G)$ of G is defi ned as the convex hull of the incidence vectors of all stable sets of the graph $G=(V, E)$ (a set $V^{\prime} \subseteq V$ is a stable set if the nodes in V^{\prime} are mutually non-adjacent). A linear inequality $a^{T} x \leq b$ is said to be valid for $\operatorname{STAB}(G)$ if it holds for all $x \in \operatorname{STAB}(G)$. We call a stable set S of G a root of $a^{T} x \leq b$ if its incidence vector χ^{S} satisfi es $a^{T} \chi^{S}=b$. A valid inequality for $\operatorname{STAB}(G)$ is a facet if and only if it has $|V|$ roots with affi nely independent incidence vectors. (Note that the incidence vectors of the roots of $a^{T} x \leq b$ have to be linearly independent if $b>0$.)

The aim is to find a system $A x \leq b$ of valid inequalities s.t. $\operatorname{STAB}(G)=$ $\left\{x \in \mathbb{R}_{+}^{|G|}: A x \leq b\right\}$ holds. Such a system is unknown for the most graphs and it is, therefore, of interest to study certain linear relaxations of $\operatorname{STAB}(G)$ and to investigate for which graphs G these relaxations coincide with $\operatorname{STAB}(G)$.

One relaxation of $\operatorname{STAB}(G)$ is the fractional stable set polytope $\operatorname{QSTAB}(G)$ given by all "trivial" facets, the nonnegativity constraints

$$
\begin{equation*}
x_{i} \geq 0 \tag{0}
\end{equation*}
$$

for all nodes i of G and by the clique constraints

$$
\begin{equation*}
\sum_{i \in Q} x_{i} \leq 1 \tag{1}
\end{equation*}
$$

[^2]for all cliques $Q \subseteq G$ (a set $V^{\prime} \subseteq V$ is a clique if the nodes in V^{\prime} are mutually adjacent). Obviously, a clique and a stable set have at most one node in common. Therefore, $\operatorname{QSTAB}(G)$ contains all incidence vectors of stable sets of G and $\operatorname{STAB}(G) \subseteq \operatorname{QSTAB}(G)$ holds for all graphs G. The two polytopes coincide precisely for perfect graphs [2, 13].

A graph G is called perfect if, for each (node-induced) subgraph $G^{\prime} \subseteq G$, the chromatic number $\chi\left(G^{\prime}\right)$ equals the clique number $\omega\left(G^{\prime}\right)$. That is, for all $G^{\prime} \subseteq G$, as many stable sets cover all nodes of G^{\prime} as a maximum clique of G^{\prime} has nodes (maximum cliques resp. maximum stable sets contain a maximal number of nodes).

In particular, for all imperfect graphs G follows $\operatorname{STAB}(G) \subset \operatorname{QSTAB}(G)$ and, therefore, further constraints are needed to describe their stable set polytopes.

A natural way to generalize clique constraints is to investigate rank constraints

$$
\begin{equation*}
\sum_{i \in G^{\prime}} x_{i} \leq \alpha\left(G^{\prime}\right) \tag{2}
\end{equation*}
$$

associated with arbitrary (node-)induced subgraphs $G^{\prime} \subseteq G$ where $\alpha\left(G^{\prime}\right)$ denotes the stability number of G^{\prime}, i.e., the cardinality of a maximum stable set in G^{\prime} (note that $\alpha\left(G^{\prime}\right)=1$ holds iff G^{\prime} is a clique). For convenience, we often write (2) in the form $x\left(G^{\prime}\right) \leq \alpha\left(G^{\prime}\right)$.

Let $\operatorname{RSTAB}(G)$ denote the rank polytope of G given by all nonnegativity constraints (0) and all rank constraints (2). A graph G is called rank-perfect [16] if $\operatorname{STAB}(G)$ coincides with $\operatorname{RSTAB}(G)$.

By construction, every perfect graph is rank-perfect. Further graphs which are rank-perfect by defi nition are near-perfect [14] (resp. t-perfect [2], h-perfect [9]) graphs, where rank constraints associated with cliques and the graph itself (resp. edges and odd cycles, cliques and odd cycles) are allowed.

A result of PADBERG [13] shows that minimally imperfect graphs are nearperfect. (A graph is called minimally imperfect if it is imperfect but all proper induced subgraphs are perfect. Berge [1] conjectured and Chudnovsky, Robertson, Seymour \& Thomas [4] proved recently that chordless odd cycles $C_{2 k+1}$ with $k \geq$ 2 , termed odd holes, and their complements $\bar{C}_{2 k+1}$, called odd antiholes, are the only minimally imperfect graphs. The complement \bar{G} has the same node set as G, but two nodes are adjacent iff they are non-adjacent in G.)

Moreover, line graphs are rank-perfect by [6], as their stable set polytopes admit as only non-trivial facets rank constraints associated with cliques and line graphs of 2-connected hypomatchable graphs. (The line graph $L(H)$ of a graph H is obtained by taking the edges of H as nodes of $L(H)$ and connecting two nodes in $L(H)$ iff the corresponding edges of H are incident. A graph H is called hypomatchable if, for all nodes v of H, the subgraph $H-v$ admits a matching meeting all nodes. Since matchings of H correspond to stable sets of $L(H)$, the description of the matching polytope due to [6] implies a description of the stable set polytope for line graphs.)

A generalization of line graphs is the class of quasi-line graphs where the neighborhood of any node can be partitioned into two cliques. A superclass of quasi-line graphs consists of all claw-free graphs where the neighborhood of any node does not contain a stable set of size 3. A characterization of the rank polytope of claw-free graphs was given by Galluccio \& Sassano [7]. They showed that all rank facets can be constructed by means of standard operations from rank constraints associated with cliques, partitionable webs $W_{\alpha \omega+1}^{\omega-1}$, or line graphs of 2-connected, (edge-)critical hypomatchable graphs. However, claw-free graphs are not rank-perfect and fi nding all facets of the stable set polytopes of claw-free graphs is a long-standing problem [9]. Giles \& Trotter [8] found, e.g., non-rank facets which occur even in the stable set polytopes of quasi-line graphs. These non-rank facets rely on combinations of joined webs.

Recall that a web W_{n}^{k} is a graph with nodes $1, \ldots, n$ where $i j$ is an edge if i and j differ by at most k (i.e., if $|i-j| \leq k \bmod n$) and $i \neq j$. We assume $k \geq 1$ and $n \geq 2(k+1)$ in the sequel in order to exclude the degenerated cases when W_{n}^{k} is a stable set or a clique. W_{n}^{1} is a hole and $W_{2 k+1}^{k-1}$ an odd antihole for $k \geq 2$. All webs W_{9}^{k} on nine nodes are depicted in Figure 1. Note that webs are also called circulant graphs C_{n}^{k} [3]. Furthermore, graphs $W(n, k)$ with $n \geq 2,1 \leq k \leq \frac{1}{2} n$ and $W(n, k)=\bar{W}_{n}^{k-1}$ were introduced in [15].

Figure 1
So far, the following is known about stable set polytopes of webs. The webs W_{n}^{1} are holes, hence they are perfect if n is even and minimally imperfect if n is odd (recall that we suppose $n \geq 2(k+1)$). Thus, all webs with clique number 2 are particularly near-perfect and, in addition, all webs with stability number 2 and W_{11}^{2} by [14, 16] (note $\omega\left(W_{n}^{k}\right)=k+1$ and $\alpha\left(W_{n}^{k}\right)=\left\lfloor\frac{n}{k+1}\right\rfloor$). Dahl [5] showed that all webs W_{n}^{2} with clique number 3 are rank-perfect. But there are several webs with clique number >4 known to be not rank-perfect [10, 12, 11], e.g., W_{31}^{4}, W_{25}^{5}, $W_{29}^{6}, W_{33}^{7}, W_{28}^{8}, W_{31}^{9}$.

In order to answer the question whether the webs with clique number $=4$ are rank-perfect or not, we fi rst analyze the structure of the known non-rank facets of webs with higher clique number in Section 3 and then investigate in Section 4 a similar construction for the webs W_{n}^{3} that gives rise to an infi nite sequence of webs with clique number $=4$ having non-rank facets: $W_{3 l}^{3}$ is not rank-perfect for every $l \geq 11$ with $2=l \bmod 3$ (see Theorem 9).

3 Structure of Known Non-Rank Facets of Webs

A facet $a^{T} x \leq b$ of the stable set polytope of a web W_{n}^{k} is reduced if at most $\omega\left(W_{n}^{k}\right)-1=k$ consecutive coeffi cients a_{i} are maximal (a_{i} and a_{j} are consecutive iff $j=i \pm 1(\bmod n)$ and a_{i} is maximal iff $\left.a_{i}=\max \left\{a_{j}: 1 \leq j \leq n\right\}\right)$.

Reduced facets play an important role in stable set polytopes of webs. For instance, Dahl's description of the stable set polytope of webs with clique number 3 was done in two steps: first, he proved that to get such a description, it is enough to characterize reduced facets (Lemma 4.2 [5]); second, he provided such a characterization (Theorem 4.3 [5]).

Furthermore, looking at the known non-rank facets of webs, we observe that the reduced ones admit a certain structure: they are clique family inequalities introduced in [12] and are associated with induced subwebs.

Let $G=(V, E)$ be a graph, \mathcal{F} be a family of (at least three inclusion-wise) maximal cliques of $G, p \leq|\mathcal{F}|$ be an integer, and defi ne two sets as follows:

$$
\begin{aligned}
I(\mathcal{F}, p) & =\{i \in V:|\{Q \in \mathcal{F}: i \in Q\}| \geq p\} \\
O(\mathcal{F}, p) & =\{i \in V:|\{Q \in \mathcal{F}: i \in Q\}|=p-1\}
\end{aligned}
$$

Oriolo [12] showed that the clique family inequality

$$
\begin{equation*}
(p-r) \sum_{i \in I(\mathcal{F}, p)} x_{i}+(p-r-1) \sum_{i \in O(\mathcal{F}, p)} x_{i} \leq(p-r)\left\lfloor\frac{|\mathcal{F}|}{p}\right\rfloor \tag{3}
\end{equation*}
$$

is valid for the stable set polytope of every graph G where $r=|\mathcal{F}| \bmod p$ and $r>0$.

We are interested in the clique family inequalities associated with proper subwebs $W_{n^{\prime}}^{k^{\prime}}$ of W_{n}^{k} where $\mathcal{F}=\left\{Q_{i}: i \in W_{n^{\prime}}^{k^{\prime}}\right\}$ is chosen as clique family, $p=k^{\prime}+1$, and $Q_{i}=\{i, \ldots, i+k\}$ denotes the maximum clique of W_{n}^{k} starting in node i. In order to explore the special structure of such inequalities, we need the following result due to Trotter [15].

Lemma 1 [15] $W_{n^{\prime}}^{k^{\prime}}$ is an induced subweb of W_{n}^{k} if and only if
(i) $n\left(k^{\prime}+1\right) \geq n^{\prime}(k+1)$ and $n k^{\prime} \leq n^{\prime} k$ holds,
(ii) there is a subset $V^{\prime}=\left\{i_{1}, \ldots, i_{n^{\prime}}\right\} \subseteq V\left(W_{n}^{k}\right)$ s.t. $\left|V^{\prime} \cap Q_{i_{j}}\right|=k^{\prime}+1$ for every $1 \leq j \leq n^{\prime}$.

We now prove the following.
Lemma 2 Let $W_{n^{\prime}}^{k^{\prime}} \subset W_{n}^{k}$ be a proper induced subweb. The clique family inequality of $\operatorname{STAB}\left(W_{n}^{k}\right)$ associated with $W_{n^{\prime}}^{k^{\prime}}$ is

$$
\begin{equation*}
\left(k^{\prime}+1-r\right) \sum_{i \in I(\mathcal{F}, p)} x_{i}+\left(k^{\prime}-r\right) \sum_{i \in O(\mathcal{F}, p)} x_{i} \leq\left(k^{\prime}+1-r\right) \alpha\left(W_{n^{\prime}}^{k^{\prime}}\right) \tag{4}
\end{equation*}
$$

where $r=n^{\prime} \bmod \left(k^{\prime}+1\right), r>0$ and $W_{n^{\prime}}^{k^{\prime}} \subseteq I(\mathcal{F}, p)$ holds.

Proof. Let $W_{n^{\prime}}^{k^{\prime}}$ be a proper subweb of W_{n}^{k} and recall that the clique family inequality associated with $W_{n^{\prime}}^{k^{\prime}}$ is given by (\mathcal{F}, p) with $\mathcal{F}=\left\{Q_{i}: i \in W_{n^{\prime}}^{k^{\prime}}\right\}$ and $p=k^{\prime}+1$. Obviously $|\mathcal{F}|=\left|W_{n^{\prime}}^{k^{\prime}}\right|=n^{\prime}$ follows. Let $V^{\prime}=\left\{i_{1}, \ldots, i_{n^{\prime}}\right\}$ be the node set of $W_{n^{\prime}}^{k^{\prime}}$ in W_{n}^{k}. Lemma 1 (ii) implies that $Q_{i_{j}}=\left\{i_{j}, \ldots, i_{j}+k\right\}$ contains the nodes $i_{j}, \ldots, i_{j+k^{\prime}}$ from V^{\prime}. Obviously, the node $i_{j+k^{\prime}}$ belongs exactly to the $\left(k^{\prime}+1\right)$ cliques $Q_{i_{j}}, \ldots, Q_{i_{j+k^{\prime}}}$ from \mathcal{F}. Since all indices are taken modulo n, every node in $W_{n^{\prime}}^{k^{\prime}}$ is covered precisely $\left(k^{\prime}+1\right)$ times by \mathcal{F} and $p=k^{\prime}+1$ yields, therefore, $W_{n^{\prime}}^{k^{\prime}} \subseteq I(\mathcal{F}, p)$. Furthermore, $|\mathcal{F}|=n^{\prime}$ and $p=\omega\left(W_{n^{\prime}}^{k^{\prime}}\right)$ implies $\left\lfloor\frac{|\mathcal{F}|}{p}\right\rfloor=\alpha\left(W_{n^{\prime}}^{k^{\prime}}\right)$. Hence the clique family inequality given by (\mathcal{F}, p) is (4) which fi nishes the proof.

Let's illustrate that with the help of the smallest not rank-perfect web W_{25}^{5}. Its non-rank facets are clique family inequalities associated with induced subwebs $W_{10}^{2} \subseteq W_{25}^{5}$ (note that the node sets $1,2,6,7,11,12,16,17,21,22$ and $1,3,6,8$, $11,13,16,18,21,23$ both induce a $W_{10}^{2} \subseteq W_{25}^{5}$, see the black nodes in Figure 2).

Figure 2: The induced subwebs $W_{10}^{2} \subseteq W_{25}^{5}$
Choosing $\mathcal{F}=\left\{Q_{i}: i \in W_{10}^{2}\right\}$ yields $p=\omega\left(W_{10}^{2}\right)=3$ in both cases. All remaining nodes are covered $\frac{10}{25-10}(5-2)=2$ times, hence $O(\mathcal{F}, p)=W_{25}^{5}-W_{10}^{2}$ follows. In particular, $O(\mathcal{F}, p)$ induces the subweb W_{15}^{3} of W_{25}^{5} and the corresponding clique family inequality is

$$
2 x\left(W_{10}^{2}\right)+1 x\left(W_{15}^{3}\right) \leq 2 \alpha\left(W_{10}^{2}\right)
$$

due to $r=|\mathcal{F}| \bmod p=1$ and yields a non-rank facet of $\operatorname{STAB}\left(W_{25}^{5}\right)$. Notice that in the previous example, W_{25}^{5} partitions into two induced subwebs W_{10}^{2} and W_{15}^{3}. All known reduced non-rank facets are of this kind, i.e., they are clique family inequalities associated with an induced subweb such that the remaining part also induces a subweb.

In order to answer the question whether the webs W_{n}^{3} are rank-perfect or not, we look, therefore, for possible partitions of W_{n}^{3} into two disjoint subwebs and investigate the associated clique family inequalities (4). Lemma 1(i) shows that

$$
\begin{aligned}
W_{n^{\prime}}^{2} \subseteq W_{n}^{3} \quad \text { with } \quad \frac{2}{3} n \leq n^{\prime} \leq \frac{3}{4} n \\
W_{n^{\prime \prime}}^{1} \subseteq W_{n}^{3} \quad \text { with } \quad \frac{1}{3} n \leq n^{\prime \prime} \leq \frac{2}{4} n
\end{aligned}
$$

are the only possible subwebs since $W_{n^{\prime}}^{k^{\prime}} \subset W_{n}^{k}$ implies $k^{\prime}<k$ by [15] again. Hence, there are only two possibilities to partition W_{n}^{3} into two disjoint subwebs:

$$
\begin{aligned}
& 2 \mid n \text { and } W_{n}^{3}=W_{\frac{1}{2} n}^{1} \cup W_{\frac{1}{2} n}^{1} \\
& 3 \mid n \text { and } W_{n}^{3}=W_{\frac{1}{3} n}^{1} \cup W_{\frac{2}{3} n}^{2}
\end{aligned}
$$

First, consider the clique family inequalities associated with $W_{\frac{n}{2}}^{1} \subset W_{n}^{3}$ resp. $W_{\frac{1}{3} n}^{1} \subset W_{n}^{3}$. Then $\mathcal{F}=\left\{Q_{i}: i \in W_{\frac{n}{2}}^{1}\right\}$ resp. $\mathcal{F}=\left\{Q_{i}: i \in W_{\frac{1}{3} n}^{1}\right\}$ yields $p=2$ by Lemma 2. Due to $r>0$, we obtain $(p-r)=1$ and $(p-r-1)=0$ in this case, hence the associated clique family inequalities (4) cannot be non-rank constraints.

Thus, turn to the clique family inequality associated with $W_{\frac{2}{3} n}^{2} \subset W_{n}^{3}$. This means in particular, that n is divisible by 3, i.e., we have $n=3 l$ (for some $l \geq 3$ by $n \geq 2(k+1)$) and $W_{3 l}^{3}=W_{2 l}^{2} \cup W_{1 l}^{1}$. Choosing $\mathcal{F}=\left\{Q_{i}: i \in W_{2 l}^{2}\right\}$ implies $p=3$ and the associated clique family inequality (4) is a non-rank constraint provided $r=1$ and $O(\mathcal{F}, p) \neq \emptyset$ holds.

In order to determine $O(\mathcal{F}, p)$, we have to study the distribution of the nodes of $W_{2 l}^{2}$ in $W_{3 l}^{3}$. For that we need the following notation. Let $V^{\prime} \subseteq V\left(W_{n}^{k}\right)$, then a maximal set of consecutive nodes of W_{n}^{k} belonging to V^{\prime} is called an interval of V^{\prime}. Furthermore, an interval containing d nodes is called a d-interval (e.g., $\{i, i+1, i+2\}$ is a 3 -interval of V^{\prime} if $i, i+1, i+2 \in V^{\prime}$ but $i-1, i+3$ not).

Lemma 3 If $W_{2 l}^{2} \subseteq W_{3 l}^{3}$, then $V\left(W_{2 l}^{2}\right)$ and $V\left(W_{3 l}^{3}-W_{2 l}^{2}\right)$ consist of 2-intervals and 1-intervals only, respectively.

Proof. Let $V=V\left(W_{3 l}^{3}\right)$ and $V^{\prime}=V\left(W_{2 l}^{2}\right)$.
Claim 1. $V-V^{\prime}$ must consist of 1-intervals only. Assume there is a node $i \in V^{\prime}$ s.t. $i+1, i+2 \in V-V^{\prime}$. Then the maximum clique $Q_{i} \subseteq W_{3 l}^{3}$ starting in i cannot contain 3 but at most 2 nodes of V^{\prime}, a contradiction to Lemma 1(ii) (recall $Q_{i}=\{i, i+1, i+2, i+3\}$ and $\left.i+1, i+2 \in V-V^{\prime}\right)$.

Claim 2. V^{\prime} cannot contain a 1-interval. Suppose there is a node $i \in V^{\prime}$ s.t. $i-1, i+1 \in V-V^{\prime}$. Then we have $i-2 \in V^{\prime}$ by Claim 1 and the maximum clique $Q_{i-2} \subseteq W_{3 l}^{3}$ starting in $i-2$ does not contain 3 but only the 2 nodes $i-2$ and i of V^{\prime}, a contradiction to Lemma 1(ii) again.

Claim 3. V^{\prime} must consist of 2-intervals only. Claim 1 shows that the number of intervals in $V-V^{\prime}$ equals l (since $V-V^{\prime}$ contains l nodes). Obviously, $V-V^{\prime}$ and V^{\prime} have the same number of intervals. $\left|V^{\prime}\right|=2 l$ and Claim 2 imply, therefore, that every of the l intervals of V^{\prime} contains 2 nodes.

In particular, $W_{3 l}^{3}-W_{2 l}^{2}$ contains every third node of $W_{3 l}^{3}$. This implies:

Lemma 4 Let $W_{2 l}^{2} \subset W_{3 l}^{3}$. Then $W_{3 l}^{3}-W_{2 l}^{2}$ is the hole $W_{1 l}^{1}$ and the clique family inequality

$$
\begin{equation*}
(3-r) x\left(W_{2 l}^{2}\right)+(2-r) x\left(W_{1 l}^{1}\right) \leq(3-r) \alpha\left(W_{2 l}^{2}\right) \tag{5}
\end{equation*}
$$

of $\operatorname{STAB}\left(W_{3 l}^{3}\right)$ associated with $W_{2 l}^{2}$ is a non-rank constraint if $r=2 l \bmod 3=1$.
Proof. Let $W_{2 l}^{2} \subset W_{3 l}^{3}$. Then Lemma 3 shows that $W_{3 l}^{3}-W_{2 l}^{2}$ is the hole $W_{1 l}^{1}$. Choosing $\mathcal{F}=\left\{Q_{i}: i \in W_{2 l}^{2}\right\}$ implies $p=3$. Every node $i \in W_{1 l}^{1}$ belongs to exactly the two cliques Q_{i-2} and Q_{i-1} in \mathcal{F} since $i-2, i-1 \in W_{2 l}^{2}$ but $i-3 \in W_{1 l}^{1}$ follows from Lemma 3. Thus, every node in $W_{1 l}^{1}$ is covered exactly twice by \mathcal{F} and $W_{1 l}^{1} \subseteq O(\mathcal{F}, p)$ follows. $W_{2 l}^{2} \subseteq I(\mathcal{F}, p)$ by Lemma 2 and $W_{2 l}^{2} \cup W_{1 l}^{1}=W_{3 l}^{3}$ fi nishes the proof.

We investigate in the next section in which cases the non-rank constraint (5) yields a facet of $\operatorname{STAB}\left(W_{n}^{3}\right)$.

4 Non-Rank Facets of $\operatorname{STAB}\left(W_{n}^{3}\right)$

Throughout this section, let n be divisible by 3 (i.e., $n=3 l$ for some $l \geq 3$ by $n \geq 2(k+1)$) and $2=l \bmod 3($ i.e., $1=2 l \bmod 3)$. Consider a partition $W_{2 l}^{2} \cup$ $W_{1 l}^{1}$ of $W_{3 l}^{3}$ into disjoint subwebs. The clique family inequality (5) of $\operatorname{STAB}\left(W_{3 l}^{3}\right)$ associated with $W_{2 l}^{2}$ is the non-rank constraint

$$
\begin{equation*}
2 x\left(W_{2 l}^{2}\right)+1 x\left(W_{1 l}^{1}\right) \leq 2 \alpha\left(W_{2 l}^{2}\right) \tag{*}
\end{equation*}
$$

due to Lemma 4. The aim of this section is to prove that $(*)$ is a facet of $\operatorname{STAB}\left(W_{3 l}^{3}\right)$ whenever $l \geq 11$.

For that, we have to present $3 l$ roots of $(*)$ whose incidence vectors are linearly independent. (Recall that a root of $(*)$ is a stable set of $W_{3 l}^{3}$ satisfying $(*)$ at equality.)

It follows from [15] that a web W_{n}^{k} produces the full rank facet $x\left(W_{n}^{k}\right) \leq$ $\alpha\left(W_{n}^{k}\right)$ iff $(k+1) \nmid n$. Thus $W_{2 l}^{2}$ is facet-producing if $2=l \bmod 3$ and the maximum stable sets of $W_{2 l}^{2}$ yield already $2 l$ roots of $(*)$ with linearly independent incidence vectors.

Let $V=V\left(W_{3 l}^{3}\right)$ and $V^{\prime}=V\left(W_{2 l}^{2}\right)$. We need a set \mathcal{S} of further l roots of $(*)$ which have a non-empty intersection with $V-V^{\prime}$, called mixed roots, and are independent, too, in order to prove that $(*)$ is a facet of $\operatorname{STAB}\left(W_{3 l}^{3}\right)$.

First, we show that there is no such set \mathcal{S} of l mixed roots in the two smallest cases with $l \geq 3$ and $2=l \bmod 3$ (i.e., if $l=5,8$ and $n=15,24$) but that there exists such a set \mathcal{S} for every $l \geq 11$.

Proposition 5 The constraint $(*)$ is not a facet of $\operatorname{STAB}\left(W_{15}^{3}\right)$ or $\operatorname{STAB}\left(W_{24}^{3}\right)$.

Proof. Let S be a mixed root of $(*)$ then we have

$$
2\left|S \cap V^{\prime}\right|+1\left|S \cap\left(V-V^{\prime}\right)\right|=2 \alpha\left(W_{2 l}^{2}\right)
$$

due to the coeffi cients of $(*)$. This implies that we need $2 x$ nodes in $S \cap\left(V-V^{\prime}\right)$ if $\left|S \cap V^{\prime}\right|=\alpha\left(W_{2 l}^{2}\right)-x$. In particular, $S \nsubseteq V^{\prime}$ yields $|S|>\alpha\left(W_{2 l}^{2}\right)$.

If $l=5$, then $\alpha\left(W_{10}^{2}\right)=\left\lfloor\frac{10}{3}\right\rfloor=3=\left\lfloor\frac{15}{4}\right\rfloor=\alpha\left(W_{15}^{3}\right)$ implies that $(*)$ cannot have any root S with $S \nsubseteq W_{10}^{2}$.

In the case $l=8$, we have $|S|>\alpha\left(W_{16}^{2}\right)=5$ for every root $S \nsubseteq W_{16}^{2}$. This implies $|S|+\left|N^{+}(S)\right|=4|S| \geq 24=3 l$ (where $N^{+}(S)$ denotes the union of $N^{+}(i)=\{i+1, i+2, i+3\}$ for all nodes $\left.i \in S\right)$. Thus, S has to contain every 4th node of V. But there are only 4 stable sets in W_{24}^{3} of that type, namely

$$
\begin{aligned}
& S_{1}=\{1,5,9,13,17,21\} \\
& S_{2}=\{2,6,10,14,18,22\} \\
& S_{3}=\{3,7,11,15,19,23\} \\
& S_{4}=\{4,8,12,16,20,24\}
\end{aligned}
$$

instead of the needed $l=8$ mixed roots. Consequently, in the two cases $l=5$ resp. $l=8$ there are not enough roots and $(*)$ is, therefore, neither a facet of $\operatorname{STAB}\left(W_{15}^{3}\right)$ nor of $\operatorname{STAB}\left(W_{24}^{3}\right)$.

We now show that there exists a set \mathcal{S} of l mixed roots of $(*)$ whenever $l \geq 11$. Due to $2=l \bmod 3$, we set $l=2+3 l^{\prime}$ and obtain $|V|=3 l=6+9 l^{\prime}$. Thus, V can be partitioned into 2 blocks D_{1}, D_{2} with 3 nodes each and l^{\prime} blocks $B_{1}, \ldots, B_{l^{\prime}}$ with 9 nodes each s.t. every block ends with a node in $V-V^{\prime}$ (this is possible since every third node of V belongs to $V-V^{\prime}$ due to Lemma 3, say $i \in V^{\prime}$ if $3 \chi i$ and $i \in V-V^{\prime}$ if $\left.3 \mid i\right)$. Figure 3 shows a block D_{i} and a block B_{j} (where circles represent nodes in V^{\prime} and squares represent nodes in $V-V^{\prime}$). For the studied mixed roots of $(*)$ we choose the black filled nodes in Figure 3:

Figure 3

Lemma 6 Any set S containing the 3rd node of the blocks D_{1}, D_{2} and the 4th and sth node of any block B_{j} is a root of (*) with $\left|S \cap V^{\prime}\right|=2 l^{\prime},\left|S \cap\left(V-V^{\prime}\right)\right|=2$ for every ordering $V=D_{1}, B_{1}, \ldots, B_{m}, D_{2}, B_{m+1}, \ldots, B_{l^{\prime}}$ of the blocks s.t. D_{1}, D_{2} are not neighbored.

Remark. Note that $D_{1}=\{3 i+1,3 i+2,3 i+3\}$ for some $0 \leq i<l$. Moreover, D_{1} and D_{2} are not necessarily neighbored only if $l^{\prime}>1$ (i.e., there is no suitable ordering if $l=5$).

Proof. Consider a set S constructed that way. Since every block ends with a node in $V-V^{\prime}$ by defi nition and every third node of V is in $V-V^{\prime}$ by Lemma 3, we have that the last node of D_{i} and the 3rd, 6th, and 9th node of B_{j} belong to $V-V^{\prime}$ while all other nodes are in V^{\prime}. Thus, the two last nodes in D_{1} and D_{2} are the two studied nodes in $S \cap\left(V-V^{\prime}\right)$ and the 4th and 8th node in B_{j} for $1 \leq j \leq l^{\prime}$ are the studied $2 l^{\prime}$ nodes in $S \cap V^{\prime}$ (see Figure 3).
S is a stable set provided the two blocks D_{1} and D_{2} are not neighbored: Obviously, there is no edge between the 4 th and 8 th node of any block B_{j}. Thus, we only have to discuss what happens between two consecutive blocks. Since the first 3 nodes of every block B_{j} do not belong to S, there is no problem with having any block before B_{j}, i.e., $B_{k} B_{j}$ or $D_{i} B_{j}$. For the remaining case $B_{j} D_{i}$, notice that the last node of B_{j} and the first two nodes of D_{i} do not belong to S and there cannot be an edge between two nodes of S in that case, too.

This shows that S is a stable set satisfying $\left|S \cap V^{\prime}\right|=2 l^{\prime}$ and $\left|S \cap\left(V-V^{\prime}\right)\right|=2$. Due to $\alpha\left(W_{2 l}^{2}\right)=\left\lfloor\frac{2\left(2+3 l^{\prime}\right)}{3}\right\rfloor=2 l^{\prime}+1$, the set S is finally a root of $(*)$.

Lemma 6 implies that there are mixed roots S of $(*)$ with $|S|=2+2 l^{\prime}$ if $l^{\prime} \geq 2$. The next step is to show that there are l such roots if $l^{\prime} \geq 3$ (resp. $l \geq 11$).

In the sequel, we denote by $S_{i, m}$ the stable set constructed as in Lemma 6 where i is the third node in D_{1} and $V=D_{1}, B_{1}, \ldots, B_{m}, D_{2}, B_{m+1}, \ldots, B_{l^{\prime}}$. If there are more than $\left\lfloor\frac{l^{\prime}}{2}\right\rfloor$ blocks between D_{1} and D_{2}, there are less than $\left\lfloor\frac{l^{\prime}}{2}\right\rfloor$ blocks between D_{2} and D_{1}. Hence it suffi ces to consider $m \leq\left\lfloor\frac{l^{\prime}}{2}\right\rfloor$.

Clearly, $S_{i, m}$ contains a second node from $V-V^{\prime}$, namely, the third node $i+9 m+3$ of block D_{2}. If $2 \mid l^{\prime}$ and $m=\frac{l^{\prime}}{2}$, then $(i+9 m+3)+9 m+3=$ $i+9 l^{\prime}+6=i(\bmod n)$ and, therefore, $S_{i, m}=S_{i+9 m+3, m}$ follows.

Remark. If $l^{\prime}=2$, then the only ordering of the blocks avoiding that D_{1} and D_{2} are neighbored is $D_{1}, B_{1}, D_{2}, B_{2}$. Hence, we fi nd only $\frac{l}{2}$ mixed roots with $2+2 l^{\prime}$ nodes, namely, the stable sets $S_{1}, S_{2}, S_{3}, S_{4}$ of C_{24}^{3} presented above.

We are supposed to construct distinct mixed roots $S_{i, m}$ of $(*)$ with $2+2 l^{\prime}$ nodes, hence we choose orderings $V=D_{1}, B_{1}, \ldots, B_{m}, D_{2}, B_{m+1}, \ldots, B_{l^{\prime}}$ with $1 \leq$ $m<\frac{l^{\prime}}{2}$ and obtain easily:

Lemma 7 If $l^{\prime} \geq 3$, then the stable sets $S_{i, m}$ for each $i \in V-V^{\prime}$ obtained from any ordering $V=D_{1}, B_{1}, \ldots, B_{m}, D_{2}, B_{m+1}, \ldots, B_{l^{\prime}}$ with $1 \leq m<\frac{l^{\prime}}{2}$ yield $\left|V-V^{\prime}\right|=l$ roots of $(*)$ with $2+2 l^{\prime}$ nodes each.

Consequently, we can always choose a set of $3 l$ roots of $(*)$ if $l^{\prime} \geq 3$ resp. $l \geq 11$. If \mathcal{S} is a set of l distinct mixed roots, denote by $A_{\mathcal{S}}$ the square matrix containing the incidence vectors of the $2 l$ maximum stable sets of $W_{2 l}^{2}$ and the l mixed roots in \mathcal{S}. $A_{\mathcal{S}}$ can be arranged s.t. the first $2 l$ and the last l columns correspond to the nodes in $W_{2 l}^{2}$ and $W_{1 l}^{1}$, respectively, and the first $2 l$ rows contain the incidence vectors of the maximum stable sets of $W_{2 l}^{2}$ where the last rows contain the incidence vectors
of the l mixed roots in \mathcal{S}. (Note that the nodes corresponding to the last l columns of $A_{\mathcal{S}}$ are $3,6, \ldots, 3 l$.) Then $A_{\mathcal{S}}$ has the block structure

$$
A_{\mathcal{S}}=\left(\begin{array}{c|c}
A_{11} & 0 \\
\hline A_{21} & A_{22}
\end{array}\right)
$$

where the $2 l \times 2 l$-matrix A_{11} is invertible since $W_{2 l}^{2}$ is facet-producing by [15] (in the considered case with $1=2 l \bmod 3$ resp. $2=l \bmod 3$).

It is left to find a set \mathcal{S} of l distinct mixed roots s.t. A_{22} is an invertible $l \times l$ matrix (then $A_{\mathcal{S}}$ is invertible due to its block structure).

Lemma 8 For every $l \geq 11$, there is a set \mathcal{S} of l mixed roots of (*) containing 2 nodes from $V-V^{\prime}$ s.t. the $l \times l$-submatrix A_{22} of $A_{\mathcal{S}}$ is invertible.

Proof. Every root $S_{i, m}$ of $(*)$ corresponds to a row in $\left(A_{21} \mid A_{22}\right)$ of $A_{\mathcal{S}}$ having precisely two 1-entries in the columns belonging to A_{22} (by $\left|S_{i, m} \cap\left(V-V^{\prime}\right)\right|=2$ for all $i \in V-V^{\prime}$). Lemma 7 ensures that no such roots coincide if $1 \leq m<\frac{l^{\prime}}{2}$ for all $i \in V-V^{\prime}$.

The idea of fir nding cases when A_{22} is invertible goes as follows: Let $S_{3 j, 1}$ for $1 \leq j \leq l-4$ be the first $l-4$ roots in \mathcal{S} with $S_{3 j, 1} \cap\left(V-V^{\prime}\right)=\{3 j, 3(j+4)\}$. Choose as the remaining 4 roots in \mathcal{S} the stable sets $S_{3 j, 2}$ for $l-10 \leq j \leq l-7$ with $S_{3 j, 2} \cap\left(V-V^{\prime}\right)=\{3 j, 3(j+7)\}$. Then take their incidence vectors $\chi^{S_{3 j, 1}}$ for $1 \leq j \leq l-4$ as the fi rst $l-4$ rows and $\chi^{S_{3 j, 2}}$ for $l-10 \leq j \leq l-7$ as the last 4 rows of $\left(A_{21} \mid A_{22}\right)$. By construction, A_{22} is the following $l \times l$-matrix (1-entries are shown only):

	1	\ldots	5	\ldots	$l-11$	$l-10$	$l-9$	$l-8$	$l-7$	$l-6$	$l-5$	$l-4$	$l-3$	$l-2$	$l-1$	l
1	1		1													
\vdots		\ddots			\ddots											
\vdots				\ddots			\ddots									
$l-11$				1				1								
$l-10$					1					1						
$l-9$						1				1						
$l-8$							1				1					
$l-7$								1				1				
$l-6$									1				1			
$l-5$											1			1		
$l-4$					1						1					
$l-3$						1	1						1			
$l-2$							1	1						1		
$l-1$																
l																

A_{22} has only 1-entries on the main diagonal (coming from the fi rst nodes in $V-V^{\prime}$ of $S_{3 j, 1}$ for $1 \leq j \leq l-4$ and from the second nodes in $V-V^{\prime}$ of $S_{3 j, 2}$ for
$l-10 \leq j \leq l-7$). The only non-zero entries of A_{22} below the main diagonal come from the first nodes in $V-V^{\prime}$ of $S_{3 j, 2}$ for $l-10 \leq j \leq l-7$. Hence, A_{22} has the form

$$
A_{22}=\left(\begin{array}{c|c}
A_{22}^{\prime} & \\
\hline 0 & A_{22}^{\prime \prime}
\end{array}\right)
$$

where both A_{22}^{\prime} and $A_{22}^{\prime \prime}$ are invertible due to the following reasons:
A_{22}^{\prime} is an $(l-11) \times(l-11)$-matrix having 1 -entries on the main diagonal and 0 -entries below the main diagonal by construction. Hence A_{22}^{\prime} is clearly invertible.
$A_{22}^{\prime \prime}$ is an 11×11-matrix which has obviously the circular 1's property. In other words, $A_{22}^{\prime \prime}$ is equivalent to the matrix $A\left(\bar{C}_{11}\right)$ containing the incidence vectors of the maximum stable sets of the odd antihole \bar{C}_{11} as rows. Since $A\left(\bar{C}_{11}\right)$ is invertible due to Padberg [13], the matrix $A_{22}^{\prime \prime}$ is invertible, too. (Note that $l=11$ implies $A_{22}=A_{22}^{\prime \prime}$.)

This completes the proof that A_{22} is invertible for every $l \geq 11$ if we choose the set \mathcal{S} of l roots of $(*)$ as constructed above.

Remark. Note that there are cases where it is possible to choose the l mixed roots of one type $S_{3 j, k}$ only. E.g., the l roots $S_{3 j, 1}$ for $1 \leq j \leq l$ yield an invertible $l \times l$-matrix A_{22} whenever l is odd (then A_{22} has the circular 1's property and corresponds to the matrix containing the incidence vectors of the maximum stable sets of the odd antihole \bar{C}_{l} as rows). Moreover, if $2 \mid l$ but $4 X l$ resp. $4 \mid l$ but $8 X l$, the roots $S_{3 j, 1}$ for $1 \leq j \leq l$ yield a matrix A_{22} which can be partitioned into 2 resp. 4 invertible blocks with the circular 1's property. However, there are cases left where such a partition is not possible when using mixed roots of the same type only (e.g. the case $n=96$ and all further cases with $8 \mid l)$. This let us use mixed roots of different types for the construction.

Finally, we have shown that, for every $l \geq 11$, there are $3 l$ roots of $(*)$ whose incidence vectors are linearly independent: The maximum stable sets of $W_{2 l}^{2}$ yield the first $2 l$ independent roots (since $W_{2 l}^{2}$ is facet-producing in the considered case with $2=l \bmod 3$ by Trotter [15]). Lemma 8 shows that there are further l mixed roots which are independent, too. This implies:

Theorem 9 For any $W_{2 l}^{2} \subseteq W_{3 l}^{3}$ where $2=l \bmod 3$ and $l \geq 11$, the clique family inequality

$$
2 x\left(W_{2 l}^{2}\right)+1 x\left(W_{1 l}^{1}\right) \leq 2 \alpha\left(W_{2 l}^{2}\right)
$$

associated with $W_{2 l}^{2}$ is a non-rank facet of $\operatorname{STAB}\left(W_{3 l}^{3}\right)$.
This gives us an infi nite sequence of not rank-perfect webs $W_{3 l}^{3}$ with clique number 4, namely $W_{33}^{3}, W_{42}^{3}, W_{51}^{3}, W_{60}^{3}, \ldots$ and answers the question whether the webs W_{n}^{3} with clique number 4 are rank-perfect negatively.

References

[1] C. Berge, Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Zeitschr. d. Martin-Luther-Universität Halle-Wittenberg (1961) 114-115
[2] V. Chv'atal, On Certain Polytopes Associated with Graphs. J. Combin. Theory (B) 18 (1975) 138-154
[3] V. Chv'atal, On the Strong Perfect Graph Conjecture. J. Combin. Theory (B) 20 (1976) 139-141
[4] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem, available at: http://www.math.gatech.edu/ thomas/spgc.ps.gz
[5] G. Dahl, Stable Set Polytopes for a Class of Circulant Graphs. SIAM J. Optim. 9 (1999) 493-503
[6] J.R. Edmonds and W.R. Pulleyblank, Facets of 1-Matching Polyhedra. In: C. Berge and D.R. Chuadhuri (eds.) Hypergraph Seminar. Springer-Verlag, Heidelberg, (1974), 214-242
[7] A. Galluccio and A. Sassano, The Rank Facets of the Stable Set Polytope for ClawFree Graphs. J. Comb. Theory B 69 (1997) 1-38
[8] R. Giles and L.E. Trotter, jr., On Stable Set Polyhedra for $K_{1,3}-$ free Graphs. J. Comb. Theory B 31 (1981) 313-326
[9] M. Grötschel, L. Lov 'asz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, (1988)
[10] J. Kind, Mobilitätsmodelle für zellulare Mobilfunknetze: Produktformen und Blockierung. PhD thesis, RWTH Aachen (2000)
[11] T. Liebling, G. Oriolo, B. Spille, and G. Stauffer, On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs, To appear in Mathematical Methods of Operations Research
[12] G. Oriolo, Clique Family Inequalities for the Stable Set Polytope for Quasi-Line Graphs. To appear in: Special Issue of Distcrete Applied Math. on Stability Problems, V. Lozin and D. de Werra (eds.)
[13] M.W. Padberg, Perfect Zero-One Matrices. Math. Programming 6 (1974) 180-196
[14] F.B. Shepherd, Near-Perfect Matrices. Math. Programming 64 (1994) 295-323
[15] L.E. Trotter, jr., A Class of Facet Producing Graphs for Vertex Packing Polyhedra. Discrete Math. 12 (1975) 373-388
[16] A. Wagler, Relaxing Perfectness: Which Graphs are "Almost" Perfect? To appear in: The Sharpest Cut, Festschrift in honor of Manfred Padberg's 60th birthday, M. Grötschel, eds., MPS/SIAM series on Math. Programming

[^0]: ${ }^{1}$ Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr

[^1]: ${ }^{\dagger}$ Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr; this work was supported by DONET/ZIB
 ${ }^{\ddagger}$ Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany, wagler@zib.de; this work supported by the Deutsche Forschungsgemeinschaft (Gr 883/9-1)

[^2]: ${ }^{1}$ By PORTA it is possible to generate all facets of the convex hull of a given set of integer points, see http://www.zib.de

