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1. INTRODUCTION 

In a recent paper Avgerinos-Papageorgiou [2], proved an existence result for a class 

of evolution inclusions driven by m-dissipative operators and with a nonconvex set-

valued perturbation. In this paper we extend the work of Avgerinos-Papageorgiou 

[2] in several directions. First, we consider functional-evolution inclusions; i.e. the 

system under consideration has a memory feature. Second, the multivalued pertur-

bation consists of the extreme points of the original convex-valued orientor field. We 

emphasize that this "extreme points multifunction", in general is not closed valued 

and/or lower semicontinuous. So the general theoretical framework of [2] fails. Third, 

we prove that these "extremal" trajectories are in fact dense in the topology of uni-

form convergence, in the solution set of the original evolution inclusion, obtaining this 

way a new strong relaxation theorem. We remark, that in the context of control sys-

tems, this density result produces new nonlinear, infinite dimensional "bang-bang" 

principles. In addition our work here extends those of Cellina-Marchi [8], who stud-

ied maximal monotone differential inclusions in Rn and of Attouch-Damlamian [1], 

who considered evolution inclusions in a Hilbert space, monitored by subdifferential 

operators and with a convex set-valued perturbation. A comprehensive introduction 

to the subject of functional-differential inclusions and their application to optimal 

control problems, can be found in the recent book of Kisielewicz [11]. 
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2. MATHEMATICAL PRELIMINARIES 

Let (ffc,E) be a measurable space and X a separable Banach space. Throughout 

this paper, we will be using the following notations: 

Py(c)(X) = {Ac X: A nonempty, closed and (convex)}, 

P(w)k(c)(X) = {A C X: A nonempty, (weakly-)compact, (convex)}. 

A multifunction F: Q —> Pf(X) is said to be measurable, if for all x G X, the 

function u -» d(x, F(u>)) = inf{||x-2:||: z G F(u)} is Borel measurable. Now let //(•) 

be a finite measure defined on (ft, E). We define SF (1 ^ p ^ +00) to be the set of all 

Z,P(fi, X)-selectors of F(); i.e. SP
F = {f G Fp(ft, X): f(u) G F(LJ) p - a.e.}. This set 

may be empty. It is nonempty if and only if the function u —> inf{||2||: z G F(UJ)} 

belongs to Lp(fi, R+) . Recall that a subset K of Lv($l,X) is decomposable if for 

every triple (f,g,A) G K x K x E, we have f\A + gXA'- £ K, where XA denotes the 

characteristic function of the set A. Clearly SV
F is decomposable. 

On Pf(X) we can define a generalized metric, known in the literature as the 

"Hausdorff metric", by setting, for A,B G Pf(X), 

h(A,B) = max { sup{d(a,H): a G A}, sup{d(6,A): b G B}} 

(recall that d(a,B) = inf {||a — b||: b G 5 } ; similary for d(b, A)). The metric space 

(Pf(X),h) is complete. A multifunction F: X —» Pf(X) is said to be Hausdorff 

continuous (H-continuous) if it is continuous from A" into (Pf(X),h). 

Let y , Z be Hausdorff topological spaces. A multifunction G: Y —> 2 Z \{0} is said 

to be lower semicontinuous (denoted as l.s.c), if for all U C Z open F~(U) = {y G Y: 

F(y)DU 7- 0} is open in Y. 

Let Ai: -O(-4) C X -» 2X be a set-valued operator with domain F)(A). We say that 

A is accretive, if for every x\, a;2 G -O(-4), for every y\ G A(xi), i = 1,2, and for every 

A > 0, we have ||xi — .X21| ^ ||^i —%2 + ̂ (yi — ^2)II- Another equivalent definition, can 

be given using the duality map of X, which is the set-valued function J : X -> 2A 

defined as J(a;) = {x* G K*: (:v*,x) = ||.T||2 = ||;c*||2}. Clearly the values of J(-) 

are nonempty, closed, convex, bounded subsets of X*; moreover we recall that if 

X* is strictly convex, the duality map J(-) is single-valued and uj*-demicontinuous, 

and furthermore if K* is locally uniformly convex, then J ( ) is single-valued and 

continuous. Using J ( ) we can define the upper semi-inner product on X (denoted 

by (*,•)+) as follows: 

(x,2/)+ =sup{(x*,y): x* G J(x)} 

for all x,y G X. So A(-) is accretive if and only if for every x\,x2 G D(A), for 

every y{ G A(x{), i = 1,2, it follows (x\ - x2,y\ - y2)+ ^ 0. We say that A(-) is 
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m-accretive, if it is accretive and for each A > 0, I + XA is surjective, where I is the 

identity operator on X. A is said to be m-dissipative if -A is m-accretive. It is well 

known that an m-dissipative operator A generates, on D(A), a semigroup {S(t)}t^o 

of non expansive mappings, via the Crandall-Liggett formula 

S(t)x = lim (i A) x, t^O, x e D(A) (see [4]). 

The semigroup is said to be compact if, for each t > 0, S(t) is a compact operator. 

Finally if T = [0, b], by LW(T, X) we will denote the space of all equivalence classes 

of Bochner integrable functions x: T -> X with the (weak) norm 

||x||w = s u p j / x(s)ds :0^t<^t'^b\. 

The setting of our problem is the following: let T = [0,6], T0 = [—r,0] (r > 0), 

T = [—r, 6] and let X be a separable reflexive Banach space, with uniformly convex 

dual. We consider the following multivalued Cauchy problem: 

( x(t) eAx(t)+F(t,xt), 

\ x(v) = w(v), v G T0. 

Here xt(-) G C(T0, X) is the function defined by xt(v) = x(t+v). So xt(-) describes 

the past evolution of the state, from time t - r until the present time t. Also A: 

D(A) C X —> 2X is an m-dissipative operator. 

In conjunction with (1), we also consider the following Cauchy problem: 

( x(t) G Ax(t) +ext F(t,xt), 

\ x(v) = w(v), v G T0. 

Here extF(t,y) stands for the extreme points of the orientor field F(t,y). By an 

integral solution of (1) (resp. of (2)), we mean a function x G C(T,X) such that 

there exists f G Ll(T,X) with f(*) G F(t,xt) (resp. f(t) G ex tF(^ ,^ ) ) a.e. in T 

and x(-) is an integral solution in the sense of Benilan [6] of the Cauchy problem 

(x(t)eAx(t) + f(t), 

\x(0)=w(0y, 

that is for each [z, y] G GrA and 0 ^ s ^ t ^ b, we have 

\\Wt) - zf ^ ±\\x(s) - zf + j\f(T) + y,x(T) - Z)+dT. 

137 



Recall that if dimK < oc or more generally if X is a Hilbert space, / £ L2(T, X) 

and A = dip, where (D is a proper, lower semicontinuous, convex 1R-valued function 

on X, then integral solutions coincide with strong solutions (see [4]). 

3 . EXTREMAL TRAJECTORIES 

In this section, we estabilish the existence of integral solutions for problem (2). 

For this we will need the following hypotheses on the data: 

H(A): A: D(A) C X —> 2X is a multivalued m-dissipative operator which generates 

a compact semigroup on D(A). 

H(F): F:T x C(T0,X) -> Pwkc{X) is multifunction such that 

j) Vx G C(T0,X), t -> F(t,x) is measurable; 

jj) for a.e. t ET, X —> F(t,x) is H-continuous; 

jjj) 3a,ceLp(T,U+), Kp<oo: 

\\F(t,x)\\ = sup{\\z\\: z e F(t,x)} <C a(t) + c ^ x ^ , 

a.e. in T,VxG C(T0,X). 

H0: w e C(T0,X) and w(0) e D(A). 

Remark 1. Hypotheses H(F) j) and jj) and Theorem 3.3 of [12] imply that 

(t,x) —> F(t,x) is jointly measurable. 

First we prove a lemma that we will need in the sequel 

Lemma. If (fn)n C LP(T,X), 1 < p < oo, sup{| | /n | |p : n <E N} < oo and fn -» 0 

in L1
W(T,X) then / n -> 0 weakly in LP(T,X). 

P r o o f . From Theorem 1, p. 98, of [9], we know that LP(T,X)* = Lq(T,X*), 

with - + - = 1. Let ((•,•)) denote the duality brackets for the pair (LP(T,X), 

Lq(T,X*)). Since, by hypothesis, (fn)n is bounded in LP(T,X) and the space of 

K*-valued simple functions on T is dense in Lq(T,X*), we only need to show that 

((fn,$)) —> 0 as n -> cxo, for each simple function s: T —> X* of the form 

s(t) = vk, te(tk-i,tk), vkex\ fc = i,. 

with 0 = t0<ti<...<tN=b. 

,N, 

We have: 

l((/n,s))| 
N rt, 

; 1 -J í Д  —  1 

v
k
)dт 

k=i
  Ul

^-^ 

N 

N 

^E  /n(r)dт 

/c = l 

^  Wfn\\wJ2 H^ll  "
> 0  a S  7 l

-+°°> 

which  was  to be proved. 
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Now we are ready for the existence theorem concerning Cauchy problem (2). 

Theorem 1. If hypotheses H(A), H(F) and H0 hold, then problem (2) admits 

an integral solution. 

P r o o f . We start by deriving an a priori bound for the solutions of the prob-

lem (1) (hence of (2) too). So let x(-) G C(T,X) be such a solution and let 

y G C(T,X) the unique integral solution of 

f x(t) eAx(t), 

{ x(0) = w(0) G D(A) 

(cf. [6]). Then from Benilan's inequality [6], we have 

II*(0-VWII< A/Wild* 
JO 

where / G LP(T,X), f(t) G F(t,xt) a.e. in T. So we have 

ll*(OII < IMI00+ / (a(5)+c(5) | |x s | |0 0)d;s, 
Jo 

hence 

I N U ^ lll/Hoo + ||a||i + / c^H^l loo ds, V t G T. 
Jo 

Here ||:r*||oo is the ess sup of xt(-) over the interval [t — r, t], while ||;y||oo -S the ess 

sup of y(-) over T = [0, b]. 

Invoking Gronwall's inequality, we deduce that there exists M\ > 0 such that, for 

all t G T and all solutions x(-) of the problem (1), we have ||x(r)|| ^ M\. Hence 

without any loss of generality, put 7(f) = a(t) + c(t)M\, 7 G LP(T, IR+), we may 

assume that 

\\F(t,x)\\ =sup{\\z\\:zeF(t,x)} ^-f(t), a.e. in T, V xeC(T0,X). 

Otherwise in what follows we replace F(t,x) by F(t,pMl(x)) with PMX(') being the 

Mi-radial retraction. Note that by virtue of Lipschitzness of PMA'), F(t,pM1(x)) 

has the same measurability and continuity properties as F(-,-) and moreover 

\F(t,pMl(^))\ <7(*)a .e . 

Set 

V = {h G Lp(T,X): \\h(t)\\ <: 7( l) a.e. in T} 
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and let 77: LP(T,X) -> C(T,X) be the map which assigns to each he LP(T,X), the 

unique integral solution of the Cauchy problem 

( x(t) G Ax(t) + h(t), 

[x(0) =w(0) G D(A). 

The fact that the above Cauchy problem has an integral solution which is actually 

unique is due to [6] (see also [4]). 

Let 77: Lp(T,X) -> C(f,X) be defined by, for each h G LP(T,X), 

\ »((), V( € T„. 

Since V is bounded and, by hypothesis H(A), the operator A(-) generates a com-

pact semigroup, from Theorem 1 of [3], we have that f](V) is relatively compact in 

C(T,X), hence T](V) is relatively compact in C(T, X). Set K = conv77(V), from 

Mazur's Theorem we have that K is a compact and convex subset of C(T,X). In 

what follows K is endowed with the C(T, X)-topology. 

Define R: K -> Pwkc(L
p(T,X)) by 

fi(x) = {h G LP(T,X): h(t) G F(t,xt) a.e. in F}. 

From Theorem 1.1 of [14], we know that there exists a continuous function r: K -> 

Ll
w(T,X) such that r(x) G extR(x), \/x G K. 

Since for every x G K, 

extR(x) = {he LP(T,X): h(t) G extF(f ,^) a.e. in T} 

(cf. [5]), it follows that r(x)(t) G extF(t,xt), a.e. in F. 

Let £ = 77 o r : I\~ -> Ii. Recalling that J(-) is a continuous single valued map and 

using Theorem 1 of [3], we have that 7)(-) is sequentially continuous from LP(T,X) 

with the weak topology into C(T, X). Combining this with the Lemma, we get that 

£(•) is continuous. Then, by Schauder's fixed point Theorem, we have that there 

exists x e K such that x — £(T). So x G C(T, X) is the desired integral solution of 

the problem (2). • 
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4 . A STRONG RELAXATION THEOREM 

Let S(w) C C(f, X) be the solution set of the Cauchy problem (1) and Se(w) C 

C(T,X) the solution set of the problem (2). We saw that under the hypotheses of 

theorem 1,0 7- Se(w) C S(w). 

In this section, by strengthening our hypothesis on the orientor field, we show that 

Se(w) is dense in S(w) for the C(T,K)-topology. 

The stronger hypothesis on F that we will need, is the following: 

H(F)i: F: T x C(T0,X) -» Pwkc(X) is a multifunction such that 

j) Vx G C(T0,X), t -> F(t,x) is measurable; 

jj)' 3k e L^T,^): h(F(t,x),F(t,x')) <^k(t)\\x -x'Wvc, 

a.e. in T, V,x,x' G C(T0,X); 

jjj) 3a,ceL?(T,R+), l < p < o o : 

\\F(t,x)\\ = s\ip{\\z\\: z G F(t,x)} ^ a(t) + c(t)||s||oo, 

a.e. inT,\/xeC(T,X). 

Theorem 2. If hypotheses H(A), H(F)i and H0 iioid then Se(w) is dense in 

S(w) for the C(f,X)-topology. 

P r o o f . Fixed x G S(w), let / G LP(T,X): f(t) G F(t,xt), a.e. in T, such that 

x(-) is the integral solution of the Cauchy problem 

f x(t) GAx(t)+f(t), 

{ x(0) = w(0) G .D(.A) 

on T and :r(U) = iv(L>) for all v eT0. Let K be the compact subset of C(T, X) as in 

the proof of Theorem 1. Given z G K and e > 0, let T£ : T -> 2X \ {0} be defined by 

T£(t) = [u G X: ||/(f) - u|| < ^ + d(f(t),F(t, zt)),u G F(i , ^ ) } 

with Mi being the a priori bound for the elements of S(w) obtained in the beginning 

of the proof of Theorem 1. We have 

G r r , = {(t,u) G GrF(*,z.): \\f(t)-u\\ < ^ + d(f(t), F(t,zt))}. 

From hypotheses H(F)i j) and jj)' and Theorem 3.3 of [12] we have that the function 

t -> F(t,zt) is measurable and so GrF(-,z.) G B(T) x B(C(T0,X)) with B(T) 
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(resp. B(C(T0,X))) being the Borel a-field of T (resp. of C(T0, X)). Apply Aumann's 

selection Theorem (cf. [11], theorem 3.H, p. 47) to get a measurable map h£: T -> X 

such that h£(t) e T£(t) a.e. in T. Then let £<,: K -> 2L"(T,X) be defined by 

Se(z) = {ft € LP(T,X): ft(0 G F(t,zt) and ||f(l) - ft(l)|| 

< 2 j ^ 6 + d ( / ( 0 , ^ ^ ) ) a . e . i n T } . 

We have just proved that, for all z e K and all e > 0, E<-(z) ^ 0 and clearly 

Ee(-) has decomposable values. Furthermore, from Proposition 4 of [7], we know 

that z -> Se(z) is l.s.c, hence 2: -> T,E(z) is Ls.c. and it has nonempty, closed 

and decomposable values. Apply Theorem 3 of [7] to get a continuous map u£: 

K -> Ll(T,X) such that u£(z) e TjJ), Nz e K. We have: 

\\f(t)-ue(z)(t)\\^^+d(f(t),F(t,zt)) 

^ ^TTT + k(t)\\xt ~ - d U , a.e. in T. 

Use Theorem 1.1 of [14] to get a continuous map v£ : K —> L\V(T, X) with the prop-

erties: 

v£(z) G {ft G LP(T,X): h(t) e extF(Uzt), a.e. in T} 

and 

\\u£(z) - v£(z)\\w <e, Vze K. 

Let £ = 1/n, Ui/n = un and U!/n = vn. Since 77(fn) maps J{ into IT, from Schauder's 

fixed point Theorem we have that there exists xn e K such that xn = fj(vn)(xn), 

therefore xn e Se(w). Since K is a compact subset of C(T,X), by passing to a 

subsequence if necessary, we may assume that xn -> z in C(T,X). From inequality 

(2,4), p. 124 of [4], we have that (recall that the duality map J(-) is single valued): 

(4.1) \\x(t) - xn(t)\\
2 ^ 2 / (J(x(s) - xn(s)), f(s) - vn(xn)(s)) ds 

Jo 

^ 2 / (J(x(s)-xn(s)),f(s)-un(xn)(s))ds 
Jo 

+ 2 / (J(x(s) - xn(s)),un(xn)(s) - vn(xn)(s))ds, 
Jo 

\/t eT.Vne H. 

Since X* is uniformly convex, from Proposition 32.22, p. 860 of [15], we have that 

J(x(-) -xn(')) -> J(x(-) -x(-)) in C(T,X*) as n -> 00, while from the lemma in the 
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section  3, we  have  u
n
(x

n
)  — v

n
(x

n
)  -> 0 weakly  in  L

P
(T,X).  So we obtain 

(4.2)  lim  /  (J(x(s)  -  x
n
(s)),u

n
(x

n
)(s)  -  v

n
(x

n
)(s))  ds  = 0. 

n->+oo  J
Q 

On  the  other  hand 

rt 

(J(x(s)  -  x
n
(s)),  f(s)  -  u

n
(x

n
)(s))  ds 

f  \\J(x(s)  -  x
n
(s))\\  \\f(s)-u

n
(x

n
)(s)\\ds 

Jo 

/  (271M b
  +  k

^
X s

  ~  (
x
^s\\oo)\\x(s)  -  x

n
(s)\\  ds 

^  -  +  /  k(s)\\x
8
-(s

n
)

s
\\l

0
ds->  /  k(5)||xs  -ZsWlods,  as  n-> 00. 

™  Jo  Jo 

Hence,  by  (4.1)  and  (4.2),  it  follows 

! / k(s 
Jo 

' 0 
rt 

J[ 

rt 

x
t
  -  --I& ^  2  /  fc(s)||a;.  -  - , | | ^ ds,  Vť  G T. 

Applying  Gronwall's  inequality  we  get  x  =  z.  Since  x
n
  G Se(w)  and  x n  —> x  in 

C(T,K) ,  we  have  that  S(w)  is  included  in  the  clousure  of  S
e
(w)  in  C(T,X).  It 

remains  to  show  that  S(w)  is  closed  in  C(T,X). 

So  let  x
n
  G •S'(uj)  and  assume  that  x

n
  ->  rr  in  C(T,K) .  Then  on  T  we  have 

that  there  exists  f
n
  G V  such  that /n(£) G F(t,(xn)t) a.e. in T, x n --- ^( / n ) and 

;cn(v) = iv(v) on T. By passing to a subsequence, if it is necessary we may assume 

that fn -> / weakly in LP(T,X). Put G,Gn: T -> Pwkc(X) the multifunctions 

defined by G(t) = F(t,xt), Gn(t) = F(t,(xn)t), Vf G T, V/i G N, for every g G 

LP(T,N)* = L«(T,X*), we have 

( ( / n , g ) ) ^ <j(g,S
v
Gn), 

where a is the support function of So,,, defined by 

a(g,Sp
GJ = sup {((g,h)):heSp

Gn}. 

But O(g,5£j = /0
6O-(O(r),Gn(/))d£ (cf. the proof of Theorem 3.1 of [13]). • 

Passing to the limit as n -> 00 and using hypothesis H(F)\ jj)' we have 

((/,g)) ^ lim sup O(O,5gJ 
n—¥-\-oo 

rb 

< 
/• PU 

/  limsu
P (

т((7(ť),Gn(ť))dť=  /  ťтfø(ť))G(ť))dť  = íг(í7).SS). 
J0  n—т + 00 Jo 
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(3) 

Since g € Lq(T,X*) was arbitrary, we deduce that / G S£. Also, as in the proof 

of Theorem 1, we have r](fn) -> r](f) in C(T,X), hence xn = fj(fn) -> fj(f) = x 

in C(f,X) with f(t) G F(*,x t) a.e. in T. Then x G S(uj) and so S(w) is closed in 

C(f,X). 

5 . DISTRIBUTED PARAMETER CONTROL SYSTEMS WITH DELAY 

In this section we illustrate the applicability of our abstract results, through an 

example of a nonlinear parabolic distributed parameter control system with delay. 

Let T = [0, b] and Z be a bounded domain in Rn with smooth boundary V. Here 

t G T is the time variable and z G Z the space variable. We consider the problem 

dx 
^ 7 + E (-l)aDaAa(z,r,(x(t,z))) = f(t,z,x(t-r,z))u(t,z), 

a.e. on T x Z, 

D0x\Txr - 0, \0\ ^ 7Ti - l,x(v,z) = w(v,z) 

a.e. on Z, for all u G T 0 - - [-r,0], 

I \u(t,z)\ ^ 7 . 

n 

Here / : T x Z x R - > R , a = (ax,...,an), \a\ = £ a*, £ " = D"1.. .D%n where 
/ c = l 

as always, Dk = f̂--, k = l , . . . ,n , T](x) = (Dax: \a\ ^ m) and ^ Q : Z x Rd -> R, 

with d = ^I^V' • The hypotheses on the data are the following: 

H_(A)i: Aa: Z x Ud -> R are functions such that 

1) V77 G Ud, z —> Aa(z,77) is measurable; 

2) Vz G Z, 77 —> Aa(z,77) is continuous; 

3) there exist p ^ 2, a G Lq(Z, R+) and c G L°°(Z, R+) ( i + I = l) such that 

|-4a(*,77)| ^ a(z) + c(z)\\r]\\p-1, a.e. on Z and V77 G R^ 

4) 3d* > 0 such that £ a < m ( - 4 « ( 2 ^ ) " -4a(s.'/'))fa« - i£) ^ d* £ |i/7 -
| 7 | = m 

77̂  |p , a.e. on Z and V?; G Rd. 

5) 3r > 0 such that J2\a\^mA^(z^v)ria ^ ^E| 7 |=m W * a-e- o n ^ and V77 G 
Rd. 

H(/): / : T x Z x R - > R i s a function such that 

1) Vx G R, (t,z) -> f(t,z,x) is measurable; 

2) 3k: T x Z -> R+ such that if k is the function defined by k(t) = k(t, •) 

then k G L2([0,T],L°°(Z,R+)) and \f(t,z,x) - f(t,z,y)\ <C k(t,z)\z - g|, 

a.e. i n T x Z and V:r,u G R; 

3) there exist ax G L2(T x Z,R+) and cx G L°°(T x Z,R+): |/(*,2:,:T)| ^ 

ax(t,z)+ci(t,z)\x\, a.e. in T x Z, Vx G R. 
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Ho: iD ( v )GC (To,L 2 (Z,R)) . 

By an admissible state control-pair we mean two functions x G C(T, L2(Z, R)) and 

ue L°°(T x Z, R) satisfying the problem (3). 

We have the following bang-bang principle for control system (3). 

Theorem 3. If hypotheses H(A)i, H(f) and Ho hold and if[x, u] is an admissible 

state control pair then for every e > 0 there exists another admissible state control 

pair [y,v] such that 

\{(t, z) eTxZ: \v(t, z\ # 7} = 0 and sup j / \x(t, z) - y(t, z)\2 dz: t G T \ < e 

(here A() stands for the Lebesgue product measure onT x Z). 

P r o o f . Let X = W™'P(Z), H = L2(Z,R) and X* = W~7n^(Z) (± + \ = 

1). From the Sobolev embedding theorem we know that X c-> H <-> X*, with 

all embeddings being compact; i.e. (X,H, X*) is an evolution triple with compact 

embeddings (cf. [15], p. 416). Consider the Dirichelet form a: X x X -> IR defined 

by 

a(x,y)= Y, [ Aa(z,r](x(z)))Day(z)dz 

for all x,y e X. Let Aa: X -> Lq(Z, R) be the function defined by 

Aol(x)(-)=Aoc(-,r](x(-))), VxGX. 

Because of hypothesis H(-4)i and Krasnoselskii's Theorem (cf. [15], p. 561), we have 

that Aa is continuous and in addition, because of H_(A)\ (3), 

3a,c>0: \\Aa(x)\\q ^ a + c\\x\\*Tl, Vx G X. 

Hence applying Holder's inequality, we get 

|5 (> ,y) |< E \\M*)\U\\Dav\\p<@ + &\\x\\S'1)\\y\\x,Vx,yeX. 
\a\^.m 

Thus there exists a nonlinear operator A: X —> X* satisfying 

(A(x),y) =a(x,y), 

for all x,y G X and with (•,•) denoting the duality brackets for the pair (X,X*). 

Observe that 

||-4(a0||x- ^a + clMir1, VxGX. 
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Moreover if xn -» x in X, from the continuity of Aa and using once more Holder's 

inequality, we have 

\a(xn,y) -a(x,y)\ ^ ~~^ ll-4a(~n) --4a(~)||9||2/||x 
|a|^m 

which implies that 

\\A(xn) -A(x)\\x*^ J2 \\A*{~n) -Aa(x)\\q ->0 as n -> oo. 
|a|$Cm 

Therefore A(-) is continuous. 

Recall that \x\ = (J J2 \D~*x(z)\p dz) is an equivalent norm on IV0
m'p(Z). 

K
z |7|=m y 

So from hypothesis H(A)i (4), we get that there exists d > 0 such that 

(5.1) d\\* - J/||£ < (-4(0;) - ,4(2/), re - y), VT,y e X. 

Next let A - : D(AH) C H -•> H be defined by A//(x) = A(x) for all - G -D(-4//) = 

{x G X: A(x) e H}. We know that A is the energetic extension of AH and from 

hypothesis H(-4)i (5), we obtain that it is also coercive (i.e. lim ' ,,u\y = oo); 
IMi+oo nit|1 

therefore AH is maximal monotone (cf. [4], p. 140). Recall that on a Hilbert space, 

maximal monotonicity is equivalent to m-accretivity (cf. [15], p. 821). So let {S(t): 

t e T} bet the semigroup of nonlinear contractions generated by — AH. From The-

orem 30.A, p. 771 of [15], we know that S(t)D(AH) = S(t)H C D(AH) (smoothing 

effect on initial data; see also [4], p. 144). Moreover from [4], p. 144, we have that 

there exists c > 0 such that 

(5.2) t4;S(t)x = \\tAHS(t)x\\H ^ c\\x\\H< Vt,x eTxH. 
at H 

Because of (5.1) and the fact that W0
m,p(Z) embeds compactly in L2(Z, R), we obtain 

that (J + A ) - 1 is compact. Now note that S(t)x = (J + A)'1 (I 4- A°)S(t)x, for all 

x e H. Use (5.2) together with the compactness of the resolvent (J + A)~l to 

conclude that {S(t): t G]0,b]} is a compact semigroup. 

Next put f:Tx C(T0,H) -> H the function defined by 

f(t,y)(z) = f(t,z,y(-r)(z)), for all t G T.y G C(T0, H) and z G Z, 

and U = {u e L°°(Z,U): ||u||oo ^ 7>, let F: T x C(T0,H) -> Pwkc(H) be defined 

by 
F(t,y) = f(t,y)U, for all (t,y) e T x C(T0,H). 
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Observe that, for every h G H, we have 

(f(t,y),h)H = f f(t,z,y(-r)(z))h(z)dz, 

so, by Fubini's Theorem, the function t -> f(t, y) is weakly measurable. Then, taking 

into account the separability of H = L2(Z, R), by Pettis measurability Theorem we 

get that t —> f(t,y) is measurable from T into H, therefore (cf. [9], p. 42) it follows 

that t —» F(t,y) is measurable. 

Moreover, form H(/)(2), we have that there exists k G Ll(T, R+) such that 

h(F(t,x),F(t,y) ^ k(t)\\x - ylU, a.e. in T,Vx,y G H, 

and, from H(f)(3), there exist Oi G L2(T, R+) and cx G L°°(T, R+) with the property 

\\F(t,x)\\ ^ ax{t) + ci(i)IM|oo, a.e. in T,x G C(T0,H). 

Since extF(£,:x) = extf(t,x)U C f(t,x)extU and (cf. [10], p. 79) 

ex tU= {UGL°°(Z,R): A0{z G Z: |u(*)| / 7} = o} , 

where Ao is the Lebesgue measure on Z, we can rewrite the problem (3) in the 

following equivalent deparametrized problem 

(x(t)e -AHx(t)+F(t,xt), 

1 x(v) = w(v), v eT, 

with w(v) = w(v,-) G L2(Z, R) = H = L>(A//). Then theorem 2 will give us the 

desidered "bang-bang" admissible pair [y,v] such that 

\{(t,z) G TxZ: \v(t,z)\ / 7} = 0 and sup j / |.T(^, z)-y( l , z)|2 dz: ^ G T | < e. 

D 

Now suppose that we are also given a continuous cost functional V: C(T, 

L2(Z, R)) -> R, which has to be minimized over the set S(w) of trajectories of 

(3). In other words, if ra = inf {V(x): x G S(iu)}, our problem is the following 

(P) is there exists a trajectory x G S(w) such that V(x) = ra? 

Using theorems 2 and 3 and recalling that S(w) is a compact subset of C(T, 

L2(Z, R)) we get the following 

Theorem 4. If hypotheses H(A)\, H(f) and Ho hold, then (P) has s solution 

and for every e > 0 there exists y G C(T,L2(Z, R)) a trajectory generated by a 

"bang-bang" control i; G L°°(T x Z, R+) (i.e. A{(f,z) G T x Z: K M ) I ^ 7} = 0) 

such tiiat V(y) ^ ra + e. 
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