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Abstract

Graphs with circular symmetry, called webs, are relevant for describing the
stable set polytopes of two larger graph classes, quasi-line graphs [8, 12] and
claw-free graphs [7, 8]. Providing a decent linear description of the stable
set polytopes of claw-free graphs is a long-standing problem [9]. However,
even the problem of finding all facets of stable set polytopes of webs is open.
So far, it is only known that stable set polytopes of webs with clique number
≤ 3 have rank facets only [5, 15] while there are examples with clique num-
ber > 4 having non-rank facets [10, 12, 11]. The aim of the present paper
is to treat the remaining case with clique number = 4: we provide an infi-
nite sequence of such webs whose stable set polytopes admit non-rank facets.

Key words: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

A natural generalization of odd holes and odd antiholes are graphs with circular
symmetry of their maximum cliques and stable sets, called webs: a web W k

n is
a graph with nodes 1, . . . , n where ij is an edge iff i and j differ by at most k

(modulo n) and i 6= j. These graphs belong to the classes of quasi-line graphs
and claw-free graphs and are, besides line graphs, relevant for describing the stable
set polytopes of those larger graph classes [7, 8, 12]. All facets of the stable set
polytope of line graphs are known from matching theory [6]. In contrary, we are
still far from having a complete description for the stable set polytopes of webs
and, therefore, of quasi-line and claw-free graphs, too.
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In particular, as shown by Giles & Trotter [8], the stable set polytopes of claw-
free graphs contain facets with a much more complex structure than those defining
the matching polytope. Oriolo [12] discussed which of them can occur in quasi-
line graphs. In particular, these non-rank facets rely on certain combinations of
joined webs.

Several further authors studied the stable set polytopes of webs. Obviously,
webs with clique number 2 are either perfect or odd holes (their stable set polytopes
are known due to [2, 13]). Dahl [5] studied webs with clique number 3 and showed
that their stable set polytopes admit rank facets only. On the other hand, Kind [10]
found (by means of the PORTA software1) examples of webs with clique number
> 4 whose stable set polytopes have non-rank facets. Oriolo [12] and Liebling et
al. [11] presented further examples of such webs.

In [12], Oriolo asked whether the stable set polytopes of webs with clique
number = 4 admit rank facets only. The aim of the present paper is to answer that
question by providing an infinite sequence of webs with clique number = 4 whose
stable set polytopes have non-rank facets.

2 Some Known Results on Stable Set Polytopes

The stable set polytope STAB(G) of G is defined as the convex hull of the inci-
dence vectors of all stable sets of the graph G = (V,E) (a set V ′ ⊆ V is a stable
set if the nodes in V ′ are mutually non-adjacent). A linear inequality aT x ≤ b is
said to be valid for STAB(G) if it holds for all x ∈ STAB(G). We call a stable set
S of G a root of aT x ≤ b if its incidence vector χS satisfies aT χS = b. A valid
inequality for STAB(G) is a facet if and only if it has |V | roots with affinely inde-
pendent incidence vectors. (Note that the incidence vectors of the roots of aT x ≤ b

have to be linearly independent if b > 0.)
The aim is to find a system Ax ≤ b of valid inequalities s.t. STAB(G) =

{x ∈ R
|G|
+ : Ax ≤ b} holds. Such a system is unknown for the most graphs and

it is, therefore, of interest to study certain linear relaxations of STAB(G) and to
investigate for which graphs G these relaxations coincide with STAB(G).

One relaxation of STAB(G) is the fractional stable set polytope QSTAB(G)
given by all “trivial” facets, the nonnegativity constraints

xi ≥ 0 (0)

for all nodes i of G and by the clique constraints

∑

i∈Q

xi ≤ 1 (1)

1By PORTA it is possible to generate all facets of the convex hull of a given set of integer points,
see http://www.zib.de
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for all cliques Q ⊆ G (a set V ′ ⊆ V is a clique if the nodes in V ′ are mutually
adjacent). Obviously, a clique and a stable set have at most one node in com-
mon. Therefore, QSTAB(G) contains all incidence vectors of stable sets of G

and STAB(G) ⊆ QSTAB(G) holds for all graphs G. The two polytopes coincide
precisely for perfect graphs [2, 13].

A graph G is called perfect if, for each (node-induced) subgraph G′ ⊆ G, the
chromatic number χ(G′) equals the clique number ω(G′). That is, for all G′ ⊆ G,
as many stable sets cover all nodes of G′ as a maximum clique of G′ has nodes
(maximum cliques resp. maximum stable sets contain a maximal number of nodes).

In particular, for all imperfect graphs G follows STAB(G) ⊂ QSTAB(G) and,
therefore, further constraints are needed to describe their stable set polytopes.

A natural way to generalize clique constraints is to investigate rank constraints
∑

i∈G′

xi ≤ α(G′) (2)

associated with arbitrary (node-)induced subgraphs G′ ⊆ G where α(G′) denotes
the stability number of G′, i.e., the cardinality of a maximum stable set in G′ (note
that α(G′) = 1 holds iff G′ is a clique). For convenience, we often write (2) in the
form x(G′) ≤ α(G′).

Let RSTAB(G) denote the rank polytope of G given by all nonnegativity con-
straints (0) and all rank constraints (2). A graph G is called rank-perfect [16] if
STAB(G) coincides with RSTAB(G).

By construction, every perfect graph is rank-perfect. Further graphs which are
rank-perfect by definition are near-perfect [14] ( resp. t-perfect [2], h-perfect [9])
graphs, where rank constraints associated with cliques and the graph itself (resp.
edges and odd cycles, cliques and odd cycles) are allowed.

A result of PADBERG [13] shows that minimally imperfect graphs are near-
perfect. (A graph is called minimally imperfect if it is imperfect but all proper
induced subgraphs are perfect. Berge [1] conjectured and Chudnovsky, Robertson,
Seymour & Thomas [4] proved recently that chordless odd cycles C2k+1 with k ≥
2, termed odd holes, and their complements C2k+1, called odd antiholes, are the
only minimally imperfect graphs. The complement G has the same node set as G,
but two nodes are adjacent iff they are non-adjacent in G.)

Moreover, line graphs are rank-perfect by [6], as their stable set polytopes
admit as only non-trivial facets rank constraints associated with cliques and line
graphs of 2-connected hypomatchable graphs. (The line graph L(H) of a graph H

is obtained by taking the edges of H as nodes of L(H) and connecting two nodes
in L(H) iff the corresponding edges of H are incident. A graph H is called hypo-
matchable if, for all nodes v of H , the subgraph H − v admits a matching meeting
all nodes. Since matchings of H correspond to stable sets of L(H), the description
of the matching polytope due to [6] implies a description of the stable set polytope
for line graphs. )
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A generalization of line graphs is the class of quasi-line graphs where the
neighborhood of any node can be partitioned into two cliques. A superclass of
quasi-line graphs consists of all claw-free graphs where the neighborhood of any
node does not contain a stable set of size 3. A characterization of the rank poly-
tope of claw-free graphs was given by Galluccio & Sassano [7]. They showed
that all rank facets can be constructed by means of standard operations from rank
constraints associated with cliques, partitionable webs W ω−1

αω+1, or line graphs of
2-connected, (edge-)critical hypomatchable graphs. However, claw-free graphs
are not rank-perfect and finding all facets of the stable set polytopes of claw-free
graphs is a long-standing problem [9]. Giles & Trotter [8] found, e.g., non-rank
facets which occur even in the stable set polytopes of quasi-line graphs. These
non-rank facets rely on combinations of joined webs.

Recall that a web W k
n is a graph with nodes 1, . . . , n where ij is an edge if i

and j differ by at most k (i.e., if |i − j| ≤ k mod n) and i 6= j. We assume k ≥ 1
and n ≥ 2(k+1) in the sequel in order to exclude the degenerated cases when W k

n

is a stable set or a clique. W 1
n is a hole and W k−1

2k+1 an odd antihole for k ≥ 2. All
webs W k

9 on nine nodes are depicted in Figure 1. Note that webs are also called
circulant graphs Ck

n [3]. Furthermore, graphs W (n, k) with n ≥ 2, 1 ≤ k ≤ 1
2n

and W (n, k) = W
k−1
n were introduced in [15].

1 2
9 9

3
9W W W

Figure 1

So far, the following is known about stable set polytopes of webs. The webs
W 1

n are holes, hence they are perfect if n is even and minimally imperfect if n is
odd (recall that we suppose n ≥ 2(k + 1)). Thus, all webs with clique number 2
are particularly near-perfect and, in addition, all webs with stability number 2 and
W 2

11 by [14, 16] (note ω(W k
n ) = k + 1 and α(W k

n ) = b n
k+1c). Dahl [5] showed

that all webs W 2
n with clique number 3 are rank-perfect. But there are several webs

with clique number > 4 known to be not rank-perfect [10, 12, 11], e.g., W 4
31, W 5

25,
W 6

29, W 7
33, W 8

28, W 9
31.

In order to answer the question whether the webs with clique number = 4 are
rank-perfect or not, we first analyze the structure of the known non-rank facets of
webs with higher clique number in Section 3 and then investigate in Section 4 a
similar construction for the webs W 3

n that gives rise to an infinite sequence of webs
with clique number = 4 having non-rank facets: W 3

3l is not rank-perfect for every
l ≥ 11 with 2 = l mod 3 (see Theorem 9).
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3 Structure of Known Non-Rank Facets of Webs

A facet aT x ≤ b of the stable set polytope of a web W k
n is reduced if at most

ω(W k
n )−1 = k consecutive coefficients ai are maximal (ai and aj are consecutive

iff j = i ± 1 (mod n) and ai is maximal iff ai = max{aj : 1 ≤ j ≤ n}).
Reduced facets play an important role in stable set polytopes of webs. For

instance, Dahl’s description of the stable set polytope of webs with clique num-
ber 3 was done in two steps: first, he proved that to get such a description, it is
enough to characterize reduced facets (Lemma 4.2 [5]); second, he provided such
a characterization (Theorem 4.3 [5]).

Furthermore, looking at the known non-rank facets of webs, we observe that
the reduced ones admit a certain structure: they are clique family inequalities in-
troduced in [12] and are associated with induced subwebs.

Let G = (V,E) be a graph, F be a family of (at least three inclusion-wise)
maximal cliques of G, p ≤ |F| be an integer, and define two sets as follows:

I(F , p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| ≥ p}
O(F , p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| = p − 1}

Oriolo [12] showed that the clique family inequality

(p − r)
∑

i∈I(F ,p)

xi + (p − r − 1)
∑

i∈O(F ,p)

xi ≤ (p − r)b
|F|

p
c (3)

is valid for the stable set polytope of every graph G where r = |F| mod p and
r > 0.

We are interested in the clique family inequalities associated with proper sub-
webs W k′

n′ of W k
n where F = {Qi : i ∈ W k′

n′ } is chosen as clique family, p = k′+1,
and Qi = {i, . . . , i + k} denotes the maximum clique of W k

n starting in node i. In
order to explore the special structure of such inequalities, we need the following
result due to Trotter [15].

Lemma 1 [15] W k′

n′ is an induced subweb of W k
n if and only if

(i) n(k′ + 1) ≥ n′(k + 1) and nk′ ≤ n′k holds,

(ii) there is a subset V ′ = {i1, . . . , in′} ⊆ V (W k
n ) s.t. |V ′ ∩ Qij | = k′ + 1 for

every 1 ≤ j ≤ n′.

We now prove the following.

Lemma 2 Let W k′

n′ ⊂ W k
n be a proper induced subweb. The clique family in-

equality of STAB(W k
n ) associated with W k′

n′ is

(k′ + 1 − r)
∑

i∈I(F ,p)

xi + (k′ − r)
∑

i∈O(F ,p)

xi ≤ (k′ + 1 − r)α(W k′

n′ ) (4)

where r = n′ mod (k′ + 1), r > 0 and W k′

n′ ⊆ I(F , p) holds.
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Proof. Let W k′

n′ be a proper subweb of W k
n and recall that the clique family in-

equality associated with W k′

n′ is given by (F , p) with F = {Qi : i ∈ W k′

n′ } and
p = k′ + 1. Obviously |F| = |W k′

n′ | = n′ follows. Let V ′ = {i1, . . . , in′} be the
node set of W k′

n′ in W k
n . Lemma 1(ii) implies that Qij = {ij , . . . , ij + k} con-

tains the nodes ij , . . . , ij+k′ from V ′. Obviously, the node ij+k′ belongs exactly
to the (k′ + 1) cliques Qij , . . . , Qij+k′

from F . Since all indices are taken modulo

n, every node in W k′

n′ is covered precisely (k′ + 1) times by F and p = k′ + 1
yields, therefore, W k′

n′ ⊆ I(F , p). Furthermore, |F| = n′ and p = ω(W k′

n′ ) implies

b |F|
p
c = α(W k′

n′ ). Hence the clique family inequality given by (F , p) is (4) which
finishes the proof. 2

Let’s illustrate that with the help of the smallest not rank-perfect web W 5
25.

Its non-rank facets are clique family inequalities associated with induced subwebs
W 2

10 ⊆ W 5
25 (note that the node sets 1, 2, 6, 7, 11, 12, 16, 17, 21, 22 and 1, 3, 6, 8,

11, 13, 16, 18, 21, 23 both induce a W 2
10 ⊆ W 5

25, see the black nodes in Figure 2).

Figure 2: The induced subwebs W 2
10 ⊆ W 5

25

Choosing F = {Qi : i ∈ W 2
10} yields p = ω(W 2

10) = 3 in both cases. All re-
maining nodes are covered 10

25−10 (5− 2) = 2 times, hence O(F , p) = W 5
25 −W 2

10

follows. In particular, O(F , p) induces the subweb W 3
15 of W 5

25 and the corre-
sponding clique family inequality is

2x(W 2
10) + 1x(W 3

15) ≤ 2α(W 2
10)

due to r = |F| mod p = 1 and yields a non-rank facet of STAB(W 5
25). Notice that

in the previous example, W 5
25 partitions into two induced subwebs W 2

10 and W 3
15.

All known reduced non-rank facets are of this kind, i.e., they are clique family
inequalities associated with an induced subweb such that the remaining part also
induces a subweb.

In order to answer the question whether the webs W 3
n are rank-perfect or not,

we look, therefore, for possible partitions of W 3
n into two disjoint subwebs and

investigate the associated clique family inequalities (4). Lemma 1(i) shows that

W 2
n′ ⊆ W 3

n with 2
3n ≤ n′ ≤ 3

4n

W 1
n′′ ⊆ W 3

n with 1
3n ≤ n′′ ≤ 2

4n
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are the only possible subwebs since W k′

n′ ⊂ W k
n implies k′ < k by [15] again.

Hence, there are only two possibilities to partition W 3
n into two disjoint subwebs:

2|n and W 3
n = W 1

1

2
n
∪ W 1

1

2
n

3|n and W 3
n = W 1

1

3
n
∪ W 2

2

3
n

First, consider the clique family inequalities associated with W 1
n
2

⊂ W 3
n resp.

W 1
1

3
n
⊂ W 3

n . Then F = {Qi : i ∈ W 1
n
2

} resp. F = {Qi : i ∈ W 1
1

3
n
} yields p = 2

by Lemma 2. Due to r > 0, we obtain (p−r) = 1 and (p−r−1) = 0 in this case,
hence the associated clique family inequalities (4) cannot be non-rank constraints.

Thus, turn to the clique family inequality associated with W 2
2

3
n
⊂ W 3

n . This

means in particular, that n is divisible by 3, i.e., we have n = 3l (for some l ≥ 3
by n ≥ 2(k + 1)) and W 3

3l = W 2
2l ∪ W 1

1l. Choosing F = {Qi : i ∈ W 2
2l} implies

p = 3 and the associated clique family inequality (4) is a non-rank constraint
provided r = 1 and O(F , p) 6= ∅ holds.

In order to determine O(F , p), we have to study the distribution of the nodes
of W 2

2l in W 3
3l. For that we need the following notation. Let V ′ ⊆ V (W k

n ), then
a maximal set of consecutive nodes of W k

n belonging to V ′ is called an interval
of V ′. Furthermore, an interval containing d nodes is called a d-interval (e.g.,
{i, i + 1, i + 2} is a 3-interval of V ′ if i, i + 1, i + 2 ∈ V ′ but i − 1, i + 3 not).

Lemma 3 If W 2
2l ⊆ W 3

3l, then V (W 2
2l) and V (W 3

3l − W 2
2l) consist of 2-intervals

and 1-intervals only, respectively.

Proof. Let V = V (W 3
3l) and V ′ = V (W 2

2l).

Claim 1. V − V ′ must consist of 1-intervals only. Assume there is a node i ∈ V ′

s.t. i + 1, i + 2 ∈ V − V ′. Then the maximum clique Qi ⊆ W 3
3l starting in i

cannot contain 3 but at most 2 nodes of V ′, a contradiction to Lemma 1(ii) (recall
Qi = {i, i + 1, i + 2, i + 3} and i + 1, i + 2 ∈ V − V ′). 3

Claim 2. V ′ cannot contain a 1-interval. Suppose there is a node i ∈ V ′ s.t.
i − 1, i + 1 ∈ V − V ′. Then we have i − 2 ∈ V ′ by Claim 1 and the maximum
clique Qi−2 ⊆ W 3

3l starting in i − 2 does not contain 3 but only the 2 nodes i − 2
and i of V ′, a contradiction to Lemma 1(ii) again. 3

Claim 3. V ′ must consist of 2-intervals only. Claim 1 shows that the number of
intervals in V − V ′ equals l (since V − V ′ contains l nodes). Obviously, V − V ′

and V ′ have the same number of intervals. |V ′| = 2l and Claim 2 imply, therefore,
that every of the l intervals of V ′ contains 2 nodes. 2

In particular, W 3
3l − W 2

2l contains every third node of W 3
3l. This implies:

7



Lemma 4 Let W 2
2l ⊂ W 3

3l. Then W 3
3l − W 2

2l is the hole W 1
1l and the clique family

inequality
(3−r)x(W 2

2l) + (2−r)x(W 1
1l) ≤ (3−r)α(W 2

2l) (5)

of STAB(W 3
3l) associated with W 2

2l is a non-rank constraint if r = 2l mod 3 = 1.

Proof. Let W 2
2l ⊂ W 3

3l. Then Lemma 3 shows that W 3
3l − W 2

2l is the hole W 1
1l.

Choosing F = {Qi : i ∈ W 2
2l} implies p = 3. Every node i ∈ W 1

1l belongs to
exactly the two cliques Qi−2 and Qi−1 in F since i−2, i−1 ∈ W 2

2l but i−3 ∈ W 1
1l

follows from Lemma 3. Thus, every node in W 1
1l is covered exactly twice by F

and W 1
1l ⊆ O(F , p) follows. W 2

2l ⊆ I(F , p) by Lemma 2 and W 2
2l ∪ W 1

1l = W 3
3l

finishes the proof. 2

We investigate in the next section in which cases the non-rank constraint (5)
yields a facet of STAB(W 3

n).

4 Non-Rank Facets of STAB(W 3

n
)

Throughout this section, let n be divisible by 3 (i.e., n = 3l for some l ≥ 3 by
n ≥ 2(k + 1)) and 2 = l mod 3 (i.e., 1 = 2l mod 3). Consider a partition W 2

2l ∪
W 1

1l of W 3
3l into disjoint subwebs. The clique family inequality (5) of STAB(W 3

3l)
associated with W 2

2l is the non-rank constraint

2x(W 2
2l) + 1x(W 1

1l) ≤ 2α(W 2
2l) (∗)

due to Lemma 4. The aim of this section is to prove that (∗) is a facet of STAB(W 3
3l)

whenever l ≥ 11.

For that, we have to present 3l roots of (∗) whose incidence vectors are linearly
independent. (Recall that a root of (∗) is a stable set of W 3

3l satisfying (∗) at
equality.)

It follows from [15] that a web W k
n produces the full rank facet x(W k

n ) ≤
α(W k

n ) iff (k + 1)6 | n. Thus W 2
2l is facet-producing if 2 = l mod 3 and the max-

imum stable sets of W 2
2l yield already 2l roots of (∗) with linearly independent

incidence vectors.
Let V = V (W 3

3l) and V ′ = V (W 2
2l). We need a set S of further l roots of

(∗) which have a non-empty intersection with V − V ′, called mixed roots, and are
independent, too, in order to prove that (∗) is a facet of STAB(W 3

3l).
First, we show that there is no such set S of l mixed roots in the two smallest

cases with l ≥ 3 and 2 = l mod 3 (i.e., if l = 5, 8 and n = 15, 24) but that there
exists such a set S for every l ≥ 11.

Proposition 5 The constraint (∗) is not a facet of STAB(W 3
15) or STAB(W 3

24).
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Proof. Let S be a mixed root of (∗) then we have

2|S ∩ V ′| + 1|S ∩ (V − V ′)| = 2α(W 2
2l)

due to the coefficients of (∗). This implies that we need 2x nodes in S ∩ (V − V ′)
if |S ∩ V ′| = α(W 2

2l) − x. In particular, S 6⊆ V ′ yields |S| > α(W 2
2l).

If l = 5, then α(W 2
10) = b10

3 c = 3 = b15
4 c = α(W 3

15) implies that (∗) cannot
have any root S with S 6⊆ W 2

10.
In the case l = 8, we have |S| > α(W 2

16) = 5 for every root S 6⊆ W 2
16. This

implies |S| + |N+(S)| = 4|S| ≥ 24 = 3l (where N+(S) denotes the union of
N+(i) = {i + 1, i + 2, i + 3} for all nodes i ∈ S). Thus, S has to contain every
4th node of V . But there are only 4 stable sets in W 3

24 of that type, namely

S1 = {1, 5, 9, 13, 17, 21}
S2 = {2, 6, 10, 14, 18, 22}
S3 = {3, 7, 11, 15, 19, 23}
S4 = {4, 8, 12, 16, 20, 24}

instead of the needed l = 8 mixed roots. Consequently, in the two cases l = 5
resp. l = 8 there are not enough roots and (∗) is, therefore, neither a facet of
STAB(W 3

15) nor of STAB(W 3
24). 2

We now show that there exists a set S of l mixed roots of (∗) whenever l ≥ 11.
Due to 2 = l mod 3, we set l = 2+3l′ and obtain |V | = 3l = 6+9l′. Thus, V can
be partitioned into 2 blocks D1, D2 with 3 nodes each and l′ blocks B1, . . . , Bl′

with 9 nodes each s.t. every block ends with a node in V − V ′ (this is possible
since every third node of V belongs to V − V ′ due to Lemma 3, say i ∈ V ′ if 36 | i
and i ∈ V − V ′ if 3|i). Figure 3 shows a block Di and a block Bj (where circles
represent nodes in V ′ and squares represent nodes in V − V ′). For the studied
mixed roots of (∗) we choose the black filled nodes in Figure 3:

iD Bj

Figure 3

Lemma 6 Any set S containing the 3rd node of the blocks D1, D2 and the 4th and
8th node of any block Bj is a root of (∗) with |S∩V ′| = 2l′, |S∩(V −V ′)| = 2 for
every ordering V = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ of the blocks s.t. D1, D2

are not neighbored.

Remark. Note that D1 = {3i + 1, 3i + 2, 3i + 3} for some 0 ≤ i < l. Moreover,
D1 and D2 are not necessarily neighbored only if l′ > 1 (i.e., there is no suitable
ordering if l = 5).
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Proof. Consider a set S constructed that way. Since every block ends with a node
in V − V ′ by definition and every third node of V is in V − V′ by Lemma 3, we
have that the last node of Di and the 3rd, 6th, and 9th node of Bj belong to V −V ′

while all other nodes are in V ′. Thus, the two last nodes in D1 and D2 are the two
studied nodes in S ∩ (V − V ′) and the 4th and 8th node in Bj for 1 ≤ j ≤ l′ are
the studied 2l′ nodes in S ∩ V ′ (see Figure 3).

S is a stable set provided the two blocks D1 and D2 are not neighbored: Ob-
viously, there is no edge between the 4th and 8th node of any block Bj . Thus, we
only have to discuss what happens between two consecutive blocks. Since the first
3 nodes of every block Bj do not belong to S, there is no problem with having any
block before Bj , i.e., BkBj or DiBj . For the remaining case BjDi, notice that the
last node of Bj and the first two nodes of Di do not belong to S and there cannot
be an edge between two nodes of S in that case, too.

This shows that S is a stable set satisfying |S∩V ′| = 2l′ and |S∩(V −V ′)| = 2.

Due to α(W 2
2l) = b2(2+3l′)

3 c = 2l′ + 1, the set S is finally a root of (∗). 2

Lemma 6 implies that there are mixed roots S of (∗) with |S| = 2 + 2l ′ if
l′ ≥ 2. The next step is to show that there are l such roots if l ′ ≥ 3 (resp. l ≥ 11).

In the sequel, we denote by Si,m the stable set constructed as in Lemma 6
where i is the third node in D1 and V = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ . If
there are more than b l′

2 c blocks between D1 and D2, there are less than b l′

2 c blocks

between D2 and D1. Hence it suffices to consider m ≤ bl
′

2 c.
Clearly, Si,m contains a second node from V − V ′, namely, the third node

i + 9m + 3 of block D2. If 2|l′ and m = l′

2 , then (i + 9m + 3) + 9m + 3 =
i + 9l′ + 6 = i(modn) and, therefore, Si,m = Si+9m+3,m follows.

Remark. If l′ = 2, then the only ordering of the blocks avoiding that D1 and D2

are neighbored is D1, B1, D2, B2. Hence, we find only l
2 mixed roots with 2 + 2l′

nodes, namely, the stable sets S1, S2, S3, S4 of C3
24 presented above.

We are supposed to construct distinct mixed roots Si,m of (∗) with 2 + 2l′ nodes,
hence we choose orderings V = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ with 1 ≤
m < l′

2 and obtain easily:

Lemma 7 If l′ ≥ 3, then the stable sets Si,m for each i ∈ V − V ′ obtained from
any ordering V = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ with 1 ≤ m < l′

2 yield
|V − V ′| = l roots of (∗) with 2 + 2l′ nodes each.

Consequently, we can always choose a set of 3l roots of (∗) if l ′ ≥ 3 resp. l ≥ 11.
If S is a set of l distinct mixed roots, denote by AS the square matrix containing the
incidence vectors of the 2l maximum stable sets of W 2

2l and the l mixed roots in S .
AS can be arranged s.t. the first 2l and the last l columns correspond to the nodes
in W 2

2l and W 1
1l, respectively, and the first 2l rows contain the incidence vectors of

the maximum stable sets of W 2
2l where the last rows contain the incidence vectors
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of the l mixed roots in S . (Note that the nodes corresponding to the last l columns
of AS are 3, 6, . . . , 3l.) Then AS has the block structure

AS =

(

A11 0

A21 A22

)

where the 2l×2l-matrix A11 is invertible since W 2
2l is facet-producing by [15] (in

the considered case with 1 = 2l mod 3 resp. 2 = l mod 3).
It is left to find a set S of l distinct mixed roots s.t. A22 is an invertible l× l-

matrix (then AS is invertible due to its block structure).

Lemma 8 For every l ≥ 11, there is a set S of l mixed roots of (∗) containing 2
nodes from V − V ′ s.t. the l×l-submatrix A22 of AS is invertible.

Proof. Every root Si,m of (∗) corresponds to a row in (A21|A22) of AS having
precisely two 1-entries in the columns belonging to A22 (by |Si,m ∩ (V −V ′)| = 2

for all i ∈ V − V ′). Lemma 7 ensures that no such roots coincide if 1 ≤ m < l′

2
for all i ∈ V − V ′.

The idea of finding cases when A22 is invertible goes as follows: Let S3j,1 for
1 ≤ j ≤ l − 4 be the first l − 4 roots in S with S3j,1 ∩ (V − V ′) = {3j, 3(j + 4)}.
Choose as the remaining 4 roots in S the stable sets S3j,2 for l − 10 ≤ j ≤ l − 7
with S3j,2 ∩ (V − V ′) = {3j, 3(j + 7)}. Then take their incidence vectors χS3j,1

for 1 ≤ j ≤ l−4 as the first l−4 rows and χS3j,2 for l−10 ≤ j ≤ l−7 as the last
4 rows of (A21|A22). By construction, A22 is the following l×l-matrix (1-entries
are shown only):

1 . . . 5 . . . l−11 l−10 l−9 l−8 l−7 l−6 l−5 l−4 l−3 l−2 l−1 l

1 1 1
...

. . . . . .
...

. . . . . .
l−11 1 1

l−10 1 1
l−9 1 1
l−8 1 1
l−7 1 1
l−6 1 1
l−5 1 1
l−4 1 1
l−3 1 1
l−2 1 1
l−1 1 1
l 1 1

A22 has only 1-entries on the main diagonal (coming from the first nodes in V −V ′

of S3j,1 for 1 ≤ j ≤ l − 4 and from the second nodes in V − V ′ of S3j,2 for

11



l − 10 ≤ j ≤ l − 7). The only non-zero entries of A22 below the main diagonal
come from the first nodes in V − V′ of S3j,2 for l − 10 ≤ j ≤ l − 7. Hence, A22

has the form

A22 =

(

A′
22

0 A′′
22

)

where both A′
22 and A′′

22 are invertible due to the following reasons:
A′

22 is an (l − 11)×(l − 11)-matrix having 1-entries on the main diagonal and
0-entries below the main diagonal by construction. Hence A′

22 is clearly invertible.
A′′

22 is an 11×11-matrix which has obviously the circular 1’s property. In other
words, A′′

22 is equivalent to the matrix A(C11) containing the incidence vectors
of the maximum stable sets of the odd antihole C11 as rows. Since A(C11) is
invertible due to Padberg [13], the matrix A′′

22 is invertible, too. (Note that l = 11
implies A22 = A′′

22.)
This completes the proof that A22 is invertible for every l ≥ 11 if we choose

the set S of l roots of (∗) as constructed above. 2

Remark. Note that there are cases where it is possible to choose the l mixed roots
of one type S3j,k only. E.g., the l roots S3j,1 for 1 ≤ j ≤ l yield an invertible
l×l-matrix A22 whenever l is odd (then A22 has the circular 1’s property and corre-
sponds to the matrix containing the incidence vectors of the maximum stable sets
of the odd antihole C l as rows). Moreover, if 2|l but 46 | l resp. 4|l but 86 | l, the
roots S3j,1 for 1 ≤ j ≤ l yield a matrix A22 which can be partitioned into 2 resp. 4
invertible blocks with the circular 1’s property. However, there are cases left where
such a partition is not possible when using mixed roots of the same type only (e.g.
the case n = 96 and all further cases with 8|l). This let us use mixed roots of
different types for the construction.

Finally, we have shown that, for every l ≥ 11, there are 3l roots of (∗) whose
incidence vectors are linearly independent: The maximum stable sets of W 2

2l yield
the first 2l independent roots (since W2

2l is facet-producing in the considered case
with 2 = l mod 3 by Trotter [15]). Lemma 8 shows that there are further l mixed
roots which are independent, too. This implies:

Theorem 9 For any W 2
2l ⊆ W 3

3l where 2 = l mod 3 and l ≥ 11, the clique family
inequality

2x(W 2
2l) + 1x(W 1

1l) ≤ 2α(W 2
2l)

associated with W 2
2l is a non-rank facet of STAB(W 3

3l).

This gives us an infinite sequence of not rank-perfect webs W3
3l with clique num-

ber 4, namely W 3
33, W 3

42, W 3
51, W 3

60, ... and answers the question whether the webs
W 3

n with clique number 4 are rank-perfect negatively.
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