Annales de l'I. H. P., section C

G. TARANTELLO

On nonhomogeneous elliptic equations involving critical Sobolev exponent

Annales de l'I. H. P., section C, tome 9, n° 3 (1992), p. 281-304 http://www.numdam.org/item?id=AIHPC 1992 9 3 281 0>

© Gauthier-Villars, 1992, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On nonhomogeneous elliptic equations involving critical Sobolev exponent

by

G. TARANTELLO (*)

Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213, U.S.A

ABSTRACT. – Let $p = \frac{2N}{N-2}$, $N \ge 3$ be the limiting Sobolev exponent and $\Omega \subset \mathbb{R}^N$ open bounded set.

We show that for $f \in H^{-1}$ satisfying a suitable condition and $f \neq 0$, the Dirichlet problem:

$$\begin{cases} -\Delta u = |u|^{p-2} u + f & \text{on } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

admits two solutions u_0 and u_1 in $H_0^1(\Omega)$.

Also $u_0 \ge 0$ and $u_1 \ge 0$ for $f \ge 0$.

Notice that, in general, this is not the case if f = 0 (see [P]).

Key words: Semilinear elliptic equations, critical Sobolev exponent.

Résumé. – Soit $p = \frac{2N}{N-2}$ l'exposant de Sobolev critique et $\Omega \subset \mathbb{R}^N$ un domaine borné.

Classification A.M.S.: 35 A 15, 35 J 20, 35 J 65.

^(*) This research has been supported in part by NSF, Grant DMS-9003149.

On montre que si $f \in H^{-1}$, $f \neq 0$ satisfait une certaine condition alors le problème de Dirichlet : $\Delta u = |u|^{p-2} u + f$ dans Ω et u = 0 dans $\partial \Omega$, admet deux solutions u_0 et u_2 dans $H_0^1(\Omega)$. De plus $u_0 \geq 0$ et $u_1 \geq 0$ si $f \geq 0$.

On remarque que ce n'est pas le cas, en général, si f = 0 (voir [P]).

1. INTRODUCTION AND MAIN RESULTS

In a recent paper Brezis-Nirenberg (B.N.1] have considered the following minimization problem:

$$\inf_{u \in \mathcal{H}, ||u||_p = 1} \int_{\Omega} (|\nabla u|^2 - fu)$$

$$\tag{1.1}$$

where $\Omega \subset \mathbb{R}^N$, is a bounded set, $H = H_0^1(\Omega)$, $f \in H^{-1}$ and $p = \frac{2N}{N-2}$, $N \ge 3$ is the limiting exponent in the Sobolev embedding.

It is well known that the infinum in (1.1) is never achieved if f=0 (cf. [B]). In contrast, in [B.N.1] it is shown that for $f\neq 0$ this infinum is always achieved. (See also [C.S.] for previous related results.)

Motivated by this result we consider the functional:

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |\mathbf{u}|^p - \int_{\Omega} fu, \qquad u \in \mathbf{H};$$

whose critical points define weak solutions for the Dirichlet problem:

$$-\Delta u = |u|^{p-2} u + f \quad \text{on } \Omega
 u = 0 \quad \text{on } \partial \Omega.$$
(1.2)

We investigate suitable minimization and minimax principles of mountain pass-type (cf. [A.R.]), and show how, for suitable f's, they produce critical values for I in spite of a possible failure of the Palais-Smale condition.

To start, notice that I is bounded from below in the manifold:

$$\Lambda = \{ u \in H : \langle I'(u), u \rangle = 0 \}$$

[here $\langle \ , \ \rangle$ denotes the usual scalar product in $H=H^1_0(\Omega)$]. Thus a natural question to ask is whether or not I achieves a minimum in Λ .

We show that this is the case if f satisfies the following:

$$\int_{\Omega} f u \le c_{N} (\|\nabla u\|_{2})^{(N+2)/2} \tag{*}_{0}$$

 $\forall u \in H$, $||u||_p = 1$, where $c_N = \frac{4}{N-2} \left(\frac{N-2}{N+2}\right)^{(N+2)/4}$. More precisely we have:

THEOREM 1. – Let $f \neq 0$ satisfies $(*)_0$. Then

$$\inf_{\Lambda} \mathbf{I} = c_0 \tag{1.3}$$

is achieved at a point $u_0 \in \Lambda$ which is a critical point for I and $u_0 \ge 0$ for $f \ge 0$.

In addition if f satisfies the more restrictive assumption:

$$\int_{\Omega} f u < c_{N} (\|\nabla u\|_{2})^{(N+2)/2} \tag{*}$$

 $\forall u \in H, ||u||_p = 1$, then u_0 is a local minimum for I. \square Notice that assumption (*) certainly holds if

$$|| f ||_{H^{-1}} \le c_N S^{N/4}$$

where S is the best Sobolev constant (cf. [T]).

Also if f=0 Theorem 1 remains valid and gives the trivial solution $u_0=0$.

Moreover in the situation where u_0 is a local minimum for I, necessarily:

$$\|\nabla u_0\|_2^2 - (p-1)\|u_0\|_p^p \ge 0 \tag{1.4}$$

This suggests to look at the following splitting for Λ :

$$\Lambda^{+} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} > 0 \right\}$$

$$\Lambda_{0} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} = 0 \right\}$$

$$\Lambda^{-} = \left\{ u \in \Lambda : \|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p} < 0 \right\}.$$

It turns out that assumption (*) implies $\Lambda_0 = \{0\}$ (see Lemma 2.3 below). Therefore for $f \neq 0$ and (1.4) we obtain $u_0 \in \Lambda^+$ and consequently

$$c_0 = \inf_{\Lambda} I = \inf_{\Lambda^+} I.$$

So we are led to investigate a second minimization problem. Namely:

$$\inf_{\Lambda^{-}} I = c_{1}. \tag{1.5}$$

In this direction we have:

THEOREM 2. — Let $f \neq 0$ satisfies (*). Then $c_1 > c_0$ and the infimum in (1.5) is achieved at a point $u_1 \in \Lambda^-$ which define a critical point for I.

Furthermore $u_1 \ge 0$ for $f \ge 0$. \square

Notice that the assumption $f \neq 0$ is *necessary* in Theorem 2. In fact for f = 0 we have:

$$\inf_{\Lambda^{-}} I = \inf_{u \neq 0} \frac{1}{N} \left[\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{p}^{2}} \right]^{N/2} = \frac{1}{N} \left[\inf_{\|u\|_{p}=1} \|\nabla u\|_{2}^{2} \right]^{N/2}$$

and the infinum in the right hand side is never achieved.

The proofs of Theorem 1 and Theorem 2 rely on the Ekeland's variational principle (cf. [A.E.]) and careful estimates inspired by these in [B.N.1].

As an immediate consequence of Theorems 1 and 2 we have the following for the Dirichlet problem (1.2).

THEOREM 3. — Problem (1.2) admits at least *two* weak solutions u_0 , $u_1 \in H_0^1(\Omega)$ for $f \neq 0$ satisfying (*); and at least *one* weak solution for f satisfying (*)₀.

Moreover $u_0 \ge 0$, $u_1 \ge 0$ for $f \ge 0$. \square

This result for $f \ge 0$ was also pointed out by Brezis-Nirenberg in [B.N.1]. Their approach however uses in an essential way the fact that f does not change sign. It relies on a result of Crandall-Rabinowitz [C.R.] and techniques developed in [B.N.2].

Furthermore for $f \ge 0$ it is known that (1.2) cannot admit positive solution when $||f||_{H^{-1}}$ is too large (see [C.R.], [M.] and [Z]). So our approach necessarily breaks down when $||f||_{H^{-1}}$ is large. In fact we suspect that assumptions $(*)_0$ and (*) on f are not only sufficient but also necessary to guarantee the statements of Theorems 1 and 2.

By a result of Brezis-Kato [B-K] we know that Theorem 3 gives *classical* solutions if f is sufficiently regular and $\partial \Omega$ is smooth; and for $f \ge 0$, via the strong maximum principle, such solutions are *strictly* positive in Ω .

Obviously an equivalent of Theorem 3 holds for the *subcritical* case where one replaces the power $p = \frac{2N}{N-2}$ in (1.2) by $q \in \left(2, \frac{2N}{N-2}\right)$. In such

a case more standard compactness arguments apply, and the proof can be consistently simplified. The details are left to the interested reader. Finally going back to the functional I, if f satisfies (*) then Theorem I suggests a mountain-pass procedure; which will be carried out as follows.

Take:

$$u_{\varepsilon}(x) = \frac{\varepsilon^{(N-2)/2}}{(\varepsilon^2 + |x|^2)^{(N-2)/2}} \qquad \varepsilon > 0, \quad x \in \mathbb{R}^N$$
 (1.6)

be an extremal function for the Sobolev inequality in \mathbb{R}^N .

For $a \in \Omega$ let $u_{\varepsilon, a}(x) = u_{\varepsilon}(x - a)$, and

$$\xi_a \in C_0^{\infty}(\Omega)$$
 with $\xi_a \ge 0$ and $\xi_a = 1$ near a . (1.7)

Set

$$\mathcal{F} = \begin{cases} h : [0, 1] \to \text{H continuous, } h(0) = u_0 \\ h(1) = R_0 \xi_a u_{\varepsilon, a} \end{cases}$$

 $R_0 > 0$ fixed.

We have:

Theorem 4. – For a suitable choice of $R_0 > 0$, $a \in \Omega$ and $\epsilon > 0$ the value

$$c = \inf_{h \in \mathscr{F}} \max_{t \in [0, 1]} I(h, (t))$$

defines a critical value for I, and $c \ge c_1$. \square

It is not clear whether or not $c=c_1$. So no additional multiplicity can be claimed for (1.2). However, in case $c=c_1$ then it is possible to claim a critical point of mountain-pass type (cf.[H]) for I in Λ^- . This follows by a refined version of the mountain-pass lemma (see [A-R]) obtained by Ghoussoub-Preiss and the fact that Λ^- cannot contain local minima for I (see [G.P., theorem (ter) part a]).

The referee has brought to our attention a paper of O. Rey (See [R.]) where, by a different approach, a result similar to that of Theorem 3 is established when $f \neq 0$, $f \geq 0$ and $||f||_{H^{-1}}$ is sufficiently small.

2. THE PROOF OF THEOREM 1

To obtain the proof of Theorem 1 several preliminary results are in order.

We start with a lemma which clarifies the purpose of assumption (*).

LEMMA 2.1. – Let $f \neq 0$ satisfy (*). For every $u \in H$, $u \neq 0$ there exists a unique $t^+ = t^+(u) > 0$ such that $t^+u \in \Lambda^-$. In particular:

$$t^{+} > \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)} := t_{\text{max}}$$

and $I(t^+u) = \max_{t \ge t_{max}} I(tu)$

Moreover, if $\int_{\Omega} fu > 0$, then there exists a unique $t^- = t^-(u) > 0$ such that $t^- u \in \Lambda^+$.

In particular,

$$t^{-} < \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)}$$

and $I(t^-u) \le I(tu), \forall t \in [0, t^+].$

Proof. – Set $\varphi(t) = t \|\nabla u\|_2^2 - t^{p-1} \|u\|_p^p$. Easy computations show that φ is concave and achieves its maximum at

$$t_{\max} = \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)}.$$

Also

$$\varphi(t_{\max}) = \left[\frac{1}{p-1}\right]^{(p-1)/(p-2)} (p-2) \left[\frac{\|\nabla u\|_2^{2(p-1)}}{\|u\|_p^p}\right]^{1/(p-2)},$$

that is

$$\varphi(t_{\text{max}}) = c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}}.$$

Therefore if $\int_{\Omega} fu \leq 0$ then there exists a *unique* $t^+ > t_{\max}$ such that: $\phi(t^+) = \int_{\Omega} fu$ and $\phi'(t^+) < 0$. Equivalently $t^+ u \in \Lambda^-$ and $I(t^+ u) \geq I(tu) \, \forall \, t \geq t_{\max}$.

In case $\int_{\Omega} fu > 0$, by assumption (*) we have that necessarily

$$\int_{\Omega} f u < c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}} = \varphi(t_{\text{max}}).$$

Consequently, in this case, we have unique $0 < t^- < t_{\text{max}} < t^+$ such that

$$\varphi(t^+) = \int_{\Omega} fu = \varphi(t^-)$$

and

$$\varphi'(t^-) > 0 > \varphi'(t^+).$$

Equivalently $t^+u\in\Lambda^-$ and $t^-u\in\Lambda^+$.

Also $I(t^+u) \ge I(tu)$, $\forall t \ge t^-$ and $I(t^-u) \le I(tu)$, $\forall t \in [0, t^+]$.

LEMMA 2.2. – For $f \neq 0$

$$\inf_{\|u\|_{p=1}} \left(c_{N} \|\nabla u\|^{(N+2)/2} - \int_{\Omega} fu \right) := \mu_{0}$$
 (2.1)

is achieved. In particular if f satisfies (*), then $\mu_0 > 0$.

The proof of Lemma 2.2 is technical and a straightforward adaptation of that given in [B.N.1] for an analogous minimization problem.

It will be given in the appendix for the reader's convenience.

Next, for $u \neq 0$ set

$$\psi(u) = c_{N} \frac{\|\nabla u\|_{2}^{(N+2)/2}}{\|u\|_{p}^{N/2}} - \int_{\Omega} fu.$$

Since for t>0, $||u||_p=1$ we have:

$$\psi(tu) = t \left[c_{\mathbf{N}} \| \nabla u \|_{2}^{(\mathbf{N}+2)/2} - \int_{\mathbf{O}} fu \right];$$

given $\gamma > 0$, from Lemma 2.2 we derive that

$$\inf_{\|u\| \ge \gamma} \psi(u) \ge \gamma \mu_0. \tag{2.2}$$

In particular if f satisfies (*) then the infinum (2.2) is bounded away from zero.

This remark is crucial for the following:

LEMMA 2.3. – Let f satisfy (*). For every $u \in \Lambda$, $u \neq 0$ we have

$$\|\nabla u\|_2^2 - (p-1)\|u\|_p^p \neq 0$$

(i. e. $\Lambda_0 = \{0\}$).

Proof. – Although the result also holds for f=0, we shall only be concerned with the case $f\neq 0$.

Arguing by contradiction assume that for some $u \in \Lambda$, $u \neq 0$ we have

$$\|\nabla u\|_{2}^{2} - (p-1)\|u\|_{p}^{p} = 0$$
 (2.3)

Thus

$$0 = \|\nabla u\|_{2}^{2} - \|u\|_{p}^{p} - \int_{\Omega} fu = (p-2) \|u\|_{p}^{p} - \int_{\Omega} fu.$$
 (2.4)

Condition (2.3) implies

$$\|u\|_p \ge \left(\frac{S}{p-1}\right)^{1/(p-2)} := \gamma,$$

Vol. 9, n° 3-1992.

and from (2.2) and (2.4) we obtain:

$$\begin{split} 0 < \mu_0 \gamma \leq \psi(u) = & \left[\frac{1}{p-1} \right]^{(p-1)/(p-2)} (p-2) \left[\frac{\|\nabla u\|_2^2 (p-1)}{\|u\|_p^p} \right]^{1/(p-2)} - \int_{\Omega} fu \\ = & (p-2) \left(\left[\frac{1}{p-1} \right]^{(p-1)/(p-2)} \left[\frac{\|\nabla u\|_2^2 (p-1)}{\|u\|_p^p} \right]^{1/(p-2)} - \|u\|_p^p \right) \\ = & (p-2) \|u\|_p^p \left(\left[\frac{\|\nabla u\|_2^2}{(p-1)\|u\|_p^p} \right]^{(p-1)/(p-2)} - 1 \right) = 0 \end{split}$$

which yields to a contradiction. \Box As a consequence of Lemma 2.3 we have:

LEMMA 2.4. – Let $f \neq 0$ satisfy (*). Given $u \in \Lambda$, $u \neq 0$ there exist $\varepsilon > 0$ and a differentiable function t = t(w) > 0, $w \in H ||w|| < \varepsilon$ satisfying the following:

$$t(0)=1$$
, $t(w)(u-w)\in\Lambda$, for $||w||<\varepsilon$,

and

$$\langle t'(0), w \rangle = \frac{2 \int_{\Omega} \nabla u \cdot \nabla w - p \int_{\Omega} |u|^{p-2} uw \int_{\Omega} fw}{\|\nabla u\|_{2}^{2} - (p-1) \|u\|_{p}^{p}}.$$
 (2.5)

Proof. – Define $F : \mathbb{R} \times H \to \mathbb{R}$ as follows:

$$F(t, w) = t \|\nabla(u - w)\|_{2}^{2} - t^{p-1} \|u - w\|_{p}^{p} - \int_{\Omega} f(u - w).$$

Since F(1, 0) = 0 and $F_t(1, 0) = \|\nabla u\|_2^2 - (p-1)\|u\|_p^p \neq 0$ (by Lemma 2.3), we can apply the implicit function theorem at the point (1, 0) and get the result. \square

We are now ready to give:

The Proof of Theorem 1

We start by showing that I is bounded from below in Λ . Indeed for $u \in \Lambda$ we have:

$$\int_{\Omega} |\nabla u|^2 - \int_{\Omega} |u|^p - \int_{\Omega} fu = 0.$$

Thus:

$$\begin{split} \mathbf{I}(u) &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |\mathbf{u}|^p - \int_{\Omega} fu = \frac{1}{N} \int_{\Omega} |\nabla u|^2 - \left(1 - \frac{1}{p}\right) \int_{\Omega} fu \\ &\geq \frac{1}{N} \|\nabla u\|_2^2 - \frac{N+2}{2N} \|f\|_{\mathbf{H}^{-1}} \|\nabla u\|_2 \geq -\frac{1}{16N} [(N+2) \|f\|_{\mathbf{H}^{-1}}]^2. \end{split}$$

In particular

$$c_0 \ge -\frac{1}{16 \,\mathrm{N}} [(\mathrm{N} + 2) \, \| \, f \, \|_{\mathrm{H}^{-1}}]^2.$$
 (2.6)

We first obtain our result for f satisfying (*). The more general situation where f satisfies (*)₀ will be subsequently derived by a limiting argument.

So from now on we assume that f satisfy (*).

In order to obtain an upper bound for c_0 , let $v \in H$ be the unique solutions for $-\Delta u = f$. So for $f \neq 0$

$$\int_{\Omega} fv = \|\nabla v\|_2^2 > 0.$$

Set $t_0 = t^-(v) > 0$ as defined by Lemma 2.1.

Hence $t_0 v \in \Lambda^+$ and consequently:

$$\begin{split} \mathbf{I}\left(t_{0}\,v\right) &= \frac{t_{0}^{2}}{2} \left\|\nabla\,v\,\right\|_{2}^{2} - \frac{t_{0}^{p}}{p} \left\|\,v\,\right\|_{p}^{p} - t_{0} \,\left\|\,\nabla\,v\,\right\|_{2}^{2} \\ &= -\frac{t_{0}^{2}}{2} \left\|\,\nabla\,v\,\right\|_{2}^{2} + \frac{p-1}{p} t_{0}^{p} \left\|\,v\,\right\|_{p}^{p} < -\frac{t_{0}^{2}}{N} \left\|\,\nabla\,v\,\right\|_{2}^{2} = -\frac{t_{0}^{2}}{N} \left\|\,f\,\right\|_{\mathbf{H}^{-1}}^{2} \end{split}$$

This yields,

$$c_0 < -\frac{t_0^2}{N} \|f\|_{\mathbf{H}^{-1}}^2 < 0.$$
 (2.7)

Clearly Ekeland's variational principle (see [A.E.], Corollary 5.3.2) applies to the minimization problem (1.3). It gives a minimizing sequence $\{u_n\} \subset \Lambda$ with the following properties:

(i)
$$I(u_n) < c_0 + \frac{1}{n}$$
.

(ii)
$$I(w) \ge I(u_n) - \frac{1}{n} \|\nabla(w - u_n)\|_2$$
, $\forall w \in \Lambda$.

By taking n large, from (2.7) we have:

$$I(u_n) = \frac{1}{N} \int_{\Omega} |\nabla u_n|^2 - \frac{N+2}{2N} \int_{\Omega} f u_n < c_0 + \frac{1}{n} < -\frac{t_0^2}{N} ||f||_{H^{-1}}^2$$
 (2.8)

This implies

$$\int_{\Omega} f u_n \ge \frac{2}{N+2} t_0^2 \| f \|_{\mathbf{H}^{-1}}^2 > 0.$$
 (2.9)

Consequently $u_n \neq 0$, and putting together (2.8) and (2.9) we derive:

$$\frac{2t_0^2}{N+2} \|f\|_{\mathbf{H}^{-1}} \le \|\nabla u_n\|_2 \le \frac{N+2}{2} \|f\|_{\mathbf{H}^{-1}}. \tag{2.10}$$

Our goal is to obtain $||I'(u_n)|| \to 0$ as $n \to +\infty$.

Hence let us assume $\|\mathbf{I}'(u_n)\| > 0$ for *n* large (otherwise we are done).

Applying Lemma 2.4 with $u=u_n$ and $w=\delta \frac{I'(u_n)}{\|I'(u_n)\|} \delta > 0$ small, we

find,
$$t_n(\delta) := t \left[\delta \frac{\mathbf{I}'(u_n)}{\|\mathbf{I}'(u_n)\|} \right]$$

such that

$$w_{\delta} = t_{n}(\delta) \left[u_{n} - \delta \frac{I'(u_{n})}{\|I'(u_{n})\|} \right] \in \Lambda.$$

From condition (ii) we have:

$$\frac{1}{n} \|\nabla(w_{\delta} - u_{n})\|_{2} \ge \mathbf{I}(u_{n}) - \mathbf{I}(w_{\delta}) = (1 - t_{n}(\delta)) \langle \mathbf{I}'(w_{\delta}), u_{n} \rangle$$

$$+ \delta t_{n}(\delta) \langle \mathbf{I}'(w_{\delta}), \frac{\mathbf{I}'(u_{n})}{\|\mathbf{I}'(u_{n})\|} \rangle + o(\delta).$$

Dividing by $\delta > 0$ and passing to the limit as $\delta \to 0$ we derive:

$$\frac{1}{n}(1+|t'_n(0)|\|\nabla u_n\|_2) \ge -t'_n(0)\langle I'(u_n), u_n\rangle + \|I'(u_n)\| = \|I'(u_n)\|$$

where we have set
$$t'_n(0) = \left\langle t'(0), \frac{I'(u_n)}{\|I'(u_n)\|} \right\rangle$$
.

Thus from (2.10) we conclude:

$$\left\| \mathbf{I}'(u_n) \right\| \leq \frac{C}{n} (1 + \left| t_n'(0) \right|)$$

for a suitable positive constant C.

We are done once we show that $|t'_n(0)|$ is bounded uniformly on n. From (2.5) and the estimate (2.10) we get:

$$|t'_n(0)| \le \frac{C_1}{|\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p}$$

 $C_1 > 0$ suitable constant.

Hence we need to show that $|\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p|$ is bounded away from zero.

Arguing by contradiction, assume that for a subsequence, which we still call u_n , we have:

$$\|\nabla u_n\|_2^2 - (p-1)\|u_n\|_p^p = o(1).$$
 (2.11)

From the estimate (2.10) and (2.11) we derive:

$$||u_n||_p \ge \gamma$$
 $(\gamma > 0 \text{ suitable constant})$

and

$$\left[\frac{\|\nabla u_n\|_2^2}{p-1}\right]^{(p-1)/(p-2)} - \left[\|u_n\|_p^p\right]^{(p-1)/(p-2)} = o(1).$$

In addition (2.11), and the fact that $u_n \in \Lambda$ also give:

$$\int_{\Omega} f u_n = (p-2) \| u_n \|_p^p + o(1).$$

This, together with (2.2) implies:

$$0 < \mu_0 \gamma^{(N+2)/2} \le \|u_n\|_p^{p/(p-2)} \psi(u_n)$$

$$= (p-2) \left[\left[\frac{\|\nabla u_n\|_2^2}{p-1} \right]^{(p-1)/(p-2)} - \left[\|u_n\|_p^p \right]^{(p-1)/(p-2)} \right] = o(1).$$

which is clearly impossible.

In conclusion:

$$\|\mathbf{I}'(u_n)\| \to 0 \quad \text{as } n \to +\infty.$$
 (2.12)

Let $u_0 \in H$ be the weak limit in $H_0^1(\Omega)$ of (a subsequence of) u_n . From (2.9) we derive that:

$$\int_{\Omega} f u_0 > 0$$

and from (2.12) that

$$\langle I'(u_0), w \rangle = 0, \quad \forall w \in H,$$

i.e. u_0 is a weak solution for (1.2).

In particular, $u_0 \in \Lambda$.

Therefore:

$$c_0 \le I(u_0) = \frac{1}{N} \|\nabla u_0\|_2^2 - \int_{\Omega} f u_0 \le \lim_{n \to +\infty} I(u_n) = c_0.$$

Consequently $u_n \to u_0$ strongly in H and $I(u_0) = c_0 = \inf_{\Lambda} I$. Also from Lemma 2.1 and (2.12) follows that necessarily $u_0 \in \Lambda^+$.

To conclude that u_0 is a local minimum for I, notice that for every $u \in H$ with $\int fu > 0$ we have:

$$I(su) \ge I(t^{-}u)$$
for every $0 < s < \left[\frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right]^{1/(p-2)}$
(2.13)

(see Lemma 2.1).

Vol. 9, n° 3-1992.

In particular for $u = u_0 \in \Lambda^+$ we have:

$$t^{-} = 1 < \left[\frac{\|\nabla u_0\|_2^2}{(p-1)\|u\|_p^p} \right]^{1/(p-2)}.$$
 (2.14)

Let $\varepsilon > 0$ sufficiently small to have:

$$1 < \frac{\|\nabla (u_0 - w)\|_2^2}{(p-1)\|u_0 - w\|_p^p}$$

for $||w|| < \varepsilon$.

From Lemma 2.4, let t(w) > 0 satisfy $t(w)(u_0 - w) \in \Lambda$ for every $||w|| < \varepsilon$. Since $t(w) \to 1$ as $||w|| \to 0$, we can always assume that

$$t(w) < \left[\frac{\|\nabla (u_0 - w)\|_2^2}{(p-1) \|u_0 - w\|_p^p} \right]^{1/(p-2)}$$

for every $w: ||w|| < \varepsilon$.

Namely, $t(w)(u_0 - w) \in \Lambda^+$ and for $0 < s < \left[\frac{\|\nabla (u_0 - w)\|_2^2}{(p-1)\|u_0 - w\|_p^p} \right]^{1/(p-2)}$ we have.

$$I(s(u_0-w)) \ge I(t(w)(u_0-w)) \ge I(u_0).$$

From (2.14) we can take s=1 and conclude:

$$I(u_0 - w) \ge I(w), \quad \forall w \in H, \quad ||w|| < \varepsilon.$$

Furthermore if $f \ge 0$, take, $t_0 = t^-(|u_0|) > 0$ with $t_0 |u_0| \in \Lambda^+$. Necessarily $t_0 \ge 1$, and

$$I(t_0|u_0|) \leq I(|u_0|) \leq I(u_0).$$

So we can always take $u_0 \ge 0$.

To obtain the proof when f satisfies $(*)_0$ we shall apply an approximation argument. To this purpose, notice that if f satisfies $(*)_0$ then $f_{\varepsilon} = (1 - \varepsilon)f$ satisfies $(*) \forall \varepsilon \in (0, 1)$.

Set

$$I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |u|^p + (1 - \varepsilon) \int_{\Omega} fu, \quad u \in H.$$

Let $u_{\varepsilon} \in \Lambda_{\varepsilon}^+ = \{ u \in H : \langle I_{\varepsilon}'(u), u \rangle = 0, \|\nabla u\|_2^2 - (p-1)\|u\|_p^p > 0 \}$ satisfy:

$$I_{\varepsilon}(u_{\varepsilon}) = \inf_{\Lambda_{\varepsilon}} I_{\varepsilon} := c_{\varepsilon}$$

and

$$\langle I'_{\circ}(u_{\circ}), w \rangle = 0, \quad \forall w \in H.$$
 (2.15)

Clearly $\|\nabla u_{\varepsilon}\|_{2} \leq C_{2}$, for $0 < \varepsilon < 1$ and $C_{2} > 0$ a suitable constant.

Let $u \in \Lambda^+$, necessarily $\int fu > 0$ and consequently

$$(1-\varepsilon)\int_{\Omega} fu > 0, \quad 0 < \varepsilon < 1.$$

From Lemma 2.1 applied with $f=f_s$ we find:

$$0 < t_{\varepsilon}^{-} < \left\lceil \frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}} \right\rceil^{1/(p-2)}$$

with $t_{\varepsilon}^{-} u \in \Lambda_{\varepsilon}^{+}$. Since $1 < \frac{\|\nabla u\|_{2}^{2}}{(p-1)\|u\|_{p}^{p}}$, from (2.13) it follows that

$$I_{\varepsilon}(t_{\varepsilon}^{-}u) \leq I_{\varepsilon}(u)$$

and consequently:

$$c_{\varepsilon} \leq I_{\varepsilon}(t_{\varepsilon}u) \leq I_{\varepsilon}(u) \leq I(u) + \varepsilon ||f||_{\mathsf{H}^{-1}} ||\nabla u||_{2} \leq I(u) + \varepsilon C_{3}$$

(with $C_3 > 0$ a suitable constant).

Estimate (2.6) with $f=f_{\varepsilon}$ and the above inequality imply:

$$-\frac{1}{16N}[(N+2)||f||_{H^{-1}}]^{2} \leq -\frac{1}{16N}[(N+2)||f_{\varepsilon}||_{H^{-1}}]^{2} \leq c_{\varepsilon} \leq c_{0} + \varepsilon C_{3}.$$

Let $\varepsilon_n \to 0$, $n \to +\infty$ and $u_0 \in H$ satisfy:

- (a) $c_{\varepsilon_n} \to \bar{c} \leq c_0, n \to +\infty$
- (b) $u_{\varepsilon_n} \to u_0$, $n \to +\infty$ weakly in H.

From (2.15) it follows $\langle I'(u_0), w \rangle = 0$, $\forall w \in H$ (i. e. u_0 is a critical point for I) and $I(u_0) \leq c_0$.

In particular $u_0 \in \Lambda$ and necessarily $I(u_0) = c_0$, (i. e. $u_{\varepsilon_0} \to u_0$ strongly in H).

This completes the proof.

3. THE PROOF OF THEOREMS 2 AND 4

The functional I involves the limiting Sobolev exponent $p = \frac{2 \text{ N}}{\text{N} - 2}$. This compromises its compactness properties, and a possible failure of the P.S. condition is to be expected.

Our first task is to locate the levels free from this noncompactness effect.

We refer to [B] and [S] for a survey on related problems where such an approach has been successfully used.

In this direction we have:

Proposition 3.1. – Every sequence $\{u_n\}\subset H$ satisfying:

(a)
$$I(u_n) \to c \text{ with } c < c_0 + \frac{1}{N} S^{N/2}$$

 $[c_0 \text{ as defined in } (1.3)].$

 $(b) \|\mathbf{I}'(u_n)\| \to 0$

as a convergent subsequence.

Namely the (P.S) condition holds for all level $c < c_0 + \frac{1}{N} S^{N/2}$.

Proof. – It is not difficult to see that (a) and (b) imply that $\|\nabla u_n\|_2$ is uniformly bounded.

Hence for a subsequence of u_n (which we still call u_n), we can find a $w_0 \in H$ such that

$$u_n \to w_0$$
 weakly in H.

Consequently from (b) we obtain:

$$\langle \mathbf{I}'(w_0), w \rangle = 0, \quad \forall w \in \mathbf{H}.$$
 (3.1)

That is w_0 is a solution in $H_0^1(\Omega)$ for (1.2). In particular $w_0 \neq 0$, $w_0 \in \Lambda$ and $I(w_0) \geq c_0$.

Write $u_n = w_0 + v_n$ with $v_n \to 0$ weakly in H.

By a Lemma of Brezis-Lieb [B.L.] we have:

$$||u_n||_p^p = ||w_0 + v_n||_p^p = ||w_0||_p^p + ||v_n||_p^p + o(1).$$

Hence, for n large, we conclude:

$$\begin{split} c_0 + \frac{1}{N} \mathbf{S}^{N/2} > &\mathbf{I} \left(w_0 + v_n \right) = I(w_0) + \frac{1}{2} \| \nabla v_n \|_2^2 - \frac{1}{p} \| v_n \|_p^p + o(1) \\ & \geq c_0 + \frac{1}{2} \| \nabla v_n \|_2^2 - \frac{1}{p} \| v_n \|_p^p + o(1). \end{split}$$

which gives:

$$\frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p < \frac{1}{N} S^{N/2} + o(1).$$
 (3.2)

Also from (b) follows:

$$o(1) = \langle \mathbf{I}'(u_n), u_n \rangle = \|\nabla w_0\|^2 - \|w_0\|_p^p - \int_{\Omega} fw_0 + \|\nabla v_n\|_2^2 - \|v_n\|_p^p + o(1)$$

$$= \langle \mathbf{I}'(w_0), w_0 \rangle + \|\nabla v_n\|_2^2 - \|v_n\|_p^p + o(1)$$

and taking into account (3.1) we obtain:

$$\|\nabla v_n\|_2^2 - \|v_n\|_p^p = o(1).$$
 (3.3)

We claim that conditions (3.2) and (3.3) can hold simultaneously only if $\{v_n\}$ admits a subsequence, $\{v_{nk}\}$ say, which converges strongly to zero, i.e. $\|v_{nk}\| \to 0$, $k \to +\infty$.

Arguing by contradiction assume that $||v_n||$ is bounded away from zero. That is for some constant $c_4 > 0$ we have $||v_n|| \ge c_4$, $\forall n \in \mathbb{N}$.

From (3.3) then it follows:

$$||v_n||_p^{p-2} \ge S + o(1),$$

and consequently

$$||v_n||_n^p \ge S^{N/2} + o(1).$$

This yields a contradiction since from (3.2) and (3.3) we have:

$$\frac{1}{N}S^{N/2} \leq \frac{1}{N} \|v_n\|_p^p + o(1) = \frac{1}{2} \|\nabla v_n\|_2^2 - \frac{1}{p} \|v_n\|_p^p + o(1) < \frac{1}{N}S^{N/2}$$

for n large.

In conclusion, $u_{n_k} \to w_0$ strongly. \square

At this point it would not be difficult to derive Theorem 2, if we had the inequality:

$$\inf_{\Lambda^{-}} I = c_1 < c_0 + \frac{1}{N} S^{N/2}. \tag{3.4}$$

However it appears difficult to derive (3.4) directly.

We shall obtain it by comparison with a mountain-pass value.

To this end, recall that $u_0 \neq 0$. Following [B.N.1] we set $\Sigma \subset \Omega$ to be a set of positive measure such that $u_0 > 0$ on Σ (replace u_0 with $-u_0$ and f with -f if necessary).

Set
$$U_{\varepsilon, a}(x) = \xi_a(x) u_{\varepsilon, a}(x), \quad x \in \mathbb{R}^N$$
;

 $[u_{\varepsilon, a}]$ and ξ_a defined in (1.6) and (1.7)].

Lemma 3.1. – For every R>0 and a.e. $a \in \Sigma$, there exists $\varepsilon_0 = \varepsilon_0(R, a) > 0$ such that:

$$I(u_0 + RU_{\varepsilon, a}) < c_0 + \frac{1}{N} S^{N/2}$$

for every $0 < \varepsilon < \varepsilon_0$.

Proof. – We have:

$$I(u_0 + RU_{\varepsilon, a}) = \int_{\Omega} \frac{|\nabla u_0|^2}{2} + R \int_{\Omega} \nabla u_0 \nabla U_{\varepsilon, a} + \frac{R^2}{2} \int_{\Omega} |\nabla U_{\varepsilon, a}|^2$$
$$- \frac{1}{p} \int_{\Omega} |u_0 + RU_{\varepsilon, a}|^p - \int_{\Omega} fu_0 - R \int_{\Omega} fU_{\varepsilon, a}. \quad (3.5)$$

A careful estimate obtained by Brezis-Nirenberg (see formulae (17) and (22) in [B.N.1]) shows that:

$$\| u_0 + RU_{\varepsilon, a} \|_p^p = \| u_0 \|_p^p + R^p \| U_{\varepsilon, a} \|_p^p + p R \int_{\Omega} |u_0|^{p-2} u_0 U_{\varepsilon, a}$$

$$+ p R^{p-1} \int_{\Omega} U_{\varepsilon, a}^{p-1} u_0 + o [\varepsilon^{(N-2)/2}] \quad \text{for a. e. } a \in \Sigma.$$

Also from [B.N.2] we have:

$$\|\nabla \mathbf{U}_{\varepsilon, a}\|_{2}^{2} = \mathbf{B} + O(\varepsilon^{N-2})$$
 and $\|\mathbf{U}_{\varepsilon, a}\|_{p}^{p} = \mathbf{A} + O(\varepsilon^{N})$

where

$$\mathbf{B} = \int_{\mathbb{R}^{N}} |\nabla u_{1}(x)|^{2} dx, \ \mathbf{A} = \int_{\mathbb{R}^{N}} \frac{dx}{(1 + |x|^{2})^{N}}$$

and

$$S = \frac{B}{A^{2/p}}. (3.6)$$

Substituting in (3.5) and using the fact that u_0 satisfies (1.2) we obtain:

$$\begin{split} \mathbf{I}\left(u_0 + \mathbf{R}\mathbf{U}_{\varepsilon,\,a}\right) &= \frac{1}{2} \int_{\Omega} \left|\nabla\,u_0\right|^2 + \mathbf{R} \int_{\Omega} \nabla\,u_0 \,.\nabla\,\mathbf{U}_{\varepsilon,\,a} + \frac{\mathbf{R}^2}{2} \,\mathbf{B} - \frac{1}{p} \int_{\Omega} \left|u_0\right|^p - \frac{\mathbf{R}^p}{p} \mathbf{A} \\ &- \mathbf{R} \int_{\Omega} \left|u_0\right| u_0^{p-2} \,\mathbf{U}_{\varepsilon,\,a} - \mathbf{R}^{p-1} \int_{\Omega} \mathbf{U}_{\varepsilon,\,a}^{p-1} \,u_0 - \int_{\Omega} f u_0 - \mathbf{R} \int_{\Omega} f \mathbf{U}_{\varepsilon,\,a} + o\left[\varepsilon^{(\mathbf{N}-2)/2}\right] \\ &= \mathbf{I}\left(u_0\right) + \frac{\mathbf{R}^2}{2} \,\mathbf{B} - \frac{\mathbf{R}^p}{p} \,\mathbf{A} - \mathbf{R}^{p-1} \int_{\Omega} \mathbf{U}_{\varepsilon,\,a}^{p-1} \,u_0 + o\left[\varepsilon^{(\mathbf{N}-2)/2}\right] \end{split}$$

for a.e. $a \in \Sigma$.

Set $u_0 = 0$ outside Ω , it follows:

$$\begin{split} \int_{\Omega} \mathbf{U}_{\varepsilon, a}^{p-1} u_0 &= \int_{\mathbb{R}^{N}} u_0(x) \, \xi_a(x) \frac{\varepsilon^{(N+2)/2}}{(\varepsilon^2 + |x-a|^2)^{(N+2)/2^{dx}}} \\ &= \varepsilon^{(N-2)/2} \int_{\mathbb{R}^{N}} u_0(x) \, \xi_a(x) \frac{1}{\varepsilon^N} \psi_1\left(\frac{x}{\varepsilon}\right) dx, \end{split}$$

where
$$\psi_1(x) = \frac{1}{(1+|x|^2)^{(N+2)/2}} \in L^1(\mathbb{R}^N).$$

Therefore, setting D = $\int_{\mathbb{R}^N} \frac{dx}{(1+|x|^2)^{(N+2)/2}}$ we derive:

$$\int_{\mathbb{R}^{N}} u_{0}(x) \, \xi_{a}(x) \frac{1}{\varepsilon^{N}} \psi_{1}\left(\frac{x}{\varepsilon}\right) dx \to u_{0}(a) \, D$$

for a. e. $a \in \Sigma$ (see [F]).

In other words,

$$\int_{\Omega} U_{\varepsilon,a}^{p-1}(x) u_0(x) dx = \varepsilon^{(N-2)/2} u_0(a) D + o(\varepsilon^{(N-2)/2}).$$

Consequently:

$$I(u_0 + RU_{\varepsilon, a}) = c_0 + \frac{R^2}{2}B - \frac{R^p}{p}A - R^{p-1}u_0(a)D\varepsilon^{(N-2)/2} + o\left[\varepsilon^{(N-2)/2}\right].$$

Define:

$$q(s) = \frac{s^2}{2} \mathbf{B} - \frac{s^p}{\mathbf{P}} \mathbf{A} - s^{p-1} u_0(a) \mathbf{D} \, \varepsilon^{(N-2)/2}, \qquad s > 0$$

and assume that q(s) achieves its maximum at $s_{\epsilon} > 0$.

Set

$$S_0 = \left(\frac{B}{A}\right)^{1/(p-2)}.$$

Since s_{ε} satisfies:

$$s_{\varepsilon} \mathbf{B} - s_{\varepsilon}^{p-1} \mathbf{A} = (p-1) u_0(a) \mathbf{D} \varepsilon^{(N-2)/2} s_{\varepsilon}^{p-2}$$
 (3.7)

necessarily $0 < s_{\varepsilon} < S_0$ and $s_{\varepsilon} \to S_0$ as $\varepsilon \to 0$.

Write $s_{\varepsilon} = S_0 (1 - \delta_{\varepsilon})$. We study the rate at which $\delta_{\varepsilon} \to 0$ as $\varepsilon \to 0$.

From (3.7) we obtain:

$$\left(\frac{{\rm B}^{p-1}}{{\rm A}}\right)^{1/(p-2)}(1-\delta_{\varepsilon}-(1-\delta_{\varepsilon})^{p-1})=(p-1)\frac{{\rm B}}{{\rm A}}(1-\delta_{\varepsilon})^{p-2}\,\varepsilon^{({\rm N}-2)/2}\,u_0(a)\,{\rm D};$$

and expanding for δ_{ϵ} we derive:

$$(p-2)\left(\frac{{\bf B}^{p-1}}{{\bf A}}\right)^{1/(p-2)}\delta_{\varepsilon}=(p-1)\frac{{\bf B}}{{\bf A}}u_0(a)\,{\bf D}\,\varepsilon^{({\bf N}-2)/2}+o\,(\varepsilon^{({\bf N}-2)/2}).$$

This implies:

$$\begin{split} \mathrm{I}\,(u_0 + \mathrm{R}\,\mathrm{U}_{\varepsilon,\,a}) & \leq c_0 + \frac{s_\varepsilon^2}{2}\,\mathrm{B} - \frac{s_\varepsilon^p}{p}\,\mathrm{B} - s_\varepsilon^{p-1}\,u_0\,(a)\,\mathrm{D}\,\varepsilon^{(\mathrm{N}-2)/2} + o\,(\varepsilon^{(\mathrm{N}-2)/2}) \\ & = c_0 + \frac{\mathrm{S}_0^2}{2}\,\mathrm{B} - \frac{\mathrm{S}_0^p}{2}\,\mathrm{A} - \mathrm{S}_0^2\,\mathrm{B}\,\delta_\varepsilon + \mathrm{S}_0^p\,\mathrm{A}\,\delta_\varepsilon - \mathrm{S}_0^{p-1}\,u_0\,(a)\,\mathrm{D}\,\varepsilon^{(\mathrm{N}-2)/2} + \rho\,(\varepsilon^{(\mathrm{N}-2)/2}) \\ & = c_0 + \frac{1}{\mathrm{N}}\,\mathrm{S}^{\mathrm{N}/2} - \mathrm{S}_0^{p-1}\,u_0\,(a)\,\mathrm{D}\,\varepsilon^{(\mathrm{N}-2)/2} + o\,(\varepsilon^{(\mathrm{N}-2)/2}). \end{split}$$

Vol. 9, n° 3-1992.

Therefore for $\varepsilon_0 = \varepsilon_0(R, a) > 0$ sufficiently small we conclude

$$I(u_0 + RU_{\varepsilon, a}) < c_0 + \frac{1}{N}S^{N/2}$$
 (3.8)

 $\forall 0 < \varepsilon < \varepsilon_0$. \square

Our aim is to state a mountain pass principle that produces a value which is below the threshold $c_0 + \frac{1}{N} S^{N/2}$ but also compares with the value $c_1 = \inf I$.

To this end observe that under assumption (*), the manifold Λ^- disconnects H in exactly two connected components U_1 and U_2 .

To see this, notice that for every $u \in H$, $||u|| = ||\nabla u||_2 = 1$ by Lemma 2.1 we can find a unique $t^+(u) > 0$ such that

$$t^+(u)u \in \Lambda^-$$
 and $I(t^+(u)u) = \max_{t \ge t_{\max}} I(tu)$.

The uniqueness of $t^+(u)$ and its extremal property give that $t^+(u)$ is a continuous function of u.

Set

$$U_1 = \left\{ u = 0 \text{ or } u : ||u|| < t^+ \left(\frac{u}{||u||}\right) \right\}$$

and

$$\mathbf{U}_{2} = \left\{ u : \|u\| > t^{+} \left(\frac{u}{\|u\|} \right) \right\}.$$

Clearly $H - \Lambda^- = U_1 \cup U_2$ and $\Lambda^+ \subset U_1$.

In particular $u_0 \in U_1$.

The Proof of Theorem 4

Easy computations show that, for suitable constant $C_5 > 0$ we have:

$$0 < t^{+}(u) < C_{5}, \quad \forall u : ||u|| = 1.$$

Set $R_0 = \left(\frac{1}{B}|C_5^2 - ||u_0||^2|\right)^{1/2} + 1$ and fix $a \in \Sigma$ such that Lemma 3.2 applies, and the estimate (3.8) holds for all $0 < \varepsilon < \varepsilon_0$.

We claim that

$$w_{\varepsilon} := u_0 + \mathbf{R}_0 \, \xi_a \, u_{\varepsilon, a} \in \mathbf{U}_2 \tag{3.9}$$

for $\varepsilon > 0$ small.

Indeed

$$\begin{aligned} \|\nabla w_{\varepsilon}\|_{2}^{2} &= \|\nabla (u_{0} + R_{0} \xi_{a} U_{\varepsilon, a})\|_{2}^{2} \\ &= \|u_{0}\|_{2}^{2} + R_{0}^{2} B + o(1) > C_{5}^{2} \ge \left[t^{+} \left(\frac{w_{\varepsilon}}{\|w_{\varepsilon}\|} \right) \right]^{2}, \end{aligned}$$

for $\varepsilon > 0$ small enough.

For such a choice of R_0 and $a \in \Sigma$, fix $\varepsilon > 0$ such that both (3.8) and (3.9) hold.

Set

$$\mathscr{F} = \begin{cases} h: [0, 1] \to \text{H continuous, } h(0) = u_0 \\ h(1) = R_0 \xi_a u_{\varepsilon, a} \end{cases}$$

Clearly $h:[0, 1] \to H$ given by $h(t) = u_0 + t R_0 \xi_a u_{\varepsilon, a}$ belongs to \mathscr{F} . So by Lemma 2.3 we conclude:

$$c = \inf_{h \in \mathcal{F}} \max_{t \in [0, 1]} I(h(t)) < c_0 + \frac{1}{N} S^{N/2}$$
 (3.10)

Also, since the range of any $h \in \mathcal{F}$ intersect Λ^- , we have

$$c \ge c_1 = \inf_{\Lambda^-} I. \tag{3.11}$$

At this point the conclusion of Theorem 4 follows by Lemma 3.1 and a straightforward application of the mountain-pass lemma (cf. [A.R.]). \Box

Analogously to the proof of Theorem 1, one can show that the Ekeland's variational principle gives a sequence $\{u_n\} \subset \Lambda^-$ satisfying:

$$I'(u_n) \to c_1$$

$$||I'(u_n)|| \to 0$$

But from (3.10) and (3.11), we have:

$$c_1 < c_0 + \frac{1}{N} S^{N/2}$$
.

Thus, by Lemma 3.1, we obtain a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and $u_1 \in H$ such that:

$$u_{n_k} \to u_1$$
 strongly in H.

Consequently u_1 is a critical point for I, $u_1 \in \Lambda^-$ (since Λ^- is closed) and $I(u_1) = c_1$.

Finally to see that $f \ge 0$ yields $u_1 \ge 0$, let $t^+ > 0$ satisfy

$$t^+ \mid u_1 \mid \in \Lambda^-$$
.

From Lemma 2.1 we conclude:

$$I(u_1) = \max_{t \ge t_{\text{max}}} I(tu_1) \ge I(t^+ u_1) \ge I(t^+ |u_1|).$$

So we can always take $u_1 \ge 0$. \square

4. APPENDIX

The Proof of Lemma 2.2

Let $\{u_n\}$ be a minimizing sequence for (2.1) such that for $u_0 \in H$ we have $u_n \to u_0$ weakly in H and $u_n \to u_0$ pointwise a.e. in Ω .

In general $||u_0||_p \le 1$. We are done once we show $||u_0||_p = 1$.

To obtain this, we shall argue by contradiction and assume

$$||u_0||_p < 1.$$

Hence write $u_n = u_0 + w_n$ where $w_n \to 0$ weakly in H. We have

$$\mu_{0} + o(1) = c_{n} \|\nabla u_{n}\|^{(N+2)/2} - \int_{\Omega} f u_{n} = c_{N} (\|\nabla u_{0}\|_{2}^{2} + \|\nabla w_{n}\|_{2}^{2})^{(N+2)/4} - \int_{\Omega} f u_{0} + o(1) \quad (4.1)$$

On the other hand,

$$1 = \| u_0 + w_n \|_p^p = \| u_0 \|_p^p + \| w_n \|_p^p + o(1)$$

(see [B.L.]), which gives:

$$||w_n||_p^2 = (1 - ||u_0||_p^p)^{2/p} + o(1).$$

So from (4.1) we conclude:

That is,

$$c_{N}[\|\nabla u_{0}\|_{2}^{2} + S(1 - \|u_{0}\|_{p}^{p})^{2/p}]^{(N+2)/4} - \int_{\Omega} fu_{0} \leq \mu_{0}.$$
 (4.2)

Following [B.N.1] for every $u \in H$, $||u||_p < 1$ and $a \in \Omega$ let $c_{\varepsilon} = c_{\varepsilon}(a) > 0$ satisfy the following:

$$||u+c_{\varepsilon}U_{\varepsilon,a}||_{p}=1$$

[recall $U_{\varepsilon, a}(x) = \xi_a(x) u_{\varepsilon, a}(x)$ with ξ_a and $u_{\varepsilon, a}$ given in (1.6) and (1.7)]. We have:

we have:

$$\|\nabla (u + c_{\varepsilon} U_{\varepsilon, a})\|_{2}^{2} = \|\nabla u\|_{2}^{2} + c_{\varepsilon}^{2} \|\nabla U_{\varepsilon, a}\|_{2}^{2} + o(1)$$

$$= \|\nabla u\|_{2}^{2} + c_{\varepsilon}^{2} B + o(1) \quad (4.3)$$

and

$$1 = \|u + c_{\varepsilon} U_{\varepsilon, a}\|_{p}^{p} = \|u\|_{p}^{p} + c_{\varepsilon}^{p}, \|U_{\varepsilon, a}\|_{p}^{p} + o(1) = \|u\|_{p}^{p} + c_{\varepsilon}^{p} A + o(1)$$
[A, B as given in (3.6)].

Thus

$$c_{\varepsilon}^{2} = \frac{1}{\mathbf{A}^{2/p}} (1 - \|\mathbf{u}\|_{p}^{p})^{2/p} + o(1). \tag{4.4}$$

Substituting in (4.3) we obtain:

$$\|\nabla (u + c_{\varepsilon} U_{\varepsilon, a})\|_{2}^{2} = \|\nabla u\|_{2}^{2} + \frac{\mathbf{B}}{\mathbf{A}^{2/p}} (1 - \|u\|_{p}^{p})^{2/p} + o(1)$$

$$= \|\nabla u\|_{2}^{2} + \mathbf{S} (1 - \|u\|_{p}^{p})^{2/p} + o(1).$$

This yields:

$$\begin{split} \mu_0 &\leq c_{\mathrm{N}} \| \nabla (u + c_{\varepsilon} U_{\varepsilon, a}) \|_{2}^{(\mathrm{N}+2)/2} - \int_{\Omega} f(u + c_{\varepsilon} U_{\varepsilon, a}) \\ &= c_{\mathrm{N}} (\| \nabla u \|_{2}^{2} + \mathrm{S} (1 - \| u \|_{p}^{p})^{2/p})^{(\mathrm{N}+2)/4} - \int_{\Omega} fu + o(1), \end{split}$$

and passing to the limit as $\varepsilon \to 0$, we derive:

$$\mu_0 \le c_N [\|\nabla u\|_2^2 + S(1 - \|u\|_p^p)^{2/p}]^{(N+2)/4} - \int_{\Omega} fu, \quad \forall u \in H, \quad \|u\|_p < 1.$$

Therefore from (4.2) we conclude:

$$c_{N}[\|\nabla u_{0}\|_{2}^{2} - S(1 - \|u_{0}\|_{p}^{p})^{2/p}]^{(N+2)/4} - \int_{\Omega} fu = \mu_{0}$$
 (4.5)

and that for every $w \in H$ necessarily:

$$\frac{d}{dt} \left[c_{N} \left[\| \nabla (u_{0} + tw) \|_{2}^{2} + S \left(1 - \| u_{0} + tw \|_{p}^{p} \right)^{2/p} \right]^{(N+2)/4} - \int_{\Omega} f(u_{0} + tw) \right]_{t=0} = 0.$$

That is:

$$\begin{split} \frac{\mathbf{N}+2}{2} c_{\mathbf{N}} & \left[\| \nabla u_{0} \|_{2}^{2} + \mathbf{S} \left(1 - \| u_{0} \|_{p}^{p} \right)^{2/p} \right]^{(\mathbf{N}-2)/4} \\ & \times \left[\int_{\Omega} \nabla u_{0} \cdot \nabla w - \mathbf{S} \left(1 - \| u_{0} \|_{p}^{p} \right)^{(2-p)/p} \int_{\Omega} \left| u_{0} \right| u_{0}^{p-2} w \right] \\ & - \int_{\Omega} f w = 0, \qquad \forall \ w \in \mathbf{H}. \end{split}$$

So setting $\sigma_0 = \frac{N+2}{2} c_N \left[\|\nabla u_0\|_2^2 + S(1-\|u_0\|_p^p)^{2/p} \right]^{(N-2)/4} > 0$

and

$$\lambda_0 = \frac{S}{(1 - \|u_0\|_p^p)^{(p-2)/p}}$$

we obtain that u_0 weakly satisfies:

$$-\Delta u_0 = \lambda_0 |u_0|^{p-2} u_0 + \frac{1}{\sigma_0} f. \tag{4.5}$$

Since $f \neq 0$, in particular, we have that $u_0 \neq 0$.

Hence for a set of positive measure $\Sigma \subset \Omega$ we have:

$$u_0(a) > 0, \quad \forall a \in \Sigma,$$

(replace u_0 with $-u_0$ and f with -f if necessarily). Let $a \in \Sigma$ and $c_{\varepsilon} = c_{\varepsilon}(a)$ satisfy:

$$\|u_0+c_{\varepsilon}U_{\varepsilon,a}\|_p=1.$$

We will reach a contradiction by showing that

$$I(u_0 + c_{\varepsilon} U_{\varepsilon, a}) < \mu_0$$

for a suitable choice of $a \in \Sigma$ and $\varepsilon > 0$ small enough.

To this end, let $c_0^p = \frac{1 - \|u_0\|_p^p}{A}$. From (4.4) it follows that $c_\varepsilon \nearrow c_0$ as $\varepsilon \to 0$. Set $c_\varepsilon = c_0 (1 - \delta_\varepsilon)$, $\delta_\varepsilon \to 0$ as $\varepsilon \to 0$. In [B.N.1], Brezis-Nirenberg have obtained a precise rate at which $\delta_\varepsilon \to 0$, by showing that, for a.e. $a \in \Sigma$, one has:

$$\delta_{\varepsilon} \mathbf{A} c_0^p = \varepsilon^{(N-2)/2} \left[c_0 \int_{\Omega} |u_0(x)| u_0^{p-2}(x) \, \xi_a(x) \frac{dx}{|x-a|^{N-2}} + c_0^{p-1} u_0(a) \mathbf{D} \right] + o(\varepsilon^{(N-2)/2}) \quad (4.7)$$

with

$$D = \int_{\mathbb{R}^{N}} \frac{dx}{(\varepsilon^{2} + |x|^{2})^{(N+2)/2}}.$$
 (See formula (2.9) in [B.N.1].)

Now fix $a \in \Sigma$ for which (4.7) holds and

$$\int_{\Omega} \frac{|u_0|^{p-2} u_0 \, \xi_a}{(\varepsilon^2 + |x-a|^2)^{(N-2)/2}} \to \int_{\Omega} \frac{|u_0|^{p-2} u_0 \, \xi_a}{|x-a|^{N-2}} \quad \text{as } \varepsilon \to 0. \quad (4.8)$$

Using (4.5), (4.7) and the definition of c_0 we obtain:

$$\begin{split} \mathbf{I} (u_{0} + c_{0} \, \mathbf{U}_{\varepsilon, \, a}) &= c_{\mathbf{N}} \bigg[\| \nabla u_{0} \|_{2}^{2} + 2 \, c_{\varepsilon} \int_{\Omega} \nabla u_{0} \, . \, \nabla \, \mathbf{U}_{\varepsilon, \, a} + c_{\varepsilon}^{2} \, \| \, \nabla \, \mathbf{U}_{\varepsilon, \, a} \|_{2}^{2} \bigg]^{(\mathbf{N} + 2)/4} \\ &- \int_{\Omega} f u_{0} - c_{\varepsilon} \int_{\Omega} f \, \mathbf{U}_{\varepsilon, \, a} \\ &= c_{\mathbf{N}} \bigg[\| \nabla u_{0} \|_{2}^{2} + 2 \, c_{0} \int_{\Omega} \nabla u_{0} \, . \, \nabla \, \mathbf{U}_{\varepsilon, \, a} + c_{0}^{2} \, (1 - 2 \, \delta_{\varepsilon}) \, \mathbf{B} + o \, [\varepsilon^{(\mathbf{N} - 2)/2}] \bigg]^{(\mathbf{N} + 2)/4} \\ &- \int_{\Omega} f u_{0} - c_{\varepsilon} \int_{\Omega} f \, \mathbf{U}_{\varepsilon, \, a} = c_{\mathbf{N}} \big[\| \nabla u_{0} \|_{2}^{2} + c_{0}^{2} \, \mathbf{B} \big]^{(\mathbf{N} + 2)/4} - \int_{\Omega} f u_{0} \\ &+ \frac{\mathbf{N} + 2}{4} \, c_{\mathbf{N}} \big[\| \nabla u_{0} \|_{2}^{2} + c_{0}^{2} \, \mathbf{B} \big]^{(\mathbf{N} - 2)/4} \bigg[2 \, c_{0} \int_{\Omega} \nabla u_{0} \, . \, \nabla \, \mathbf{U}_{\varepsilon, \, a} \\ &- 2 \, c_{0}^{2} \, \delta_{\varepsilon} \, \mathbf{B} \bigg] - c_{0} \int_{\Omega} f \, \mathbf{U}_{\varepsilon, \, a} \\ &+ o \, \big[\varepsilon^{(\mathbf{N} - 2)/2} \big] = \mu_{0} + c_{0} \bigg[\, \sigma_{0} \int_{\Omega} \nabla \, u_{0} \, . \, \nabla \, \mathbf{U}_{\varepsilon, \, a} \\ &- \int_{\Omega} f \, \mathbf{U}_{\varepsilon, \, a} \bigg] - \sigma_{0} \, c_{0}^{2} \, \mathbf{B} \, \delta_{\varepsilon} + o \, \big[\varepsilon^{(\mathbf{N} - 2)/2} \big]. \end{split}$$

Thus from equation (4.6) we derive:

$$I(u_0 + c_{\varepsilon} U_{\varepsilon, a}) = \mu_0 + \sigma_0 \lambda_0 c_0 \int_{\Omega} |u_0|^{P-2} u_0 U_{\varepsilon, a} - \delta_0 c_0^2 B \delta_{\varepsilon} + o [\varepsilon^{(N-2)/2}].$$

On the other hand from (4.8) we have:

$$\int_{\Omega} |u_0|^{p-2} u_0 \, \mathbf{U}_{\varepsilon, \, a} = \varepsilon^{(N-2)/2} \int_{\Omega} \frac{|u_0(x)|^{p-2} u_0(x)}{|x-a|^{N-2}} \xi_a(x) \, dx + o \left[\varepsilon^{(N-2)/2}\right].$$

Therefore:

$$\begin{split} &(u_0 + c_{\varepsilon} \, \mathbf{U}_{\varepsilon, \, a}) \\ &= \mu_0 + \sigma_0 \left[\, \varepsilon^{(\mathbf{N} - 2)/2} \, \lambda_0 \, \int_{\Omega} \frac{\left| \, u_0 \, (x) \, \right|^{p-2} \, u_0 \, (x)}{\left| \, x - a \, \right|^{\mathbf{N} - 2}} \, \xi_a - c_0^2 \, \mathbf{B} \, \delta_{\varepsilon} \, \right] + o \, \left[\varepsilon^{(\mathbf{N} - 2)/2} \right] \\ &= \mu_0 + \sigma_0 \left[\, \frac{\mathbf{S} \, \varepsilon^{(\mathbf{N} - 2)/2}}{(1 - \left| \left| \, u_0 \, \right| \right|_p^p)^{(p-2)/2}} \, c_0 \, \int_{\Omega} \frac{\left| \, u_0 \, \right|^{p-2} \, u_0}{\left| \, x - a \, \right|^{\mathbf{N} - 2}} \, \xi_a - \mathbf{B} \, c_0^2 \, \delta_{\varepsilon} \, \right] + o \, \left(\varepsilon^{(\mathbf{N} - 2)/2} \right) \\ &= \mu_0 + \sigma_0 \left[\, \frac{\mathbf{S}}{\mathbf{A}^{(p-2)/p} \, c_0^{p-2}} \, \varepsilon^{(\mathbf{N} - 2)/2} \, c_0 \right. \\ &\times \left. \int_{\Omega} \frac{\left| \, u_0 \, \right|^{p-2} \, u_0}{\left| \, x - a \, \right|^{\mathbf{N} - 2}} \, \xi_a - \mathbf{B} \, c_0^2 \, \mathbf{A} \, \delta_{\varepsilon} \, \right] + o \, \left[\varepsilon^{(\mathbf{N} - 2)/2} \right] \\ &= \mu_0 + \sigma_0 \, \frac{\mathbf{B}}{\mathbf{A} \, c_0^{p-2}} \left[\, \varepsilon^{(\mathbf{N} - 2)/2} \, c_0 \, \int_{\Omega} \frac{\left| \, u_0 \, \right|^{p-2} \, u_0}{\left| \, x - a \, \right|^{\mathbf{N} - 2}} \, \xi_a - c_0^p \, \mathbf{A} \, \delta_{\varepsilon} \, \right] + o \, \left[\varepsilon^{(\mathbf{N} - 2)/2} \right]. \end{split}$$

Finally, from (4.7) we conclude:

$$I(u_0 + c_{\varepsilon} U_{\varepsilon, a}) = \mu_0 - \sigma_0 \frac{B}{\Lambda} c_0 u_0(a) D \varepsilon^{(N-2)/2} + o(\varepsilon^{(N-2)/2}] < \mu_0$$

for $\varepsilon > 0$ sufficiently small.

REFERENCES

- [A.R.] A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 11, 1973, pp. 349-381.
- [A.E.] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.
- [B] H. Brezis, Some Variational Problems with Lack of Compactness, Proc. Symp. Pure Math., Vol. 45, part 1, F. Brower Ed., Amer. Math. Soc., 1986, pp. 165-201.
- [B.L.] H. Brezis and T. Kato, Remarks on the Schrodinger Operator with Singular Complex Potential, J. Math. Pure Appl., 58, 1979, pp. 137-151.
- [B.K.] H. Brezis et E. Lieb, A Relations Between Pointwise Convergence of Functions and Convergence of Integrals, *Proc. Amer. Math. Soc.*, Vol. 88, 1983, pp. 486-490.
- [B.N.1] H. Brezis et L. Nirenberg, A Minimization Problem with Critical Exponent and Non Zero Data, in "Symmetry in Nature", Scuola Norm. Sup. Pisa, 1989, pp. 129-140.
- [B.N.2] H. Brezis et L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477.
- [C.S.] L. CAFFARELLI et J. SPRUCK, Variational Problems with Critical Growth and Positive Dirichlet Data (to appear).
- [C.R.] M. CRANDALL et P. RABINOWITZ, Some Continuation and Variational Method for Positive Solutions of Nonlinear Elliptic Eigenvalue Problems, Arch. Rational Mech. Anal., Vol. 58, 1975, pp. 207-218.
- [F] G. FOLLAND, Real Analysis, Wiley Interscience, N.Y., 1984.
- [G.P.] N. GHOUSSOUB et D. PREISS, A General Mountain Pass Principle for Locating and Classifying Critical Point, Ann. I.H.P. Analyse non linéaire, Vol. 6, n° 5, 1989. pp. 321-330.
- [H.] H. HOFER, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain Pass Theorem, J. London Math. Soc., Vol. 31, 1985, pp. 566-570.
- [M.] F. MERLE, Sur la non-existence de solutions positives d'équations elliptiques surlinéaires, C. R. Acad. Sci. Paris, T. 306, Serie I, 1988, pp. 313-316.
- [P.] S. POHOZAEV, Eigenfunctions of the Equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl.. Vol. 6, 1965, pp. 1408-1411.
- [R.] O. REY, Concentration of Solutions to Elliptic Equations with Critical Nonlinearity (submitted).
- [S.] M. STRUWE, Variational Methods and their Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Lecture notes E.T.H., Zurich, 1989.
- [T.] G. TALENTI, Best Constant in Sobolev Inequality, Ann. Mat. Pure Appl., Vol. 110. 1976, pp. 353-372.
- [Z.] X. ZHENG, A Nonexistence Result of Positive Solutions for an Elliptic Equation. Ann. I.H.P. Analyse nonlinéaire, Vol. 7, n° 2, 1990, pp. 91-96.

(Manuscript received June 13, 1990; revised January 7, 1991.)