Annales de l'I. H. P., section C

G. TARANTELLO

On nonhomogeneous elliptic equations involving critical Sobolev exponent

Annales de l'I. H. P., section C, tome 9, no 3 (1992), p. 281-304
http://www.numdam.org/item?id=AIHPC_1992__9_3_281_0

© Gauthier-Villars, 1992, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On nonhomogeneous elliptic equations involving critical Sobolev exponent

by
G. TARANTELLO (*)
Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213, U.S.A

Abstract. - Let $p=\frac{2 \mathrm{~N}}{\mathrm{~N}-2}, \mathrm{~N} \geqq 3$ be the limiting Sobolev exponent and $\Omega \subset \mathbb{R}^{\mathrm{N}}$ open bounded set.

We show that for $f \in \mathrm{H}^{-1}$ satisfying a suitable condition and $f \neq 0$, the Dirichlet problem:

$$
\left\{\begin{array}{c}
-\Delta u=|u|^{p-2} u+f \text { on } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

admits two solutions u_{0} and u_{1} in $\mathrm{H}_{0}^{1}(\Omega)$.
Also $u_{0} \geqq 0$ and $u_{1} \geqq 0$ for $f \geqq 0$.
Notice that, in general, this is not the case if $f=0$ (see $[\mathrm{P}]$).
Key words : Semilinear elliptic equations, critical Sobolev exponent.
Résumé. - Soit $p=\frac{2 \mathrm{~N}}{\mathrm{~N}-2}$ l'exposant de Sobolev critique et $\Omega \subset \mathbb{R}^{\mathrm{N}}$ un domaine borné.

Classification A.M.S. : 35 A 15, 35 J 20, 35 J 65.
(*) This research has been supported in part by NSF, Grant DMS-9003149.

On montre que si $f \in \mathrm{H}^{-1}, f \neq 0$ satisfait une certaine condition alors le problème de Dirichlet : $\Delta u=|u|^{p-2} u+f$ dans Ω et $u=0$ dans $\partial \Omega$, admet deux solutions u_{0} et u_{2} dans $\mathrm{H}_{0}^{1}(\Omega)$. De plus $u_{0} \geqq 0$ et $u_{1} \geqq 0$ si $f \geqq 0$.

On remarque que ce n'est pas le cas, en général, si $f=0$ (voir $[\mathrm{P}]$).

1. INTRODUCTION AND MAIN RESULTS

In a recent paper Brezis-Nirenberg (B.N.1] have considered the following minimization problem:

$$
\begin{equation*}
\inf _{u \in \mathbf{H},\|u\|_{p}=1} \int_{\Omega}\left(|\nabla u|^{2}-f u\right) \tag{1.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{\mathrm{N}}$, is a bounded set, $\mathrm{H}=\mathrm{H}_{0}^{1}(\Omega), f \in \mathrm{H}^{-1}$ and $p=\frac{2 \mathrm{~N}}{\mathrm{~N}-2}, \mathrm{~N} \geqq 3$ is the limiting exponent in the Sobolev embedding.

It is well known that the infinum in (1.1) is never achieved if $f=0$ (cf.[B]). In contrast, in [B.N.1] it is shown that for $f \neq 0$ this infinum is always achieved. (See also [C.S.] for previous related results.)

Motivated by this result we consider the functional:

$$
\mathrm{I}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{p} \int_{\Omega}|\mathrm{u}|^{p}-\int_{\Omega} f u, \quad u \in \mathbf{H} ;
$$

whose critical points define weak solutions for the Dirichlet problem:

$$
\left.\begin{array}{c}
-\Delta u=|u|^{p-2} u+f \text { on } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega .
\end{array}\right\}
$$

We investigate suitable minimization and minimax principles of mountain pass-type ($c f$. [A.R.]), and show how, for suitable f 's, they produce critical values for I in spite of a possible failure of the Palais-Smale condition.

To start, notice that I is bounded from below in the manifold:

$$
\Lambda=\left\{u \in \mathrm{H}:\left\langle\mathrm{I}^{\prime}(u), u\right\rangle=0\right\}
$$

[here \langle,$\rangle denotes the usual scalar product in \mathrm{H}=\mathrm{H}_{0}^{1}(\Omega)$]. Thus a natural question to ask is whether or not I achieves a minimum in Λ.

We show that this is the case if f satisfies the following:

$$
\begin{equation*}
\int_{\Omega} f u \leqq c_{\mathrm{N}}\left(\|\nabla u\|_{2}\right)^{(\mathrm{N}+2) / 2} \tag{*}
\end{equation*}
$$

$\forall u \in \mathrm{H},\|u\|_{p}=1$, where $c_{\mathrm{N}}=\frac{4}{\mathrm{~N}-2}\left(\frac{\mathrm{~N}-2}{\mathrm{~N}+2}\right)^{(\mathrm{N}+2) / 4}$. More precisely we have:
Theorem 1. - Let $f \neq 0$ satisfies $(*)_{0}$. Then

$$
\begin{equation*}
\inf \mathrm{I}=c_{0} \tag{1.3}
\end{equation*}
$$

is achieved at a point $u_{0} \in \Lambda$ which is a critical point for I and $u_{0} \geqq 0$ for $f \geqq 0$.

In addition if f satisfies the more restrictive assumption:

$$
\begin{equation*}
\int_{\Omega} f u<c_{\mathrm{N}}\left(\|\nabla u\|_{2}\right)^{(\mathrm{N}+2) / 2} \tag{*}
\end{equation*}
$$

$\forall u \in \mathrm{H},\|u\|_{p}=1$, then u_{0} is a local minimum for I.
Notice that assumption (*) certainly holds if

$$
\|f\|_{\mathrm{H}^{-1}} \leqq c_{\mathrm{N}} \mathrm{~S}^{\mathrm{N} / 4}
$$

where S is the best Sobolev constant ($c f .[\mathrm{T}]$).
Also if $f=0$ Theorem 1 remains valid and gives the trivial solution $u_{0}=0$.

Moreover in the situation where u_{0} is a local minimum for I , necessarily:

$$
\begin{equation*}
\left\|\nabla u_{0}\right\|_{2}^{2}-(p-1)\left\|u_{0}\right\|_{p}^{p} \geqq 0 \tag{1.4}
\end{equation*}
$$

This suggests to look at the following splitting for Λ :

$$
\begin{aligned}
\Lambda^{+} & =\left\{u \in \Lambda:\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}>0\right\} \\
\Lambda_{0} & =\left\{u \in \Lambda:\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}=0\right\} \\
\Lambda^{-} & =\left\{u \in \Lambda:\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}<0\right\}
\end{aligned}
$$

It turns out that assumption (*) implies $\Lambda_{0}=\{0\}$ (see Lemma 2.3 below). Therefore for $f \neq 0$ and (1.4) we obtain $u_{0} \in \Lambda^{+}$and consequently

$$
c_{0}=\inf _{\Lambda} \mathrm{I}=\inf _{\Lambda^{+}} \mathrm{I}
$$

So we are led to investigate a second minimization problem. Namely:

$$
\begin{equation*}
\inf _{\Lambda^{-}} \mathrm{I}=c_{1} \tag{1.5}
\end{equation*}
$$

In this direction we have:
Theorem 2. - Let $f \neq 0$ satisfies (*). Then $c_{1}>c_{0}$ and the infinum in (1.5) is achieved at a point $u_{1} \in \Lambda^{-}$which define a critical point for \mathbf{I}.

Furthermore $u_{1} \geqq 0$ for $f \geqq 0$.

Notice that the assumption $f \neq 0$ is necessary in Theorem 2. In fact for $f=0$ we have:

$$
\operatorname{Inf} \mathrm{I}=\inf _{u \neq 0} \frac{1}{\mathrm{~N}}\left[\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{p}^{2}}\right]^{\mathrm{N} / 2}=\frac{1}{\mathrm{~N}}\left[\inf _{\|u\|_{p}=1}\|\nabla u\|_{2}^{2}\right]^{\mathrm{N} / 2}
$$

and the infinum in the right hand side is never achieved.
The proofs of Theorem 1 and Theorem 2 rely on the Ekeland's variational principle (cf.[A.E.]) and careful estimates inspired by these in [B.N.1].

As an immediate consequence of Theorems 1 and 2 we have the following for the Dirichlet problem (1.2).

Theorem 3. - Problem (1.2) admits at least two weak solutions u_{0}, $u_{1} \in \mathrm{H}_{0}^{1}(\Omega)$ for $f \neq 0$ satisfying (*); and at least one weak solution for f satisfying (*) ${ }_{0}$.

Moreover $u_{0} \geqq 0, u_{1} \geqq 0$ for $f \geqq 0$.
This result for $f \geqq 0$ was also pointed out by Brezis-Nirenberg in [B.N.1]. Their approach however uses in an essential way the fact that f does not change sign. It relies on a result of Crandall-Rabinowitz [C.R.] and techniques developed in [B.N.2].

Furthermore for $f \geqq 0$ it is known that (1.2) cannot admit positive solution when $\|f\|_{\mathbf{H}^{-1}}$ is too large (see[C.R.], [M.] and [Z]). So our approach necessarily breaks down when $\|f\|_{H^{-1}}$ is large. In fact we suspect that assumptions ($*)_{0}$ and ($*$) on f are not only sufficient but also necessary to guarantee the statements of Theorems 1 and 2.

By a result of Brezis-Kato [B-K] we know that Theorem 3 gives classical solutions if f is sufficiently regular and $\partial \Omega$ is smooth; and for $f \geqq 0$, via the strong maximum principle, such solutions are strictly positive in Ω.

Obviously an equivalent of Theorem 3 holds for the subcritical case where one replaces the power $p=\frac{2 \mathrm{~N}}{\mathrm{~N}-2}$ in (1.2) by $q \in\left(2, \frac{2 \mathrm{~N}}{\mathrm{~N}-2}\right)$. In such a case more standard compactness arguments apply, and the proof can be consistently simplified. The details are left to the interested reader. Finally going back to the functional I, if f satisfies (*) then Theorem 1 suggests a mountain-pass procedure; which will be carried out as follows.

Take:

$$
\begin{equation*}
u_{\varepsilon}(x)=\frac{\varepsilon^{(N-2) / 2}}{\left(\varepsilon^{2}+|x|^{2}\right)^{(N-2) / 2}} \quad \varepsilon>0, \quad x \in \mathbb{R}^{\mathrm{N}} \tag{1.6}
\end{equation*}
$$

be an extremal function for the Sobolev inequality in $\mathbb{R}^{\mathbf{N}}$.
For $a \in \Omega$ let $u_{\varepsilon, a}(x)=u_{\varepsilon}(x-a)$, and

$$
\begin{equation*}
\xi_{a} \in \mathrm{C}_{0}^{\infty}(\Omega) \quad \text { with } \quad \xi_{a} \geqq 0 \quad \text { and } \quad \xi_{a}=1 \text { near } a . \tag{1.7}
\end{equation*}
$$

Set

$$
\mathscr{F}=\left\{\begin{aligned}
& h:[0,1] \rightarrow \mathrm{H} \text { continuous, } h(0)=u_{0} \\
& h(1)=\mathrm{R}_{0} \xi_{a} u_{\varepsilon, a}
\end{aligned}\right\}
$$

$\mathrm{R}_{0}>0$ fixed.
We have:
Theorem 4. - For a suitable choice of $\mathrm{R}_{0}>0, a \in \Omega$ and $\varepsilon>0$ the value

$$
c=\inf _{h \in \mathscr{F}} \max _{t \in[0,1]} \mathrm{I}(h,(t))
$$

defines a critical value for I, and $c \geqq c_{1}$.
It is not clear whether or not $c=c_{1}$. So no additional multiplicity can be claimed for (1.2). However, in case $c=c_{1}$ then it is possible to claim a critical point of mountain-pass type ($c f .[\mathbf{H}]$) for I in Λ^{-}. This follows by a refined version of the mountain-pass lemma (see [A-R]) obtained by Ghoussoub-Preiss and the fact that Λ^{-}cannot contain local minima for I (see [G.P., theorem (ter) part a]).
The referee has brought to our attention a paper of O. Rey (See[R.]) where, by a different approach, a result similar to that of Theorem 3 is established when $f \neq 0, f \geqq 0$ and $\|f\|_{\mathbf{H}^{-1}}$ is sufficiently small.

2. THE PROOF OF THEOREM 1

To obtain the proof of Theorem 1 several preliminary results are in order.
We start with a lemma which clarifies the purpose of assumption (*).
Lemma 2.1. - Let $f \neq 0$ satisfy (*). For every $u \in H, u \neq 0$ there exists a unique $t^{+}=t^{+}(u)>0$ such that $t^{+} u \in \Lambda^{-}$. In particular:

$$
t^{+}>\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)}:=t_{\max }
$$

and $\mathrm{I}\left(t^{+} u\right)=\max _{t \geqq t_{\text {max }}} \mathrm{I}(t u)$
Moreover, if $\int_{\Omega} f u>0$, then there exists a unique $t^{-}=t^{-}(u)>0$ such that $t^{-} u \in \Lambda^{+}$.

In particular,

$$
t^{-}<\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)}
$$

and $\mathrm{I}\left(t^{-} u\right) \leqq \mathrm{I}(t u), \forall t \in\left[0, t^{+}\right]$.

Proof. - Set $\varphi(t)=\mathrm{t}\|\nabla u\|_{2}^{2}-t^{p-1}\|u\|_{p}^{p}$. Easy computations show that φ is concave and achieves its maximum at

$$
t_{\max }=\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)}
$$

Also

$$
\varphi\left(t_{\operatorname{tax}}\right)=\left[\frac{1}{p-1}\right]^{(p-1) /(p-2)}(p-2)\left[\frac{\|\nabla u\|_{2}^{2(p-1)}}{\|u\|_{p}^{p}}\right]^{1 /(p-2)},
$$

that is

$$
\varphi\left(t_{\max }\right)=c_{\mathrm{N}} \frac{\|\nabla u\|_{2}^{\mathrm{N}+2) / 2}}{\|u\|_{p}^{\mathrm{N} / 2}}
$$

Therefore if $\int_{\Omega} f u \leqq 0$ then there exists a unique $t^{+}>t_{\max }$ such that: $\varphi\left(t^{+}\right)=\int_{\Omega} f u \quad$ and $\quad \varphi^{\prime}\left(t^{+}\right)<0 . \quad$ Equivalently $\quad t^{+} u \in \Lambda^{-} \quad$ and $\mathrm{I}\left(t^{+} u\right) \geqq \mathrm{I}(t u) \forall t \geqq t_{\max }$.
In case $\int_{\Omega} f u>0$, by assumption $(*)$ we have that necessarily

$$
\int_{\Omega} f u<c_{\mathrm{N}} \frac{\|\nabla u\|_{2}^{(\mathbb{N}+2) / 2}}{\|u\|_{p}^{\mathbb{N} / 2}}=\varphi\left(t_{\max }\right) .
$$

Consequently, in this case, we have unique $0<t^{-}<t_{\max }<t^{+}$such that

$$
\varphi\left(t^{+}\right)=\int_{\Omega} f u=\varphi\left(t^{-}\right)
$$

and

$$
\varphi^{\prime}\left(t^{-}\right)>0>\varphi^{\prime}\left(t^{+}\right)
$$

Equivalently $t^{+} u \in \Lambda^{-}$and $t^{-} u \in \Lambda^{+}$.
Also $\mathrm{I}\left(t^{+} u\right) \geqq \mathrm{I}(t u), \forall t \geqq t^{-}$and $\mathrm{I}\left(t^{-} u\right) \leqq \mathrm{I}(t u), \forall t \in\left[0, t^{+}\right]$.
Lemma 2.2. - For $f \neq 0$

$$
\begin{equation*}
\inf _{\|u\|_{p=1}}\left(c_{N}\|\nabla u\|^{(N+2) / 2}-\int_{\Omega} f u\right):=\mu_{0} \tag{2.1}
\end{equation*}
$$

is achieved. In particular if f satisfies $(*)$, then $\mu_{0}>0$.
The proof of Lemma 2.2 is technical and a straightforward adaptation of that given in [B.N.1] for an analogous minimization problem.

It will be given in the appendix for the reader's convenience.

Next, for $u \neq 0$ set

$$
\psi(u)=c_{\mathrm{N}} \frac{\|\nabla u\|_{2}^{(\mathbb{N}+2) / 2}}{\|u\|_{p}^{\mathrm{N} / 2}}-\int_{\Omega} f u
$$

Since for $t>0,\|u\|_{p}=1$ we have:

$$
\psi(t u)=t\left[c_{\mathrm{N}}\|\nabla u\|_{2}^{(\mathbb{N}+2) / 2}-\int_{\Omega} f u\right]
$$

given $\gamma>0$, from Lemma 2.2 we derive that

$$
\begin{equation*}
\inf _{\|u\| \geqq \gamma} \psi(u) \geqq \gamma \mu_{0} . \tag{2.2}
\end{equation*}
$$

In particular if f satisfies (*) then the infinum (2.2) is bounded away from zero.
This remark is crucial for the following:

Lemma 2.3. - Let fatisfy (*). For every $u \in \Lambda, u \neq 0$ we have

$$
\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p} \neq 0
$$

(i. e. $\Lambda_{0}=\{0\}$).

Proof. - Although the result also holds for $f=0$, we shall only be concerned with the case $f \neq 0$.

Arguing by contradiction assume that for some $u \in \Lambda, u \neq 0$ we have

$$
\begin{equation*}
\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}=0 \tag{2.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
0=\|\nabla u\|_{2}^{2}-\|u\|_{p}^{p}-\int_{\Omega} f u=(p-2)\|u\|_{p}^{p}-\int_{\Omega} f u \tag{2.4}
\end{equation*}
$$

Condition (2.3) implies

$$
\|u\|_{p} \geqq\left(\frac{\mathrm{~S}}{p-1}\right)^{1 /(p-2)}:=\gamma
$$

and from (2.2) and (2.4) we obtain:

$$
\begin{aligned}
0<\mu_{0} \gamma & \leqq \psi(u)=\left[\frac{1}{p-1}\right]^{(p-1) /(p-2)}(p-2)\left[\frac{\|\nabla u\|_{2}^{2}(p-1)}{\|u\|_{p}^{p}}\right]^{1 /(p-2)}-\int_{\Omega} f u \\
& =(p-2)\left(\left[\frac{1}{p-1}\right]^{(p-1) /(p-2)}\left[\frac{\|\nabla u\|_{2}^{2(p-1)}}{\|u\|_{p}^{p}}\right]^{1 /(p-2)}-\|u\|_{p}^{p}\right) \\
& =(p-2)\|u\|_{p}^{p}\left(\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{(p-1) /(p-2)}-1\right)=0
\end{aligned}
$$

which yields to a contradiction.
As a consequence of Lemma 2.3 we have:
Lemma 2.4. - Let $f \neq 0$ satisfy ($*$). Given $u \in \Lambda, u \neq 0$ there exist $\varepsilon>0$ and a differentiable function $t=t(w)>0, w \in \mathbf{H}\|w\|<\varepsilon$ satisfying the following:

$$
t(0)=1, \quad t(w)(u-w) \in \Lambda, \quad \text { for } \quad\|w\|<\varepsilon
$$

and

$$
\begin{equation*}
\left\langle t^{\prime}(0), w\right\rangle=\frac{2 \int_{\Omega} \nabla u \cdot \nabla w-p \int_{\Omega}|u|^{p-2} u w \int_{\Omega} f w}{\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}} \tag{2.5}
\end{equation*}
$$

Proof. - Define F: $\mathbb{R} \times \mathbf{H} \rightarrow \mathbb{R}$ as follows:

$$
\mathrm{F}(t, w)=t\|\nabla(u-w)\|_{2}^{2}-t^{p-1}\|u-w\|_{p}^{p}-\int_{\Omega} f(u-w)
$$

Since $\mathrm{F}(1,0)=0$ and $\mathrm{F}_{t}(1,0)=\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p} \neq 0$ (by Lemma 2.3), we can apply the implicit function theorem at the point $(1,0)$ and get the result.

We are now ready to give:

The Proof of Theorem 1

We start by showing that I is bounded from below in Λ. Indeed for $u \in \Lambda$ we have:

$$
\int_{\Omega}|\nabla u|^{2}-\int_{\Omega}|u|^{p}-\int_{\Omega} f u=0
$$

Thus:

$$
\begin{aligned}
& \mathrm{I}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{p} \int_{\Omega}|\mathrm{u}|^{p}-\int_{\Omega} f u=\frac{1}{\mathrm{~N}} \int_{\Omega}|\nabla u|^{2}-\left(1-\frac{1}{p}\right) \int_{\Omega} f u \\
& \geqq \frac{1}{\mathrm{~N}}\|\nabla u\|_{2}^{2}-\frac{\mathrm{N}+2}{2 \mathrm{~N}}\|f\|_{\mathrm{H}^{-1}}\|\nabla u\|_{2} \geqq-\frac{1}{16 \mathrm{~N}}\left[(\mathrm{~N}+2)\|f\|_{\mathrm{H}^{-1}}\right]^{2} .
\end{aligned}
$$

In particular

$$
\begin{equation*}
c_{0} \geqq-\frac{1}{16 \mathrm{~N}}\left[(\mathrm{~N}+2)\|f\|_{\mathrm{H}^{-1}}\right]^{2} \tag{2.6}
\end{equation*}
$$

We first obtain our result for f satisfying (*). The more general situation where f satisfies $(*)_{0}$ will be subsequently derived by a limiting argument.

So from now on we assume that f satisfy ($*$).
In order to obtain an upper bound for c_{0}, let $v \in \mathrm{H}$ be the unique solutions for $-\Delta u=f$. So for $f \neq 0$

$$
\int_{\Omega} f_{v}=\|\nabla v\|_{2}^{2}>0
$$

Set $t_{0}=t^{-}(v)>0$ as defined by Lemma 2.1.
Hence $t_{0} v \in \Lambda^{+}$and consequently:

$$
\begin{aligned}
\mathrm{I}\left(t_{0} v\right)=\frac{t_{0}^{2}}{2}\|\nabla v\|_{2}^{2} & -\frac{t_{0}^{p}}{p}\|v\|_{p}^{p}-t_{0}\|\nabla v\|_{2}^{2} \\
& =-\frac{t_{0}^{2}}{2}\|\nabla v\|_{2}^{2}+\frac{p-1}{p} t_{0}^{p}\|v\|_{p}^{p}<-\frac{t_{0}^{2}}{\mathrm{~N}}\|\nabla v\|_{2}^{2}=-\frac{t_{0}^{2}}{\mathrm{~N}}\|f\|_{\mathbf{H}}^{2-1}
\end{aligned}
$$

This yields,

$$
\begin{equation*}
c_{0}<-\frac{t_{0}^{2}}{N}\|f\|_{\mathbf{H}^{-1}}^{2}<0 . \tag{2.7}
\end{equation*}
$$

Clearly Ekeland's variational principle (see [A.E.], Corollary 5.3.2) applies to the minimization problem (1.3). It gives a minimizing sequence $\left\{u_{n}\right\} \subset \Lambda$ with the following properties:
(i) $\mathrm{I}\left(u_{n}\right)<c_{0}+\frac{1}{n}$.
(ii) $\mathrm{I}(w) \geqq \mathrm{I}\left(u_{n}\right)-\frac{1}{n}\left\|\nabla\left(w-u_{n}\right)\right\|_{2}, \forall w \in \Lambda$.

By taking n large, from (2.7) we have:

$$
\begin{equation*}
\mathrm{I}\left(u_{n}\right)=\frac{1}{\mathrm{~N}} \int_{\Omega}\left|\nabla u_{n}\right|^{2}-\frac{\mathrm{N}+2}{2 \mathrm{~N}} \int_{\Omega} f u_{n}<c_{0}+\frac{1}{n}<-\frac{t_{0}^{2}}{\mathrm{~N}}\|f\|_{\mathrm{H}^{-1}}^{2} \tag{2.8}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\int_{\Omega} f u_{n} \geqq \frac{2}{\mathrm{~N}+2} t_{0}^{2}\|f\|_{\mathrm{H}^{-1}}^{2}>0 \tag{2.9}
\end{equation*}
$$

Consequently $u_{n} \neq 0$, and putting together (2.8) and (2.9) we derive:

$$
\begin{equation*}
\frac{2 t_{0}^{2}}{\mathrm{~N}+2}\|f\|_{\mathbf{H}^{-1}} \leqq\left\|\nabla u_{n}\right\|_{2} \leqq \frac{\mathrm{~N}+2}{2}\|f\|_{\mathbf{H}^{-1}} \tag{2.10}
\end{equation*}
$$

Our goal is to obtain $\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow+\infty$.
Hence let us assume $\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|>0$ for n large (otherwise we are done).
Applying Lemma 2.4 with $u=u_{n}$ and $w=\delta \frac{\mathrm{I}^{\prime}\left(u_{n}\right)}{\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|} \quad \delta>0$ small, we find, $t_{n}(\delta):=t\left[\delta \frac{\mathrm{I}^{\prime}\left(u_{n}\right)}{\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|}\right]$ such that

$$
w_{\delta}=t_{n}(\delta)\left[u_{n}-\delta \frac{\mathrm{I}^{\prime}\left(u_{n}\right)}{\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|}\right] \in \Lambda
$$

From condition (ii) we have:

$$
\begin{aligned}
& \frac{1}{n}\left\|\nabla\left(w_{\delta}-u_{n}\right)\right\|_{2} \geqq \mathrm{I}\left(u_{n}\right)-\mathrm{I}\left(w_{\delta}\right)=\left(1-t_{n}(\delta)\right)\left\langle\mathrm{I}^{\prime}\left(w_{\delta}\right), u_{n}\right\rangle \\
& \\
& \quad+\delta t_{n}(\delta)\left\langle\mathrm{I}^{\prime}\left(w_{\delta}\right), \frac{\mathrm{I}^{\prime}\left(u_{n}\right)}{\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|}\right\rangle+o(\delta) .
\end{aligned}
$$

Dividing by $\delta>0$ and passing to the limit as $\delta \rightarrow 0$ we derive:

$$
\frac{1}{n}\left(1+\left|t_{n}^{\prime}(0)\right|\left\|\nabla u_{n}\right\|_{2}\right) \geqq-t_{n}^{\prime}(0)\left\langle\mathrm{I}^{\prime}\left(u_{n}\right), u_{n}\right\rangle+\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|=\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|
$$

where we have set $t_{n}^{\prime}(0)=\left\langle t^{\prime}(0), \frac{\mathrm{I}^{\prime}\left(u_{n}\right)}{\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\|}\right\rangle$.
Thus from (2.10) we conclude:

$$
\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\| \leqq \frac{\mathrm{C}}{n}\left(1+\left|t_{n}^{\prime}(0)\right|\right)
$$

for a suitable positive constant C .
We are done once we show that $\left|t_{n}^{\prime}(0)\right|$ is bounded uniformly on n.
From (2.5) and the estimate (2.10) we get:

$$
\left.\mid t_{n}^{\prime}(0)\right) \leqq \frac{\mathrm{C}_{1}}{\left|\left\|\nabla u_{n}\right\|_{2}^{2}-(p-1)\left\|u_{n}\right\|_{p}^{p}\right|}
$$

$\mathrm{C}_{1}>0$ suitable constant.
Hence we need to show that $\left|\left\|\nabla u_{n}\right\|_{2}^{2}-(p-1)\left\|u_{n}\right\|_{p}^{p}\right|$ is bounded away from zero.

Arguing by contradiction, assume that for a subsequence, which we still call u_{n}, we have:

$$
\begin{equation*}
\left\|\nabla u_{n}\right\|_{2}^{2}-(p-1)\left\|u_{n}\right\|_{p}^{p}=o(1) . \tag{2.11}
\end{equation*}
$$

From the estimate (2.10) and (2.11) we derive:

$$
\left\|u_{n}\right\|_{p} \geqq \gamma \quad(\gamma>0 \text { suitable constant })
$$

and

$$
\left[\frac{\left\|\nabla u_{n}\right\|_{2}^{2}}{p-1}\right]^{(p-1) /(p-2)}-\left[\left\|u_{n}\right\|_{p}^{p}\right]^{(p-1) /(p-2)}=o(1) .
$$

In addition (2.11), and the fact that $u_{n} \in \Lambda$ also give:

$$
\int_{\Omega} f u_{n}=(p-2)\left\|u_{n}\right\|_{p}^{p}+o(1) .
$$

This, together with (2.2) implies:

$$
\begin{aligned}
0<\mu_{0} \gamma^{(\mathrm{N}+2) / 2} & \leqq\left\|u_{n}\right\|_{p}^{p /(p-2)} \psi\left(u_{n}\right) \\
& =(p-2)\left[\left[\frac{\left\|\nabla u_{n}\right\|_{2}^{2}}{p-1}\right]^{(p-1) /(p-2)}-\left[\left\|u_{n}\right\|_{p}^{p(p-1) /(p-2)}\right]=o(1) .\right.
\end{aligned}
$$

which is clearly impossible.
In conclusion:

$$
\begin{equation*}
\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 \quad \text { as } n \rightarrow+\infty . \tag{2.12}
\end{equation*}
$$

Let $u_{0} \in \mathrm{H}$ be the weak limit in $\mathrm{H}_{0}^{1}(\Omega)$ of (a subsequence of) u_{n}. From (2.9) we derive that:

$$
\int_{\Omega} f u_{0}>0
$$

and from (2.12) that

$$
\left\langle\mathrm{I}^{\prime}\left(u_{0}\right), w\right\rangle=0, \quad \forall w \in \mathrm{H},
$$

i.e. u_{0} is a weak solution for (1.2).

In particular, $u_{0} \in \Lambda$.
Therefore:

$$
c_{0} \leqq \mathrm{I}\left(u_{0}\right)=\frac{1}{\mathrm{~N}}\left\|\nabla u_{0}\right\|_{2}^{2}-\int_{\Omega} f u_{0} \leqq \lim _{n \rightarrow+\infty} \mathrm{I}\left(u_{n}\right)=c_{0} .
$$

Consequently $u_{n} \rightarrow u_{0}$ strongly in H and $\mathrm{I}\left(u_{0}\right)=c_{0}=\operatorname{infI}$. Also from Lemma 2.1 and (2.12) follows that necessarily $u_{0} \in \Lambda^{+}$.

To conclude that u_{0} is a local minimum for I , notice that for every $u \in \mathrm{H}$ with $\int_{\Omega} f u>0$ we have:

$$
\begin{gather*}
\mathrm{I}(s u) \geqq \mathrm{I}\left(t^{-} u\right) \\
\text { for every } 0<s<\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)} \tag{2.13}
\end{gather*}
$$

(see Lemma 2.1).

Vol. 9, n ${ }^{\circ}$ 3-1992.

In particular for $u=u_{0} \in \Lambda^{+}$we have:

$$
\begin{equation*}
t^{-}=1<\left[\frac{\left\|\nabla u_{0}\right\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)} . \tag{2.14}
\end{equation*}
$$

Let $\varepsilon>0$ sufficiently small to have:

$$
1<\frac{\left\|\nabla\left(u_{0}-w\right)\right\|_{2}^{2}}{(p-1)\left\|u_{0}-w\right\|_{p}^{p}}
$$

for $\|w\|<\varepsilon$.
From Lemma 2.4, let $t(w)>0$ satisfy $t(w)\left(u_{0}-w\right) \in \Lambda$ for every $\|w\|<\varepsilon$.
Since $t(w) \rightarrow 1$ as $\|w\| \rightarrow 0$, we can always assume that

$$
t(w)<\left[\frac{\left\|\nabla\left(u_{0}-w\right)\right\|_{2}^{2}}{(p-1)\left\|u_{0}-w\right\|_{p}^{p}}\right]^{1 /(p-2)}
$$

for every $w:\|w\|<\varepsilon$.
Namely, $t(w)\left(u_{0}-w\right) \in \Lambda^{+}$and for $0<s<\left[\frac{\left\|\nabla\left(u_{0}-w\right)\right\|_{2}^{2}}{(p-1)\left\|u_{0}-w\right\|_{p}^{p}}\right]^{1 /(p-2)}$ we have,

$$
\mathrm{I}\left(s\left(u_{0}-w\right)\right) \geqq \mathrm{I}\left(t(w)\left(u_{0}-w\right)\right) \geqq \mathrm{I}\left(u_{0}\right) .
$$

From (2.14) we can take $s=1$ and conclude:

$$
\mathrm{I}\left(u_{0}-w\right) \geqq \mathrm{I}(w), \quad \forall w \in \mathrm{H}, \quad\|w\|<\varepsilon .
$$

Furthermore if $f \geqq 0$, take, $t_{0}=t^{-}\left(\left|u_{0}\right|\right)>0$ with $t_{0}\left|u_{0}\right| \in \Lambda^{+}$.
Necessarily $t_{0} \geqq 1$, and

$$
\mathrm{I}\left(t_{0}\left|u_{0}\right|\right) \leqq \mathrm{I}\left(\left|u_{0}\right|\right) \leqq \mathrm{I}\left(u_{0}\right) .
$$

So we can always take $u_{0} \geqq 0$.
To obtain the proof when f satisfies $(*)_{0}$ we shall apply an approximation argument. To this purpose, notice that if f satisfies $(*)_{0}$ then $f_{\varepsilon}=(1-\varepsilon) f$ satisfies $(*) \forall \varepsilon \in(0,1)$.

Set

$$
\mathrm{I}_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{p} \int_{\Omega}|u|^{p}+(1-\varepsilon) \int_{\Omega} f u, \quad u \in \mathrm{H} .
$$

Let $u_{\varepsilon} \in \Lambda_{\varepsilon}^{+}=\left\{u \in \mathrm{H}:\left\langle\mathrm{I}_{\varepsilon}^{\prime}(u), u\right\rangle=0,\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}>0\right\}$ satisfy:

$$
\mathrm{I}_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{\Lambda_{\varepsilon}} \mathrm{I}_{\varepsilon}:=c_{\varepsilon}
$$

and

$$
\begin{equation*}
\left\langle\mathbf{I}_{\varepsilon}^{\prime}\left(u_{\mathrm{\varepsilon}}\right), w\right\rangle=0, \quad \forall w \in \mathbf{H} \tag{2.15}
\end{equation*}
$$

Clearly $\left\|\nabla u_{\varepsilon}\right\|_{2} \leqq \mathrm{C}_{2}$, for $0<\varepsilon<1$ and $\mathrm{C}_{2}>0$ a suitable constant.

Let $u \in \Lambda^{+}$, necessarily $\int_{\Omega} f u>0$ and consequently

$$
(1-\varepsilon) \int_{\Omega} f u>0, \quad 0<\varepsilon<1
$$

From Lemma 2.1 applied with $f=f_{\varepsilon}$ we find:

$$
0<t_{\varepsilon}^{-}<\left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}\right]^{1 /(p-2)}
$$

with $t_{\varepsilon}^{-} u \in \Lambda_{\varepsilon}^{+}$.
Since $1<\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}$, from (2.13) it follows that

$$
I_{\varepsilon}\left(t_{\varepsilon}^{-} u\right) \leqq I_{\varepsilon}(u)
$$

and consequently:

$$
c_{\varepsilon} \leqq \mathrm{I}_{\varepsilon}\left(t_{\varepsilon} u\right) \leqq \mathrm{I}_{\varepsilon}(u) \leqq \mathrm{I}(u)+\varepsilon\|f\|_{\mathbf{H}^{-1}}\|\nabla u\|_{2} \leqq \mathrm{I}(u)+\varepsilon \mathrm{C}_{3}
$$

(with $\mathrm{C}_{3}>0$ a suitable constant).
Estimate (2.6) with $f=f_{\varepsilon}$ and the above inequality imply:

$$
-\frac{1}{16 \mathrm{~N}}\left[(\mathrm{~N}+2)\|f\|_{\mathrm{H}^{-1}}\right]^{2} \leqq-\frac{1}{16 \mathrm{~N}}\left[(\mathrm{~N}+2)\left\|f_{\varepsilon}\right\|_{\mathrm{H}^{-1}}\right]^{2} \leqq c_{\varepsilon} \leqq c_{0}+\varepsilon \mathrm{C}_{3}
$$

Let $\varepsilon_{n} \rightarrow 0, n \rightarrow+\infty$ and $u_{0} \in \mathrm{H}$ satisfy:
(a) $c_{\varepsilon_{n}} \rightarrow \bar{c} \leqq c_{0}, n \rightarrow+\infty$
(b) $u_{\varepsilon_{n}} \rightarrow u_{0}, n \rightarrow+\infty$ weakly in H .

From (2.15) it follows $\left\langle\mathrm{I}^{\prime}\left(u_{0}\right), w\right\rangle=0, \forall w \in \mathrm{H}$ (i.e. u_{0} is a critical point for I) and $\mathrm{I}\left(u_{0}\right) \leqq c_{0}$.

In particular $u_{0} \in \Lambda$ and necessarily $\mathrm{I}\left(u_{0}\right)=c_{0}$, (i.e. $u_{\varepsilon_{n}} \rightarrow u_{0}$ strongly in H).

This completes the proof.

3. THE PROOF OF THEOREMS 2 AND 4

The functional I involves the limiting Sobolev exponent $p=\frac{2 \mathrm{~N}}{\mathrm{~N}-2}$. This compromises its compactness properties, and a possible failure of the P.S. condition is to be expected.

Our first task is to locate the levels free from this noncompactness effect.

We refer to $[B]$ and $[\mathrm{S}]$ for a survey on related problems where such an approach has been successfully used.

In this direction we have:
Proposition 3.1. - Every sequence $\left\{u_{n}\right\} \subset \mathrm{H}$ satisfying:
(a) I $\left(u_{n}\right) \rightarrow c$ with $c<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}$
[c_{0} as defined in (1.3)].
(b) $\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0$
as a convergent subsequence.
Namely the (P.S) condition holds for all level $c<c_{0}+\frac{1}{N} S^{N / 2}$.
Proof. - It is not difficult to see that (a) and (b) imply that $\left\|\nabla u_{n}\right\|_{2}$ is uniformly bounded.

Hence for a subsequence of u_{n} (which we still call u_{n}), we can find a $w_{0} \in H$ such that

$$
u_{n} \rightarrow w_{0} \text { weakly in } \mathrm{H} .
$$

Consequently from (b) we obtain:

$$
\begin{equation*}
\left\langle\mathrm{I}^{\prime}\left(w_{0}\right), w\right\rangle=0, \quad \forall w \in \mathrm{H} \tag{3.1}
\end{equation*}
$$

That is w_{0} is a solution in $\mathbf{H}_{0}^{1}(\Omega)$ for (1.2). In particular $w_{0} \neq 0, w_{0} \in \Lambda$ and $\mathrm{I}\left(w_{0}\right) \geqq c_{0}$.

Write $u_{n}=w_{0}+v_{n}$ with $v_{n} \rightarrow 0$ weakly in H.
By a Lemma of Brezis-Lieb [B.L.] we have:

$$
\left\|u_{n}\right\|_{p}^{p}=\left\|w_{0}+v_{n}\right\|_{p}^{p}=\left\|w_{0}\right\|_{p}^{p}+\left\|v_{n}\right\|_{p}^{p}+o(1) .
$$

Hence, for n large, we conclude:

$$
\begin{aligned}
c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}>\mathrm{I}\left(w_{0}+v_{n}\right)=I\left(w_{0}\right)+\frac{1}{2}\left\|\nabla v_{n}\right\|_{2}^{2} & -\frac{1}{p}\left\|v_{n}\right\|_{p}^{p}+o(1) \\
& \geqq c_{0}+\frac{1}{2}\left\|\nabla v_{n}\right\|_{2}^{2}-\frac{1}{p}\left\|v_{n}\right\|_{p}^{p}+o(1) .
\end{aligned}
$$

which gives:

$$
\begin{equation*}
\frac{1}{2}\left\|\nabla v_{n}\right\|_{2}^{2}-\frac{1}{p}\left\|v_{n}\right\|_{p}^{p}<\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}+o(1) \tag{3.2}
\end{equation*}
$$

Also from (b) follows:

$$
\begin{aligned}
o(1)=\left\langle\mathrm{I}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left\|\nabla w_{0}\right\|^{2}- & \left\|w_{0}\right\|_{p}^{p}-\int_{\Omega} f w_{0}+\left\|\nabla v_{n}\right\|_{2}^{2}-\left\|v_{n}\right\|_{p}^{p}+o(1) \\
& =\left\langle\mathrm{I}^{\prime}\left(w_{0}\right), w_{0}\right\rangle+\left\|\nabla v_{n}\right\|_{2}^{2}-\left\|v_{n}\right\|_{p}^{p}+o(1):
\end{aligned}
$$

and taking into account (3.1) we obtain:

$$
\begin{equation*}
\left\|\nabla v_{n}\right\|_{2}^{2}-\left\|v_{n}\right\|_{p}^{p}=o(1) \tag{3.3}
\end{equation*}
$$

We claim that conditions (3.2) and (3.3) can hold simultaneously only if $\left\{v_{n}\right\}$ admits a subsequence, $\left\{v_{n_{k}}\right\}$ say, which converges strongly to zero, i.e. $\left\|v_{n_{k}}\right\| \rightarrow 0, k \rightarrow+\infty$.

Arguing by contradiction assume that $\left\|v_{n}\right\|$ is bounded away from zero. That is for some constant $c_{4}>0$ we have $\left\|v_{n}\right\| \geqq c_{4}, \forall n \in \mathbb{N}$.

From (3.3) then it follows:

$$
\left\|v_{n}\right\|_{p}^{p-2} \geqq \mathrm{~S}+o(1)
$$

and consequently

$$
\left\|v_{n}\right\|_{p}^{p} \geqq \mathrm{~S}^{\mathrm{N} / 2}+o(1)
$$

This yields a contradiction since from (3.2) and (3.3) we have:

$$
\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2} \leqq \frac{1}{\mathrm{~N}}\left\|v_{n}\right\|_{p}^{p}+o(1)=\frac{1}{2}\left\|\nabla v_{n}\right\|_{2}^{2}-\frac{1}{p}\left\|v_{n}\right\|_{p}^{p}+o(1)<\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}
$$

for n large.
In conclusion, $u_{n_{k}} \rightarrow w_{0}$ strongly.
At this point it would not be difficult to derive Theorem 2, if we had the inequality:

$$
\begin{equation*}
\operatorname{infI}=c_{1}<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2} \tag{3.4}
\end{equation*}
$$

However it appears difficult to derive (3.4) directly.
We shall obtain it by comparison with a mountain-pass value.
To this end, recall that $u_{0} \neq 0$. Following [B.N.1] we set $\Sigma \subset \Omega$ to be a set of positive measure such that $u_{0}>0$ on Σ (replace u_{0} with $-u_{0}$ and f with -f if necessary).

$$
\text { Set } \mathrm{U}_{\varepsilon, a}(x)=\xi_{a}(x) u_{\varepsilon, a}(x), \quad x \in \mathbb{R}^{\mathbb{N}}
$$

$\left[u_{\varepsilon, a}\right.$ and ξ_{a} defined in (1.6) and (1.7)].
Lemma 3.1. - For every $\mathrm{R}>0$ and a.e. $a \in \Sigma$, there exists $\varepsilon_{0}=\varepsilon_{0}(\mathrm{R}, a)>0$ such that:

$$
\mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right)<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}
$$

for every $0<\varepsilon<\varepsilon_{0}$.
Proof. - We have:

$$
\begin{align*}
& \mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right)=\int_{\Omega} \frac{\left|\nabla u_{0}\right|^{2}}{2}+\mathrm{R} \int_{\Omega} \nabla u_{0} \nabla \mathrm{U}_{\varepsilon, a}+\frac{\mathrm{R}^{2}}{2} \int_{\Omega}\left|\nabla \mathrm{U}_{\varepsilon, a}\right|^{2} \\
&-\frac{1}{p} \int_{\Omega}\left|u_{0}+\mathrm{RU}_{\varepsilon, a}\right|^{p}-\int_{\Omega} f u_{0}-\mathrm{R} \int_{\Omega} f \mathrm{U}_{\varepsilon, a} . \tag{3.5}
\end{align*}
$$

Vol. 9, n 3 -1992.

A careful estimate obtained by Brezis-Nirenberg (see formulae (17) and (22) in [B.N.1]) shows that:

$$
\begin{aligned}
\left\|u_{0}+\mathrm{RU}_{\varepsilon, a}\right\|_{p}^{p}=\left\|u_{0}\right\|_{p}^{p}+ & \mathrm{R}^{p}\left\|\mathrm{U}_{\varepsilon, a}\right\|_{p}^{p}+p \mathrm{R} \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0} \mathrm{U}_{\varepsilon, a} \\
& +p \mathrm{R}^{p-1} \int_{\Omega} \mathrm{U}_{\varepsilon, a}^{p-1} u_{0}+o\left[\varepsilon^{(\mathbb{N}-2) / 2}\right] \text { for a.e. } a \in \Sigma
\end{aligned}
$$

Also from [B.N.2] we have:

$$
\left\|\nabla \mathrm{U}_{\varepsilon, a}\right\|_{2}^{2}=\mathrm{B}+O\left(\varepsilon^{\mathrm{N}-2}\right) \quad \text { and } \quad\left\|\mathrm{U}_{\varepsilon, a}\right\|_{p}^{p}=\mathrm{A}+O\left(\varepsilon^{\mathrm{N}}\right)
$$

where

$$
\mathrm{B}=\int_{\mathbb{R}^{\mathrm{N}}}\left|\nabla u_{1}(x)\right|^{2} \dot{d} x, \mathrm{~A}=\int_{\mathbb{R}^{\mathrm{N}}} \frac{d x}{\left(1+|x|^{2}\right)^{\mathrm{N}}}
$$

and

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{B}}{\mathrm{~A}^{2 / p}} \tag{3.6}
\end{equation*}
$$

Substituting in (3.5) and using the fact that u_{0} satisfies (1.2) we obtain:

$$
\begin{array}{r}
\mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right)=\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2}+\mathrm{R} \int_{\Omega} \nabla u_{0} \cdot \nabla \mathrm{U}_{\varepsilon, a}+\frac{\mathrm{R}^{2}}{2} \mathrm{~B}-\frac{1}{p} \int_{\Omega}\left|u_{0}\right|^{p}-\frac{\mathrm{R}^{p}}{p} \mathrm{~A} \\
-\mathrm{R} \int_{\Omega}\left|u_{0}\right| u_{0}^{p-2} \mathrm{U}_{\varepsilon, a}-\mathrm{R}^{p-1} \int_{\Omega} \mathrm{U}_{\varepsilon, a}^{p-1} u_{0}-\int_{\Omega} f u_{0}-\mathrm{R} \int_{\Omega} f \mathrm{U}_{\varepsilon, a}+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right] \\
\\
=\mathrm{I}\left(u_{0}\right)+\frac{\mathrm{R}^{2}}{2} \mathrm{~B}-\frac{\mathrm{R}^{p}}{p} \mathrm{~A}-\mathrm{R}^{p-1} \int_{\Omega} \mathrm{U}_{\varepsilon, a}^{p-1} u_{0}+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right]
\end{array}
$$

for a.e. $a \in \Sigma$.
Set $u_{0}=0$ outside Ω, it follows:

$$
\begin{aligned}
& \int_{\Omega} U_{\varepsilon, a}^{p-1} u_{0}=\int_{\mathbb{R}^{\mathrm{N}}} u_{0}(x) \xi_{a}(x) \frac{\varepsilon^{(\mathrm{N}+2) / 2}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{(\mathbb{N}+2) / 2^{d x}}} \\
&=\varepsilon^{(\mathbb{N}-2) / 2} \int_{\mathbb{R}^{\mathbb{N}}} u_{0}(x) \xi_{a}(x) \frac{1}{\varepsilon^{\mathrm{N}}} \psi_{1}\left(\frac{x}{\varepsilon}\right) d x,
\end{aligned}
$$

where $\psi_{1}(x)=\frac{1}{\left(1+|x|^{2}\right)^{(N+2) / 2}} \in \mathrm{~L}^{1}\left(\mathbb{R}^{\mathrm{N}}\right)$.
Therefore, setting $\mathrm{D}=\int_{\mathbb{R}^{\mathrm{N}}} \frac{d x}{\left(1+|x|^{2}\right)^{(\mathbb{N}+2) / 2}}$ we derive:

$$
\int_{\mathbb{R}^{\mathbb{N}}} u_{0}(x) \xi_{a}(x) \frac{1}{\varepsilon^{\mathrm{N}}} \psi_{1}\left(\frac{x}{\varepsilon}\right) d x \rightarrow u_{0}(a) \mathrm{D}
$$

for a.e. $a \in \Sigma$ (see $[F]$).

In other words,

$$
\int_{\Omega} \mathrm{U}_{\mathrm{E}, a}^{p-1}(x) u_{0}(x) d x=\varepsilon^{(\mathbb{N}-2) / 2} u_{0}(a) \mathbf{D}+o\left(\varepsilon^{(\mathbf{N}-2) / 2}\right)
$$

Consequently:

$$
\mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right)=c_{0}+\frac{\mathbf{R}^{2}}{2} \mathbf{B}-\frac{\mathbf{R}^{p}}{p} \mathbf{A}-\mathbf{R}^{p-1} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right]
$$

Define:

$$
q(s)=\frac{s^{2}}{2} \mathrm{~B}-\frac{s^{p}}{\mathrm{P}} \mathrm{~A}-s^{p-1} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}, \quad s>0
$$

and assume that $q(s)$ achieves its maximum at $S_{\varepsilon}>0$.
Set

$$
\mathrm{S}_{0}=\left(\frac{\mathrm{B}}{\mathrm{~A}}\right)^{1 /(p-2)} .
$$

Since s_{ε} satisfies:

$$
\begin{equation*}
s_{\varepsilon} \mathbf{B}-s_{\varepsilon}^{p-1} \mathrm{~A}=(p-1) u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2} s_{\varepsilon}^{p-2} \tag{3.7}
\end{equation*}
$$

necessarily $0<s_{\varepsilon}<\mathrm{S}_{0}$ and $s_{\varepsilon} \rightarrow \mathrm{S}_{0}$ as $\varepsilon \rightarrow 0$.
Write $S_{\varepsilon}=\mathrm{S}_{0}\left(1-\delta_{\varepsilon}\right)$. We study the rate at which $\delta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
From (3.7) we obtain:

$$
\left(\frac{\mathrm{B}^{p-1}}{\mathrm{~A}}\right)^{1 /(p-2)}\left(1-\delta_{\varepsilon}-\left(1-\delta_{\varepsilon}\right)^{p-1}\right)=(p-1) \frac{\mathrm{B}}{\mathrm{~A}}\left(1-\delta_{\varepsilon}\right)^{p-2} \varepsilon^{(\mathrm{N}-2) / 2} u_{0}(a) \mathrm{D}
$$

and expanding for δ_{ε} we derive:

$$
(p-2)\left(\frac{\mathrm{B}^{p-1}}{\mathrm{~A}}\right)^{1 /(p-2)} \delta_{\varepsilon}=(p-1) \frac{\mathrm{B}}{\mathrm{~A}} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right) .
$$

This implies:

$$
\begin{aligned}
& \mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right) \leqq c_{0}+\frac{S_{\varepsilon}^{2}}{2} \mathrm{~B}-\frac{s_{\varepsilon}^{p}}{p} \mathrm{~B}-S_{\varepsilon}^{p-1} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right) \\
&=c_{0}+\frac{\mathrm{S}_{0}^{2}}{2} \mathrm{~B}-\frac{\mathrm{S}_{0}^{p}}{2} \mathrm{~A}-\mathrm{S}_{0}^{2} \mathrm{~B} \delta_{\varepsilon}+\mathrm{S}_{0}^{p} \mathrm{~A} \delta_{\varepsilon}-\mathrm{S}_{0}^{p-1} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right) \\
&=c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}-\mathrm{S}_{0}^{p-1} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right)
\end{aligned}
$$

Therefore for $\varepsilon_{0}=\varepsilon_{0}(\mathrm{R}, a)>0$ sufficiently small we conclude

$$
\begin{equation*}
\mathrm{I}\left(u_{0}+\mathrm{RU}_{\varepsilon, a}\right)<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2} \tag{3.8}
\end{equation*}
$$

$\forall 0<\varepsilon<\varepsilon_{0}$.
Our aim is to state a mountain pass principle that produces a value which is below the threshold $c_{0}+\frac{1}{N} S^{\mathrm{N} / 2}$ but also compares with the value $c_{1}=\inf$ I.
A^{-}
To this end observe that under assumption (*), the manifold Λ^{-}disconnects H in exactly two connected components U_{1} and U_{2}.

To see this, notice that for every $u \in H,\|u\|=\|\nabla u\|_{2}=1$ by Lemma 2.1 we can find a unique $t^{+}(u)>0$ such that

$$
t^{+}(u) u \in \Lambda^{-} \quad \text { and } \quad \mathrm{I}\left(t^{+}(u) u\right)=\max _{t \geqq I_{\max }} \mathrm{I}(t u)
$$

The uniqueness of $t^{+}(u)$ and its extremal property give that $t^{+}(u)$ is a continuous function of u.

Set

$$
\mathrm{U}_{1}=\left\{u=0 \text { or } u:\|u\|<t^{+}\left(\frac{u}{\|u\|}\right)\right\}
$$

and

$$
\mathrm{U}_{2}=\left\{u:\|u\|>t^{+}\left(\frac{u}{\|u\|}\right)\right\} .
$$

Clearly $\mathrm{H}-\Lambda^{-}=\mathrm{U}_{1} \cup \mathrm{U}_{2}$ and $\Lambda^{+} \subset \mathrm{U}_{1}$.
In particular $u_{0} \in \mathrm{U}_{1}$.

The Proof of Theorem 4

Easy computations show that, for suitable constant $\mathrm{C}_{5}>0$ we have:

$$
0<t^{+}(u)<\mathrm{C}_{5}, \quad \forall u:\|u\|=1
$$

Set $\mathrm{R}_{0}=\left(\frac{1}{\mathrm{~B}}\left|\mathrm{C}_{5}^{2}-\left\|u_{0}\right\|^{2}\right|\right)^{1 / 2}+1$ and fix $a \in \Sigma$ such that Lemma 3.2 applies, and the estimate (3.8) holds for all $0<\varepsilon<\varepsilon_{0}$.

We claim that

$$
\begin{equation*}
w_{\varepsilon}:=u_{0}+\mathbf{R}_{0} \xi_{a} u_{\varepsilon, a} \in \mathbf{U}_{2} \tag{3.9}
\end{equation*}
$$

for $\varepsilon>0$ small.

Indeed

$$
\begin{aligned}
&\left\|\nabla w_{\varepsilon}\right\|_{2}^{2}=\left\|\nabla\left(u_{0}+\mathrm{R}_{0} \xi_{a} \mathrm{U}_{\varepsilon, a}\right)\right\|_{2}^{2} \\
&=\left\|u_{0}\right\|_{2}^{2}+\mathrm{R}_{0}^{2} \mathrm{~B}+o(1)>\mathrm{C}_{5}^{2} \geqq\left[t^{+}\left(\frac{w_{\varepsilon}}{\left\|w_{\varepsilon}\right\|}\right)\right]^{2},
\end{aligned}
$$

for $\varepsilon>0$ small enough.
For such a choice of R_{0} and $a \in \Sigma$, fix $\varepsilon>0$ such that both (3.8) and (3.9) hold.

Set

$$
\mathscr{F}=\left\{\begin{aligned}
& h:[0,1] \rightarrow \mathrm{H} \text { continuous, } h(0)=u_{0} \\
& h(1)=\mathrm{R}_{0} \xi_{a} u_{\varepsilon, a}
\end{aligned}\right\}
$$

Clearly $h:[0,1] \rightarrow \mathrm{H}$ given by $h(t)=u_{0}+t \mathrm{R}_{0} \xi_{a} u_{\varepsilon, a}$ belongs to \mathscr{F}. So by Lemma 2.3 we conclude:

$$
\begin{equation*}
c=\inf _{h \in \mathscr{F} x \in[0,1]} \max _{x} \mathrm{I}(h(t))<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2} \tag{3.10}
\end{equation*}
$$

Also, since the range of any $h \in \mathscr{F}$ intersect Λ^{-}, we have

$$
\begin{equation*}
c \geqq c_{1}=\inf _{\Lambda^{-}} . \tag{3.11}
\end{equation*}
$$

At this point the conclusion of Theorem 4 follows by Lemma 3.1 and a straightforward application of the mountain-pass lemma (cf. [A.R.]).

The Proof of Theorem 2

Analogously to the proof of Theorem 1, one can show that the Ekeland's variational principle gives a sequence $\left\{u_{n}\right\} \subset \Lambda^{-}$satisfying:

$$
\begin{gathered}
\mathrm{I}^{\prime}\left(u_{n}\right) \rightarrow c_{1} \\
\left\|\mathrm{I}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0
\end{gathered}
$$

But from (3.10) and (3.11), we have:

$$
c_{1}<c_{0}+\frac{1}{\mathrm{~N}} \mathrm{~S}^{\mathrm{N} / 2}
$$

Thus, by Lemma 3.1, we obtain a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ and $u_{1} \in \mathrm{H}$ such that:

$$
u_{n_{k}} \rightarrow u_{1} \text { strongly in } \mathrm{H}
$$

Consequently u_{1} is a critical point for $\mathrm{I}, u_{1} \in \Lambda^{-}$(since Λ^{-}is closed) and $\mathrm{I}\left(u_{1}\right)=c_{1}$.
Finally to see that $f \geqq 0$ yields $u_{1} \geqq 0$, let $t^{+}>0$ satisfy

$$
t^{+}\left|u_{1}\right| \in \Lambda^{-}
$$

From Lemma 2.1 we conclude:

$$
\mathrm{I}\left(u_{1}\right)=\max _{t \geqq t_{\max }} \mathrm{I}\left(t u_{1}\right) \geqq \mathrm{I}\left(t^{+} u_{1}\right) \geqq \mathrm{I}\left(t^{+}\left|u_{1}\right|\right) .
$$

So we can always take $u_{1} \geqq 0$.

4. APPENDIX

The Proof of Lemma 2.2

Let $\left\{u_{n}\right\}$ be a minimizing sequence for (2.1) such that for $u_{0} \in \mathrm{H}$ we have $u_{n} \rightarrow u_{0}$ weakly in H and $u_{n} \rightarrow u_{0}$ pointwise a.e. in Ω.

In general $\left\|u_{0}\right\|_{p} \leqq 1$. We are done once we show $\left\|u_{0}\right\|_{p}=1$.
To obtain this, we shall argue by contradiction and assume

$$
\left\|u_{0}\right\|_{p}<1
$$

Hence write $u_{n}=u_{0}+w_{n}$ where $w_{n} \rightarrow 0$ weakly in H .
We have

$$
\begin{array}{r}
\mu_{0}+o(1)=c_{n}\left\|\nabla u_{n}\right\|^{(\mathrm{N}+2) / 2}-\int_{\Omega} f u_{n}=c_{\mathrm{N}}\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla w_{n}\right\|_{2}^{2}\right)^{(\mathrm{N}+2) / 4} \\
 \tag{4.1}\\
-\int_{\Omega} f u_{0}+o(1)
\end{array}
$$

On the other hand,

$$
1=\left\|u_{0}+w_{n}\right\|_{p}^{p}=\left\|u_{0}\right\|_{p}^{p}+\left\|w_{n}\right\|_{p}^{p}+o(1)
$$

(see [B.L.]), which gives:

$$
\left\|w_{n}\right\|_{p}^{2}=\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}+o(1)
$$

So from (4.1) we conclude:

$$
\begin{aligned}
& \mu_{0}+o(1)=c_{\mathrm{N}}\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla w_{n}\right\|_{2}^{2}\right)^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u_{0} \\
& \geqq c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+\mathrm{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}+o(1)\right]^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u_{0}
\end{aligned}
$$

That is,

$$
\begin{equation*}
c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+\mathrm{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}\right]^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u_{0} \leqq \mu_{0} \tag{4.2}
\end{equation*}
$$

Following [B.N.1] for every $u \in \mathbf{H},\|u\|_{p}<1$ and $a \in \Omega$ let $c_{\varepsilon}=c_{\varepsilon}(a)>0$ satisfy the following:

$$
\left\|u+c_{\varepsilon} \mathbf{U}_{\varepsilon, a}\right\|_{p}=1
$$

[recall $\mathrm{U}_{\varepsilon, a}(x)=\xi_{a}(x) u_{\varepsilon, a}(x)$ with ξ_{a} and $u_{\varepsilon, a}$ given in (1.6) and (1.7)].
We have:

$$
\begin{array}{r}
\left\|\nabla\left(u+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)\right\|_{2}^{2}=\|\nabla u\|_{2}^{2}+c_{\varepsilon}^{2}\left\|\nabla \mathrm{U}_{\varepsilon, a}\right\|_{2}^{2}+o(1) \\
=\|\nabla u\|_{2}^{2}+c_{\varepsilon}^{2} \mathrm{~B}+o(1) \tag{4.3}
\end{array}
$$

and

$$
\mathrm{l}=\left\|u+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right\|_{p}^{p}=\|u\|_{p}^{p}+c_{\varepsilon}^{p},\left\|\mathrm{U}_{\varepsilon, a}\right\|_{p}^{p}+o(1)=\|u\|_{p}^{p}+c_{\varepsilon}^{p} \mathbf{A}+o(1)
$$

[A, B as given in (3.6)].
Thus

$$
\begin{equation*}
c_{\varepsilon}^{2}=\frac{1}{\mathrm{~A}^{2 / p}}\left(1-\|u\|_{p}^{p}\right)^{2 / p}+o(1) \tag{4.4}
\end{equation*}
$$

Substituting in (4.3) we obtain:

$$
\begin{aligned}
&\left\|\nabla\left(u+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)\right\|_{2}^{2}=\|\nabla u\|_{2}^{2}+\frac{\mathrm{B}}{\mathrm{~A}^{2 / p}}\left(1-\|u\|_{p}^{p}\right)^{2 / p}+o(1) \\
&=\|\nabla u\|_{2}^{2}+\mathrm{S}\left(1-\|u\|_{p}^{p}\right)^{2 / p}+o(1)
\end{aligned}
$$

This yields:

$$
\begin{aligned}
& \mu_{0} \leqq c_{\mathrm{N}}\left\|\nabla\left(u+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)\right\|_{2}^{(N+2) / 2}-\int_{\Omega} f\left(u+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right) \\
&=c_{\mathrm{N}}\left(\|\nabla u\|_{2}^{2}+\mathrm{S}\left(1-\|u\|_{p}^{p}\right)^{2 / p}\right)^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u+o(1),
\end{aligned}
$$

and passing to the limit as $\varepsilon \rightarrow 0$, we derive:

$$
\mu_{0} \leqq c_{\mathrm{N}}\left[\|\nabla u\|_{2}^{2}+\mathrm{S}\left(1-\|u\|_{p}^{p}\right)^{2 / p}\right]^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u, \quad \forall u \in \mathrm{H}, \quad\|u\|_{p}<1
$$

Therefore from (4.2) we conclude:

$$
\begin{equation*}
c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}-\mathbf{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}\right]^{(\mathbf{N}+2) / 4}-\int_{\Omega} f u=\mu_{0} \tag{4.5}
\end{equation*}
$$

and that for every $w \in H$ necessarily:
$\frac{d}{d t}\left[c_{\mathrm{N}}\left[\left\|\nabla\left(u_{0}+t w\right)\right\|_{2}^{2}+\mathrm{S}\left(1-\left\|u_{0}+t w\right\|_{p}^{p}\right)^{2 / p}\right]^{(\mathrm{N}+2) / 4}-\int_{\Omega} f\left(u_{0}+t w\right)\right]_{t=0}=0$.
That is:

$$
\begin{aligned}
& \frac{\mathrm{N}+2}{2} c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+\mathrm{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}\right]^{(\mathrm{N}-2) / 4} \\
& \times\left[\int_{\Omega} \nabla u_{0} \cdot \nabla w-\mathrm{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{(2-p) / p} \int_{\Omega}\left|u_{0}\right| u_{0}^{p-2} w\right] \\
&-\int_{\Omega} f w=0, \quad \forall w \in \mathrm{H} .
\end{aligned}
$$

So setting $\sigma_{0}=\frac{\mathrm{N}+2}{2} c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+\mathrm{S}\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{2 / p}\right]^{(\mathrm{N}-2) / 4}>0$
and

$$
\lambda_{0}=\frac{\mathrm{S}}{\left(1-\left\|u_{0}\right\|_{p}^{p}\right)^{(p-2) / p}}
$$

we obtain that u_{0} weakly satisfies:

$$
\begin{equation*}
-\Delta u_{0}=\lambda_{0}\left|u_{0}\right|^{p-2} u_{0}+\frac{1}{\sigma_{0}} f . \tag{4.5}
\end{equation*}
$$

Since $f \neq 0$, in particular, we have that $u_{0} \neq 0$.
Hence for a set of positive measure $\Sigma \subset \Omega$ we have:

$$
u_{0}(a)>0, \quad \forall a \in \Sigma
$$

(replace u_{0} with $-u_{0}$ and f with $-f$ if necessarily).
Let $a \in \Sigma$ and $c_{\varepsilon}=c_{\varepsilon}(a)$ satisfy:

$$
\left\|u_{0}+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right\|_{p}=1
$$

We will reach a contradiction by showing that

$$
\mathrm{I}\left(u_{0}+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)<\mu_{0}
$$

for a suitable choice of $a \in \Sigma$ and $\varepsilon>0$ small enough.
To this end, let $c_{0}^{p}=\frac{1-\left\|u_{0}\right\|_{p}^{p}}{\mathrm{~A}}$. From (4.4) it follows that $c_{\varepsilon} \nearrow c_{0}$ as $\varepsilon \rightarrow 0$. Set $c_{\varepsilon}=c_{0}\left(1-\delta_{\varepsilon}\right), \delta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$. In [B.N.1], Brezis-Nirenberg have obtained a precise rate at which $\delta_{\varepsilon} \rightarrow 0$, by showing that, for a.e. $a \in \Sigma$, one has:

$$
\begin{align*}
& \delta_{\varepsilon} \mathrm{A} c_{0}^{p}=\varepsilon^{(\mathrm{N}-2) / 2}\left[c_{0} \int_{\Omega}\left|u_{0}(x)\right| u_{0}^{p-2}(x) \xi_{a}(x) \frac{d x}{|x-a|^{\mathrm{N}-\overline{2}}}\right. \\
&\left.+c_{0}^{\mathrm{P}-1} u_{0}(a) \mathrm{D}\right]+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right) \tag{4.7}
\end{align*}
$$

with

$$
\mathrm{D}=\int_{\mathbb{R}^{\mathrm{N}}} \frac{d x}{\left(\varepsilon^{2}+|x|^{2}\right)^{(N+2) / 2}} \cdot \text { (See formula (2.9) in [B.N.1].) }
$$

Now fix $a \in \Sigma$ for which (4.7) holds and

$$
\begin{equation*}
\int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0} \xi_{a}}{\left(\varepsilon^{2}+|x-a|^{2}\right)^{(N-2) / 2}} \rightarrow \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0} \xi_{a}}{|x-a|^{N-2}} \quad \text { as } \varepsilon \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Using (4.5), (4.7) and the definition of c_{0} we obtain:

$$
\begin{aligned}
& \mathrm{I}\left(u_{0}+c_{0} \mathrm{U}_{\varepsilon, a}\right)=c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+2 c_{\varepsilon} \int_{\Omega} \nabla u_{0} \cdot \nabla \mathrm{U}_{\varepsilon, a}+c_{\varepsilon}^{2}\left\|\nabla \mathrm{U}_{\varepsilon, a}\right\|_{2}^{2}\right]^{(\mathrm{N}+2) / 4} \\
& \quad-\int_{\Omega} f u_{0}-c_{\varepsilon} \int_{\Omega} f \mathrm{U}_{\varepsilon, a} \\
& =c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+2 c_{0} \int_{\Omega} \nabla u_{0} . \nabla \mathrm{U}_{\varepsilon, a}+c_{0}^{2}\left(1-2 \delta_{\varepsilon}\right) \mathrm{B}+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right]\right]^{(\mathrm{N}+2) / 4} \\
& -\int_{\Omega} f u_{0}-c_{\varepsilon} \int_{\Omega} f \mathrm{U}_{\varepsilon, a}=c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+c_{0}^{2} \mathrm{~B}\right]^{(\mathrm{N}+2) / 4}-\int_{\Omega} f u_{0} \\
& +\frac{\mathrm{N}+2}{4} c_{\mathrm{N}}\left[\left\|\nabla u_{0}\right\|_{2}^{2}+c_{0}^{2} \mathrm{~B}\right]^{(\mathrm{N}-2) / 4}\left[2 c_{0} \int_{\Omega} \nabla u_{0} \cdot \nabla \mathrm{U}_{\varepsilon, a}\right. \\
& \left.-2 c_{0}^{2} \delta_{\varepsilon} \mathrm{B}\right]-c_{0} \int_{\Omega} f \mathrm{U}_{\varepsilon, a} \\
& +o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right]=\mu_{0}+c_{0}\left[\sigma_{0} \int_{\Omega} \nabla u_{0} . \nabla \mathrm{U}_{\varepsilon, a}\right. \\
& \left.\quad-\int_{\Omega} f \mathrm{U}_{\varepsilon, a}\right]-\sigma_{0} c_{0}^{2} \mathrm{~B} \delta_{\varepsilon}+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right] .
\end{aligned}
$$

Thus from equation (4.6) we derive:

$$
\mathrm{I}\left(u_{0}+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)=\mu_{0}+\sigma_{0} \lambda_{0} c_{0} \int_{\Omega}\left|u_{0}\right|^{\mathrm{P}-2} u_{0} \mathrm{U}_{\varepsilon, a}-\delta_{0} c_{0}^{2} \mathbf{B} \delta_{\varepsilon}+o\left[\varepsilon^{(\mathbf{N}-2) / 2}\right]
$$

On the other hand from (4.8) we have:

$$
\int_{\Omega}\left|u_{0}\right|^{p-2} u_{0} \mathbf{U}_{\varepsilon, a}=\varepsilon^{(\mathbb{N}-2) / 2} \int_{\Omega} \frac{\left|u_{0}(x)\right|^{p-2} u_{0}(x)}{|x-a|^{N-2}} \xi_{a}(x) d x+o\left[\varepsilon^{(\mathbb{N}-2) / 2}\right]
$$

Therefore:

$$
\begin{aligned}
& \mathrm{I}\left(u_{0}+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right) \\
& \begin{aligned}
&=\mu_{0}+\sigma_{0}\left[\varepsilon^{(\mathrm{N}-2) / 2} \lambda_{0} \int_{\Omega} \frac{\left|u_{0}(x)\right|^{p-2} u_{0}(x)}{|x-a|^{\mathrm{N}-2}} \xi_{a}-c_{0}^{2} \mathrm{~B} \delta_{\varepsilon}\right]+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right] \\
&=\mu_{0}+\sigma_{0}\left[\frac{\mathrm{~S} \varepsilon^{(\mathrm{N}-2) / 2}}{\left(1-\left\|u_{0} \mid\right\|_{p}^{p}\right)^{(p-2) / 2}} c_{0} \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0}}{|x-a|^{\mathrm{N}-2}} \xi_{a}-\mathrm{B} c_{0}^{2} \delta_{\varepsilon}\right]+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right) \\
& \quad=\mu_{0}+\sigma_{0}\left[\frac{\mathrm{~S}}{\mathrm{~A}^{(p-2) / p} c_{0}^{p-2}} \varepsilon^{(\mathrm{N}-2) / 2} c_{0}\right. \\
& \quad \times \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0} \\
&|x-a|^{\mathrm{N}-2}\left.\xi_{a}-\mathrm{B} c_{0}^{2} \mathrm{~A} \delta_{\varepsilon}\right]+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right] \\
&= \mu_{0}+\sigma_{0} \frac{\mathrm{~B}}{\mathrm{~A} c_{0}^{p-2}}\left[\varepsilon^{(\mathrm{N}-2) / 2} c_{0} \int_{\Omega} \frac{\left|u_{0}\right|^{p-2} u_{0}}{|x-a|^{\mathrm{N}-2}} \xi_{a}-c_{0}^{p} \mathrm{~A} \delta_{\varepsilon}\right]+o\left[\varepsilon^{(\mathrm{N}-2) / 2}\right]
\end{aligned}
\end{aligned}
$$

Finally, from (4.7) we conclude:

$$
\mathrm{I}\left(u_{0}+c_{\varepsilon} \mathrm{U}_{\varepsilon, a}\right)=\mu_{0}-\sigma_{0} \frac{\mathrm{~B}}{\mathrm{~A}} c_{0} u_{0}(a) \mathrm{D} \varepsilon^{(\mathrm{N}-2) / 2}+o\left(\varepsilon^{(\mathrm{N}-2) / 2}\right]<\mu_{0}
$$

for $\varepsilon>0$ sufficiently small.

REFERENCES

[A.R.] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 11, 1973, pp. 349-381.
[A.E.] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.
[B] H. Brezis, Some Variational Problems with Lack of Compactness, Proc. Symp. Pure Math., Vol. 45, part 1, F. Brower Ed., Amer. Math. Soc., 1986, pp. 165-201.
[B.L.] H. Brezis and T. Kato, Remarks on the Schrodinger Operator with Singular Complex Potential, J. Math. Pure Appl., 58, 1979, pp. 137-151.
[B.K.] H. Brezis et E. Lieb, A Relations Between Pointwise Convergence of Functions and Convergence of Integrals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490.
[B.N.1] H. Brezis et L. Nirenberg, A Minimization Problem with Critical Exponent and Non Zero Data, in "Symmetry in Nature", Scuola Norm. Sup. Pisa, 1989, pp. 129-140.
[B.N.2] H. Brezis et L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477.
[C.S.] L. Caffarelli et J. Spruck, Variational Problems with Critical Growth and Positive Dirichlet Data (to appear).
[C.R.] M. Crandall et P. Rabinowitz, Some Continuation and Variational Method for Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, Arch. Rational Mech. Anal., Vol. 58, 1975, pp. 207-218.
[F] G. Folland, Real Analysis, Wiley Interscience, N.Y., 1984.
[G.P.] N. Ghoussoub et D. Preiss, A General Mountain Pass Principle for Locating and Classifying Critical Point, Ann. I.H.P. Analyse non linéaire, Vol. 6, n ${ }^{\circ}$ 5, 1989. pp. 321-330.
[H.] H. Hofer, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain Pass Theorem, J. London Math. Soc., Vol. 31, 1985. pp. 566-570.
[M.] F. Merle, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires, C. R. Acad. Sci. Paris, T. 306, Serie I, 1988, pp. 313-316.
[P.] S. Pohozaev, Eigenfunctions of the Equation $\Delta u+\lambda f(u)=0$, Soriet Math. Dokl.. Vol. 6, 1965, pp. 1408-1411.
[R.] O. Rey, Concentration of Solutions to Elliptic Equations with Critical Nonlinearity (submitted).
[S.] M. Struwe, Variational Methods and their Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Lecture notes E.T.H., Zurich, 1989.
[T.] G. Talenti, Best Constant in Sobolev Inequality, Ann. Mat. Pure Appl., Vol. 110. 1976, pp. 353-372.
[Z.] X. Zheng, A Nonexistence Result of Positive Solutions for an Elliptic Equation. Ann. I.H.P. Analyse nonlinéaire, Vol. 7, n ${ }^{\circ}$ 2, 1990, pp. 91-96.
(Manuscript received June 13, 1990; revised January 7, 1991.)

