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A projection-operator method is developed for renormalizing kinetic coefficients by the 
nonlinear interaction between macroscopic modes in a nonlinear Langevin equation which is 
often used in studying anomalous transport phenomena near critical points and anomalous 
transport coefficients in two dimension; It is shown that the renormalization term is given by 
the time correlation of a new fluctuating force. Other theories are derived from this expres­
sion by making approximations. A relation between the Langevin fluctuating force and the 
transport fluctuating force is derived to clarify the relation between the Fokker-Planck equa­
tion approach by Green and Zwanzig and the linear equation-of-motion approach by one of 
the authors. 

§ I. Introduction 

In a previous paper1> linear transport coefficients were formulated rigorously 
m terms of the time correlation of fluctuating forces. It is the purpose of the 
present paper to clarify the relation between this formulation and the Fokker­
Planck equation approach which was introduced by Green2> and formulated by 
Zwanzig3> from the statistical-mechanical standpoint. These two approaches led 
to different expressions for transport coefficients. Recently, however, Zwanzig'> 
clearly showed that the difference is important when the nonlinear interaction 
between macroscopic modes plays a crucial role and then that Green's transport 
coefficients must be renormalized by the nonlinear interaction. In the present 
paper this renormalization will be treated in a simple and more complete way by 
using the projection-operator method. 

Let us denote a set of collective variables for describing slowly-varying mac­
roscopic processes in the system by a vector A= {Ak}, where A_k is included 
to denote Ak *. In isotropic Heisenberg ferromagnets they are the long-wavelength 
Fourier components of the spin and the energy density, and in simple fluids they 
are the long-wavelength Fourier components of the number, the energy and the 
momentum density. It is assumed that {Ak} denotes the deviations from their 
invariant parts and are set to be orthonormal so that 

where the angular brackets denote the equilibrium average. In the present paper 

*> The main results of this paper were presented at the International Symposium on Synergetics, 
Schloss Elmau, Mittenwald, Germany, April 30""May 6, 1972. 
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On Nonlinear Dynamics of Fluctuations 765 

we study the equilibrium fluctuations of such collective variables with classical 

statistical mechanics. 
Zwanzig started with assuming a nonlinear Langevin equation 

(1·2) 

where vk(A) is a streaming velocity. Rk(t) is a Langevin fluctuating force and 

is assumed to be statistically independent of the collective variables; namely, 

(1·3) 

for an arbitrary function G(A) of {AiO)}. Then viA) must be a nonlinear func­

tion of {Ak}. r~, are Green's kinetic coefficients and are related to Rk(t) by 

(1·4) 

Equation (1· 2) has been studied by Green,'l Zwanzig3l and Kawasaki5l from dif­

ferent points of view. A derivation of this will be outlined in Appendix A. The 

most important approximations involved are three-fold. First we have assumed 

that the time scales of the processes of our interest described by A are distinctly 

larger than the time scales involved in other dynamical variables coupled with 

A. Such a clear-cut separation of time scales would not be always possible due 

to the coupling with intermediate-wavelength components. Secondly we have as­

sumed that the equilibrium distribution of A is Gaussian, and thirdly, that r~1 

are constants independent of A. Although these assumptions may not be valid 

when the fluctuations are very large, (1· 2) provides us with a useful model in 

studying anomalous transport phenomena due to the thermal fluctuations of long­

wavelength components.'h 5l 

The kinetic coefficients r~~ are not the same as the kinetic coefficients ob­

served in linear transport laws, but are "bare" kinetic coefficients in the sense 

used by Zwanzig.4l . The true kinetic coefficients are obtained from the linear 

equation of motion :1l 

where iwk1 =<AkA,*). fk (t) is a fluctuating force and satisfies 

<fk(t)A,*(O))=O, 

<fk(t)f,* (t') > = (/)k! (t- t'). 

(1·5) 

(1·6) 

(1·7) 

The kinetic coefficients are thus given by the Laplace transform of the memory 

function (/)kt (t): 

rk,(iw) = f' exp( -iwt)q;k,(t)dt. (1·8) 

Since fk(t) is the fluctuating force which gives correct linear transport coefficients, 

it will be called the "transport" fluctuating force. It should be also noted that 
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766 H. Mori and H. Fujisaka 

(1· 5) with (1· 6) and (1· 7) is an exact equation and is not a linearized form- of 
(1· 2). The transport fluctuating force fk (t) is uncorrelated only with the linear 
function of the collective variables {AiJ, and thus contains nonlinear terms in 
the collective variables. 1J When a nonlinear coupling between macroscopic modes 
is important, therefore, fk(t) contains macroscopic processes through the nonlinear 
terms and the memory function fPkz (t) has a long-time tail of macroscopic time 
scale. Thus fk(t) differs from the Langevin fluctuating force Rk(t), and the dif­
ference is important when the nonlinear coupling cannot be neglected. In (1·2) 
such a nonlinear coupling <;omes out from the streaming velocity v~c(A).~l If one 
expands vk(A) in powers of A, .then one gets 

(1·9) 

(1·10) 

where ,hpq are bilinear coupling constants. Therefore, the bare kinetic coefficients 
r~z must be renormalized by this nonlinear interaction v/ (A). This renormaliza­
tion can be done by transforming (1· 2) into a linear form similar to (1· 5), thus 
leading to an approximate expression 

(1·11) 

where 1/hz (t) is a new memory function determined by v/ (A). ·This renormaliza­
tion will be carried out in the next section. 

§ 2. Renormalization of 7~cz0 by v/ (A) 

Let us denote the representative point of the system in phase space by x 
and introduce the distribution for the collective variables A (x) = {Ak (x)} to have 
a set of values a= { ak}, 

(2·1) 

A linear equation of motion for ga(t) is obtained by using the projection-operator 
method, as will be outlined in Appendix A. Namely, 

(2·2) 

where D is the Fokker-Planck operator: 

D=- :E __§____ [v"(a)- :E r~zaz] + :E :E r~z __!__ - 0-. 
" 8a" z · " z oak 8az* 

(2·3) 

The streaming velocity vk(a) is given by 

vk(a) = <Akga)f<g_a), (2·4) 

where <ga) represents the equilibrium distribution of a. Fa(t) is a fluctuating 
force and is related to the Langevin fluctuating fon~e R~c(t) by 
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On Nonlinear Dynamics of Fluctuations 767 

Rk(t) = J akFa(t)da. (2·5) 

Since Ak(t) is related to ga (t) by 

Ak(t) = J akga(t)da, (2·6) 

the Langevin equation (1· 2) can be derived from (2 · 2) directly. Since Fa (t) is 

orthogonal to ga(O), we have 

<Fa(t)G(A) >=<Rk(t)G(A) )=0 (2·7) 

for an arbitrary function G (A) of {Ak (0)}. 

The probability distribution of a is defined by 

P(a, t) =<ga(xt)G(A(x))), (2·8) 

where Xt denotes the image of phase x after time t and G (A) is a function of 

A which satisfies <G(A))=l. The transition probability from a0 to a in time 

t, T(a0 ja; t), is obtained from (2·8) by taking the particular initial condition 

G(A) =~(A-a0)/w(a0), where w(a) =<ga). From (2·2) and (2·7) we thus 

obtain the Fokker-Planck equation 

aP(a, t)jat=DP(a, t), 

which has been derived by Green2l and Zwanzig.8l• 4l 

Next let us define an adjoint operator A of D by 

J [Af(a)]g(a)da= J!(a) [Dg(a)]da 

and introduce a new quantity 

ak(t)=exp(tA)ak. 

Then from (2 · 2) and (2 · 6) we have 

Ak(t) = J ait)~(a-A(O))da+ J:as J ak(t-s)Fa(s)da. 

(2·9) 

(2·10) 

(2 ·11) 

(2 ·12) 

This explicitly states that the time evolution of the collective variables consists 

of two parts; first, the macroscopic motion ak (t) governed by the F okker-Planck 

operator D, and second, its microscopic fluctuations produced by the fluctuating 

force Fa (t). We next extract the contribution of the nonlinear interaction between 

macroscopic modes in this macroscopic motion to the linear transport coefficients. 

This is done by deriving .a linear equation of motion for ak(t) which corresponds 

to (1· 5) for Ak(t). Namely, we define a Hilbert space of functions of a and 

introduce the projection operator 

(2·13) 

where the angular brackets . denote the equilibrium average 
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768 H. Mori and H. Fujisaka 

<J(a))= sf(a)w(a)da. 

Then, as will be shown in Appendix B, we obtain 

where 

!!_ ak= I; (iah! -r~!)a!- I; rt cf;kl (s)a! (t -s)ds+ qk(t), dt 1 1 Jo 

<qk(t)a!*(O))=O, 

cf;k1(t) =<qk(t)q1*(0)). 

(2 ·14) 

(2·15) 

(2 ·16) 

(2 ·17) 

It should be noted that the new memory function cf;k1 (t) has the standard form 
in terms of the new fluctuating force qk(t). An explicit expression for qk(t) is 
given by 

(2·18) 
where 

(2·19) 

v/ (a) is the vertical component of vk (a), and represents the nonlinear interac­
tion between the collective variables {ak}, for example, as in (1·10). This non­
linear interaction determines the fluctuating force qk(t) and the memory function 
cf;k! (t). 

The two equations (1· 5) and (2 ·15) have an intimate relation. First let us 
consider the relaxation matrix 

~km (t) =<Ak (t) Am* (0)) = <ak (t) am* (0)) , (2·20) 

where the second equation is obtained from (2 ·12) and (2 · 7). Since <f(t) Am*) 
=<qk(t)a,..*)=O, (1·5) and (2·15) thus lead to two equations for ~km(t). Com­
paring them we find the relation (1·11), which is inserted into (1· 8) to give 
the renormalized transport coefficients 

rkl (i(J)) ~ r~~ + ¢k! (i(J)). (2. 21) 

As will be shown in Appendix C, we also obtain 

This means that when (2 · 2) is approximately valid, the transport fluctuating force 
fk(t) is split up into two parts; first, the Langevin fluctuating force Rk(t), and 
second, the nonlinear fluctuating force qk (t). The third term represents a coupl­
ing between these two parts which, however, does not contribute to the transport 
coefficients. Equation (1·11) can be derived also directly from (2 · 22) by using 
(1· 7) and introducing the approximations used in deriving (2 · 2). Thus (2 · 22) 
most clearly shows the relation between the Langevin fluctuating force Rk(t) and 
the transport fluctuating force fk(t), and thus the relation between the Fokker-
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On Nonlinear Dynamics of Fluctuations 769 

Planck equation approach by Green2> and Zwanzig3> and the linear equation-of­

motion approach.1> 

§ 3. Relation with other theories 

From (2 ·17) and (2 ·18) the nonlinear memory function is written as 

¢kz(t) =<vz'*(a)exp[t(l-Pa)A]v/(a)). (3 ·1) 

A is written as A= Ao + Ah 

(3·2) 

A1=~ vk' (a)_J_. 
k oak 

(3·3) 

If the nonlinear streaming velocity v.~:' (a) is small, then one may replace A in 

(3 ·1) by its unperturbed part A0, thus obtaining a second-order perturbation ex-

pression. 
In simple cases one can assume that 

(3·4) 

and the matrices Wkl• r~l• ¢kl(t) are all diagonal, where the k's denote the wave 

vectors. One may also assume that the leading nonlinear terms are bilinear in 

the form 

(3·5) 

where I Vkpl 2'"'-'k"pY for small values of k and p, x and y being nonnegative num­

bers, and ~p' does not include the short-wavelength components. Then since 

w(a) is Gaussian, 

(3·6) 

where Wk 1s assumed to be zero. Thus the second-order perturbation expression 

leads to 
(3·7) 

This is equivalent to the expression obtained by Zwanzig with the use of a second­

order perturbation calculation.4> If one can assume r p 0"'p2 for small values of 

p, then the integral over wave vector p in the small wavenumber region leads to 

¢k (t) "'k"t-(d+Y)/2, (3. 8) 

where d is the dimensionality of the system. This determines the long-time be­

havior of the memory function, and leads to 1/t in two dimension if y=O. Then 

the renormalized transport coefficients rk(iw) diverge at low frequency as log(1/w). 

This kind of anomalous transport phenomena have been investigated by a num-
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770 H. Mori and H. Fujisaka 

her of authors. 4h 6> 

One way to avoid a perturbation calculation is to find a self-consistent equa­
tion. Assuming (1·10) for v/ (a) and 

exp [t (1-Pa) A] apaq-::::::.aP (t) aq (t) (3 · 9) 

and replacing the four-body correlations by products of the pair correlations, we 
obtain 

(3 ·10) 

Multiplying (2 ·15) by am* (0) and taking the equilibrium average, we then obtain 

d~""' (t) I dt- :E (ia>T.!- r~~) ~~"' (t) 
! 

(3·11) 

This is a self-consistent equation for determining the relaxation matrix {~""' (t)}, 
and is equivalent to the equation obtained by Kawasaki with the aid of the dia­
gram technique.5> This type of equations are often used in studying anomalous 
transport phenomena near critical points.5>• 7> If one :finds the solution for ~,.m(t) 
and inserts it into (3 ·10), then (2 · 21) leads to the renormalized transport co­
efficients. 

§ 4. Short summary 

It was shown that the Fokker-Planck equation approach by Green and Zwanzig 
is most completely formulated from the equation of motion (2 · 2), although they 
developed their theories within the framework of the Fokker-Planck equation 
(2 · 9) .2>• 8h'> Namely, the transport fluCtuating force f,.(t) whose time correlation 
gives the correct linear transport coefficients was shown to be written approxi­
mately as (2 · 22) in terms of the fluctuating forces Fa (t) and q,. (t), leading to 
the approximate expression (2 · 21) for the transport coefficients T,.1 (iw). This 
equation for f,.(t) bridges the Fokker-Planck equation approach and the linear 
equation-of-motion approach.1> 

It would be worth noting that the basic equations (1· 5), (2 · 2) and (2 ·15) 
were all derived from the equation of motion (A·4) by taking as {A~>} the col­
lective variables {A,.}, their distribution IT"~(A,.-ak) and the vector {a"} in a 
space, respectively. Taking IT,.~(A"-a,.) means eliminating the other degrees­
of-freedom than those of the collective variables {A"}. Taking {a,.} means elimi­
nating the nonlinear interaction between the collective variables, which was shown 
to amount to producing the new memory function ¢,.1 (t) and the new fluctuating 
force q,. (t). The renormalization of transport coefficients by the nonlinear in­
teraction was thus given by the time correlation of q"(t) which is determined by 
the macroscopic processes. 
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On Nonlinear Dynamics of Fluctuations 771 

The transport coefficients were thus separated into two parts, the rapidly­

relaxing part of microscopic time scale and the long-time tail of macroscopic time 

scale. It should be noted that this separation has become possible under the as­

sumption that the distribution of time scales is distinctly separated into two parts, 

as discussed in § 1. When the fluctuations of A are large, (2 · 3), (2 ·17) and 

(2 ·18) would not be valid. Even then, however, (2 · 2), (2 ·15), (2 · 21) and 

(2 · 22) are still valid if one uses (A ·19) for D, (B · 2) for A, (B · 5) for q~< (t), 

and (B · 8) for t./Jkz (t). Thus the present theory would be useful not only for a 

deeper understanding of irreversible processes, but also in studying nonlinear 

dynamics of large fluctuations of collective variables. 

Appendix A 

--Derivation of (1·2) and (2·2)--

Let us first consider an orthonormal set of variables {AI'} whose time evolu­

tion is given by 

dAI' (t) I dt = i.£AI' (t)' (A·1) 

where i.£ is a time-independent linear operator. As shown previously/h8l an exact 

equation of motion for {AI' (t)} can be derived by introducing the projection 

operator 

PG (t) = :E (G (t), A. (0)) A. (0) , (A·2) 
" 

where (F, G) denotes the inner product and is defined by (FG*) in the classical 

case. Namely, introducing the frequency matrix 

we obtain 

where 

(/)l'.(t) =- (i.£Fp(t), A.(O)), 

Fl'(t) = exp[t(1-P)i.£] (1-P)i..fAI'(O). 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

The most important feature of (A· 4) is the fact that its systematic part is linear 

and Fl' (t) represents a fluctuating force, satisfying 

(A·7) 

Equation (2·2) can be derived from (A·4) by taking ga(x) as Ap(x). Then 

the projection (A· 2) takes the form 

PzG(xt) = J dx'p(x')G(xt')~(A(x') -A(x))/w(A(x)), (A·8) 
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772 H. Mori and H. Fujisaka 

where 

w(a)===<ga)= J 8(A(x) -a)p(x)dx (A·9) 

and p(x) is the equilibrium phase-space distribution function. This is identical 
to the projection operator introduced by Zwanzig.3> The frequency matrix (A· 3) 
becomes 

i!Jab=- I:; ___!__[v~c(a)8(a-b)], 
" ()a,. 

(A·lO) 

where v,. (a) is the streaming velocity defined by (2 · 4). The fluctuating force 
(A·6) is written as 

Fa(t) = -exp[t(l-Pz)iL] I:; R,.(0)___!_8(A(O) -a), 
k oak 

(A·ll) 

where L is the Liouville evolution operator and we have introduced 

(A·12) 

Equation (2 · 5) can be easily obtained from (A ·11). The memory kernel (A· 5) 
takes the form 

(A·13) 

Thus we obtain 

(A·14) 

If one neglects Fa (t), then this agrees with Zwanzig's generalized Fokker-Planck 
equation.8> Using (2· 6) we also obtain 

d i' -A,.=v,.(A) +I:; <:'~cz(A(t-s), s)ds+R,.(t), dt ! 0 
(A·15) 

where 

<:'~cz(a, s) =-1 - --0-<8(A-a)R,.(s)Rz* (0)). 
w(a) Oaz* 

(A·16) 

It should be noted that (A ·14) is equivalent to Kawasaki's kinetic equation for 
an infinite set of products of the macroscopic variables, and (A ·15) corresponds 
to his nonlinear kinetic equation for the macroscopic variables.5> 

Now we introduce approximations. In !Dab(s) and (A·15), we assume that 

() 
Fa(s):::::- I:; R~c(s)-8(A(O) -a), 

" oak 
(A·l7) 
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C:kt(A(t-s), s) ::::::C:kt(A(t), s), (A·18) 

which means that the time scales for an appreciable change of A(t) are distinctly 
larger than the typical time scales involved in the Langevin fluctuating force 
Rk(t). Then (A·l4) leads to (2·2) with the generalized Fokker-Planck operator 

where 

f) 
Dga=- :E -[vk(a)ga] 

k oak 

rkz(a) = f'ds(Rk(s)Rt*(O)ga)/(ga). 

Similarly (A·15) leads to 

dAk =vk(A) + :E 1 0 [ (A) (A)] R () dt t w(A) fJA 1* w rkt + k t . 

(A·19) 

(A·20) 

(A·21) 

Secondly we assume that the equilibrium distribution of a is Gaussian, 

w(a) =C exp(- ~ ~ akak* ). (A·22) 

Thirdly we assume that rkz(a) in (A·19) and (A·21) can be replaced by their 
average 

(A·23) 

Recently Kawabata9l showed that the Landau-Lifshitz friction term in the equation 
of motion for a spin interacting with its surroundings can be derived from the 
a dependence of rkz(a). In our problem, however, the above assumptions would 
be valid when the fluctuations of A are not too large. Under these assumptions 
(A· 21) and (A ·19) reduce to (1· 2) and (2 · 3), respectively. 

Appendix B 

--Derivation of (2 ·15) and (2 ·17)-­

Let us consider the time evolution of 

ak(t) =exp(tA)ak 

with the generalized expression for A 

(B·1) 

(B·2) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/49/3/764/1859516 by guest on 21 August 2022



774 H. Mori and H. Fujisaka 

We apply (A·4) to (B·1) by taking A as i..[ and using the projection operator 
(2 ·13). Since 

1 f) Aa~c=v~c(a) + :E -- --[w(a)r~cz(a)], 
l w(a) aaz* 

the frequency matrix (A· 3) becomes 

where (A· 23) has been used. The fluctuating force (A· 6) becomes 

q~c(t) = exp[t(1-P,.) A] q~c(a), 
where 

Thus we obtain 

where 

C/J~cz(t) = -(Aq~c(t)az*)=(q~c(t)?Jz*). 
The quantity 7j1 is defined by 

7iz==- (1-P,.) w (a)-1D [a1w (a)] 

(B·3) 

(B·4) 

(B·5) 

(B·8) 

=vz'(a)- :E {-1 ---f)-[w(a)r;::z(a)J +r~~a ... }, (B·9) "' w(a) fja,.* 

where use has been made of Dw (a) = 0. Equation (B · 7) gives us (2 ·15). If 
one can neglect the a dependence of r~cz(a) and assume the Gaussian distribution 
for w(a), then (B·8) leads to (2·17). 

Appendix C 

--Derivation of (2·22)-­
Let us introduce a linear operator Q by 

Then (1· 5) and (2 ·15) lead to 

f~c(t) =QA~c(t), 

q~c(t) =Qa~c(t), 

(C·1) 

(C·2) 

(C·3) 

where (1·11) has been used. Substituting (2 ·12) into (C · 2), we obtain 
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fk(t) =Q s {ak(t)~(a-A(O)) + r ak(t-s)Fa.(s)ds}da. (C·4) 

The first term of (C · 4) can be written as 

J qk(t)~(a-A)da. 
The second term gives us 

Q r ak(t-s)Fa.(s)ds=ak(O)Fa.(t) + r [Qar.(t-s)]Fa.(s)ds. 

Thus (C · 4) leads to 

fk(t) = S qk(t)~(a-A(O))da+ S akFa.(t)da 

+ r ds s qk(t-s)Fa.(s)da. (C·5) 

Substituting (2 · 5) into the second term of (C · 5) we obtain (2 · 22). 
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