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1 Introduction to noncooperative game theory

To introduce a static two-player zero-sum (noncooperative) game (for more
details and examples see [1], [2], [3], [4] or [5]) and its relation to a minimax
theorem we consider two players called 1 and 2 and assume that the set of
pure strategies (also called actions) of player 1 is given by some nonempty set
A, while the set of pure strategies of player 2 is given by a nonempty set B.
Without loss of generality we may assume that the sets A and B are topo-
logical spaces with Borel σ-algebras B(A), respectively B(B). By definition
a Borel σ-algebra is the smallest σ-algebra generated by the open sets ([6]).
If player 1 chooses the pure strategy a ∈ A and player 2 chooses the pure
strategy b ∈ B, then player 2 has to pay player 1 an amount f(a, b) with
f : A×B → R a given function. This function is called the payoff function of
player 1. Since the gain of player 1 is the loss of player 2 (this is a so called
zero-sum game) the payoff function of player 2 is −f . Clearly player 1 likes
to gain as much profit as possible. However, at the moment he does not know
how to achieve this and so he first decides to compute a lower bound on his
profit. To compute this lower bound player 1 argues as follows: if he decides
to choose action a ∈ A, then it follows that his profit is at least infb∈B f(a, b),
irrespective of the action of player 2. Therefore a lower bound on the profit
for player 1 is given by

r∗ := supa∈A infb∈B f(a, b). (1)

Similarly player 2 likes to minimize his losses but since he does not know how
to achieve this he also decides to compute first an upper bound on his losses.
To do so, player 2 argues as follows. If he decides to choose action b ∈ B,
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it follows that he loses at most supa∈A f(a, b) and this is independent of the
action of player 1. Therefore an upper bound on his losses is given by

r∗ := infb∈B supa∈A f(a, b). (2)

Since the profit of player 1 is at least r∗ and the losses of player 2 is at most
r∗ and the losses of player 2 are the profits of player 1, it follows directly that
r∗ ≤ r∗. In general r∗ < r∗, but under some properties on the pure strategy
sets and payoff function one can show that r∗ = r∗. If this equality holds
and in relations (1) and (2) the suprema and infima are attained, an optimal
strategy for both players is obvious. By the interpretation of r∗ for player 1
and the interpretation of r∗ for player 2 and r∗ = r∗ := v both players will
choose an action which achieves the value v and so player 1 will choose that
action a0 ∈ A satisfying

infb∈B f(a0, b) = maxa∈A infb∈B f(a, b).

Moreover, player 2 will choose that strategy b0 ∈ B satisfying

supa∈A f(a, b0) = minb∈B supa∈A f(a, b).

In case only r∗ = r∗ or equivalently

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b) (3)

both players can approximate their optimal pure strategies by so-called ε-
optimal pure strategies. A pure strategy a0 ∈ A for player 1 is called an
ε-optimal pure strategy if

infb∈B f(a0, b) ≥ v − ε

A similar definition applies to an ε-optimal pure strategy for player 2. By
these observations it is now important to know for which payoff functions and
pure strategy sets the so-called minimax result r∗ = r∗ holds and under which
conditions the supremum in relation (1) and the infimum in relation (2) are
attained. Before discussing this, we give an example for which the equality
r∗ = r∗ does not hold.

Example 1. Consider the continuous payoff function f : [0, 1]× [0, 1] → [0,∞)
given by

f(a, b) = (a− b)2.

For this function it holds for every 0 ≤ a ≤ 1 that infb∈[0,1](a − b)2 = 0 and
so

r∗ := sup0≤a≤1 inf0≤b≤1(a− b)2 = 0.

Moreover, it follows that

sup0≤a≤1(a− b)2 = (1− b)2
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for every 0 ≤ b < 1
2 and

sup0≤a≤1(a− b)2 = b2

for every 1
2 ≤ b ≤ 1. This shows

r∗ := inf0≤b≤1 sup0≤a≤1(a− b)2 = 4−1

and so r∗ does not equal r∗.

The above example shows a particular case for which it is not clear how the
players should select their strategies. A possible solution to this problem is to
extend the set of pure strategies to the larger set of so-called mixed strategies.
Recall in the next definition that a Borel finite measure on a topological space
D is a finite measure defined on the Borel σ-algebra B(D) of D (for more
details on Borel measures see [7], [8], [9]). Moreover, we also need in this
definition the unit simplex ∆k ⊆ Rk given by

∆k := {α> = (α1, ..., αk) ∈ Rk :
∑k

i=1
αi = 1, αi ≥ 0, 1 ≤ i ≤ k}. (4)

Definition 1. Let D be a nonempty topological space and B(D) its Borel σ-
algebra. A Borel finite measure εd : B(D) → [0,∞) is called a one-point Borel
probability measure concentrated on the set {d} if εd(D0) = 1 for D0 ∈ B(D)
containing d and εd(D0) = 0 otherwise. A Borel finite measure ν : B(D) →
[0, 1] is called a Borel probability measure with finite support if there exists
some finite set {d1, ..., dk) ⊆ D and some vector s(ν)> ∈ ∆k with si(ν) >
0, 1 ≤ i ≤ k such that

ν =
∑k

i=1
si(ν)εdi

.

If we denote by PF (D) the set of all Borel probability measures on D with
a finite support, then within game theory any element ν belonging to PF (D)
is called a mixed strategy and it has the following interpretation. If a player
with pure strategy set D selects the mixed strategy

ν =
∑k

i=1
si(ν)εdi ,

then with probability si(ν), 1 ≤ i ≤ k this player will use the pure strategy
di ∈ D. By this interpretation it is clear that the set D of pure strategies
can be identified within the set of mixed strategies by the one-point Borel
probability measures {εd : d ∈ D}. We now assume that player 1, respectively
player 2 are using their sets of mixed strategies. This means that the payoff
function f should be extended to a function fe : PF (A)× PF (B) → R. This
extension is defined by

fe(λ, µ) :=
∑k

i=1

∑m

j=1
si(λ)sj(µ)f(ai, bj) (5)
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with λ =
∑k

i=1 si(λ)εai
∈ PF (A) and µ =

∑m
j=1 sj(µ)εbj

∈ PF (B) and it rep-
resents the expected profit for player 1 or expected loss of player 2 if player 1
selects the mixed strategy λ ∈ PF (A) and player 2 selects the mixed strategy
µ ∈ PF (B). Under some topological/algebraic conditions on the function f
and the sets A and B of pure strategies it can be shown that the game rep-
resented by fe and the mixed strategy sets PF (A) and PF (B) has a solution.
This means that we need to investigate under which necessary and sufficient
conditions the following minimax result holds

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ). (6)

In case player 2 is only allowed to use his pure strategy set B, we will also
investigate under which necessary and sufficient conditions the game repre-
sented by fe and the sets B and PF (A) has a solution. Hence for this case we
need to check under which conditions the minimax result

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb) (7)

holds. Finally, if player 1 and player 2 are only allowed to use their pure
strategy sets we again pose the same question and investigate under which
necessary and sufficient conditions the game represented by f and the sets
A and B has a solution or equivalently under which condition the classical
minimax result

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b). (8)

holds. A slight extension of a two player zero-sum game is given by a so-called
two player constant-sum game. In this case each player has a payoff function
fi, i = 1, 2 and for these payoff functions there exists some c ∈ R such that

f1(a, b) + f2(a, b) = c

for every a ∈ A and b ∈ B. As in a zero-sum game the gain for player
1, respectively player 2 is given by f1(a, b), respectively f2(a, b) when both
players select independently the strategies a, respectively b. Introducing for
this game the payoff functions f̃i, i = 1, 2 given by

f̃i = fi − ci

with c1 + c2 = c it is easy to see that the analysis of the original constant
sum game reduces to the analysis of a zero-sum game with payoff function
f̃1 for player 1. The above two player zero-sum (constant-sum) noncoopera-
tive game can also be extended to a nonconstant-sum noncooperative game
involving n ≥ 2 players. In this model we have n players, n ≥ 2 and player i,
1 ≤ i ≤ n has a pure strategy set Xi and a payoff function fi : X → R with
X = Πn

i=1Xi (for a detailed definition of these games the reader is referred
to [1], [3] or [10]) Embedding the two player zero-sum game into this more
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general framework we observe that in this case player 1 has payoff function
f1 = f , while player 2 has payoff function f2 = −f . For the nonconstant-sum
case and n ≥ 2 we use the notation Xi to distinguish between the two differ-
ent models and as before the pure strategy sets Xi, i = 1, ..., n are topological
spaces. For the more general n-player nonzero-sum noncooperative games the
concept of a minimax or saddle point approach used within a two player zero-
sum game is generalized and replaced by a so-called Nash equilibrium point
([12], [13]). In Section 6 these more general games will be explained in de-
tail. To analyse the minimax relations given in (6) up to (8) for a two player
zero-sum (noncooperative) game we start in Section 2 with a discussion of
Wald’s minimax theorem. This theorem plays a key role in deriving necessary
and sufficient conditions and will be proved using two different methods. The
first proof uses the separation result of disjoint convex sets in convex anal-
ysis, while the second one uses strong linear programming duality and some
elementary properties of compact sets. In Section 3 these conditions together
with an overview of important sufficient conditions which have appeared in the
literature are discussed. Also we show that the sufficient conditions discussed
in the literature can be easily verified using our necessary and sufficient con-
ditions. In Section 4 we then give the relations between the different minimax
theorems, while in Section 5 we consider the famous minimax result of the
form (8) derived by Sion ([14]). Unfortunately, it remains an open question
whether this minimax result can be derived directly from our necessary and
sufficient conditions discussed in Section 3. Although it is not well known, a
primitive version of Sion’s minimax theorem already appeared in the classical
paper by von Neumann ([15],[16]). The proof of Sion’s theorem given here
is completely elementary and uses a proof technique originated by Joó ([17],
[18]) which differs from the original proof using the so-called KKM (Knaster-
Kuratowski-Mazurkiewicz) lemma. Observe the KKM lemma is equivalent to
the Brouwer fixed point theorem ([19]) and is discussed in Section 6. Also
in Section 6 we introduce the extension of a two player zero-sum game to a
n-player nonzero-sum (noncooperative) game and introduce the concept of a
Nash equilibrium point. Moreover, we prove that under certain conditions a
n-player nonzero-sum (noncooperative) game indeed has a Nash equilibrium
point using a simple proof which applies the aforementioned KKM lemma.
Unfortunately it remains an open question whether it is possible to prove the
existence of a Nash equilibrium point by the elementary techniques used for
the two player zero-sum model.

2 On Wald’s minimax theorem

We assume in this section that the reader is familiar with the basic notions
in set theory, analysis and some elementary function theory (for more details
see [20]). Besides this basic knowledge this section will be self contained.
To show for the different minimax results listed in relation (6) up to (8)
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necessary and sufficient conditions on the payoff function f and the sets A
and B, we first need to discuss in detail Wald’s minimax theorem and this
will be the topic of this section. The derivation of the necessary and sufficient
conditions will be postponed until Section 3. For readers familiar with convex
analysis a proof of Wald’s minimax theorem will be given using the (finite
dimensional) separating hyperplane result, while for readers more familiar
with linear programming we will show Wald’s minimax result using the strong
duality theorem of linear programming and some elementary properties of
compact sets. We first start with a proof using tools from convex analysis. To
do so, we first need to recall some well known definitions and introduce the
proper notation.

Definition 2. A subset C of a linear space is called convex if for every 0 <
β < 1 and x, y ∈ C it follows that βx + (1− β)y belongs to C.

In set notation this means that βC + (1− β)C ⊆ C for every 0 < β < 1.

Definition 3. A real-valued function k : C → R is called convex on the (con-
vex) subset C if

k(βx + (1− β)y) ≤ βk(x) + (1− β)k(y)

for every 0 < β < 1 and x, y ∈ C and it is called concave on C if −k is
convex. The function k : C → R is called affine on C if it is both convex and
concave on C.

Introducing the set

Rn
− := {x = (x1, ..., xn) ∈ Rn : xi ≤ 0, 1 ≤ i ≤ n}

and

x>y =
∑n

i=1
xiyi

the inner product of the vectors x> = (x1, ..., xn) ∈ Rn and y> = (y1, ..., yn) ∈
Rn (by x> we denote the transpose of the column vector x) the most elemen-
tary minimax result is given by the following.

Theorem 1. If C ⊆ Rn is a convex set, then it follows that

infx∈C maxα∈∆n α>x = maxα∈∆n infx∈C α>x.

Proof. It is obvious that

infx∈C maxα∈∆n
α>x ≥ maxα∈∆n

infx∈C α>x. (9)

To show that we actually have an equality in relation (9) we assume by con-
tradiction that
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infx∈C maxα∈∆n
α>x > maxα∈∆n

infx∈C α>x := γ. (10)

By relation (10) there exists some β satisfying

infx∈C maxα∈∆n
α>x > β > γ. (11)

Introduce now the mapping H : C → Rn given by

H(x) := x− βe

with e> = (1, 1, ..., 1) ∈ Rn. If the set H(C) ∩ Rn
− is nonempty, there exists

some x0 ∈ C satisfying x0 − βe ≤ 0. This implies maxα∈∆n
α>x0 ≤ β and

we obtain a contradiction with relation (11). Hence the set H(C) ∩ Rn
− is

empty and by the separation result for disjoint convex sets ([11]) one can find
some α0 ∈ ∆n satisfying infx∈C α>0 x ≥ β. This implies by the definition of γ
that γ ≥ infx∈C α>0 x ≥ β contradicting relation (11) and the desired result is
proved.

Let us introduce the following notation. The set F(A0) represents the
set of all finite subsets of the set A0 ⊆ A and for every I ∈ F(A0) the set
P(I) denotes the set of all Borel probability measures concentrated on I. This
means for I = {a1, ..., a|I|} ⊆ A and |I| < ∞ denoting the cardinality of the
set I that λ belongs to P(I) if and only if

λ =
∑|I|

i=1
si(λ)εai

(12)

for some s(λ)> ∈ ∆|I|. By relation (12) it is clear that the set P(I) is convex
and in particular

P(I) = co({εa}a∈I) (13)

with co(C) denoting the convex hull of a set C. Remember co(C) represents
the set of all finite convex combinations of elements of the set C ([11]). By
the definition of PF (A0) with A0 ⊆ A we also obtain that

PF (A0) = co({εa}a∈A0) = ∪I∈F(A0)P(I) (14)

and this set is also convex. In the next theorem we will prove Wald’s mini-
max result. This result was proved in 1945 ([21]) using a more complicated
approach.

Theorem 2. For any payoff function f : A×B → R and every set I belonging
to F(A)

infµ∈PF (B) max λ∈P(I)fe(λ, µ) = maxλ∈P(I) infµ∈PF (B) fe(λ, µ).

Proof. Let I belong to F(A) and introduce the mapping L : PF (B) → R|I|

given by
L(µ) := (fe(εa, µ))a∈I .
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By the definition of the mapping L and the function fe we obtain

infµ∈PF (B) maxλ∈P(I) fe(λ, µ) = infx∈L(PF (B)) maxs(λ)∈∆|I| s(λ)>x (15)

and

maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = maxs(λ)∈∆|I| infx∈L(PF (B)) s(λ)>x. (16)

Also by relation (5) it follows for every a ∈ I that the function

µ 7−→ fe(εa, µ)

is affine on PF (B). This shows by the convexity of the set PF (B) that the
range L(PF (B)) ⊆ R|I| is a convex set. Applying now Theorem 1 we obtain

infx∈L(PF (B)) maxs(λ)∈∆|I| s(λ)>x = maxs(λ)∈∆|I| infx∈L(PF (B)) s(λ)>x,

and by relations (15) and (16) the desired result follows.

A symmetrical version of Wald’s minimax theorem needed in the proof of
Lemma 4 is given by

supλ∈PF (A) minµ∈P(J) fe(λ, µ) = minµ∈P(J) supλ∈PF (A) fe(λ, µ) (17)

for any J belonging to F(B). This can be easily derived from Theorem 2
(replace fe(λ, µ) by −fe(λ, µ) and reverse the sets A and B!). Using the next
lemma it is also possible to give different equivalent representations of Wald’s
minimax theorem.

Lemma 1. Let f : A×B → R be a given payoff function. For any µ ∈ PF (B)
and A0 ⊆ A

supλ∈PF (A0) fe(λ, µ) = supa∈A0
fe(εa, µ),

while for any B0 ⊆ B and λ ∈ PF (A)

infµ∈PF (B0) fe(λ, µ) = infb∈B0 fe(λ, εb).

Proof. We only give a proof of the first equality since the second one can be
verified in a similar way. Since the set A0 ⊆ A can be identified with the set
of one point Borel probability measures εa, a ∈ A0, it is obvious for every µ
belonging to PF (B) that

supλ∈PF (A0) fe(λ, µ) ≥ supa∈A0
fe(εa, µ).

Consider now an arbitrary λ belonging to PF (A0). By definition there exists
a finite set {a1, ..., ak} ⊆ A0 and s(λ)> ∈ ∆k such that λ =

∑k
i=1 si(λ)εai

,
and hence we obtain

fe(λ, µ) =
∑k

i=1
si(λ)fe(εai

, µ) ≤ supa∈A0
fe(εa, µ).

Since λ belonging to PF (A0) is arbitrary this implies

supλ∈PF (A0) fe(λ, µ) ≤ supa∈A0
fe(εa, µ)

and the desired result is verified.
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By Lemma 1 it follows with A0 replaced by I ∈ F(A) and PF (A0) by P(I)
that

infµ∈PF (B) max λ∈P(I)fe(λ, µ) = infµ∈PF (B) maxa∈I fe(εa, µ) (18)

By a similar argument we obtain

maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = maxλ∈P(I) infb∈B fe(λ, εb), (19)

and combining relations (18), (19) and Theorem 2 one can give different
equivalent representations of Wald’s minimax theorem. For its proof using
the strong duality theorem of linear programming we need some elementary
properties of closed and compact sets.

Definition 4. A topological space X is called compact if every collection of
open subsets of X which covers X contains a finite subcollection covering X.

It is well known that X ⊆ Rn is compact if and only if it is bounded and
closed. ([20]). Moreover, an easy consequence of the above definition is the so-
called finite intersection property of compact sets given by the following ([6]):
any collection of closed subsets of a compact topological space X, for which
any finite subcollection has a nonempty intersection, must have a nonempty
intersection.

Definition 5. A function k : X → R with X a topological space is called
lower semicontinuous if all its lower level sets {x ∈ X : k(x) ≤ r}, r ∈ R are
closed subsets of X. It is called upper semicontinuous if all its upper level sets
{x ∈ X : k(x) ≥ r}, r ∈ R are closed subsets of X and it is called continuous
if it is both upper and lower semicontinuous.

One can now show the following so-called Weierstrass-Lebesgue lemma
([6]). For completeness a proof is listed.

Lemma 2. If the function k : X → (−∞,∞] is lower semicontinuous and X
is a compact topological space, then the function k is bounded from below and
attains its minimum on X.

Proof. Since k is a lower semicontinuous function with values > −∞ it follows
that the decreasing sequence On := {x ∈ X : k(x) > n}, n ∈ Z of open sets
covers X. This implies by the compactness of X that there exist a finite
subcover and since On+1 ⊆ On one can find some m ∈ Z satisfying X ⊆ Om

and so the function k is bounded from below. To show that the function k
attains its minimum introduce β := infx∈X k(x). If β = ∞ we are done.
Hence we assume that β < ∞ and by the first part β is finite. Consider now
the collection of nonempty closed sets Fn = {x ∈ X : k(x) ≤ β +n−1}, n ∈ N.
Since Fn+1 ⊆ Fn it follows that by the definition of β that ∩n∈IFn is nonempty
for every finite subset I of N . Hence by the finite intersection property of
compact sets we obtain that the intersection ∩n∈NFn is nonempty and this
shows that k attains its minimum on X.
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A symmetrical version of the above result is given by the following. If
the function k : X → [−∞,∞) is upper semicontinuous and X is a compact
topological space, then the function k is bounded from above and attains its
maximum on X. As shown by the next observation the above result is useful
in determining whether an optimal pure strategy for player 2 exists if the
minimax relations (7) or (8) hold. Since for any payoff function f : A×B → R
it follows for r finite that

{b ∈ B : supa∈A f(a, b) ≤ r} = ∩a∈A{b ∈ B : f(a, b) ≤ r} (20)

we obtain immediately for b 7−→ f(a, b), a ∈ A lower semicontinuous that the
function b 7−→ supa∈A f(a, b) is also lower semicontinuous. This implies by
Lemma 2 for B a compact topological space and using Lemma 1 that there
exists some b0 ∈ B satisfying

supa∈A f(a, b0) = infb∈B supa∈A f(a, b) = infb∈B supλ∈PF (A) fe(λ, εb).

By a symmetry argument a similar observation holds for player 1 if A is a
compact topological space and a 7−→ f(a, b) is upper semicontinuous for every
b ∈ B.

Definition 6. A function k : X → R with X a topological space is called
inf-compact if all its lower level sets {x ∈ X : k(x) ≤ r}, r ∈ R are compact.
It is called sup-compact if all its upper level sets {x ∈ X : k(x) ≥ r}, r ∈ R
are compact.

If B is a Hausdorff space it is shown in Chapter 9 of [6] that a compact
subset of B is closed. This proves for B Hausdorff that every inf-compact (sup-
compact) function is actually lower-semicontinuous (upper semicontinuous).
Using now Lemma 2 and Definition 6 one can prove the following important
result.

Lemma 3. If the pure strategy set B is a topological space and there exist
some I0 ∈ F(A) such that the function b 7−→ maxa∈I0 f(a, b) is inf-compact
and b 7−→ f(a, b) is lower semicontinuous for every a ∈ A, then

supI∈F(A) infb∈B supa∈I f(a, b) = infb∈B supa∈A f(a, b).

Moreover, the inf in the last expression is attained and so, it can be replaced
by min.

Proof. Introducing β := supI∈F(A) infb∈B supa∈I f(a, b) we first verify that

infb∈B supa∈A f(a, b) ≤ β + ε

for every ε > 0. Consider for ε > 0 the nonempty set

Fα(ε) := {b ∈ B : maxa∈I0∪{α} f(a, b) ≤ β + ε}, α ∈ A\I0.
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Since the function b 7−→ f(a, b) is lower semicontinuous for every a ∈ A
it follows by relation (20) that the nonempty set Fα(ε) is closed for every
α ∈ A\I0. Moreover, for every finite set I ⊆ A\I0 we obtain by the definition
of β that ∩α∈IFα(ε) is nonempty and

Fα(ε) ⊆ {b ∈ B : maxa∈I0 f(a, b) ≤ β + ε} (21)

for any α ∈ A\I0. By assumption the last set in relation (21) is compact and
we have shown that the collection Fα(ε), α ∈ A\I0 of closed sets satisfies the
finite intersection property. This shows that ∩α∈A\I0Fα(ε) is nonempty and
since

∩α∈A\I0Fα(ε) = {b ∈ B : supa∈A f(a, b) ≤ β + ε} (22)

we obtain
inf
b∈B

sup
a∈A

f(a, b) ≤ β + ε.

Since ε > 0 is arbitrary, this implies infb∈B supa∈A f(a, b) = β and to show
that the infimum is actually attained, we observe the following. Since by
relation (22) we obtain for every ε > 0 that

G(ε) := ∩α∈A\I0Fα(ε)

is a closed nonempty set of the compact set {b ∈ B : maxa∈I0 f(a, b) ≤
β + ε} the finite intersection property also holds for the decreasing collection
G(ε), ε > 0. This shows that

infb∈B supa∈A f(a, b) = minb∈B supa∈A f(a, b)

and so the infimum can be replaced by min.

An important special case of Lemma 3 is given by B a compact topological
space and b 7−→ f(a, b) is lower semicontinuous for every a ∈ A. Since every
closed subset of a compact set is compact (see Chapter 9 of [6]), it is obvious
that the conditions of Lemma 3 are satisfied. A symmetrical version of Lemma
3 needed in the next proof of Wald’s minimax theorem is given by

infJ∈F(B) supa∈A minb∈J f(a, b) = maxa∈A infb∈B f(a, b). (23)

and this holds if the function a 7−→ f(a, b) is upper semicontinuous for
every b ∈ B and there exist some J0 ∈ F(B) such that the function
a 7−→ minb∈J0 f(a, b) is sup-compact. A sufficient condition for this is given
by A a compact topological space and a 7−→ f(a, b) is upper semicontinuous
for every b ∈ B. We are now able to give a proof of Wald’s minimax result
using the strong duality theorem for linear programming and relation (23).

Proof. (Alternative proof of Wald’s minimax theorem)

By relation (14) with A0 replaced by B it follows for I belonging to F(A)
that
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infµ∈PF (B) max a∈Ife(εa, µ) = infJ∈F(B) minµ∈P(J) maxa∈I fe(εa, µ). (24)

For every J ∈ F(B) the optimization problem

minµ∈P(J) maxa∈I fe(εa, µ) = min{z : z ≥ fe(εa, µ), a ∈ I, µ ∈ P(J)}

is a linear programming problem with a finite optimal solution. Hence by the
strong duality theorem for linear programming ([22]) we obtain the minimax
result given by

minµ∈P(J) maxa∈I fe(εa, µ) = maxλ∈P(I) minb∈J fe(λ, εb). (25)

Applying now relations (24) and (25) yields

infµ∈PF (B) max a∈Ife(εa, µ) = infJ∈F(B) maxλ∈P(I) minb∈J fe(λ, εb). (26)

Moreover, since the set I is finite and hence ∆|I| ⊆ R|I| being closed and
bounded and hence compact (in the Euclidean topology) and λ 7−→ fe(λ, εb)
is continuous on P(I) for every b ∈ B we may use relation (23) with the set
A replaced by P(I) and the function f(a, b) by fe(λ, εb). This shows

infJ∈F(B) maxλ∈P(I) minb∈J fe(λ, εb) = maxλ∈P(I) infb∈B fe(λ, εb)

and so we obtain by relation (26) that

infµ∈PF (B) maxa∈I fe(εa, µ) = maxλ∈P(I) infb∈B fe(λ, εb).

Finally by Lemma 1 (replace B0 by B) Wald’s minimax result is verified.

Actually the minimax result

minµ∈P(J) maxa∈I fe(εa, µ) = maxλ∈P(I) minb∈J fe(λ, εb). (27)

was first proved by von Neumann in 1928 ([15]). In fact in this paper a more
general minimax result for a continuous payoff function defined on the Carte-
sian product of compact simplices which is quasiconvex in B and quasiconcave
in A was shown. This result seems to have been forgotten in the literature
(the special case in relation (27) was published in [23]) and was later inde-
pendently generalized by Sion ([14]) in 1958. A useful consequence of Lemma
3 and Wald’s minimax result is given by Kneser’s minimax result ([24]).

Lemma 4. If the set A is a compact convex subset of a linear topological space,
B is a convex subset of a linear space, the payoff function f : A × B → R is
affine in both variables and a 7−→ f(a, b) is upper semicontinuous for every
b ∈ B, then

supa∈A infb∈B f(a, b) = infb∈B supa∈A f(a, b)

and in both expressions the sup can be replaced by max.
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Proof. Since A is a compact convex topological space and the function a 7−→
f(a, b) is upper semicontinuous for every b ∈ B we obtain by relation (23)
that

maxa∈A infb∈B f(a, b) = infJ∈F(B) maxa∈A minb∈J f(a, b). (28)

Considering now any λ belonging to PF (A) and b ∈ B it follows that there
exists some finite set {a1, ..., ak} ⊆ A and s(λ)> ∈ ∆k such that

λ =
∑k

i=1
si(λ)εai .

This implies, using a 7−→ f(a, b) is affine for every b ∈ B and A is a convex
set, that

maxa∈A minb∈J f(a, b) ≥ minb∈J f(
∑k

i=1
si(λ)ai, b) = minb∈J fe(λ, εb).

(29)
Since λ ∈ PF (A) is arbitrary, relation (29) yields

maxa∈A minb∈J f(a, b) ≥ supλ∈PF (A) minb∈J fe(λ, εb)

and by Lemma 1 and relation (14) with A0 replaced by A this implies

maxa∈A minb∈J f(a, b) = supλ∈PF (A) minµ∈P(J) fe(λ, µ). (30)

Applying now the symmetrical version of Wald’s minimax theorem listed in
relation (17) to the last part of relation (30) yields

maxa∈A minb∈J f(a, b) = minµ∈P(J) supλ∈PF (A) fe(λ, µ). (31)

Hence by relations (28), (31), (14) and Lemma 1 we obtain

maxa∈A infb∈B f(a, b) = infµ∈PF (B) supa∈A fe(εa, µ). (32)

Since the function b 7−→ f(a, b) is affine for every a ∈ A and the set B is
convex we obtain as in the first part of this proof that

infµ∈PF (B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a, b) = infb∈B maxa∈A f(a, b)

and in combination with relation (32) the desired result follows.

Actually one can show that the minimax results of Wald, von Neumann
and Kneser can be easily derived from each other. For more equivalent min-
imax results the reader is referred to ([25]). An easy consequence of Wald’s
minimax theorem useful in Section 2 is given by the following.

Theorem 3. For any payoff function f : A×B → R

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ).



14 J.B.G.Frenk and G.Kassay

Proof. By Lemma 1 and Wald’s minimax theorem we obtain for every I be-
longing to F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) = maxλ∈P(I) infµ∈PF (B) fe(λ, µ). (33)

Since by relation (14)

supI∈F(A) maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

the desired result follows using relation (33).

3 On necessary and sufficient conditions for minimax
theorems

In this section we will derive necessary and sufficient conditions for the dif-
ferent minimax equalities listed in relations (6) up to (8) by means of the
extension of Wald’s minimax result listed in Theorem 3. Observe these min-
imax results are equivalent to the existence of ”optimal” strategies for two
player zero-sum noncooperative games under different conditions on the use
of the strategy sets of the two players. To derive these conditions for relation
(6), we introduce the following class of functions.

Definition 7. The payoff function f : A×B → R belongs to the set U0 if

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈PF (B) supa∈A fe(εa, µ).

A game theoretic interpretation of a payoff function f belonging to the set
U0 is given by the observation that for player 2 using the mixed strategy set
PF (B) and the minimax approach it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. However, it might be possible that the value for player 2
cannot be achieved if he uses the set PF (B) of mixed strategies.

Theorem 4. The minimax result in relation (6), given by

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

holds if and only if the function f belongs to the set U0.

Proof. By Theorem 3 and the definition of U0 the result follows immediately.

The importance of the above theorem is that the minimax equality in re-
lation (6) is replaced by an easier condition. Notice that U0 is automatically
satisfied if A is a finite set. In this way Wald’s minimax theorem is a direct
consequence of Theorem 4. Moreover, we will show at the end of this section
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that a minimax result derived by Ville ([26]) is an easy consequence of The-
orem 4. We do this by showing that the conditions imposed on the payoff
function f and the pure strategy sets A and B imply that the function f
should belong to the set U0. Actually by a symmetric argument (replace f by
−f and reverse the sets A and B!) one can also introduce the following class
of functions.

Definition 8. The payoff function f : A×B → R belongs to the set V0 if

infJ∈F(B) supλ∈PF (A) minb∈J fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

Using the same symmetry argument the next corollary is an easy conse-
quence of Theorem 4.

Corollary 1. The minimax result in relation (6), given by

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

holds if and only if the function f belongs to V0.

To derive a necessary and sufficient condition for the minimax equality in
relation (7) we introduce the following class of functions.

Definition 9. The function f : A×B → R belongs to the set U1 if

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infb∈B supa∈A f(a, b).

A game theoretic interpretation of the payoff function f belonging to the
set U1 is given by the observation that for player 2 using the mixed strategy
set PF (B) and the minimax approach it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. Moreover, the payoff function for player 2 is such that his
mixed strategy set is always dominated by his pure strategy set. A sufficient
condition for the listed minimax result was discussed in [27].

Theorem 5. The minimax result in relation (7), given by

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

holds if and only if the function f belongs to U1.

Proof. By Lemma 1 the minimax result listed in relation (7) is the same as

infb∈B supa∈A f(a, b) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

Hence by Theorem 3 and the definition of U1 the desired result follows.

Finally we derive a necessary and sufficient condition for the minimax
equality listed in relation (8) involving the pure strategy sets A and B.
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Definition 10. The function f : A×B → R belongs to the set U2 if

supλ∈PF (A) infb∈B fe(λ, εb) = supa∈A infb∈B f(a, b).

A game theoretic interpretation of the payoff function f belonging to the
set U2 is given by the observation that for player 1 using the mixed strategy set
PF (A) and the minimax approach his mixed strategy set is always dominated
by his pure strategy set. This means that player 1 can restrict himself to the
set of pure strategies instead of using the set of mixed strategies. One can now
show the most well known minimax result.

Theorem 6. The minimax result in relation (8), given by

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b).

holds if and only if the function f belongs to the set U1 ∩ U2.

Proof. If the function f belongs to the set U1 ∩U2, then by Lemma 1 (replace
A0 by A) and Theorem 5 we obtain

infb∈B supa∈A f(a, b) = supλ∈PF (A) infb∈B fe(λ, εb).

By the definition of the set U2 this implies that relation (8) holds. To show the
reverse implication consider an arbitrary λ belonging to PF (A). By relation
(14) there exists some I0 ∈ F(A) such that λ ∈ P(I0) and so we obtain

infb∈B fe(λ, εb) ≤ supI∈F(A) infb∈B supa∈I f(a, b). (34)

This implies

supλ∈PF (A) infb∈B fe(λ, εb) ≤ supI∈F(A) infb∈B supa∈I f(a, b).

Also by our minimax result listed in relation (8) we obtain

supI∈F(A) infb∈B supa∈I f(a, b) ≤ infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

and this shows that

supλ∈PF (A) infb∈B fe(λ, εb) ≤ supa∈A infb∈B f(a, b) (35)

Since the reverse inequality trivially holds we can replace the inequality in
relation (56) by an equality and so the function f belongs to U2. This implies
using again the minimax equality in relation (8) that

supλ∈PF (A) infb∈B fe(λ, εb) = infb∈B supa∈A f(a, b)

and by Theorem 5 the function f belongs to U1.

Again using a symmetry argument (replace f by −f and reverse the sets A
and B!) in the definition of the sets U1 and U2 one can introduce the following
class of functions.
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Definition 11. The payoff function f : A×B → R belongs to the set V1 if

infJ∈F(B) supλ∈PF (A) minb∈J fe(λ, εb) = supa∈A infb∈B f(a, b),

while f : A×B → R belongs to the set V2 if

infµ∈PF (B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a, b).

By the same symmetry argument one can easily derive the following corol-
lary from Theorem 6.

Corollary 2. The minimax result in relation (8), given by

infa∈A supb∈B f(a, b) = supb∈B infa∈A f(a, b)

holds if and only if f belongs to the set V1 ∩ V2.

Before giving a short overview of some minimax theorems which appeared
in the literature we list some definitions and results for functions defined on a
metric space. Observe we also include the definition of a continuous function
on a metric space. Another equivalent definition of a continuous function on
a topological space was already given in Definition 5.

Definition 12. Let (X, ρ) be a metric space with metric ρ. The function k :
X → R is said to be continuous at the point x ∈ X if for every ε > 0 there
exists some δ > 0 such that |k(x) − k(y)| < ε for every y ∈ X satisfying
ρ(x, y) < δ. It is called continuous on X if it is continuous at every point
x ∈ X. A function k : X → R is called uniformly continuous on X if for
every ε > 0 there exists some δ > 0 such that for any x, y ∈ X satisfying
ρ(x, y) < δ it holds that |k(x) − k(y)| < ε. Finally, a collection of functions
kγ : X → R, γ ∈ Γ is called equicontinuous if for every ε > 0 there exists
some δ > 0 such that for every x, y ∈ X satisfying ρ(x, y) < δ it holds that
|kγ(x)− kγ(y)| < ε for every γ ∈ Γ.

Recall in a metric space (X, ρ) with metric ρ, the open ball B(x0, δ) with
center x0 and radius δ > 0 is given by

B(x0, δ) := {x ∈ X : ρ(x, x0) < δ}.

We now list the following well-known result ([6], [28]).

Lemma 5. For (X, ρ) a compact metric space with metric ρ a function k :
X → R continuous on X is uniformly continuous on X.

Proof. Let ε > 0 and consider an arbitrary x ∈ X. Since k is continuous at x
there exists some δx > 0 such that |k(x)−k(y)| < 2−1ε for every y belonging to
B(x, δx). Clearly the collection of open balls B(x, 2−1δx), x ∈ X is a covering
of X and this implies by the compactness of X that there exists some finite
set F = {x1, ..., xn} ⊆ X satisfying
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X = ∪n
i=1B(xi, 2−1δxi

). (36)

Let now δ := 4−1 min1≤i≤n δxi and consider two points y, z ∈ X satisfying
ρ(z, y) < δ. By relation (36) there exists some 1 ≤ i∗ ≤ n such that ρ(y, xi∗) <
2−1δxi∗ and so |f(xi∗)− f(y)| ≤ 2−1ε. By the triangle inequality of a metric
we also obtain, using ρ(z, y) < δ, that

ρ(z, xi∗) ≤ ρ(z, y) + ρ(y, xi∗) < δ + 2−1δxi∗ ≤ δx∗
i
,

and so |f(z)− f(xi∗)| < 2−1ε. This shows that

|f(z)− f(y)| ≤ |f(z)− f(xi∗)|+ |f(xi∗)− f(y)| < 2−1ε + 2−1ε = ε

and we have shown that the function k is uniformly continuous on X.

We now recall the minimax equality listed in relation (6). In 1938 Ville
([26]) proved a generalization of the well-known von Neumann minimax result
listed in relation (27). This result is shown in Theorem 7 and serves as an
important tool in infinite zero-sum or antagonistic game theory ([3]).

Theorem 7. If A and B are nonempty compact sets in metric spaces and the
payoff function f : A×B → R is continuous, then

supλ∈PF (A) infµ∈PF (B) fe(λ, µ) = infµ∈PF (B) supλ∈PF (A) fe(λ, µ).

To prove Theorem 7 we show that the conditions imposed on f and the
sets A and B imply that the function f belongs to the set U0. Applying then
Theorem 4 yields a proof of Ville’s minimax theorem. Actually we show the
following result.

Lemma 6. If the set A is a compact metric space with metric ρ and the collec-
tion of functions fb : A → R , b ∈ B given by fb(a) := f(a, b) is equicontinuous
with f the payoff function, then f belongs to U0. In particular, if f is con-
tinuous and the sets A and B are compact metric spaces, then f belongs to
U0.

Proof. For the proof of the first part it is obvious that

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) ≤ infµ∈PF (B) supa∈A fe(εa, µ).

To show the result it is therefore sufficient to verify that for every ε > 0 there
exists some set Iε ∈ F(A) satisfying

infµ∈PF (B) supa∈A fe(εa, µ) ≤ infµ∈PF (B) supa∈Iε
fe(εa, µ) + ε.

Let ε > 0 be given. Since the collection of functions fb, b ∈ B is equicontinuous
one can find some δ > 0 such that for every a1, a2 ∈ A satisfying ρ(a1, a2) < δ
it holds that
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|f(a1, b)− f(a2, b)| < ε

for every b ∈ B. Clearly the collection of open balls B(a, δ), a ∈ A covers A
and by the compactness of A one can find a finite set Iε ∈ F(A) such that

A = ∪a∈Iε
B(a, δ). (37)

Consider now an arbitrary µ ∈ PF (B). By relation (37) and fb, b ∈ B equicon-
tinuous it follows for any a ∈ A that there exists some a0 ∈ Iε such that

|f(a, b)− f(a0, b)| < ε

for every b ∈ B. Hence by the definition of PF (B) this implies

fe(εa, µ) ≤ fe(εa0 , µ) + ε ≤ supa∈Iε
fe(εa, µ) + ε. (38)

Since a ∈ A is arbitrary, it follows by relation (38) that

supa∈A fe(εa, µ) ≤ supa∈Iε
fe(εa, µ) + ε

and this implies (using µ is arbitrary) the desired inequality. To verify the
second part, it follows by the continuity of the function f on the compact
metric space A×B and Lemma 5 that the function f is uniformly continuous
on A × B. This shows that the collection fb, b ∈ B is equicontinuous and by
the first part the desired result follows.

Actually the conditions imposed by Ville can be improved in the following
way ([29]).

Theorem 8. If the pure strategy sets A and B are compact Hausdorff spaces
and b 7−→ f(a, b) is lower semicontinuous for every a ∈ A and a 7−→ f(a, b) is
upper semicontinuous for every b ∈ B and the payoff function f belongs to the
space of Borel measurable functions which are Lebesgue absolutely integrable
with respect to any Borel product probability measure µ⊗ λ on B ×A, then

supλ∈PF (A) infµ∈PF (B) fe(λ, µ) = infµ∈PF (B) supλ∈PF (A) fe(λ, µ).

Again this result (for an alternative proof see [29]) can be verified by
showing that the above conditions imply that the function f belongs to U0.
Since its proof involves classical results from the set of Borel measures on a
compact Hausdorff space ([8], [9]) and these results are beyond the scope of
this chapter, we refer the reader to [29] for more details on the used techniques.
We also like to mention for P(A) (P(B)) denoting the set of Borel probability
measures on A (B) that under the conditions of the next lemma one can show
by a similar type of proof as in Lemma 1 that

supλ∈P(A) fe(λ, µ) = supa∈A fe(εa, µ) (39)

for every µ ∈ P(B) and

infµ∈P(B) fe(λ, µ) = infb∈B fe(λ, εb) (40)

for every λ ∈ P(A).
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Lemma 7. If the pure strategy set A and B are compact Hausdorff spaces
and the function b 7−→ f(a, b) is lower semicontinuous for every b ∈ B and
a 7−→ f(a, b) is upper semicontinuous for every a ∈ A and f belongs to the
space of Borel measurable functions which are Lebesgue absolutely integrable
with respect to any Borel product probability measure µ ⊗ λ on B, then the
function f belongs to U0.

Proof. Since the function b 7−→ f(a, b) is Lebesgue absolutely integrable for
any Borel probability measure µ on the set B, one can show (see Corollary
2.2 of [30] that

infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈P(B) supa∈I fe(εa, µ).

for any I ∈ F(A). Hence we obtain

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ).
(41)

In the remainder of the proof we will now verify that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) ≥ infµ∈PF (B) supa∈A fe(εa, µ). (42)

Assuming for the moment that this holds it follows by (41) that f belongs
to U0. To prove relation (42) we observe for B a compact Hausdorff space
that the set P(B) is compact in the weak∗ topology ([8], [9]) and the function
µ 7−→ fe(εa, µ) is lower semicontinuous with respect to the weak∗ topology
(see Lemma 12 of [29]). Hence by Lemma 3 (replace B by P(B) and f(a, b)
by fe(εa, µ)) and relation (39) it follows that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) = infµ∈P(B) supλ∈P(A) fe(λ, µ). (43)

Again by Lemma 12 of [29] the function µ 7−→ fe(λ, µ) is upper semicontinuous
and since P(A) is also weak∗compact we obtain by Kneser’s minimax theorem
(Lemma 4) (replace A by P(A) and f(a, b) by the biaffine function fe(λ, µ))
and relation (40) that

infµ∈P(B) supλ∈P(A) fe(λ, µ) = supλ∈P(A) infb∈B fe(λ, εb). (44)

Again by the weak∗compactness of P(A) and relation (40) it follows that

supλ∈P(A) infb∈B fe(λ, εb) = infJ∈F(B) supλ∈P(A) infµ∈P(J) fe(λ, µ). (45)

It is now obvious that

infJ∈F(B) supλ∈P(A) infµ∈P(J) fe(λ, µ) ≥

infJ∈F(B) supλ∈PF (A) infµ∈P(J) fe(λ, µ)
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and by Wald’s minimax theorem and Lemma 1

infJ∈F(B) supλ∈PF (A) infµ∈P(J) fe(λ, µ) = infµ∈PF (B) supa∈A fe(εa, µ). (46)

This implies by relations (43) up to (46) that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) ≥ infµ∈PF (B) supa∈A fe(εa, µ)

and so relation (42) is proved.

We will now consider the minimax equality listed in relation (7) and in-
troduce the following definition used in ([27]).

Definition 13. The payoff function f : A×B → R is called weakly convexlike
on B (or belongs to the set WCB) if for every finite set I ⊆ A

infα∈∆n,bi∈B,1≤i≤n,n∈N
maxa∈I

∑n

i=1
αif(a, bi) ≥ infb∈B maxa∈I f(a, b).

An alternative representation of the above definition is given by

infµ∈PF (B) maxa∈I fe(εa, µ) ≥ infb∈B maxa∈I f(a, b)

for every I belonging to F(A). Since the set B can be identified with the set
(εb)b∈B it follows for I ∈ F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) ≤ infb∈B maxa∈I f(a, b)

and this shows that in Definition 13 the inequality for a weakly convexlike
function on B can be replaced by an equality. Again a function belonging to
WCB has a clear game theoretical interpretation: for any finite set of pure
strategies of player 1 it follows that player 2 using its mixed strategy set
PF (B) can restrict himself to its set of pure strategies. The next result is
proved in ([27]).

Theorem 9. If B is a compact topological space, the payoff function f is
weakly convexlike on B and b 7−→ f(a, b) is lower semicontinuous on B for
every a ∈ A, then

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

As before, we check that any function satisfying the assumptions above
belongs to the set U1, and so by Theorem 5 the minimax result in Theorem 9
is proved.

Lemma 8. If B is a compact topological space and the payoff function f is
weakly convexlike on B and b 7−→ f(a, b) is lower semicontinuous for every
a ∈ A, then f belongs to U1.
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Proof. Since the function f is weakly convexlike on B it follows that

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infb∈B maxa∈I f(a, b)

By the compactness of the set B and b 7−→ f(a, b) is lower semicontinuous for
every a ∈ A we may apply Lemma 3 and this shows by the previous equality
that f belongs to U1.

Actually as shown by the following counterexample the set of weakly con-
vexlike functions on B with B a compact set and b 7−→ f(a, b) continuous for
every a ∈ A is strictly included in the set U1. Observe the function 1S denotes
the characteristic function of the set S, i.e., 1S(s) = 1 for s ∈ S and 1S(s) = 0
otherwise.

Example 2. Let B = [0, 1] and A = {1, 2, 3} and introduce the continuous
functions b 7−→ f(a, b), a ∈ A given by

f(1, b) = 2b1{b≤2−1} + 1{2−1<b≤1}, f(2, b) = 1{b≤2−1} + (2− 2b)1{2−1<b≤1}

and f(3, b) = 1{0≤b≤1}. Since A is a finite set it follows

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈PF (B) maxa∈A fe(εa, µ).

Using f(3, b) = 1 for every b we obtain fe(ε3, µ) = 1 for every µ ∈ PF (B) and
so

infµ∈PF (B) maxa∈A fe(εa, µ) = 1.

At the same time it is easy to see that infb∈B maxa∈A f(a, b) = 1 and this
shows that the function f belongs to U1. Introducing now the set I0 = {1, 2} ⊆
A it follows that

infb∈B maxa∈I0 f(a, b) = 1

Moreover, since µ0 = 2−1ε0 + 2−1ε1 belongs to PF (B) we obtain

infµ∈PF (B) maxa∈I0 fe(εa, µ) ≤ max
a∈I0

fe(εa, µ0) = 2−1

and so f is not weakly convexlike on B.

We will now give an overview of the most important different payoff func-
tions f considered in the literature which were used to verify the minimax
equality in relation (8). For a more extensive overview the reader should con-
sult [25] or [31]. In a paper by Ky Fan in 1953 ([32]) the following definition
is introduced. In the literature these functions are also called convexlike or
concavelike.

Definition 14. The payoff function f : A × B → R is called Ky Fan convex
on B (or belongs to the set KFCB) if for every b1, b2 ∈ B and 0 < α < 1
there exists some b0 ∈ B satisfying
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f(a, b0) ≤ αf(a, b1) + (1− α)f(a, b2)

for every a ∈ A. It is called Ky Fan concave on A or (belongs to the set
KFCA) if for every a1, a2 ∈ A and 0 < α < 1 there exists some a0 ∈ A
satisfying

f(a0, b) ≥ αf(a1, b) + (1− α)f(a2, b)

for every b ∈ B. The payoff function f : A×B → R is called Ky Fan concave-
convex on the Cartesian product A×B, if f is Ky Fan concave on A and Ky
Fan convex on B.

To rewrite the definition of a Ky Fan convex (concave) function in our
notation we introduce for D some topological space the set P2(D) ⊆ PF (D) of
two-point probability measures on D. This means that the probability measure
λ belongs to P2(D) if and only if

λ = s(λ1)εd1 + s(λ2)εd2

with di, 1 ≤ i ≤ 2 different elements of the pure strategy set D and s(λ)> =
(s(λ1), s(λ2)) ∈ ∆2 with s(λi) > 0, 1 ≤ i ≤ 2. Using this notation it follows
that the payoff function f : A×B → R is Ky Fan convex on B if for every µ
belonging P2(B) there exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ)

for every a ∈ A. Clearly this property also has a clear game theoretical inter-
pretation. For such a payoff function every two-point mixed strategy of player
2 is dominated by a pure strategy. Actually by an easy induction argument
one can also show for f Ky Fan convex on B that for any µ ∈ PF (B) there
exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ)

for any b ∈ B. This means that every mixed strategy of player 2 is dominated
by a pure strategy. In [32] the following minimax result is shown.

Theorem 10. If B is compact topological space, the payoff function f is Ky
Fan concave-convex on A × B and b 7−→ f(a, b) is lower semicontinuous for
every a ∈ A, then

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

and inf can be replaced by min in the above expression.

By the well known symmetry argument (replace f by −f and reverse A and
B) one can easily derive from Theorem 10 that the above minimax result
holds if A is a compact topological space, the function f is Ky-Fan concave-
convex on A × B and a 7−→ f(a, b) is upper semicontinuous for every b ∈ B.
Another more general class of functions was introduced by König in 1968
([33]). Actually König only introduced the next class with β = 1

2 , but indicates
at the the end of his paper that the same results also holds with 0 < β < 1.
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Definition 15. The payoff function f : A×B → R is called König convex on
B (or belongs to the set KCB) if there exists some 0 < β < 1 such that for
every b0, b1 ∈ B there exists some b0 ∈ B satisfying

f(a, b0) ≤ βf(a, b1) + (1− β)f(a, b0)

for every a ∈ A. It is called König concave on A (or belongs to the set KCA)
if there exists some 0 < β < 1 such that for every a1, a2 ∈ A there exists some
a0 ∈ A satisfying

f(a0, b) ≥ βf(a1, b) + (1− β)f(a2, b)

for every b ∈ B. The payoff function f : A×B → R is called König concave-
convex on A×B, if f is König concave on A and König convex on B.

Although the above definition is rather technical it has a clear interpre-
tation in game theory. Denoting by P2,β(D) ⊆ P2(D) the set of two point
probability measures on the topological space D with probabilities β and
1 − β (β fixed), it means that any mixed strategy of player 2 belonging to
P2,β(B) is dominated by a pure strategy. In [33] the same minimax result is
shown as in Theorem 10 under the weaker conditions that B is a compact
topological space, b 7−→ f(a, b) is lower semicontinuous for every a ∈ A and f
is König concave-convex on A×B. Another more general class of functions is
considered in [34] or [35].

Definition 16. The payoff function f : A × B → R is called closely convex
on B (or belongs to the set CCB) if for every ε > 0, 0 < α < 1 and b1, b2 ∈ B
there exists some b0 ∈ B satisfying

f(a, b0) ≤ αf(a, b1) + (1− α)f(a, b2) + ε

for every a ∈ A. It is called closely concave on A (or belongs to the set CCA) if
for every ε > 0, 0 < α < 1 and a1, a2 ∈ A there exists some a0 ∈ B satisfying

f(a0, b) ≥ αf(a1, b) + (1− α)f(a2, b)− ε

for every b ∈ B. The payoff function f : A×B → R is called closely concave-
closely convex on A × B, if f is closely concave on A and closely convex on
B.

Again in our notation it follows that the payoff function f is closely convex
on B if for every ε > 0 and every µ ∈ P2(B) there exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ) + ε

for every a ∈ A. This also has an obvious game theoretical interpretation.
In [34] one also shows the minimax result in relation (8) under the weaker
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condition that B is a compact topological space, b 7−→ f(a, b) is lower semi-
continuous for every a ∈ A and f is closely concave-closely convex on A×B.
To show the above results by means of Theorem 6 we need to verify that all
the considered payoff functions actually belong to the set U1 ∩U2. In the next
result we say that 0 ≤ β ≤ 1 is a König concave constant on A if for every
λ ∈ P2,β(A) there exists some a0 ∈ A satisfying f(a0, b) ≥ fe(λ, εb) for every
b ∈ B.

Lemma 9. It holds that KFCA ⊆ KCA ⊆ CCA ⊆ U2

Proof. It is obvious that the inclusion KFCA ⊆ KCA holds. To show that
KCA ⊆ CCA it is sufficient to verify that the set S ⊆ [0, 1] given by S :=
{0 ≤ β ≤ 1 : β a a König concave constant} satisfies cl(S) = [0, 1]. Clearly
the numbers 0 and 1 belong to S. Since the function f is König concave on
A we know that there exists some 0 < β < 1 belonging to S. Moreover, if the
numbers βi, i = 1, 2 belong to S it follows for every λi = βiεa1 + (1 − βi)εa2

∈ P2,βi(A) with ai ∈ A, i = 1, 2 that there exists some elements a(βi) ∈ A, i =
1, 2 satisfying

f(a(βi), b) ≥ fe(λi, εb) (47)

for every b ∈ A and i = 1, 2. This implies using β belongs to S that for
λ = βεa(β1) + (1− β)εa(β2) ∈ P2,β(A) there exists some a0 ∈ A satisfying

f(a0, b) ≥ fe(λ, εb)

for every b ∈ B. Hence by relation (47) we obtain

f(a0, b) ≥ (ββ1 + (1− β)β2)f(a1, b) + (1− ββ1 − (1− β)β2)f(a2, b)

for every b ∈ B. This means for any βi ∈ S, i = 1, 2 that also ββ1 + (1− β)β2

belongs to S and in [36] it is shown that such a set is dense in [0, 1]. To verify
the last inclusion one can show by induction that for f closely concave on A
it follows for every ε > 0 and λ ∈ PF (A) that there exists some a0 satisfying

f(a0, b) ≥ fe(λ, εb)− ε

for every b ∈ B. This implies for every ε > 0 and λ ∈ PF (A) that

inf
b∈B

f(a0, b) ≥ inf
b∈B

fe(λ, εb)− ε (48)

and hence
sup
a∈A

inf
b∈B

f(a, b) ≥ inf
b∈B

fe(λ, εb)− ε. (49)

Since λ ∈ PF (A) and ε are arbitrary we obtain

sup
a∈A

inf
b∈B

f(a, b) ≥ sup
λ∈PF (A)

inf
b∈B

fe(λ, εb), (50)

and so f belongs to U2.
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Actually one can show that the above inclusions are strict ([34]). Moreover,
one can also show the following result

Lemma 10. If B is a compact topological space and the function b 7−→ f(a, b)
is lower semicontinuous for every a ∈ A,then KFCB = KCB = CCB ⊆ U1.

Proof. As in Lemma 9 one can show without any additional conditions that
KFCB ⊆ KCB ⊆ CCB and to prove equality it is sufficient to verify for B
a compact topological space and b 7−→ f(a, b) lower semicontinuous for every
a ∈ A that CCB ⊆ KFCB . We only give a proof of this result for B a compact
metric space. (For B a compact topological space one can apply a similar proof
replacing sequences by nets (see section 4 of [8]). If the function f is closely
convex on the compact metric space B, then for every n ∈ N, 0 < α < 1 and
b1, b2 ∈ B there exists some b0,n ∈ B satisfying

f(a, b0,n) ≤ αf(a, b1) + (1− α)f(a, b2) +
1
n

for every a ∈ A. Since B is a compact metric space there exists some converg-
ing subsequence b0,n, n ∈ K ⊆ N with limit b0 ∈ N. This implies by the lower
semicontinuity of the function b 7−→ f(a, b) for every a ∈ A that

f(a, b0) ≤ lim infn∈K,n↑∞ f(a, b0,n) ≤ αf(a, b1) + (1− α)f(a, b2)

and so the function f is Ky Fan convex on B. To show the inclusion CCB ⊆ U1

we can verify in a similar way as done in the last part of the proof of Lemma
9 that for f closely convex on B it follows for every I ∈ F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) = infb∈B maxa∈I f(a, b)

This implies

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infb∈B maxa∈I f(a, b)
(51)

and applying Lemma 3 to the last expression in relation (51) we obtain that
f belongs to U1.

Using now Lemma 9 and 10 we obtain for B a compact topological space,
b 7−→ f(a, b) is lower semicontinuous for every a ∈ A and f closely concave-
closely convex on A×B that f belongs to the set U1 ∩U2 and so by Theorem
6 the classical minimax result in relation (8) holds.

4 Relations between the different minimax theorems.

In this section we investigate in more detail the relations between the different
minimax results discussed in Section 3 and given by relations (6) up to (8).
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Introducing the notation Li and Ri for the left and right-hand side of relation
(i) for i = 6, 7, 8, we obviously obtain that

L8 = L7 ≥ L6 ≥ R6 = R7 ≥ R8. (52)

This implies that
(8) ⇒ (7) ⇒ (6). (53)

Below we show by means of some counterexamples that none of the arrows in
relation (53) can be reversed. In the first counterexample we show an instance
for which (7) holds and (8) does not hold.

Example 3. Let A = [0, 1] ⊂ R, B = {b1, b2, b3} ⊂ R and introduce the
function f : A×B → R given by

f(a, b) =

 a2 if b = b1

(a− 1)2 if b = b2

2−1 if b = b3

.

For this bifunction we have

L8 := minb∈B supa∈A f(a, b) = 1/2,

while
R8 := supa∈A minb∈B f(a, b) = 1/4,

and so (8) does not hold. Since L8 = L7 = 2−1 and it is obvious to check that
R7 = 2−1, we obtain that (7) holds.

In the next counterexample we show an instance for which (6) holds and
(7) does not hold.

Example 4. Take A = [0, 1], B = {b1, b2} ⊂ R and introduce the function
f : A×B → R given by

f(a, b) =
{

a2 if b = b1

(a− 1)2 if b = b2
.

Consider now the mixed strategy λ∗ ∈ PF (A) given by λ∗ = 2−1εa1 + 2−1εa2

with a1 = 0 and a2 = 1. It is easy to check that

minb∈B fe(λ∗, εb) = 2−1,

and so it follows that R7 ≥ 2−1. Moreover, we observe by the definition of the
sets A and B that

L6 = inf0≤s1(µ)≤1 supa∈A{s1(µ)f(a, b1) + (1− s1(µ))f(a, b2)}. (54)

Using now that the last expression in relation (54) equals
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inf0≤s1(µ)≤1 max{s1(µ), 1− s1(µ)} = 2−1 (55)

we obtain that L6 = 2−1. Since we already know that L6 ≥ R7 = R6 and
R7 ≥ 2−1 we obtain

L6 = R7 = R6 = 2−1,

It is now easy to check that L7 = 1 and hence we have found an instance for
which (6) holds and (7) does not hold.

To conclude these investigations, we give an instance which shows that (6)
can also fail. Consider the set c0 of all (real valued) sequences converging to
0. It is well-known that the space c0 endowed with the norm

‖a||c0
= supk∈N |ak|

is a Banach space.

Example 5. Let A = {a = (ak) ∈ c0 : a1 = 0}, B = [0, 1] ⊂ R and take the
function f : A×B → R given by

f(a, b) = f((ak), b) =
{

1 if there exist some k ∈ N such that b = ak

0 otherwise
(56)

Consider some λ ∈ PF (A). Hence there exists a finite number of sequences
ai = (ai

k)k∈N , 1 ≤ i ≤ m, belonging to A and some vector s(λ) =
(s1(λ), ..., sm(λ)), si(λ) > 0 and

∑m
i=1 si(λ) = 1 such that

λ =
∑m

i=1
si(λ)εai .

Since the set [0, 1] contains more than a countable number of elements one
can now choose a number b ∈ [0, 1] such that none of the above sequences
ai, 1 ≤ i ≤ m, contain this number. Using this number and the definition of
f it can be easily seen that

infb∈[0,1] fe(λ, εb) = infb∈[0,1]

∑m

i=1
si(λ)f(ai, b) = 0,

and so R6 = 0. On the other hand, consider some µ ∈ PF (B). By definition one
can find some finite set {b1, ...bp} ⊆ [0, 1] and a vector s(µ) = (s1(µ), ..., sp(µ)),
sj(µ) > 0 with

∑p
j=1 sj(µ) = 1 such that

µ =
∑p

j=1
sj(µ)εbj

.

Taking the element a0 := (0, b1, ..., bp, 0, 0, ...) ∈ c0 it is obvious by the defini-
tion of f that

supa∈A fe(εa, µ) ≥
∑p

j=1
sj(µ)f(a0, bj) = 1. (57)

Since f is bounded by 1 this shows that

L6 := infµ∈PF (B) supa∈A fe(εa, µ) = 1,

and so we have verified that (6) does not hold.
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5 On Sion’s minimax theorem

In this section we give an alternative and elementary proof of Sion’s minimax
theorem. This famous result is a generalization of von Neumann’s minimax
theorem ([15]). Its original proof made use of the KKM lemma which is equiv-
alent to Brouwer’s fixed point theorem ([37], [38]). However, as will turn out
we do not need such a heavy machinery to verify this result. Actually we will
give a proof of a slightly more general result by using a less known technique
called the level set method originally developed by Joo ([17]). It remains an
open question whether it is possible to verify this minimax result by means
of Theorem 6.

Definition 17. A real valued function k : C −→ R is called quasiconvex on
the (convex) set C if all its lower level sets {x ∈ C : k(x) ≤ r}, r ∈ R are
convex. It is called quasiconcave on C if −f is quasiconvex on C.

It is well known ([39]) that an equivalent description of a quasiconvex
function is given by

k(βx + (1− β)y) ≤ max{k(x), k(y)}

for every 0 < β < 1 and x, y ∈ C. By this representation it is easy to see
that the class of quasiconvex functions strictly contains the class of convex
functions. We now list the following result due to Sion ([14]).

Theorem 11. If the payoff function f : A×B → R with B a compact convex
subset of a linear topological space and A a convex subset of a linear topological
space satisfies a 7−→ f(a, b) is quasiconcave and upper semicontinuous for
every b ∈ B, and b 7−→ f(a, b) is quasiconvex and lower semicontinuous for
every a ∈ A, then the minimax result in relation (8) given by

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

holds and in the above expressions inf can be replaced by max .

The following result is the starting point of the so-called level set method
and shown in ([17]). Remember the values r∗ and r∗ are given in relations (1)
and (2). As observed in Section 1 it is always assumed that r∗ > −∞. Also for
convenience we denote the lower level set of level r of a function k : C → R
by

L(k, r) := {x ∈ C : k(x) ≤ r}.

Lemma 11. Let f : A×B → R be a given payoff function and introduce the
function fa : B → R given by fa(b) = f(a, b).Then r∗ = r∗ if and only if
∩a∈AL(fa, r) is nonempty for every r > r∗.
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Proof. If r∗ = r∗, then for every r > r∗ = r∗ > −∞ there exists by the
definition of r∗ some b0 ∈ B satisfying supa∈A f(a, b0) < r. This shows that
b0 belongs to the intersection ∩a∈AL(fa, r) and so ∩a∈AL(fa, r) is nonempty.
To verify the reverse implication it is sufficient to check that r∗ ≤ r∗ + ε for
every ε > 0. Take now r = r∗ + ε for some ε > 0. By our assumption we know
that ∩a∈AL(fa, r) is nonempty and so there exists some b0 ∈ B satisfying
supa∈A f(a, b0) ≤ r. This implies r∗ = infb∈B supa∈A f(a, b) ≤ r = r∗ + ε and
the proof is completed.

For relation (8) to hold it is necessary and sufficient by Lemma 11 to show
that the intersection ∩a∈AL(fa, r) is nonempty for every r > r∗. It can be
easily verified that for arbitrary functions f this result does not hold and so
we must impose some conditions on f. Before defining the proper class of
functions we recall some well-known notions within topology. For X a subset
of a topological space with topology F the set S ⊆ X is called open in X
if there exists some set O belonging to F with S = X ∩ O. The open sets
generated in this way are called the relative topology induced by X and with
this topology the set X is a topological space. Another well-known notion
within topology is given in the next definition ([6] ,[38]).

Definition 18. For any topological space X a set C ⊆ X is called connected,
if for any two disjoint sets C1 and C2 both open (closed) in C and satisfying
C = C1 ∪ C2, it follows that C1 or C2 is empty.

In [40] the following class of functions is introduced.

Definition 19. Let X be a topological space. The function k : X → R is called
connected if for every r ∈ R the lower level set L(k, r) ⊆ X is connected.

It is well know that every convex subset of a linear topological space X
is connected and so any quasiconvex function k : X → R is connected. As
for quasiconvex functions one can give an equivalent definition of a connected
function.

Lemma 12. The function k : X → R is connected if and only if for every
x1, x2 ∈ X there exists some connected set Cx1x2 ⊆ X containing x1, x2 such
that k(x) ≤ max{k(x1), k(x2)} for every x ∈ Cx1x2 .

Proof. To show that a connected function satisfies the above property, con-
sider x1, x2 ∈ X and introduce r := max{k(x1), k(x2)}. Take now the set
Cx1x2 equal to the connected set L(k, r). This set satisfies the desired prop-
erty. To prove the reverse implication that the lower level sets are connected,
consider some nonempty lower level set L(k, r) with x1 belonging to L(k, r)
and let x2 be another arbitrary point belonging to L(k, r). (The empty set
is connected by definition.) By assumption there exists some connected set
Cx1x2 ⊆ X containing x1, x2 such that

k(x) ≤ max{k(x1), k(x2)}
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for every x belonging to Cx1x2 This shows Cx1x2 ⊆ L(k, r) and since x2 is an
arbitrary element of L(k, r) we obtain

∪x2∈L(k,r)Cx1x2 = L(k, r). (58)

By construction the intersection ∩x2∈L(k,r)Cx1x2 contains the vector x1 and
since for every x2 ∈ L(k, r) the set Cx1x2 is connected, also ∪x2∈L(k,r)Cx1x2

is connected (cf. [38]). Applying now relation (58) shows that the function k
is connected.

Using the above representation of a connected function it can be show
([18]) that the set of connected functions strictly includes the set of quasi-
convex functions. This means that there exist a connected function which is
not quasiconvex. To prove our main theorem, we also introduce the following
class of functions.

Definition 20. Let X be a topological space. The collection of functions kγ :
X → R, γ ∈ Γ is called equiconnected, if for every x1, x2 ∈ X there exists a
connected set Cx1,x2 ⊆ X containing x1, x2 such that

kγ(x) ≤ max{kγ(x1), kγ(x2)}

for every x ∈ Cx1x2 and γ ∈ Γ.

If X is a convex subset of a linear topological space and for every γ ∈ Γ
the function kγ is quasiconvex, then by taking

Cx1x2 = {βx1 + (1− β)x2 : 0 ≤ β ≤ 1}

it follows immediately that the collection of functions kγ , γ ∈ Γ is equicon-
nected.

Definition 21. The payoff function f : A×B → R belongs to the class C0 if

1. The function a 7−→ f(a, b) is upper semicontinuous for every b ∈ B;
2. The function b 7−→ f(a, b) is lower semicontinuous for every a ∈ A;
3. For every I ∈ F(A) the function b 7−→ maxa∈I f(a, b) is connected;
4. The collection of functions −fb, b ∈ B with fb(a) := f(a, b) is equicon-

nected.

For any set of quasiconvex functions kγ , γ ∈ Γ it follows that the function
x 7−→ supγ∈Γ k(x) is also quasiconvex. Using this observation it is easy to see
for any payoff function f satisfying a 7−→ f(a, b) is quasiconcave and upper
semicontinuous for every b ∈ B and b 7−→ f(a, b) is quasiconvex and lower
semicontinuous for every a ∈ A actually belongs to the set C0. Hence the
payoff function f mentioned in Sion’s minimax theorem belongs to C0. One
can now show the following important intersection result.
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Theorem 12. If the payoff function f belongs to the class C0, then for every
r > r∗ and I ∈ F(A) the intersection ∩a∈IL(fa, r) is nonempty.

Proof. If I = {a0} ⊆ A, than for every r > r∗ we obtain by the definition of
r∗ that r > infb∈B f(a0, b) and so L(fa0 , r) is nonempty. Suppose now for all
sets I belonging to F(A) and consisting of at most k elements that

∩a∈IL(fa, r) 6= ∅ (59)

for every r > r∗. To prove the result for all sets I ∈ F(A) consisting of at
most k + 1 elements we assume by contradiction that there exists some set
I0 = {a0, ...., ak} ⊆ A and some r0 > r∗ satisfying

∩k
i=0L(fai , r0) = ∅. (60)

Since the collection of functions −fb, b ∈ B is equiconnected one can find some
connected set Ca0a1 ⊆ A containing a0 and a1satisfying

f(a, b) ≥ min{f(a0, b), f(a1, b)} (61)

for every a ∈ Ca0a1 and b ∈ B. We now introduce the set valued mapping
Φr : Ca0a1 −→ 2B , given by

Φr(a) = ∩γ∈{a2,a3,...,ak,a}L(fγ , r). (62)

(In case k = 1 put Φr(a) = L(fa, r).) By the definition of L(fγ , r) this yields

Φr(a) = {b ∈ B : maxγ∈{a2,a3,...,ak,a} f(γ, b) ≤ r}. (63)

Since the function

b 7−→ maxγ∈{a2,a3,...,ak,a} f(γ, b)

is connected and lower semicontinuous (use b 7−→ f(a, b) is lower semicontin-
uous for every a ∈ A) it follows by relation (63) that the sets Φr(a), a ∈ Ca0a1

are connected and closed for every r > r∗. Moreover, by the induction hy-
pothesis in relation (59) the sets Φr0(a), a ∈ Ca0a1are nonempty and satisfy
by relation (61)

Φr0(a) ⊆ Φr0(a0) ∪ Φr0(a1) (64)

for every a ∈ Ca0a1 and by relation (60)

Φr0(a0) ∩ Φr0(a1) = ∅. (65)

Introducing now the nonempty sets

Si := {a ∈ Ca0a1 : Φr0(a) ⊆ Φr0(ai)}, i = 0, 1 (66)

we obtain by relation (65) that the intersection S0 ∩ S1 is empty. To show
that S0 ∪ S1 = Ca0a1 we first observe that S0 ∪ S1 ⊆ Ca0a1 . For the reverse
inclusion consider for a given a ∈ Ca0a1 the closed sets
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Ai(a) := Φr0(a) ∩ Φr0(ai), i = 0, 1.

By relation (64) we obtain that

A0(a) ∪A1(a) = Φr0(a) (67)

and since Φr0(a) is connected it must follow by relation (67) and Ai(a), i = 0, 1
closed that A0(a) or A1(a) is empty. This means by relation (64) that either
Φr0(a) ⊆ Φr0(a0) or Φr0(a) ⊆ Φr0(a1) and so the point a belongs to S0 ∪ S1.
Hence we have verified that the sets Si, i = 0, 1 satisfy

S0 ∩ S1 = ∅, S0 ∪ S1 = Ca0a1 . (68)

We will now show that the sets Si, i = 0, 1 are also open in Ca0a1 . Let a∗

be an arbitrary point belonging to S0. By our induction hypothesis we know
that the sets Φr(a∗) are nonempty for every r > r∗ and this implies by the
definition of Φr(a∗) in relation (63) that

infb∈B maxγ∈{a2,a3,...,ak,a∗} f(γ, b) ≤ r

for every r > r∗. This shows by letting r ↓ r∗ that

infb∈B maxγ∈{a2,a3,...,ak,a∗} f(γ, b) ≤ r∗ < r0

and so one can find some b0 ∈ Φr0(a
∗) ⊆ B (b0 ∈ B for k = 1) satisfying

f(a∗, b0) < r0. (69)

By the upper semicontinuity of a 7−→ f(a, b0) and relation (69) there exists
some open neighborhood U(a∗) of a∗ satisfying f(a, b0) < r0 for every a ∈
U(a∗) and since b0 ∈ Φr0(a

∗) this yields b0 ∈ Φr0(a) for every a ∈ U(a∗)∩Ca0a1

or equivalently
b0 ∈ Φr0(a

∗) ∩ Φr0(a)

for every a ∈ U(a∗) ∩ Ca0a1 . This implies by relation (68) and a∗ ∈ S0 that
Φr0(a) ⊆ Φr0(a0) for every a ∈ U(a∗) ∩ Ca0a1 or equivalently

U(a∗) ∩ Ca0a1 ⊆ S0.

Since a∗ ∈ S0 is arbitrary we obtain that

S0 = ∪a∗∈S0(U(a∗) ∩ Ca0a1) = Ca0a1 ∩ (∪a∗∈S0U(a∗))

and so S0 is open in Ca0a1 . Similarly one can verify that the set S1 is open
in Ca0a1 and by relation (68) and Ca0a1 connected we obtain that either S0

or S1 is empty. Since by relation (66) the point ai belongs to Si, i = 0, 1 this
yields a contradiction, and the proof is completed.

Applying Lemma 11 we immediately deduce from Theorem 12 the following
result.
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Theorem 13. Let the payoff function f : A× B → R belong to the class C0.
If A is a finite set, then

infb∈B maxa∈A f(a, b) = maxa∈A infb∈B f(a, b),

while for A an infinite set

supI∈F(A) infb∈B maxa∈I f(a, b) = supa∈A infb∈B f(a, b).

Proof. The first formula is an immediate consequence of Lemma 11 and The-
orem 12. To verify the second formula we observe

supa∈A infb∈B f(a, b) = supI∈F(A) supa∈I infb∈B f(a, b).

Applying now the first part yields the desired result.

By Theorem 13 and Lemma 3 one can show the following result, which
contains as a special case (see observation after Definition 21) Sion’s minimax
theorem listed in Theorem 11.

Theorem 14. If B is a compact topological space and the payoff function f
belongs to the class C0, then

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

and inf can be replaced by min in the above expressions.

Proof. Since B is a compact topological space and b 7−→ f(a, b) is lower
semicontinuous for every a ∈ A we obtain by Lemma 3 and the observation
after this lemma that

infb∈B supa∈A f(a, b) = supI∈F(A) infb∈B maxa∈I f(a, b).

Applying now the second part of Theorem 13 and Lemma 2 yields the desired
result.

Actually by Lemma 3 one can slightly weaken the condition that A is a
compact topological space by replacing the compactness assumption by the
condition that there exists some set I ∈ F(A) such that for every r ∈ R the
set ∩a∈I{b ∈ B : f(a, b) ≤ r} is compact. It is possible ([18]) to construct
a payoff function f which satisfy the conditions of Theorem 14 but does not
satisfy the conditions of Sion’s minimax result.

Definition 22. The payoff function f : A×B → R belongs to the class C1 if

1. The function a 7−→ f(a, b) is upper semicontinuous for every b ∈ B;
2. The function b 7−→ f(a, b) is lower semicontinuous for every a ∈ A;
3. For every J ∈ F(B) the function a 7−→ minb∈J f(a, b) is connected;
4. The collection of functions fa, a ∈ A with fa(b) := f(a, b) is equiconnected.
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By the symmetry argument and Theorem 14 it follows easily that the
minimax equality in relation (8) holds if the payoff function f belongs to the
class C1. and A is a compact topological space. Finally we like to mention that
Wald’s minimax result is a special case of Sion’s minimax result. However,
from the proof of Theorem 12 it should be clear that the only properties of
convex sets which are important are the observation that any intersection of
convex sets is again convex and every convex set is connected. This shows that
Sion’s minimax result is actually a topological result based on connectedness.

6 On n-player nonzero-sum noncooperative games

In this section we will extend the two player zero-sum noncooperative games
discussed in the previous sections to n-player nonzero-sum noncooperative
games, n ≥ 2. In this framework there are n players and each player i, 1 ≤
i ≤ n has a pure strategy set Xi and a payoff function fi : X −→ R with
X = Πn

i=1Xi denoting the Cartesian product of the sets Xi. In case each
player i, i = 1, ..., n selects independently of each other the strategy xi the
gain given by player i is given by fi(x1, ..., xn) (For a complete description of
such games and examples see [1], [3] or [10]). In this section we assume that
the sets Xi, 1 ≤ i ≤ n are subsets of (possibly different) linear topological
spaces Xi ([7]). We also assume in this section that the players only use their
pure strategy sets and they do not use their mixed strategy sets. For these
n-person noncooperative games an important concept is given by a Nash-
equilibrium point. Observe for n = 2 (taking f2 = −f1) this reduces to the
minimax concept used within a two player zero-sum noncooperative game.

Definition 23. Let the payoff functions fi : X → R of each player be given.
The point x∗ = (x∗1, ..., x

∗
n) is called a Nash equilibrium point if

fi(x∗1, ..., x
∗
i , ..., x

∗
n) ≥ fi(x∗1, ..., xi, ..., x

∗
n)

for every xi ∈ Xi and 1 ≤ i ≤ n.

We are now interested under which conditions a Nash equilibrium point
exists for an n-person noncooperative game. To show this, we need the fol-
lowing definition ([41]).

Definition 24. Let X be a nonempty set and ϕ : X ×X → R some function.
The point x∗ is called an equilibrium point of the function ϕ if ϕ(x∗, y) ≥ 0
for every y ∈ X.

Using the above definition of an equilibrium point for the mapping ϕ, we
show the following result.

Lemma 13. Let X = Πn
i=1Xi be the Cartesian product of the sets Xi, i =

1, ..., n. The point x∗ is a Nash equilibrium point if and only if x∗ is an equi-
librium point of the function ϕ : X ×X −→ R , given by
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ϕ(x, y) =
∑n

i=1
fi(x1, ..., xi, ..., xn)− f(x1, ..., yi, ..., xn) (70)

with x = (x1, ..., xn) and y = (y1, ..., yn).

Proof. Let x∗ be a Nash equilibrium and consider an arbitrary y = (y1, ..., yn) ∈
X. By definition

fi(x∗1, ..., x
∗
i , ..., x

∗
n) ≥ f(x∗1, ..., yi, ..., x

∗
n)

for every 1 ≤ i ≤ n. This shows ϕ(x∗, y) ≥ 0 and so x∗ is an equilibrium point
of the function ϕ. For x∗ an equilibrium point of the function ϕ consider some
1 ≤ i ≤ n and introduce the vector y = (x∗1, ..., yi, ..., x

∗
n) ∈ X. Clearly for this

vector y it follows that

0 ≤ ϕ(x∗, y) = fi(x∗1, ..., x
∗
i , ..., x

∗
n)− fi(x∗1, ..., yi, ..., x

∗
n)

and since 1 ≤ i ≤ n is arbitrary we obtain that x∗ is a Nash equilibrium point.

Hence by the above lemma we have reduced the proof of existence of a
Nash equilibrium point to the proof of existence of a equilibrium point for
the mapping ϕ listed in relation (70). To show in general the existence of an
equilibrium point of a mapping ϕ : X ×X −→ R we observe that the point
x∗ is an equilibrium point of the mapping ϕ if and only if the intersection
∩y∈X{x ∈ X : ϕ(x, y) ≥ 0} is nonempty. Unfortunately it seems not to
be possible (in general) to prove the existence of an equilibrium point by
means of LP duality or convex analysis techniques as was done for a 2-person
noncooperative game. To show the existence of a Nash equilibrium under
certain conditions on the sets Xi and the payoff functions fi we need the so-
called KKM (Knaster-Kuratowski-Mazurkiewicz) lemma ([38]). Observe the
simplex ∆J for any subset J ⊆ {1, ..., k} is given by

∆J := co({ej : j ∈ J})

with ej the jth unit vector in Rk.

Definition 25. The collection of sets Ei ⊆ Rk, 1 ≤ i ≤ k satisfy the KKM
property if ∆J ⊆ ∪i∈JEi for every set J ⊆ {1, ..., k}.

The KKM lemma is given by the following result (for its proof see [37]).

Lemma 14. If the set Ei ⊆ Rk, 1 ≤ i ≤ k are closed and satisfy the KKM
property then ∩k

i=1Ei is nonempty.

The KKM lemma is an easy consequence of Sperner’s lemma (see theorem
2.5.6 of [19] or Lemma 3.5.1 of [42]) and Sperner’s lemma can be proved by
combinatorial arguments (cf.[43] or Theorem 3.4.3 of [42]). Since our function
ϕ in a so-called equilibrium problem is defined on the set X × X with X a
convex subset of a linear topological space X , we need to discuss the extensions
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of the KKM lemma to these spaces. This can be done in the following way.
Let Φ : X → 2X be a set valued mapping with nonempty values, where X is
a convex subset of some (real) linear topological space X and 2X the power
set of X, and consider for a given collection {x1, ..., xn} ⊆ X and x ∈ X the
(possibly empty) finite dimensional sets

E(x) = {λ ∈ ∆N :
∑n

j=1
λjxj ∈ Φ(x)}

with N := {1, ..., n}. Denoting by L := lin({x1, ..., xn}) the smallest linear
subspace containing the set {x1, x2, ..., xn}, then clearly

E(x) = {λ ∈ ∆N :
∑n

j=1
λjxj ∈ Φ(x) ∩ L} ⊆ Rn. (71)

If we know that the sets E(x) ⊆ ∆N are closed for every x ∈ X and for a given
collection {x1, ..., xn} ⊆ X the nonempty sets Ei := E(xi), 1 ≤ i ≤ n satisfy
the KKM property, then by the KKM lemma we obtain that ∩n

i=1E(xi) is
nonempty. This shows that there exists some λ∗ ∈ ∆N satisfying

∑n
j=1 λ∗jxj ∈

∩n
i=1Φ(xi) and so we have verified that ∩n

i=1Φ(xi) 6= ∅. To introduce a topology
on E(x) we recall the following definition.

Definition 26. The set valued mapping Φ : X → 2X with X a convex subset
of a linear topological space X is called finitely closed if for every x ∈ X and
every finite dimensional subspace L ⊆ X the set Φ(x) ∩ L is closed in the
Euclidean topology on L.

It is obvious that Φ finitely closed implies E(x) is closed for every x ∈ X.
In the next lemma we give a sufficient condition for Φ to be finitely closed.

Lemma 15. If the set-valued mapping Φ : X → 2X with X a convex subset of
a linear topological space X has closed values Φ(x), x ∈ X, then the mapping
Φ is finitely closed.

Proof. If L ⊆ X is a finite dimensional subspace there exists some finite set
{z1, ..., zn} ⊆ X of linearly independent vectors satisfying

L = lin({z1, ..., zn}).

To show that Φ(x) ∩ L is closed in the Euclidean topology on L we need
to verify for any sequence (xq)q∈N ⊆ Φ(x) ∩ L satisfying xq → x∞ in the
Euclidean topology on L that x∞ ∈ Φ(x) ∩ L. Since every element of L can
be uniquely represented as a linear combination of the vectors zi, 1 ≤ i ≤
n, it follows that xq → x∞ in the Euclidean topology on L if and only if
limq↑∞ βq = β∞ with β>q = (βq,1, ..., βq,n) ∈ Rn, β>∞ = (β∞,1, ..., β∞,n) ∈ Rn,

xq =
∑n

j=1
βq,jzj , q ∈ N, (72)

and
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x∞ =
∑n

j=1
β∞,jzj . (73)

Moreover, since X is a linear topological space, it follows that the mapping
h : Rn → X, given by h(α) =

∑n
j=1 αjzj , is continuous in this topology. This

shows, using xq = h(βq) ∈ Φ(x) for every q ∈ N , that

x∞ = h(β∞) = limq↑∞ h(βq) ∈ cl(Φ(x))

with the closure taken with respect to the topology on X . Using now that
Φ(x) is closed, we obtain that x∞ ∈ Φ(x) and so x∞ belongs to Φ(x) ∩ L.

We next recall the definition of a KKM mapping for set-valued functions
Φ : X → 2X .

Definition 27. Let X be a convex subset of a linear topological space X . The
set valued mapping Φ : X → 2X is called a KKM mapping if co({x1, ..., xk}) ⊆
∪k

j=1Φ(xj) for every finite subset {x1, ..., xk} ⊆ X.

Clearly by the above definition it follows for a KKM mapping Φ that x
belongs to Φ(x) for every x ∈ X. In the next lemma we extend the KKM
lemma to set-valued mappings.

Lemma 16. If the set valued mapping Φ : X → 2X is a KKM mapping with
Φ(x) closed for every x ∈ X, then ∩k

i=1Φ(xi) is nonempty for every finite set
{x1, ..., xk} ⊆ X.

Proof. If Φ is a KKM mapping then by definition

co({x1, ..., xk}) ⊆ ∪k
j=1Φ(xj) (74)

for every finite subset {x1, ..., xk} ⊆ X. To prove the desired result we verify
by induction that

co({x1, ..., xq}) ∩ (∩q
j=1Φ(xj)) 6= ∅. (75)

for every finite subset {x1, ..., xq} ⊆ X. By relation (74) it follows that (75)
holds for q = 1. Suppose now that relation (75) holds for q ≤ k−1 (k ≥ 2) and
consider a subset {x1, ..., xk} ⊆ X. Let ∆k := {λ ∈ Rk : λi ≥ 0,

∑k
i=1 λi = 1}

and introduce for every 1 ≤ i ≤ k the sets Ei, given by

Ei = {λ ∈ ∆k :
∑k

j=1
λjxj ∈ Φ(xi)} ⊆ Rk.

For L denoting the linear subspace lin({x1, ..., xk}) it is obvious that

Ei = {λ ∈ ∆k :
∑k

j=1
λjxj ∈ Φ(xi) ∩ L},

and since by Lemma 15 the set valued mapping Φ is finitely closed it fol-
lows that the sets Ei, 1 ≤ i ≤ k are closed in the Euclidean topology on L.
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Moreover, to show that the sets Ei, 1 ≤ i ≤ k, satisfy the KKM property we
observe for every J ⊆ {1, .., k} and λ ∈ co({ej : j ∈ J}) ⊆ ∆k that

λ = (λ1, ..., λk), λj = 0, j /∈ J, λj ≥ 0, j ∈ J,
∑

j∈J
λj = 1.

This implies by relation (74) with k replaced by |J | that∑k

j=1
λjxj =

∑
j∈J

λjxj ∈ co({xj : j ∈ J}) ⊆ ∪j∈JΦ(xj)

and we have verified that λ belongs to ∪j∈JEj . Since λ ∈ co({ej : j ∈ J}) is
arbitrary this shows that

co({ej : j ∈ J}) ⊆ ∪j∈JEj

and so the collection Ei, 1 ≤ i ≤ k satisfies the KKM property. Hence by the
KKM lemma it follows that ∩k

i=1Ei is nonempty and so there exists some
λ∗ ∈ ∆k satisfying

∑k
j=1 λ∗jxj ∈ ∩k

i=1Φ(xi). This proves the induction for k
and the proof is completed.

We are now able to show that under certain conditions a Nash equilibrium
point exists. To prove this, we first need the following lemma.

Lemma 17. Let X be a convex subset of a linear topological space X . If the
function ϕ : X ×X → R satisfies ϕ(x, x) ≥ 0 and y 7−→ ϕ(x, y) is convex on
X for every x ∈ X, then the set valued mapping Φ : X −→ 2X given by

Φ(y) = {x ∈ X : ϕ(x, y) ≥ 0}

is a KKM mapping.

Proof. Since ϕ(x, x) ≥ 0 it follows immediately that y belongs to Φ(y). Sup-
pose now by contradiction that there exists some finite set {y∗1 , ..., y∗k} ⊆
X, k ≥ 2 such that y∗ belonging to co({y∗1 , ..., y∗k}) does not belong to
∪k

j=1Φ(y∗j ). By the first part it follows that y∗ is not equal to y∗i for some
1 ≤ i ≤ k. This means that one can find some λ∗ ∈ ∆k with at least two
positive components smaller than 1 satisfying

max1≤i≤k ϕ(
∑k

j=1
λ∗jy

∗
j , y∗i ) < 0.

By the convexity of the function y 7−→ ϕ(
∑k

j=1 λ∗jy
∗
j , y) this implies

0 ≤ ϕ(
∑k

j=1
λ∗jy

∗
j ,

∑k

i=1
λ∗i y

∗
i ) ≤

∑k

i=1
λ∗i ϕ(

∑k

j=1
λ∗jyj , y

∗
i ) < 0

and we obtain a contradiction.

Finally we can give a proof of the following important result.
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Theorem 15. If the pure strategy sets Xi, 1 ≤ i ≤ n are convex compact
subsets of (maybe different) linear topological spaces Xi, the payoff functions
fi : X → R, 1 ≤ i ≤ n are continuous on X for every 1 ≤ i ≤ n and satisfy

xi 7−→ fi(x1, ..., xi, ..., xn)

are concave for every 1 ≤ i ≤ n and every fixed (x1, ..., xi−1, xi+1, ..., xn), then
the n-person noncooperative game has a Nash equilibrium point.

Proof. By Lemma 13 we have to show for X = Πn
i=1Xi that the function

ϕ : X ×X −→ R, given by

ϕ(x, y) =
∑n

i=1
fi(x1, .., xi, .., xn)− fi(x1, ..., yi, ..., xn) (76)

with x = (x1, ..., xn) and y = (y1, ..., yn) has an equilibrium point, and by
the observations after Lemma 13 this means that ∩y∈XΦ(y) is nonempty with
Φ(y) := {x ∈ X : ϕ(x, y) ≥ 0}. First observe by the continuity of fi (1 ≤
i ≤ n) that the function x 7−→ ϕ(x, y) listed in relation (76) is continuous
on X for every y ∈ X. This shows for every y ∈ X that the set Φ(y) is
closed and since X is compact that Φ(y) is compact as well. Moreover, since
xi 7−→ fi(x1, ..., xi, ..., xn) is concave for every 1 ≤ i ≤ n, we obtain that the
function y 7−→ ϕ(x, y) is convex and together with ϕ(x, x) = 0 this implies by
Lemma 17 that the set-valued map Φ is a KKM map. Applying now Lemma
16 it follows for every finite subset F ⊆ X that ∩y∈F Φ(y) is nonempty. This
shows by the finite intersection property for compact sets that ∩y∈XΦ(y) is
nonempty, and we have shown the desired result.
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10. Szëp J, Forgó F (1985) Introduction to the theory of games, Akadémia Kiadó,
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26. Ville J (1938) Sur la théorie générale des jeux au intervient l’habilité des jouers.
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