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On non-triangular sets in tensor algebras
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For an arbitrary rvegular symmetric Banach algebra R(X) of con-
tinmoug functions on a compact Hausdorff space K and an arbitrary
cloged subset ¥ of K we denote

I(E) = {f; feR(K), { vanishes on &},

I,(B) = {f; feR(X), f vanishes on 2 neighbourhood of B}.

Tt is easy to gee that I(#) is a closed ideal of R(K) and thast I,(H) is
an ideal in R(K). The subset ¥ is said to be of synthesis if I,(#) = I{E)
(closure in R(K)) and H is said to he a strong Dythin set i there exists
a sequence {t,}%, such that 7, (E) (v =1, 2,...) and for every f<I{E)
we have 7,f —>f as n — oo for the norm of B(K). Every strong Dytkin
get iy clearty a set of synthesis. Together the following conditions imply
that B is a strong Dytkin set:

1) E is of synthesis;

2) there exist open sefs O, containing E such that

O €0, for n=1,2,... ad (2,=0;
=1

3) there exists a sequence {u,}3., With 1—wu,ely(E),n=1,2,...,
satisfying the two conditions

u,(2) =0 dor all z¢8,,
lunllrm < 14 &n ‘

where {e,}n., is 8 sequence decreasing to zere. We observe that these
conditions tend fo bear on the case H metrizable.

To see thiy we take 7, = 1—u,. Let feI(H) and £ > 0 be arbitrary.
By 1) there exists gel (&) such that

f—glr<e.
By 2) there exists N such that ¢ vanishes on @, for > N. We have

Tf—F = talf— ) — g — (F—9)
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and .
lzaf—flr < (1+lwallz) €

since, DY 3), 4, g is identically zero (n2> ). Our claim follows sinee |7,}lz
is bounded. It ig for further aims that we stipulate (+-) in 3).

The following are examples of regular symmetric algebras:

A) All eontinnous functions O(K) on a compact metrizable space K.

B) Absolutely convergent Fourier series A (@) on a compaeh abelian
metrizable group G. We denote by & the dual group of & and by 63 the
group ¢ furnished with the discrete topology. )

0) The temsor algebra V(K,XK,) = O(K,)®C(L,), where K,, K,
will always denote compact metrizable sphces. A theory of this algebra
can be feund in Varopoulos [2].

In this paper we shall be concerned with the examples B) and C),
A closed subset B of K, x K, is said to be non-trisngular if for all 4; = K,
sueh that card(4) =2 (j =1,2) we have card(E ~ (A,x4)} = 3.
The set {0g} satisfies conditions 1), 2) and 3) for the algebra A(F); it is
the main object of this paper to use this result to show that every non-
triangnlar set satisfies 1), 2) and 3) with respect to a tensor algebra and
hence is a strong Dytkin set. :

If K is a compact Hausdorff space, we shall denote by M(K) the
space of hounded complex regular Borel measures on K and by M™*(K)
the subset of such positive meagures.

The reader should observe that a non-triangnlar subset E of D; X D,,
the product of discrete spaces .D,, D,, is the union of rectangles X, x ¥,
(X, Dy, ¥, = D,) with pairwise digjoint sides (X, A= Y, ~ ¥;
=@, ¢ # B). We now prove the analogous result for compact metrizable
spaces.

LEMMA 1. Let B c K, xXK, be a non-triangular closed subset. Then
- there exist o compact melrizable space @ and continuous mappings op: K; — @
(j =1, 2) such that

(n > W)

H = {(z, @a); 0a{21) = ap (@)}

Proof. We define an equivalence relation ~ on Ky v X, (the disjoint
mnion of K, and K,) as follows:

If weK,,yeK,, then 2 ~y if and only if (x, y)eE.

I oy, 0,e K, then m, ~ 2, if and only if either 4, =, or there exigts
y eI, such that (%, ¥) and (s, y) L.

If y,, yp e Ko, then y; ~ y, if and only if either y, == y, or there exists
pel, such that (z,y,) and (z,y.) .

The relation ~ is elearly reflexive and symmetric. We show that ~
is tramgitive. There arve essentially 3 cases.

e _®
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A) By Goy e H; (Identical argument for K,) and my ~ oy, By ~ 2.
There exish w1, yzeK, such that (z, y,), (@, Y1), (@s, ¥a), (s, Ys) B, If
Y1 =Yo then @, ~wmzy. If gy, £y, then (@, y,)<E since alveady (4., ¥.),
(@23 Y2)y (%3, 42) e and B is non-friangnlar. Henee @, ~ ;.

B) yelly, @y, e K (or vice-versa) and y ~ 2y, 2, ~ %,. There exists
yoely such that (zy, y,), (@, ¥)eB. T y =y, then clearly y ~z,. If
Y Y, then (w,, )l since already (D2, Yo), (#1,¥), (T1; ¥o) ¢ B. Hence
Ly ~ Y.

C) yely, @y, Xpel; (or vice-versa) and @, ~y,y ~ .
(@1, Y), (%a, ) e B. Hence oy ~ a,.

Next we show that the ~-saturation of any closed subset of K, v K,
ig closed. Let =; denote the projeetion of K XK, onto K; for j =1, 2.
For L c K, we define

o, (1) = a( (L X K,) ~ B} € K,

and ¢, is defined similarly, If I iy closed in. K, then we observe that oy (L)
is closed in K,. Let M be an arbitrary closed subset of K, K,. Then

M=M o M, where M;< K; (j =1,2) is closed. We observe that

gaturation (M) = M, o My o oy(H)) o 03 (My) w oe00,(M,) v oyo0, (M)

is closed. Let g: K, v K, —@ be the cancnical projection associated

with ~, Since ~-saturation preserves closedness and K, « K, is a normal

space, we see that the projection g is Hausdorff and that @ is a compact

metrizable space in the quotient topology. It is an immediate consequence

of the definition of ~ that

Clearly

B = (2, m); s () = az(”z)}; (j=1,2).

It we write @ = oK) (1 =1,2),@ = Q1w s, P =@, ~ ¢y, then
we have H = (a; X a,) (4}, where 4 denotes the diagonal of PxP con-
gidered as a subset of Q; X@,.

Now let us explain how a non-triangular set F satisfies conditions
2y and 3). Since @ i3 a compact metrizable space, it can be embedded in
T, — the torus of countable infinite dimension. We consider the mapping

p: Ky XKy, > T, given by

where ;= glg;

o{®y, ) = o (B1) — as(%2),
where the subtraction takes place relative to the group structure of T,.
There exist open sets X, € T such that 0e2y, 3y, = Zpforn=1,2,...
and (] Z, = {0} and also functions v,eA(Ty) such that 1—u,ely({0})
To==1

m=1,2,..), 0@ =0 for all 243, (n=1,2,...) and [9.]4 < 1}2,
where &, is a sequence of positive numbers decreasing to zero. We define
0, =p"(Z) (n=1,2,...) open sets in K, x K, satisfying condition
2) with respect to E. We also set %, = v,00 (eC(H,xK,)} functions
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taking the value 1 in & neighbourhood of E and vanishing outside Q,
(n=1,2,...). To show that 3) is satisfied it remaing to show that the

mapping

B —>00e

is norm. decreasing between the spaces 4 (T,.) and V(K X K,). Let y« i'm_
‘We observe that ’

700 = (x0u)®(roa),

where yow, and x0a, are functions of mmit modulus on XKy, K, respec-
tively. Extending by linearity and continuity we have the result.

THEOREM 1. Bvery non-trianguler set satisfies condilions 2) and 3)
of the introduction with respect to the tensor algebra.

Suppose now that G is a compact abelian group and that K,, I', are
two disjoint compact metrizable subsets of & such that K, o« K, is a
Kronecker get. It is. well known (Varopoulos (2], 4, § 2) that the restrie-
tion algebra A{K,-+K,) can be identified isometrically with V (K, xI,)
by means of the dual of the multiplication mapplng o Ky XK, >
— K, +K,. Let B be a closed subset of K, %X, and let F = a(H) be the'
corresponding set in K, K,.

TarorEM, 2, The set B is non-triongular if and only &f b= (Kﬁ-K 2) ™
~A(g--H) for some g<G@ and some algebraic subgroup H of @.

Proof. Suppose the latter statement holds. Let #, #ye Ky, ¥,, Yy, €K,
such thab By 3 By, Yy F Yo and (®y, Y1), (@1, ¥o), (22, 4,) € F. Since @, -y,
21+ ¥, -+ ¥y belong to B= (EyA-K3) ~ (g+H), we can write o,y
= gA-hy, LYy = g+ ha, Gat Yy, = g+ by Where hiy, by, hee H. Hence
Byt = g+ (hy-thg—hy) and it follows that oy yse(H,+Ks) ~ (g-+-H)
and that (#;, ¥,)eE. This shows that ¥ is non-triangualar.

Suppose now that F is non-triangular and that {u,}_, i§ the sequence
constructed in Themem 1. Regarding a, as elements of 4 (K,--I0,) we
choose extensions @, to A(#) such that

loullag < 1426, ‘:’n|K1+Jr2 = Uy,

On account of the fact that there exists ge@ such that o,(g) = 1
the Fourier coefficients of &, are very well aligned ; we ghall perturl the o,
very slightly go as to make the alignment perfect. Towards this let med (&)
be such that [lolge< 14 2¢ and w©(0) = 1. We have

yw(/c)—l and DA < 14-2a.

P Pl
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Let A(z) = Jo(y)| and define 0, = arg[o(x)]. Then
A — ol = 2" Z‘ A (1 —cos 9

<2 (31 W(y (1—co88,) V2 < 264 (11 2e)12.
(2‘ w2 2)

Let o,(x) = @y, (m+ g) and defme A, by the method indicated above.
We ean regard 1, ag belonging to M™([G4]") with |I,]lar < 1+ 2e, which
bound decreases to 1 as » — co. By the weak compactness of the unit
ball of M ([Gd]*) the sequence {1,}x_; has a weak limit point 1 M+ ([G4]")
snch that s < 1. Sinee Jo,—Aullag < 2652 (1+22,)"* tends to zero
aB 1 — o0, we see that 1 is also a weak limit point of the sequence {©,)3;.
The Fom:ler transform. 4 of 4 can be identified with a bounded function
on (4. We claim that H == [h; he@, A{h) = 1} is an algebraic subgrouvp
of & on aceount of the 1mp11eat10ns

AW =1e [G,pdi() =1 =1 Iae
1Gal~
But A(k) is a limit point of {w,(k)}m.: and hence also of {u,(g+ %)}
Given that g+ ke, K, we shall have g+ keE if and only if kel
Henee # = (K,+XK,) ~ (g--H). This completes the proof.

CoroLLARY. Conditions 2) and 3) characterize non-triongular sels.

This follows from the proof of Theorem 2.

In the remainder of the paper we discuss condition 1) that is the syn-
thesis of non-triangular sets. We denote by BM (K, x K,) = [V{(E X E,)T
the dual space of V(K,x K, whose elements are called bimeqsures.
TFor F a closed subset of K, x K, we define the space BM(E) of bimeasures
supported on E as the annihilator [1,(B)]" of the ideal I,(¥). The set B
has the wnit bounded symhesw property it for every S<BM(HE)there
exists a sequence {unltnei

o M (B)y |z < I8 (= 1)
with u, — & for the weak topology o(BM, V). Such a set is evidently
a set of synthesis. We aim to show that non-triangular sets have the unib
bounded synthesis property. We shall need the following standard lemmaz

LEsMA 2. Let I, be closed in K, and B be closed in Ly X Ky. The two
spaces BMy, . ,—h,( ) end BMg g, {H) of bimeasures supporied on B defined
with reference to the two tensor algebras V(L X K,) and V (K, X K,) are isomet-
rically identified and the hwo corresponding weak topologies on them coincide.

We start by considering those non-triangular sets for which the
projection a;: K, — @, is identical. This is the case in which each ordinate
{ky} % K, (k,eX,) cuts the set ¥ in at most one pomt Such anon-triangular
set will be called a graph.

Studia Mathematica XXXIV.3 mw
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TusorEyM 3. For every graph B the inclusion M (H) < BM(E) is an
isometric {dentification.

Proof. We embed K, into a compact abelian metrizable group @.
We write Ky = ;' (@, ~ @.). Hence Fgc E;jxK, and by Lemma 2
it suffices to prove the result with respect to the algebra V(IT; x6). The
set B is given by ‘
B == graph(a) = {(]ﬁ’ a(kl)); kﬁK{}’
where a: K7 — G is the restriction of e, to K;. We shall need the following
mappings:

m: Hy %G - K7, 7k, g) = &,
) i) = [k, a(k)),
a: Ky xG — @, o(k, g) = g— a(k),

where — is taken in the group G The significance of o is that the dual
mapping .

o A(G) = T (R xG)
is norm decreasing. By extension by linearity and continuity it suffices
to check this on an arbitrary character xeé:

" (01(k, g) = x{g—alk) = z(g) 20 a(k) = [goa®y](k,

For an [rbitrary 8<BM(E) we have #(S)e M(K;) and y = zoaz(S eM(JJ
where z and ¢ are the norm decreasmg bidual mappings of = and i:

7 BM(EyXG) — M(K;), i: M(EK}) — M(E).
Tt suffices to show that § = u. VYe observe first that =(8) = #(p) since
moi = 1g;. Lebt fe((K)) and yeG -be arbitrary elements. We have
[fox—{F-(xoa)@1e)](k, 9) = F(B) [2(g)— 20w (k)]
‘ = f(&) - goa(®): [x(g—e(k)—1]
= [(/*(zo@) ®10)- (" (x—14))] (%, g).

Now y—1g vanishes on {8g} & set of synthesis for 4(@). Hence we
can find functions p,< 4 () vanishing on a neighbourhood of 0g and with
P> ¢—1lg In A(G) The funetions o*{¢,) vanish on a neighbourhood
of 7 and tend to o*(y—1g) in V(E;X&). Hence

8= py [(f-(xo @) @15} (o (x—1a)]]> = 0.
Algo we have
(B~ (f(o@)®1a)y = (F(8—p), f(yoa)> = 0.

Therefore (§—u,foy) = 0. Extending by linearity and continuity and

using the fact that trlgonometrlc polynomials. are uniformly dense
n ¢(@) we see that § = y.

icm®
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Let K be a compact metrizable space. We shall denote by K the space
of continuous mappings of K into 7I. X is a group under pointwise multipli-
cation on K and with the discrete topology. The dual group of X is denoted
by K. There is a natural topological embedding iz of X in K. A continuous
surjection a: K — between compact metrizable spaces K and ¢ defines
a dual mapping &*: @ — K a group monomorphism (an embedding)
and a bidual mapping o: K - @ a continuous surjeciive group homo-
morphism with the property o oix = igoe.

Levwia 3. Let a: K —Q be a continuous surjection between compact
metrizable spoaces K and Q. There emists m: G = H a continuous surjective
group homomorphism between compact abelian metrizabls groups G and
H and embeddings cx: E —+ @&, sg: @ —H such that moeg = g0 0.

Proof. There exists a countable subset B of K which separates the
points of K. To see this we embed K in T, and project T, ontoe its eoordinate
spaces. Let A be a similar subset of Q We define the countable groups

H and G to be the groups gene:ate(i by A and o*(4) o B in Q and K
respectively. Smce «* identifies H to o (H), the inelusions H < Q, @cK
and « (ﬁ) < @ dualize to continuons surjective group homomorphisms
po: @ +H,pr: B +@ and z: ¢ —H respectively sueh that wopx
= pgod, where G and H are compaet abelian metrizable groups. The
continuous mappmgs ex = Proig: K — G and sy = pooig: @ - H are .
empeddings sinece G and H separate the points of K and @ respectively.
Evidently, wosz = sgoa. This completes the proof.

Tn the situation of Lemma 3 we define 4 = » ' (0x) & closed subgroup
of ¢ and T =n""(@) = K-+A a closed subset of 6. When we come to
apply Lemma 3 we shall regularize on K by the action of 4. To compensate

‘for the fact that K is not A-stable we shall need a well behaved Borel

mapping f: L — K.

Since @ is compact metrizable, we may choose a translation invariant
metrie d on ¢ of total distance 1 giving the topology of &.

Let I = [0,1] be the unit interval and let X be a closed subspace
of I %I such thabt the coordinate projection X — L is onto. We define
the mapping 6: L -1 by

o() = inf{t; @, X}
We denote

X' = graph(f) = {[I, 6Q)); <L}

the umique subset of X with the properties:
B) (I,,) X = Htyel such that (%)X’
O) (1), (I ta)e X' = 1y =1y
) (F, t)e Xy (1, ta) e X =t <1y
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Levva 4. In addition we have:

A) X' is a Q5 (imiersection of & sequence of open seis).

Proof. The mapping & is lower semicontinuous and therefore has
a @y graph. We leave the details to the reader.

LEMMA 5. There exisis a Borel mapping p: L ~> K such that:

Y aof(l) = =(l), Viel;
F) kelC, leL, a(k) = m(l) = d({l, f(D) < d(, k).
Proof. We consider the continunous mapping
yt LXK - LxI ‘

given by y(l, k) = (I, d(k, 1)) and the closed subset ¥ = {{I, k); L<T,
keK,a(ky = n(l)} of Lx K. We set X = p(Y) a cloged subset of LxI
and denote by X’ the subset of X in Temma 4. The subset ¥ = ¥ ~
A~y HI") of LXK has the follewing properties:

ANV Y is @,

B’} For all leL TkeR such that {1, k)Y,

D) (1, k) e ¥, (4, ko)e ¥ = a1, y) < A(T, Ko

EY LEeY =a(l) = a(k).

Let pr: ¥ ~ Land pr: ¥ — K be the continuous mappings defined
by the inclusion of ¥ into Z x K followed by projection on the coordinate
spaces. On aecount of B') pz is onto. On account of A') and Bourbaki [1]
¥’ 15 an “espace polonais”. The projection py: ¥’ — L satisfies the con-
ditions of the Borel section theorem (Bourbaki [1]). It follows there existy
& Borel mapping f: I — ¥ which is injective and sabisfies prof = 1.
We set § = prof: L~ K a Borel mapping which satisfies E) on account
of B) and F) on account of D’). This completes the proof.

Lmywa 6. Let f: L - K, be Borel. Then the bidual mapping

(L, X B)YV' s MKy X I) — MK, x Ky)
ts norm decreasing for the bimewsure novm.

Proof. Let pe M (K, x L) with jlzllen < 1 and feC(K,) with ||f],, <1
be fixed. The mapping

g =><p, fap '
is norm decreasing and linear from ¢/ (L) to €. Henoce there exists a measure
ve M(L) with {v|la < 1 such that
(%) B, fog) = &y 9, VyeC(L).

It follows that () is true for every bounded Borel function y. Tet
heC(E,) with ||b]l, < 1. Then

[y X B)Y ()s F@RY| = | (@, f@BOBY = (v, hofy| < 1
This gives the result.
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Let {ex}n1 be a sequence of positive reils decreasing to zero fixed
for the remainder of the paper. In the situstion of Lemma 5 we define

Un = {4; 20, 2) < n, ke d}

and 2lso L, = K+4-U, & 6. We denote by 5, the Borel mapyping f,: Ln =~ K
obtained by restricting the § of Lemma 5. On account of F) we have

d(l:v ﬁ’n(l))gany VleLn-
Lmmnia 7. Lot p, be a sequence of measures with pne M(Ly,), pafar <1
and py, — p weakly, where pe M(E). Then Bnlue) — 4 weakly also.
Proof. Let feCG(L) with ||f]l, < 1 and & > 0. There exists » such that
(1) Kp—pm, I < /2, VM2,
(i) d(ly, 1) < e = [f(0)—fllo)] << 82
For m=2mn

Kﬂm—ﬁm(#m):fN = Koy F—Fo Bmpl < £/2.

Henee 1¢u—Bulm)s F3| < & as required.

TEEOREM 4. Hvery non-triangular closed swbset B = K, x K, (K;
metrizable) has the unit bounded synthesis properiy. In particular, for tensor
algebras conditions 2) and 3} of the introduction mply condition 1).

Proof. The mappings ap: K; - @ (j = 1, 2} are given by Lemma 1.
We apply Lemma 3 to the mapping u,: K, @, and define &, H, L,-
Ly B Bny Un and A with respect t0 a, a8 in Lemmas 3-7. By Lemma 2
it suffices to prove the result with respect to the tensor algebra V(H; XG).
We define the closed subset B* of K,XG:

B = {{k, 9); o(R) = n(g)}-
For feV(K, xG) and AeAd we define the translate f; by
Talk, g) = flky g—3).

Evidently, f1>f in ¥ norm as A2->0,. For Se<BM(E,xG) we

define the translate 8, by
B fo =<8, >

Since |fllr = Ifily, we have [Siflem = [Sllex and since f; —f as
A0, we gee that S, > 8 in o(BM, V) as 10, We say that
8eBM (K, X &) is invariant if §,=48 for all 1< A. Suppose that 8 is invariant
and is supported on E*. We act on S by the norm decreasing mapping

(1xa)V: BM(K, XG) - BM(H, X H)

and observe that

supp((L X 7)Y (8)) & {{bey aalke D) e Ky, (k) el


GUEST


262 8. W. Drury

where the right-hand side i§ a graph in X, X H. By Theorem 3 we have
A xmV (8)e M (E;x H) and

1 ) (8) ar << 18Tl
Teb fe V(K xG). Then
@, 1 ={8, [ Frinan),

where 74 is the Haar measure of 4. The function f Trdn4(4) respects
(Lx=) and can be written

[ fudna(d) = Fo(lxa),

where FeC(E, X H) by virtue of the fact that (1 x=) is a closed mapping.
Henee '

K8, 3] = [ x 1)V (8), Fo| < [1¥llen 1¥ o < 18l paa |1l -
Since V(K, X&) is dense in O(K,x ), we see that § is a measure
and that [8]lsr < [|Sllea. :
Let ZeBM(E). We aim to synthegize Xl Let ye[A]A. We chooge an
extension X of 4 to @ with X <& We observe that the bimeasure
8 = (1x, ®7) [ Ziz(2) dn.(%) <BM(Z*)

(the product of the function (1z,®X) with the bimeasure [ Xy (2)dy.a(4)
is invariant. For ged we have

Bor > = <8, fo>

= [ Zu W) a4 (3), Gz, ® X)fe

= [ <&, (e, @ X)ED> (B dna(d)

= J<Z, (L, ® X)fos D2 (D ana(2)

= <&, Ux, ®X s ) foud 2 (A Q) dna(R)
(since Xz(@)x(3) = X(@—A)2(A) = X(2) = Xa,(@)2(A-+ 2))

= [<Z, (g, ®Xx)fad 2 () dna(X)

(by the substitution A’ = A-+p and by the translation invariance of 5,).
We write
I = [Xig(A)ana(l) for  pe0(A).

We see that Z® is a measure and | Z®|3 < || Z]lsy. Hence for ged(A4)
the two inequalities
[Z¥fex < fgllergl Zie,

1Z¥M 5 < Nty E e

G

icm
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hold. Let ¢, be a sequence of functions in A4 (A) which are positive, such
that fon(A)dna(d) =1 and with supp(p.} < Us. It is easy to see that

(1) 1Z® gy << 12 e,

(ii) Z¢ is a meagure,

(ili) T % in o(BM, V),

(iv) supp(Z®) < (K, %X Ln) ~ B

We define v, = (1x, X f,)V (S e M (K, xK,). By Lemma 6 we have
(k) Pallpw < [ 2]Ba

and by condition E) on f we see that
supp(r,) = .

We aim to show that », > Z in ¢(BH, V) and by virtue of {+x) it
suffices to check the convergence on an arbitrary atom w, ®@w., v, <0 (K,),
1,0 (@) with [p;ll, <1 (§ =1, 2). We regard v, as fixed and let y, vary.
Arguing a8 in Lemma 6 we have measures g, {phnroy and {wy}a . in M (G}
bounded in the measure norm by ||Zlsw znd such that

(2, p1®ya) = (B, P>,
<Z(7'n), l)01<>31P2> = <.un7 'Pz);
<’V7A.: '(P1®1P2> = <wn7 1{’ﬂ>:

where supp(pn) < L,. By virtne of (i) g, - ¢ weakly and evidently

0y = Palpn). We conclude from Lemma 7 that w, — p weakly. Hence

{ny 220920 = &, p1&Ps).

This completes the proof. )
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