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1. Introduction. A nonassociative ring X may be called a division ring
if the set X* of all nonzero elements of 33 forms a loop with respect to the
product operation of X. The identity element of this loop is the unity element
e of X, and the center of X is a field g whose unity quantity is e. The ring X
is an algebra over %, and we may indicate the fact that % is the center of X
by saying that X is a central algebra over §. When X is a finite ring, the field
g is a finite field GF(pm), and X is a finite-dimensional central division alge-
bra over §•

The first of our results is concerned with the question of the existence
of commutative central division algebras of degree two. We shall show that
such algebras can exist only when g has characteristic two, and then the
elements of X which are not in g generate inseparable quadratic extensions
of S- We shall also give a construction of such algebras.

One of our main results is a generalization of the Wedderburn-Artin
Theorem on finite division algebras. We shall show that every finite power-
associative division algebra of characteristic p>5 is a finite field. The result
depends upon the Wedderburn Theorem and the results of the author
on commutative power-associative algebras. It can be extended to alge-
bras of characteristic 3 and 5 if we assume(2) that the center has more
than five elements, and it includes the Artin generalization for algebras of
characteristic p9i2.

The remainder of the paper is devoted to showing that the Wedderburn
Theorem for finite division algebras depends upon some assumption such as
power-associativity. In the associative case the dimension « of a central di-
vision algebra is a square and there exist no finite central division algebras.
It is also evident that there exist no nontrivial commutative associative
central division algebras. We shall show here that there exists a finite commuta-
tive central division algebra of every dimension n (necessarily with n > 2) over
any finite field g of characteristic not two. Indeed we shall give a construction,
in the case where n is odd, which is valid over every field % of characteristic
not two such there exists a cyclic field of degree n over Ç. We shall also con-
struct a set of noncommutative finite division algebras of odd dimension
and characteristic two. The algebras all have dimension n>2 over the center

Presented to the Society, September 7, 1951; received by the editors July 20, 1951.
(!) This paper was sponsored, in part, by the Office of Naval Research.
(2) See §3 for the explicit added assumption which we require and which then includes the

case of alternative algebras over any field of characteristic not two.

296

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON NONASSOCIATIVE DIVISION ALGEBRAS 297

and so show that the Wedderburn Theorem does not hold without an assump-
tion like power-associativity.

2. Algebras of degree 2. A division algebra 35 will be said to have degree
two if 1, x, x2 are linearly dependent in % for every x of 3).

Theorem 1. Let 'S) be a commutative division algebra of degree two over its
center £7. Then % has characteristic two and ^[x] is an inseparable quadratic
field over % for every x of 35 which is not in §.

For let the characteristic of $ be different from two. If x is in X) and not
in 5, there exists an element u=£-\-x such that u2 =a in $. Since 35 is a central
division algebra, we know that 35?£3i[M], and there exists an element y not
in %[u]. But then it is known(3) that there exists an element b in %[u] such
that if w = y — b, then wu-\-uw = 0. Also X) is commutative and so 2wu = 0,
wu = 0, w is not in %[u], W9¿0, u^O. This contradicts the hypothesis that 35
is a division algebra.

We now assume that X) has characteristic two and that there exists an
element u in X such that %[u] is a separable quadratic field over %. Then we
may select u so that u2 — u-\-a where a is in %. Let v be in 35 and not in
v5[w] so that 1, u, v are linearly independent in g. When $ is a finite field, the
fields i5[u] and i$[v] are necessarily isomorphic; we may take v2=v-\-a and
(u-3rv)2 — u2-\-v2 = u-\-a-\-v-\-a = u-\-v, (u-\-v)(u+v — 1) =0 which is impossible.
Hence £v is an infinite field. Write v2 = ßv-\-y where ß and y are in £5, and form
(u+&>)2=Xu+&)+p. = u2+£;V = u+a+¥(ßv+y). Then X = l, £2/? = £. If
ß = 0 and J = lwe obtain a contradiction. Otherwise ß^O, and we may take
£5^1 to obtain a contradiction. This completes the proof.

Corollary I. There exists no commutative central division algebra of de-
gree two over a perfect field.

The result above implies, in particular, that no commutative division
algebra of degree two over a finite center ^ exists. However, commutative
central division algebras of degree two do exist. Indeed let g be any field of
characteristic two such that a purely inseparable field $ of degree (that is,
dimension) n = 2y>2, and exponent (that is, degree in our present sense) two
over % exists(4). Let t(x) be a linear function on JÎ to ^ such that t(x) is not
identically zero and t(a) =0 for every a of %. Such a function can always be
defined by selecting a basis 1, «j, •■-,«, of fi over % and writing x=£i
+£«2+ • • • +£„Mn for £,- in %, t(x) =£2.

Let 35 be the algebra which is the same vector space as $ over g, and
whose product x-y is defined in terms of the product xy of Ë. by

(3) See Lemma 1 of the author's Absolute-valued algebraic algebras, Bull. Amer. Math. Soc.
vol. 55 (1949) pp. 763-768.

(4) For example, let ty be any finite field of characteristic 2, $ = ^}(£i, • • • , {,•), %
= ty(t¡, • • • , 0, where &,•'•,& are independent indeterminates over g and r>l.
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(1) x-y = xy - t(x)t(y).

It should be evident that xy is a bilinear function on U'$ to Ë, and that it
defines an »-dimensional commutative algebra X over %. Since t(a)=0 for
every a of %, we have ax=ax for every x oí X and the unity element of $
is the unity element of §. We shall use the following well known result.

Lemma 1. Let X be an algebra of finite dimension over $ and let X have a
unity element. Then X is a division algebra if and only if X contains no divisors
of zero.

In our special case suppose that x^O, y^O, x-y = 0. Then ß=xy — t(x)t(y)
is in % and so y=ßx~x. However x2=a in g for every x of $. If X5¿0 is in ¡^
we know that t(x)=0, ß = xyye0, whereas ß = t(x)t(y) =0, a contradiction.
Hence let x be not in g and therefore assume that the equation X2=« has
no root in %. But x~l=a~1x, y=ßa~1x, xy=ßa~lxx=ß = t(x)t(ßa~1x)
=ßa~1[t(x)]2, a= [t(x)]2 contrary to hypothesis. This completes our proof
of a part of the following result.

Theorem 2. The algebra X defined by (1) is a central division algebra over g.

To complete our proof assume that c is in the center 6 of X- We
form c-(y-z)=c- [yz — t(y)t(z)]=c(yz)—t(c)t(yz)—ct(y)t(z) and (c-y)-z = (cy)z
— t(z)t(cy)—zt(y)t(c). Since c is in 6, these two expressions must be equal
and so

(2) t(z)t(cy) + zt(y)t(c) = t(c)t(yz) + ct(y)t(z)

for every y and z of $. If t(c) =0, we take y =z = u to be an element of ÍÍ
such that t(u) = 1. Then, by (2), c is clearly in g. Hence let t(c) ¿¿0 so that c
is not in g. Since n>2, there exists an element z in $ such that t(z) = 1 and
1, c, z are linearly independent in g. For $ must contain w>2 linearly inde-
pendent elements and if 1, c, w are linearly independent and t(w)=0, we
may take z= [t(c)]~1c+w. In case /(w)^0 we may take z= [¿(w)]_1w. Take
y = z in (2) and obtain ¿(y) = l, z¿(c) — c=¿(c)¿(z2) — t(z)t(cz). This relation
contradicts the assumption that 1, c, and z are linearly independent and our
proof is complete.

3. Power-associative algebras. An algebra X over a field g is said to be
power-associative if the polynomial subalgebra \§[x] is associative for every
x of X. When the characteristic of g is not two, we may attach a commuta-
tive algebra 3)(+) to X. This is the same vector space as X but is defined rela-
tive to the product

x-y = (xy + yx)/2,

where xy is the product of X. When X is power-associative, powers relative
to x-y coincide with powers relative to xy, and so the subalgebras g[x] of X
coincide with the corresponding subalgebras of X(+).
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The theory of power-associative commutative algebras (s) has been de-
veloped for algebras over a field § whose characteristic is not 2, 3, or 5. The
theory can be extended to include algebras of characteristic 3 and 5 if we
alter our definition of power-associativity as follows.

Definition. A power-associative algebra 35 over a field % of characteristic
not two is said to be strictly power-associative if (X)(+))st is power-associative
for every scalar extension $ of g.

Every power-associative algebra of characteristic p9£2, 3, 5 is strictly
power-associative. For 35(+) is known to be power-associative if and only if
(x2-x) -x=x2-x2 for every x of 35. However, this fourth-power identity is
equivalent, when p is prime to 30, to a multilinear identity which is clearly
preserved under scalar extension. When p = 3, 5 the assumption that % has
more than five elements is sufficient to insure that every power-associative
algebra over g is strictly power-associative and our results on commutative
power-associative algebras are valid.

We may now write (6)

35 =35e(l)+35e(l/2)+35e(0),
where e is any idem potent of 35, the vector subspaces 35„(X) are supplementary
in their sum, and De(K) consists of all elements x of 35 such that ex\-\-x\e
= 2\x\, where X = 0, 1/2, 1. The subspaces 35„(1) and 35e(0) are orthogonal
with respect to the product operation of 35 and exi=xie = Xi, ex0 = xoe = 0 for
every Xi of 35e(l) and every x0 of 35„(0). We shall now proceed to use these
properties in a discussion of finite power-associative division rings.

A nonassociative ring 35 will be called a quasi-division ring if the set 35*
of the nonzero elements of 35 forms a quasigroup with respect to the product
operation of 35. Then 35 is a division ring if 35 has a unity element. When 35
is an algebra we call 35 a quasi-division algebra if it is a quasi-division ring, and
the resulting definition of a division algebra coincides with the one given
earlier.

A finite quasi-division ring 35 is an algebra over the field ty of p elements,
where p is the characteristic of 35. We shall prove that a finite power-associa-
tive quasi-division ring has a unity element. It suffices to prove the following
theorem on algebras.

Lemma 2. Let 35 be a strictly power-associative finite-dimensional algebra
without nilpotent elements. Then 35 has a unity element.

(6) See the author's A theory of power-associative commutative algebras, Trans. Amer. Math.
Soc. vol. 69 (1950) pp. 503-527. Most of the results referred to in this section as known will be
found in that paper, and the remaining results in Power-associative rings, Trans. Amer. Math.
Soc. vol. 64 (1948) pp. 552-593. The results were derived for algebras of characteristic p>5
but they have been extended to strictly power-associative algebras of characteristic p^2 in a
Ph.D. dissertation by Mr. Louis Kokoris.

(6) Power-associative rings, Theorem 2.
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For if x is any element of X the algebra %[x] is not nilpotent. Hence X
contains an idempotent. Since X is finite-dimensional, there exists an element
e which is a principal idempotent of 35<+). Then all elements of 35.(0) and
35.(1/2) are known to be nilpotent and so 35.(0) =35.(1/2) =0, 35 = 35,(1) has
e as its unity element.

The following result is also known.

Lemma 3. Let X be a strictly power-associative algebra and u and v be
orthogonal idempotents of 35(+). Then (u-y)-v=u-(y-v) for all elements y of 35.

We shall apply this result first for algebraic algebras possibly of infinite
dimension over %.

Theorem 3. Let X be a strictly power-associative algebraic division algebra
over a perfect field of characteristic not two. Then 35(+) *i a Jordan algebra.

We may take % to be the center of 35 and suppose that x is an element of
35. The Jordan identity (x-y) -x2 = x- (y -x2) holds trivially if x is in g. Other-
wise there exists a scalar extension Ä of % such that x = £iei + ■ ■ ■ +£„£„
for pairwise orthogonal idempotents e,- of S8 = (35(+))* and elements £,• in $.
The algebra S3 is power-associative and (e¿• y) ■ (e¡■ eu) = e,• [y- (e¡• e¿)] for
every i,j,k = í, • • • , n since both sides vanish when j^k and we may apply
Lemma 3 when j = k. But then the Jordan identity holds in 35(+).

When § is not perfect we can prove the following partial conclusion for
commutative algebras.

Theorem 4. Let 35 be a commutative strictly power-associative algebraic divi-
sion algebra over a center % of characteristic pt¿2. Then 35 is either a Jordan
algebra or %[x] is a purely inseparable extension of % for every x of 35.

For suppose that 35 is not a Jordan algebra. If 35 contains a separable
subfield %[x] of degree m^3 over g, there exists a scalar extension $ of %
such that the central simple algebra 35* contains three orthogonal idem-
potents. It is then known that 35* is a Jordan algebra and so 35 is a Jordan
algebra. It follows that either every i$[x] is purely inseparable over fÇ or that
35 contains a quadratic separable subfield % [i] where i2 = f in g. Let $ = g [w]
where w2 = f, and make the scalar extension 35* = 21. Then 21 contains u
= (l/2)(l—w~H) and v = (i/2)(l+w-H), and we know that u and v are
orthogonal idempotents. We form 2l = 2lu(l)+2I„(l/2)+2l„(0) and see that
if x is in 2t«(l/2), then xu=x/2 = (1 —vrli)x/2. But then ix = 0. However we
can write x=y-\-wz for y and z in 35 and «c = 0 if and only if iy =iz = 0. Since
35 is a division algebra and îVO, we know that y = z = 0, x = 0, 2I„(l/2) =0.
It follows that 21 is the direct sum of its subalgebras 2IU(1) and 2I„(0) and is
not simple. However, 35 has g as its center and 35* is simple for every scalar
extension Ä, a contradiction.

Let us turn now to our generalization of the Wedderburn Theorem
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which states that every finite associative division algebra is a fieldQ). As we re-
marked in the Introduction, since an alternative algebra is strictly power-
associative, our result will include Artin's generalization (8) for algebras of
characteristic p^2. We shall actually use Lemma 2 to state our final result
in the following form.

Theorem 5. Every finite strictly power-associative quasi-division ring of
characteristic p9é2 is a finite field.

We have already seen that 35 has a unity element e and a center %, and
that $[x] is a field for every x of 35. If there were an idempotent u^e in 35,
then (e — u)u=u — u = 0 contrary to our hypothesis that 35 is a division alge-
bra. By Theorem 3 the algebra 35(+) is a semisimple Jordan algebra. If 35(+)
were not simple there would be an idempotent u^ein 35 and we have seen
that this is impossible. Hence 35(+) is a simple Jordan algebra with center Z.

Since % is a finite field, the field ,3 is a separable extension S = r?[z] 0I %•
If S)f+)=3 = g[«], then 35 = g[z] is a field.

Assume now that X(-+)9£3- Then 35(+) contains an element x not in ,3
and 3[x] is a separable field of degree w^2 over 3- There will then exist a
scalar extension $ of S such that the central simple Jordan algebra 35$"'
contains at least two pairwise orthogonal idempotents. But then 35(+) is a
classical Jordan algebra and the Wedderburn Theorem implies that 35<+) is
one of the algebras of the following list(9).

(a) An algebra S3=z+«2z+ • • • +u,z where w2 = a¿?^0 in z, UiUj = 0 for
i^j, and s>2.

(b) The algebra W¡+\ where üTJcS is the /-rowed total matric algebra over
3-

(c) The algebra (S(+) of all three-rowed Hermitian matrices with elements
in a Cayley algebra.

(d) The algebra ©(+) of all elements a = aJ in 9Jc,, where J is an involution
oí Tlt.

The algebra 35(+> cannot be an algebra of type b, c, or d since each such
algebra contains an idempotent u^e. This result is obvious for 35c+) of type
b or c. Indeed we take u to be the matrix en with unity in the first row and
column. Let 93(+) be of type d. If J does not leave the elements of 3 un-
altered, it induces an automorphism £—»£ of order two in 3 and we may
write aJ =gâ'g~1 where we may always take g = g'. By a similarity transforma-
tion we may take g to be a diagonal matrix and w = en is in ©<+). If J is an

(7) A theorem on finite algebras, Trans. Amer. Math. Soc. vol. 6 (1905) pp. 349-352.
(8) Über einen Satz von Herrn J. H. M. Wedderburn, Abh. Math. Sem. Hamburgischen

Univ. vol. 5 (1928) pp. 245-250.
(9) See F. D. Jacobson and N. Jacobson, Classification and representations of semi-simple

Jordan algebras, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 141-169. This list of algebras of
characteristic p is derived under the hypothesis that the split algebras are the classical simple
Jordan algebras and this result is now known.
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involution over 3 we have aJ=ga'g~l for g= ±g' and in the former case we
can take g to be diagonal and u = en- In the latter case / = 2s for s ^ 2 and we
may take

/    0    A (Ai   A2\g ■ U o>  a - L J = *•*"■
for 5-rowed square matrices Ai, A2——A2, A3=—A'3 with elements in 3-
We take ^4 2 = ^4 3 = 0 and A i to be a singular idempotent matrix in u and have
completed our proof that 35(+) is of type a. Then 35 contains elements u
and v such that u2 = a, v2 = b, u-v = 0, where a and b are nonsquares in 3
and \,u,v are linearly independent in $. There is a unique quadratic exten-
sion of 3 and thus we may take a = b. If c is any element of 3 and w = c-u-\-v,
the field $[w] is isomorphic to £[u] and so w2 = (c2-\-l) -a = d2-a where d
is in 3- We let k range over all elements of the field ty of p elements and see
that if k=c2, then £ + 1 =d2 for d in 3- It follows that all elements of $ are
squares in 3 and that — 1 =c2 for c in 3, (c-w-r-z>)2 = —a+a = 0. This contra-
dicts the hypothesis that 35 is a division algebra and completes our proof.

4. Commutative algebras of even order. L. E. Dickson has provided a
construction of algebras of the following type. We let 3 be a cyclic field of
degree n over 5, g be a nonzero element of £, S be an automorphism

z—>z' = zS

of 3 over g. Define an algebra

X=S+jS= [z,s,g]
of order 2« over % with a product defined in terms of the product ab of 3 by

(3) (a + ji)(c + jd) = (ac + i'd'g) + j(ad + be)

for all a, b, c, d in 3- The algebra 35 is commutative, 3 is a subalgebra of 35,
and the unity element of 3 is the unity element of 35. If $ is the subfield of 3
consisting of all elements k=k' in 3> it should be clear from the definition
(3) that 35 is an algebra over the field ®. Hence there is no loss of generality
if we assume that 5 generates the cyclic Galois group of 3 over $ and we
shall make this assumption.

Theorem 6. The algebra 35= \Z, S, g\ is central simple over %.

For assume that 3} is a nonzero proper ideal of 35. If 33 contains either a
nonzero element a of 3 or an element bj for ¿>5¿0 in 3. then 33 = 35 since 33
contains 1 =aarl in the former case and 1 = [(jb)j](b'g)~* in the latter case.
Hence every nonzero element w of 33 has the form w = a-\-jb where a^O,
b^O. But wb~l=ab~1+j = c+j is in 33 and so are (c+j)j=g+jc and
(c+j)(l +bj) = (c+b'g)+j(bc+l). Ug^c2, then 33 contains (c+j) -(g+jc)c~l
= c — gc~l7éQ in 3 which has already been shown to be impossible. Hence
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g = c2, (c-\-j)(l—jc~1)=c—(c')~1g is in 93 and must vanish, cc'=c2, c'=c is in
%. There exists an element b in 3 such that b^b', bc-\-\ 5¿0, c + b'g^(bc + l)c
= bg-\-c. But then 58 contains [(c-\-j)(l+bj)](bc-\-l)~1 — d-\-j, where we have
just shown that dj¿c. It follows that d — c is a nonzero element of 3 which is
in 23, and we arrive at a contradiction which implies that 35 must be simple.

Assume that a+jb is in the center 6 of 35. Then (a-\-jb)j-j — (b'g-\-ja)j
— a'g-\-J(b'g) = (a+jb)j2 = (a+jb)g=ag+j(bg). It follows that a = a' and b—b'
are in g. The computation (a-\-jb)j-c = (bg-\-ja)c = bgc-\-j(ac)=(a+jb)(jc)
= gbc'+j(ac) yields bgc = bgc', and if ct^c' we know that bg = Q, b—0, a-\-jb=a
is in g as desired. This completes our proof.

Dickson showed(10) that 35 is a division algebra if Ns\%(g)¿¿[N£\$(a)]2
for any a of 3 where Ng\$(a) is the norm of the element a of the cyclic field ,3-
In the finite case we can improve this necessary condition and derive a neces-
sary and sufficient condition.

Theorem 7. Let % be a finite field of characteristic p¿¿2. Then 35 = {Z, S, g}
is a division algebra if and only if g j¿z2 for any z of 3- Such algebras exist over
any such field 5 and for every n.

For let (a+jb)(c+jd)=0 for a+jb^0 and c+jd^0. Then ac+gb'd' = 0
= ad-\-bc. If ez = 0 then b^O and gb^O. Hence d' =d = 0 = bc and e; = 0, a
contradiction. It follows that a¿¿0, c= —gb'd'a"1, ad = bb'd'a~1g, and so we
see that 35 is a division algebra if and only if the equation

(4) a2d = bb'gd'

is impossible for any nonzero elements a, b, d of 3- The automorphism S is a
power of the generating automorphism z—+zp of 3 over the field of p elements,
and so there exists a positive integer / such that

s' = z«, q = p'

for every z of 3- Then (4) is equivalent to g = a2d1~íb~'1~1 = h2 where h = ad'b'-1
and 1— q = 2r. It follows that when g^h2 for any h of 3 the algebra 35 is a
division algebra. The converse is an immediate consequence of the fact that
if g = h2 we have (h —j) (h -\-j) = 0.

The field 3 is the Galois field GF(p'') for some positive integer y. The non-
zero elements of 3 form a cyclic multiplicative group 3* °f even order r = p"1
— 1 and 3* consists of the powers of a generating element rj. If g = rj2k+1 for
any positive integer k the algebra 35 is a division algebra. For otherwise
g = Ä2 = T72rand so i72*~2r+1 = l, whereas r is even and cannot divide 2(k—r)-\-\.

(10) See his Linear algebras with associativity not assumed, Duke Math. J. vol, 1 (1935) pp.
113-125. Dickson gave the construction and the sufficient condition we have stated here. He
did not discuss the question as to whether the sufficient condition can be satisfied, and the
concepts of center and central nonassociative algebra were not known when his paper was writ-
ten.
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This proves that finite division algebras of the Dickson type exist for every
finite field 3 of characteristic not two and every even dimension 2n. Indeed
we have constructed all division algebras of the given type since the remaining
values r¡2k of g will not yield division algebras.

The relation (4) implies that [N(a)]2N(d) = [N(b)]2N(d)N(g), N(g)
= [N(h)]2 where h=ab~l. This yields the sufficient condition that 35 be a
division algebra as given by Dickson. We may now construct division alge-
bras 35 in a number of cases where % is an infinite field of characteristic not
two. We assume that there exists a cyclic field 3 of degree n over % and an
element 7 in g such that y^b2 for any h of g. We then apply the construc-
tion and criterion of Dickson to obtain a central division algebra of order 2«
over g in the following cases.

(1) Let n be odd and take g to be the element y of 3 defined above.
Then n — 2m-\-\, N(y) — (ym)2y^b2 for any ¿> of 3?, and 35 is a division
algebra.

(2) Let n = 2'm where m is odd and e ̂  1. Assume that there exists a cyclic
field SB of degree 2« over %, and take 3 to be the subfield of degree n. Then
3 contains a subfield g) of degree 2" which is a cyclic subfield of a subfield
£)i of degree 2e+1 of SB. It is known(n) that §D contains an element g such
that iVj}|g(g) = — 1. If we assume that — 1 ̂ o2 for any 5 of %, the algebra 35
defined by 3 and g has N&\%(g) = (— l)m— — 1 and 35 is a division algebra.

(3) Let 3 be any algebraic number field. We take p to be an odd prime,
pg to be a prime ideal divisor of p in the ring J% of all integers of §• The
Grünwald theorem implies the existence of a cyclic field 3 0I degree n over 3
such that pg is completely ramified in 3- Then Ns\$(P$) =pjj where pg = Pg
and Pg is a prime ideal in Jg. Let g be an element of P¿ which is not in P|.
Then N&\$(g) is divisible by P% = $$ but not by p|. Hence N&\$(g) is a non-
square and the corresponding algebra 35 is a division algebra.

5. Twisted fields. All of the known types of central division algebras
have been constructed by procedures which yield algebras necessarily of
composite dimension. We shall give a new construction here which will yield
central algebras, necessarily not associative, of quite arbitrary odd dimension.

Let % be a field subject only to the restriction that there exists a cyclic field
3 of odd degree n over %, and let 5 be a generating automorphism of the Galois
group of 3 over %. We let 7^1, 0 be an element of %, and define an algebra
[7. 3. S] which is the same vector space over % as 3 but which has a product
operation (x, y) defined in terms of the product operation xy of 3 by

(5) (*, f) - (1 - y)-*{x(fS) - y(xS)y].
Lemma 4. There are no divisors of zero in [y, 3, S] if and only if yn9*l.

For if 7n = l, then A(7) = l and a well known theorem of Hilbert(12)

(") This is the case p = 2, f = — 1 of Theorem 9.10 of the author's Modern higher algebra.
(u) Ibid. Theorem 9.5.
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implies that y=x(xS)~1 for some x of 3- If [j, 3, S] contains no divisors of
zero, this is impossible since (x, 1) = (1— y)~*(x —yxS) =0. Conversely if
7"^1 and (x, y) =0forx:^0, y^Oin [y, 3, S], thenx(yS) =y(xS)y, N(x)N(y)
= y"N(x)N(y), which is impossible.

Let us now investigate the conditions on g which would enable us to
satisfy the restriction y"^ 1. If % is any infinite field, some element y of 5 is
not a root of the equation yn = 1 and defines a corresponding algebra [y, 3, S].
When ^ is a field of p~> = q+l elements, every 7^0 is a root of y4 = l. Thus
[7. 3> S] has divisors of zero for every 7 of § unless q does not divide n.
When p>2 the integer q is even and so [7, 3> S] has no divisors of zero for
some 7 in $ = GF(py) and every odd n. The value of 7= —1 is allowable
when p is odd, and [ — 1, 3< S] is commutative in this case. We shall now de-
fine an isotope of [7, 3> S] which has a unity element and so is a division
algebra.

The linear transformation x—>(x, y)=xRy) on the vector space 3 is
expressible in terms of the multiplication x—>xy=xRy of 3 by

(6) R? = o(RyS - ySRy),        5_1 = 1 - 7.

Similarly y—*(x, y) =yLx0) where

(7) L9J = Ô(SRx - yRxs)-

Since Ry0) and Ly0) are nonsingular for every y 5^0 of 3< the transformations
(JRf)-1 and (Lm*)"t exist where e = l is the unity element of ,3. But eS = e,
Re = R,s = I is the identity transformation, and so

(8) P = (RTf1 = (1 - 7)(7 - yS)~\   Q = (iff = (1 - y)(S - yl)~\
Moreover e(S—yl) =e(I—yS) = (1 — y)e, and so eP = eQ = e, that is, cP = cQ
= c for every c of the subfield eg of 3-

We are now ready to define the isotope of [7, 3> S] given by the product

(9) x-y = (xP, yQ) = 8[(xP)(yQS) - y(xPS)(yQ)].

We shall call this algebra a twisted field and shall designate it by (7, 3, $)•

Lemma 5. A twisted field is a division algebra. 7/§) is a subfield of 3, the
algebra (7, §), S) is defined and is a subalgebra of (y, 3, S). The transformation
S is an automorphism of (7, 3. $)■

For x-e = 5x(P — yPS)=ôxP(I—yS)=x, and ey = 5yQ(S—yl) =y for
every x and y of 3- Thus (7, 3. S) nas the same unity element as 3 and is
a division algebra. If g) is any subfield of 3> the field §) is cyclic over % and
the automorphism 5 of 3 induces a generating automorphism y—*yS of §).
Thus (7, g), S) is defined with respect to the product x-y of (7, 3, S), and so
(7i 2). S) is a subalgebra of (7, 3» 5). Both Q and P are polynomials in 5 and
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commute with S. Hence (x-y)S = o[(xPS)(yQSS)-y(xPSS)(yQS)] =xS-yS
and S is an automorphism of (7, 3. S) as we^ as of (7, £), >S) for every subfield
VofS.

We may now prove

Theorem 8. Every twisted field (7, 3> S) is a central division algebra over %.
It is power-commutative if and only if it is the commutative algebra ( — 1, £, S).

We observe first that if 7 = — 1 the algebra (7, 3> S) is commutative and
hence is power-commutative. Conversely let (7, 3, S) be power-commutative
and SB be a subfield of 3 of prime degree p over ¡5- Then (7, SB, S) must be
power-commutative. We begin our proof with a study of the case where p
is the characteristic of g\ Then p is odd and it is known(13) that SB = $[m]
where uS = u-\-l. It follows that u(I — yS)=u—y(u-\-l) = (l—y)u—y,
uP(l—y)=uP(I — yS)+y = (l—y)u+y, and so

(10) uP = u + yo,        uPS = u+l + yô = u+Ô.

Similarly u(S-yl) = (l-y)u + l, (l-y)uQ = u(S-yI)Q-l = (l-y)u-l,
(11) uQ = m — ô,       uQS = w + 1 — 0 = u — 7§.

We now compute w25 = w2 + 2m-|-1, u2(I — yS) = (1 —y)u2 — 2yu—y, w2(l —y)P
= (1 -7)tt2+27MP+7 = (1 -7)m2 + 2m7 + 2725+7,

(12) u2P = u2 + 275m + yo2(\ + 7),     u2PS = u2 + 2ou + 62(1 + y).

We also compute u2(S-yI) =(l-7)w2 + 2w + l, (\-y)u2Q = (\-y)u2-2uQ
— 1 =(1 — 7)m2 — 2u-\-2b — 1, and obtain

(13) u2Q = u2 - 2ub+ (\ + y)ô2,     u2QS = u2 - 2y5u + Ô2T(1 + y).

We may now compute the square um=u-u = ô[(u-\-yô)(u—y5)—y(u-\-d)
•(u — ô)], that is,

(14) m<2) = u2 + y82.

It can be observed at this point that u ■ m(2) = u(2) ■ u if and only if
u-u2 = u2-u. However the product u-u2 = ô[(uP)(u2QS) —y(uPS)(u2Q)] =5
■(u+yô)[u2-2yÔu + o2y(l+y)]-y5(u + ô)[u2-2uô + (l+y)ô2]=u*+2yô2u
-7Ô3(l+7). Also m<2)-u = ô[(u2P)(uQS) -y(u2PS)(uQ)] =8[u2 + 2yôu+yÔ2
•(1+7)](m-78)-7ô[m2 + 2Sm+S2(1+7)] (u- 8) = u3 + 2yb~2u + ô3y(l +y).
These products are equal if and only if 27¿í3(l+7) =0, that is, 2(1+7) =0.
Since we have assumed that % has odd characteristic p, we have shown that
7 = — 1 in this case.

It will be convenient to show that ( — 1, SB, S) is not power-associative at
this point. Our formulas (10), (11), (12), and (13) become

(l3) Loc. cit. Theorem 9.1.
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(15) uP = u - 1/2,   uPS = u + 1/2,   u2P = u2 - u,   u2PS = u2 + u,

for  y=— 1.   Compute  w3S = M3-r-3w2-r-3w-r-l,  w3(.S-r-7) = 2w3-|-3tt2-r-3w-rT,
2m3P-(-3(m2-m)+3(m-1/2)-|-1=M3(5-(-7)P = 2m3 = 2m3P+3m!!-1/2.   This
computation results in the formulas

(16) m3P = u3 - (3/2)u2 + 1/4,        u3PS = u3 + (3/2)u2 - 1/4.

Now M-M(2)=M-M2-r-752w = w3-|-37Ô2M by (14) where 7= —1 and 5 = (1 — 7)-1
= 1/2. Thus

(17) w.<3> = m3 - (3/4)«.

The fourth power in (-1, SB, S) is w<4> =w<3) m = M3w-(3/4)m<2> = (1/2)
• [(u3 - (3/2)u2 + 1/4)(w + 1/2) + (u3 + (3/2)u2 - 1/4)(« - 1/2)]-(3/4)
■ (u2-l/4:)=(l/2)(ui-(3/2)u3+(l/4:)u+(l/2)u3-(3/4)u2+l/8+ui+(3/2)u3
-(í/i)u-(l/2)u3-(3/é)u2 + l/8)-(3/4)(u2-1/4), and we have completed
a derivation of the formula

(18) w<4> = w4 - (3/2)w2 + 5/16.

However   u<»-um = (u2-l/4)-(u2-l/4)=u2-u2-(l/2)u2 + l/16 = (u2-u)
■(u2+u)-(i/2)u2 + l/l6 = u*-u2-(l/2)u2 + l/16 and so

(19) w<2>-«<2> = m4 - (3/2)w2 + 1/16.

Thus uw — m(2)-m(2) = 1/4 and ( — 1, SB, 5) is not power-associative.
There remains the case where the degree p of SB is not the characteristic

of %. In this case we may extend % to a field $ containing a primitive £th
root of unity co. Then (7, SBa, 5) is still a division algebra and there is
actually no loss of generality if we assume that u> is in %. It is now known(14)
that SB = 3(w) where uv — a in % and uS=uu. It follows that ukS = ukuk.
Then uk(I—yS) =uk(\.—yuk) for all integers k. Since 7p?il we know that
ywk7il and so m4(1 — ycok)~1 = uk(I — yS)-1, that is,

(20) UkP = (1 - 7)(1 - Tu*)-1«*,     «*75 = (1 - 7)co*(l - tco*)"1«4.

Also uk(S — yl) =uk(o}k — 7) and so

(21) «*<2 = (1 - 7)(w* - t)-1«*,      »*QS = (1 - 7)co*(cofc - y)-luk.

These two formulas imply that

(22) u*u* = /(co8, u')u'+t,

where

(23) /(x, y) = (l - 7)(l - yx)~l(y - y)~\y - yx).

We   put  /(x,   y)=f(y,   x)   and   see   that   u'-u' = ut-u'   if   and   only   if

(") Loc. cit. Theorem 8.22.
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7(1+7)(co'-w,)(l-w*)(l-w,)=0. If lûs<t<p we obtain 7(l+7)=0 and
so 7= —1. This completes our proof that (7, 3, S) is power-commutative if
and only if the nonzero parameter 7 = — 1.

Let us now consider the algebra (—1, SB, S) in the case where co is in
g.   We  compute  m2-m2 = 4m4(co2 + 1)~2cü2  and   (u2-u2) •m=4co2(co2 + 1)~2m4-m
= 8w2(co2 + 1)-2(co4+1)-Hw + 1)-1(w4+w)m8 = 8w8(w2+1)-2(w4+1)-1(w + 1)-1(w8
+ l)tt8. Also u2-(u2-u)=2(u2+1)-1(u+1)-1(o}2+ù})u2-us = 2w(co2 + 1)-1u2
•m» = 4w(co2+1)-1(w2+1)-1(w3+1)~1(w2+w3)m5 = 4co3(w+1)(w2+1)-2(co3+1)-1M6.
If (— 1, SB, S) were power-associative we would have

(24) 2(co3+l)2= (a,4+l)(co + l)2.

We also compute (u2-u) ■u = 2(u3-u)ù}(ù}2 + 1)~1=4u(w2 + 1)~1(u3 + 1)-1
•(co + l)-1(w+w3)M4 = 4co2(co3 + l)-1(w + l)-1M4andw2-(M-M)=4(w + l)-2WM2-M2
= 16(co + l)_2co3(co2+l)_2M4. The assumption that ( —1, SB, S) is power-asso-
ciative may be used again, and we obtain

(25) 4(co3 + l)w = (co2 + l)2(co + 1).

It follows that 16(co3 + l)2co2 = (co2+l)4(co+l)2 = 8co2(co4 + l)(co + l)2 and that
(co2+l)4 = 8w2(w4 + l). But then co8+4co6+6co4+4co2 + l-8co6-8co2 = (o)2-l)4
= 0, co2 = 1, contrary to our hypothesis that w is a primitive pth root of unity
and that p is the degree of the subfield SB of the field 3 of odd degree, p
is odd.

We have now shown that every subfield SB of 3 of prime degree over §
defines an algebra (7, SB, S) which is not power-associative. We may now
complete our proof that (7, 3> S) ls central by showing that if the center 6
of (7. 3> S) were a field of degree m>i over g, it would have the form
6 = (7. 2). S) where g) is the subfield of 3 of degree m over g. For then E
would be associative, §) would contain a subfield SB of prime degree p over %,
the nonassociative algebra (7, SB, S) would be a subalgebra of 6, which is
impossible. The result is derived as follows.

The automorphism S of (7, 3> S) must induce an automorphism c—+cS
of the center field GL Since (7, £, S) has dimension q over S of degree m, we
know that n = qm. However 6 is a field and so 5 has order r in 6 where r
divides m. Then S is contained in the subfield 2) of 3 consisting of all ele-
ments y=yST of 3- Since r divides m, it also divides n and the index of the
cyclic group generated by 5r is r, §) has degree r over g, E of dimensionm^r
is contained in §) of dimension r, S and §) are equal vector spaces, 6 = (7, §),
S). This completes our proof of Theorem 8.

Theorems 7 and 8 may be combined in the case where % is a finite field as
follows.

Theorem 9. Let % be any finite field of characteristic p>2 and n be any
integer greater than 2. Then there exists a commutative central division algebra
of dimension n over g.
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The result above is actually false for finite fields of characteristic two.
Indeed it is not difficult to prove that there exists no commutative central
division algebra of dimension three over the field of two elements. No central
finite commutative division algebras of characteristic two are known and the
question of their existence is a major problem of our theory.

We shall close by noting a generalization of our construction (18) of twisted
fields which might yield central division algebras over C7P(g+l) even when
q divides n. The formula (5) may be modified in this case by taking y to be
an element of 3 such that ^(7)^1. For example, let £7 be the field of four
elements, n = 3, so that % contains a primitive cube root of unity co and
•3 = «?[ML u3 = u, y = u. Then [7, 3, S] is an algebra without divisors of zero.
A study of such algebras will be made later.

The University of Chicago,
Chicago, III.

(ls) The following description of our construction of a twisted field should be observed.
We begin with a field S and first Pass to the nonassociative isotope defined by the product
x(yS) and which is norm preserving. We then pass to the quasi-equivalent algebra [7, ¿J, S].
The final step in our construction is that of using the standard process of obtaining an isotope
with a prescribed unity element. It is only the second step which could yield an algebra not a
quasi-division algebra and it is necessary to verify that the final result is at least not the original
field.
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