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End For j2

End For j1

— Make the set of �1 column vectors of length ac such as F =

ff 2 Ra
: jfj j = 1; for j = 1; . . . ; acg, which has cardinality

of 2a .

— Make the set of�1 column vectors of length bc such asG =

fg 2 Rb
: jgj j = 1; forj = 1; . . . ; bcg;which has cardinality of2b .

— For k1 = 1; . . . ; 2a

— Select �1 column vector from the set F , fk .

� For k2 = 1; . . . ; ac

if fkk = 1, then l = arowk , m = acolumn
k ; al;m = al;m

else if fkk = �1, then l = arowk , m = acolumn
k ; al;m = al;m

end if

� End For k2

� For k4 = 1; . . . ; 2b

— Select �1 column vector from the set G, gk .

� For k5 = 1; . . . ; bc

if gkk = 1, then l = browk , m = bcolumn
k ; bl;m = bl;m

else if gkk = �1, then l = browk , m = bcolumn
k ; bl;m = bl;m

end if

� End For k5

— Calculate the maximum singular value, �, using A and B matrices
generated so far.

— Choose �y = maxf�; �yg

� End For k4

— End For k1

� Step 4: Repeat Step 1, Step 2 and Step 3 for all i1; i2; i3, and i4.

� Step 5: Select �y as the maximum singular value of the complex
interval matrix.
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On Nonlinear Filtering for Discrete-Time Stochastic
Systems With Missing Measurements

Bo Shen, Zidong Wang, Huisheng Shu, and Guoliang Wei

Abstract—In this paper, the filtering problem is investigated
for a general class of nonlinear discrete-time stochastic systems with
missing measurements. The system under study is not only corrupted by
state-dependent white noises but also disturbed by exogenous inputs. The
measurement output contains randomly missing data that is modeled by a
Bernoulli distributed white sequence with a known conditional probability.
A filter of very general form is first designed such that the filtering process
is stochastically stable and the filtering error satisfies performance
constraint for all admissible missing observations and nonzero exogenous
disturbances under the zero-initial condition. The existence conditions
of the desired filter are described in terms of a second-order nonlinear
inequality. Such an inequality can be decoupled into some auxiliary ones
that can be solved independently by taking special form of the Lyapunov
functionals. As a consequence, a linear time-invariant filter design problem
is discussed for the benefit of practical applications, and some simplified
conditions are obtained. Finally, two numerical simulation examples are
given to illustrate the main results of this paper.

Index Terms—Discrete-time systems, filtering, missing measure-
ments, nonlinear systems, stochastic stability, stochastic systems.

I. INTRODUCTION

H1 filtering or state estimation has long been one of the founda-
tional problems in signal processing and control systems. The so-called

Manuscript received March 11, 2008; revised June 15, 2008 and August 10,
2008. Current version published October 8, 2008. This work was supported
in part by the Shanghai Natural Science Foundation of China under Grant
07ZR14002, by the Engineering and Physical Sciences Research Council
(EPSRC) of the U.K. under Grant GR/S27658/01, by the Nuffield Foundation
of the U.K. under Grant NAL/00630/G, and by the Alexander von Humboldt
Foundation of Germany. Recommended by Associate Editor J.-F. Zhang.

B. Shen, H. Shu, and G. Wei are with the School of Information Science and
Technology, Donghua University, Shanghai 200051, China.

Z. Wang is with the Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K. and also with the
School of Information Science and Technology, Donghua University, Shanghai
200051, China (e-mail: Zidong.Wang@brunel.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2008.930199

0018-9286/$25.00 © 2008 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 12:09 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 9, OCTOBER 2008 2171

H1 filtering problem can be briefly described as the design of an esti-
mator for a given system in order to estimate an unknown state combi-
nation such that the L2 gain from the exogenous disturbance to the es-
timation error is less than a prescribed level 
 > 0. In the past decades,
significant advances have been made in the research area of nonlinear
H1 filtering/control since Zames’ original work [28], see e.g., [3], [4],
[9], [10], [22], [26], [27], [30].

Nonlinearity and stochasticity are arguably two of the main re-
sources in reality that have resulted in considerable system complexity
[8]. In the past few years, the H1 filtering problems for nonlinear
and/or stochastic systems have received increasing research attention,
and a great deal of results have been available in the literature. For some
recent representative work on this general topic in the deterministic
case, we refer the reader to [16], [17], [19] and the references therein.
With respect to the stochastic case, the nonlinear filtering problem
has been studied by many researchers. For example, the H1 filtering
problem has been dealt with in [24], [26], [27] for nonlinear stochastic
time-delay systems. In [5], anH1 filtering theory has been developed,
from the dissipation point of view, for a large class of continuous-time
stochastic nonlinear systems. In [18], the application of the unscented
Kalman filter (UKF) has been considered for continuous-time filtering
problems, where both the state and measurement processes are mod-
eled as stochastic differential equations. The filtering problem has
been dealt with in [11] for stochastic nonlinear differential systems
driven by standard Wiener processes, where a filter has been presented
that is a generalization of the classical Extended Kalman-Bucy filter.
In [29], the stochastic H1 filtering problem has been studied for
system modeled by Itô-type stochastic differential equation where the
addressed filter is of a very general nonlinear form, and the H1 filter
proposed in [29] can be obtained by solving second-order nonlinear
Hamilton-Jacobi inequalities. It should be noted that all the literature
mentioned above has been concerned with continuous-time systems,
and the corresponding results for discrete-time case are relatively few.

It is quite common in practice that the measurement output of a dis-
crete-time stochastic system is not consecutive but contains missing
observations due to a variety of causes such as sensor temporal failure
and network-induced packet loss, see, e.g., [1], [2], and [15]. Therefore,
it is not surprising that the filtering problem for system with missing
measurements has recently attracted much attention. For example, a
binary switching sequence has been used in [21], [23], and [25], which
can be viewed as a Bernoulli distributed white sequence taking values
of 0 and 1, to model the missing measurements phenomena. A Mar-
kovian jumping process has been employed in [20] to reflect the mea-
surement missing problem. In [6] and [7], the date missing (dropout)
rate has been converted into the signal transmission delay that has both
the upper and lower bounds. Unfortunately, to the best of our knowl-
edge, theH1 filtering problem for general nonlinear discrete-time sto-
chastic systems with or without missing measurements has not been
fully investigated despite its potential in practical applications, and the
purpose of this paper is therefore to shorten such a gap by providing a
rather general framework.

In this paper, we aim to investigate the H1 filtering problem for
a class of general nonlinear discrete-time stochastic systems with
missing measurements. A Bernoulli distributed white sequence with
a known conditional probability is used for modeling the missing
measurements. It is worth mentioning that we first consider a very
general form of the filter and then discuss the linear filter as a special
case. Specifically, a sufficient condition is derived in the form of a
second-order nonlinear inequality, which guarantees that the filtering
process is stochastically stable and the filtering error satisfies H1
performance constraint for all possible missing observations and all
nonzero exogenous disturbances under the zero-initial condition.
Based on this condition, the second-order nonlinear inequality is then

decoupled into two inequalities that can be solved independently by
selecting special Lyapunov functionals. Some corollaries with much
simplified conditions are given to facilitate the filter design. Moreover,
the linear filter design problem is discussed for the addressed nonlinear
stochastic systems and our main results are specialized to this case
readily. Finally, we demonstrate the usefulness and applicability of the
developed theory by means of two numerical simulation examples.

Notation: The notation used here is fairly standard except where
otherwise stated. n denotes the n-dimensional Euclidean space. kAk
refers to the norm of a matrix A defined by kAk = trace(ATA).
The notation X � Y (respectively, X > Y ), where X and Y are real
symmetric matrices, means that X � Y is positive semi-definite (re-
spectively, positive definite). MT represents the transpose of the ma-
trix M . I denotes the identity matrix of compatible dimension. If A
is a matrix, �min(A) (respectively, �max(A)) stands for the smallest
(respectively, largest) eigenvalue of A. Moreover, we may fix a prob-
ability space (
;F ;Prob), where Prob, the probability measure, has
total mass 1. fxg stands for the expectation of the stochastic vari-
able x with respect to the given probability measure Prob. The set
of all nonnegative integers is denoted by + and the set of all non-
negative real numbers is represented by +. CK denotes the class
of all continuous nondecreasing convex functions � : + ! +

such that �(0) = 0 and �(r) > 0 for r > 0. C2( n) denotes the
class of functions V (x) twice continuously differential with respect
to x 2 n except possibly at the origin. Finally, we let Vx(x) =
((@V (x)=@x1); (@V (x)=@x2); . . . ; (@V (x)=@xn))

T and Vxx(x) =
@2V (x)=@xi@xj n�n

.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear discrete-time stochastic system
with missing measurements:

xk+1 = f(xk) + g(xk)vk + (h(xk) + s(xk)vk)wk

yk = rk(l(xk) + k(xk)vk)

zk = m(xk)

(1)

where xk 2 n is the state vector, zk 2 m is the state combi-
nation to be estimated, and wk is a one-dimensional, zero-mean
Gaussian white noise sequence on a probability space (
;F ;Prob)
with w2

k = �2. Let (
, F , fFkgk2 , Prob) be a filtered prob-
ability space where fFkgk2 is the family of sub �-algebras of
F generated by fwkgk2 . In fact, each Fk is assumed to be the
minimal �-algebras generated by fwig0�i�k�1 while F0 is assumed
to be some given sub �-algebras of F , independent of Fk for all
k > 0. The exogenous disturbance input vk 2 q , it is assumed that
fvkgk2 2 l2([0;1); q), where l2([0;1); q) is the space of
nonanticipatory square-summable stochastic process fvkgk2 with
respect to (Fk)k2 .

Remark 1: In the model (1), vk is an exogenous input that describes
the external disturbance, andwk means the inner disturbance of system.

The nonlinear functions fn�1, gn�q , hn�1, sn�q, lr�1, kr�q
and mm�1 are smooth matrix-valued functions with fn�1(0) = 0,
hn�1(0) = 0, lr�1(0) = 0 and mm�1(0) = 0. yk 2 r is the
measured output vector with probabilistic missing data. The stochastic
variable rk 2 , which describes the measurement missing phe-
nomena, takes values of 1 and 0 with

Probfrk = 1g =�

Probfrk = 0g =1� � (2)

where � 2 [0; 1] is a known constant. rk is assumed to be independent
of the Gaussian white noise sequence wk , and the initial value x0 is a
known vector.
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We start with designing the following general filter for system (1):

x̂k+1 = f̂(x̂k) + ĝ(x̂k)yk
ẑk = m̂(x̂k); f̂(0) = 0; m̂(0) = 0; x̂0 = 0

(3)

where x̂k is the state estimate; ẑk is an estimate for zk; f̂ , ĝ and m̂,
which are matrices of appropriate dimensions with sufficient smooth-
ness, are filter parameters to be determined.

Setting �k = [xTk x̂Tk ]
T , we obtain an augmented system as follows:

�k+1 = fe(�k) + �k + ge(�k)vk + (he(�k) + se(�k)vk)wk

~zk := zk � ẑk = m(xk)� m̂(x̂k)
(4)

where

fe(�k) =
f(xk)� xk

f̂(x̂k) + rkĝ(x̂k)l(xk)� x̂k
;

ge(�k) =
g(xk)

rkĝ(x̂k)k(xk)
; he(�k) =

h(xk)

0
;

se(�k) =
s(xk)

0
: (5)

Remark 2: The form of the augmented system is appreciably dif-
ferent from those in the literature such as [29]. With the augmented
system (4) and (5), it would be more convenient to state the problem
to be investigated and derive our main results. Moreover, since (4) is
inherently a stochastic system because of bothw(k) and r(k), we need
to introduce the notion of stochastic stability.

The following definition is considered as a discrete-time version of
that in [12].

Definition 1: The solution �k = 0 of the augmented system (4) with
vk = 0 is said to be stochastically stable if, for any " > 0, there exists
a � > 0 such that

fk�kkg < " (6)

whenever k 2 + and k�0k < �.
We are now in a position to state the nonlinear stochastic H1 fil-

tering problem as follows. We are interested in finding filter gain ma-
trices f̂(x̂k), ĝ(x̂k) and m̂(x̂k) in (3) such that the following require-
ments are met simultaneously:

a) The zero-solution of the augmented system (4) with vk = 0 is
stochastically stable.

b) Under the zero-initial condition, the filtering error ~zk satisfies
1

k=0

k~zkk
2

< 

2

1

k=0

kvkk
2 (7)

for all nonzero vk where 
 > 0 is a given disturbance attenuation
level.

The nonlinear stochastic H1 filtering problem addressed will be
solved in next section, and the results will be specialized to several
special cases for practical convenience.

III. MAIN RESULTS

Let us start with introducing a lemma that will be used in the proof
of our main results.

Lemma 1: If there exist a Lyapunov functional V (�) 2 C2( 2n)
and a function a(r) 2 CK satisfying the following conditions:

V (0) = 0; (8a)

a(k�k) �V (�); (8b)

fV (�k+1)g � fV (�k)g < 0; k 2 + (8c)

then the solution �k = 0 of the system (4) with vk = 0 is stochastically
stable.

Proof: First of all, we note that V (0) = 0 and V (�) is contin-
uous. Therefore, for any " > 0, there exists a scalar � > 0 such that
k�0k < � ! V (�0) < a(").

We claim that every solution �k with k�0k < � implies fk�kkg <
" for all k > 0. Let us now prove our claim by contradiction. Suppose
that, for a solution �k satisfying k�0k < �, there exists a k1 2 +

such that fk�k kg � ". By Jensen Inequality, one can get the fact of
a( fk�k kg) � fa(k�k k)g. And then from (8c), it follows readily
that fV (�k )g < fV (�0)g and

a(") � a( fk�k kg) � fa(k�k k)g

� fV (�k )g < fV (�0)g < a(")

which is a contradiction. Therefore, it follows easily from Definition 1
that the solution �k = 0 of the augmented system (4) with vk = 0 is
stochastically stable. The proof is complete.

The following theorem provides sufficient conditions under which
the augmented system (4) with vk = 0 is stochastically stable and the
filtering error ~zk satisfies (7) for all nonzero vk under the zero-initial
condition.

Theorem 1: Given a disturbance attenuation level 
 > 0. If
there exists a Lyapunov functional V (�) 2 C2( 2n) satisfying the
inequalities in (9), shown at the bottom of the next page, where
A(�; ��); B(�; ��); andD(�; ��) are defined in (10)–(12), also
shown at the bottom of the next page, for some matrices f̂ , ĝ and m̂

of suitable dimensions, then the stochastic H1 filtering problem for
system (1) is solved by (3).

Proof: Let V (�) 2 C2( 2n) be a Lyapunov functional satisfying
(9) and the difference of the Lyapunov functional be defined by

�V (�k) = fV (�k+1)j�kg � V (�k): (13)

First, let us now show that augmented system (4) satisfies H1
robustness performance constraint for all nonzero exogenous distur-
bances under the zero-initial condition. Using Taylor’s formula, there
exists a �k 2 [0; 1] such that

f�V (�k)g+ fk~zkk
2g � 


2 fkvkk
2g

= fV (�k+1)g � fV (�k)g+ fk~zkk
2g � 


2 fkvkk
2g

= V
T
� (�k)(�k+1 � �k) +

1

2
(�k+1 � �k)

T

� V��(�k + �k(�k+1 � �k))(�k+1 � �k)

+ fk~zkk
2g � 


2 fkvkk
2g: (14)

For simplicity, we denote �� := �k + �k(�k+1 � �k) and then it
follows from wk = 0, w2

k = �2 and (4) that

f�V (�k)g+ fk~zkk
2g � 


2 fkvkk
2g

= � v
T
k 


2
I �

1

2
g
T
e (�k)V��(�� )ge(�k)

�
1

2
�
2
s
T
e (�k)V��(�� )se(�k) vk

+ V
T
� (�k)ge(�k) + �

2
h
T
e (�k)V��(�� )se(�k)

+ f
T
e (�k)V��(�� )ge(�k) vk

+ V
T
� (�k)fe(�k) +

1

2
f
T
e (�k)V��(�� )fe(�k)

+
1

2
�
2
h
T
e (�k)V��(�� )he(�k) + k~zkk

2
: (15)

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 12:09 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 9, OCTOBER 2008 2173

By a series of computations and noting that rk = r2k = �, we
can conclude that (15) is equal to (16), as shown at the bottom of the
page, where v�k = (1=2)A�1(�k; �� )BT (�k; �� ). Therefore, it can
be seen that we have (17), also shown at the bottom of the page, and
then it follows from (9) that

f�V (�k)g+ fk~zkk
2g � 
2 fkvkk

2g < 0: (18)

Summing up (18) from 0 to positive integer N with respect to k yields

N

k=0

f f�V (�k)g+ fk~zkk
2g � 
2 fkvkk

2gg < 0 (19)

i.e.,

N

k=0

fk~zkk
2g < 
2

N

k=0

fkvkk
2g

+ fV (0)g� fV (�N+1)g: (20)

Considering fV (�N+1)g � 0, V (0) = 0 and letting N ! +1, we
obtain

1

k=0

fk~zkk
2g < 
2

1

k=0

fkvkk
2g (21)

(�; ��) =
1

4
B(�; ��)A

�1(�; ��)B
T (�; ��) +

@V

@x
(�)(f(x)� x) + @V

@x̂
(�)(f̂(x̂)� x̂)

+� @V
@x̂

(�)ĝ(x̂)l(x) +D(�; ��) +
1

2
�2hT (x)@ V

@x
(��)h(x) + k~zk

2 < 0;

for any � 6= 0; �� 2
2n;

a(k�k) � V (�) with a(r) 2 CK;

A(�; ��) > 0; for any �; �� 2 2n; V (0) = 0

(9)

A(�; ��) = 
2I �
1

2
gT (x)

@2V

@x2
(��)g(x)�

1

2
�kT (x)ĝT (x̂)

@2V

@x̂2
(��)ĝ(x̂)k(x)� �kT (x)ĝT (x̂)

@2V

@xT @x̂
(��)

� g(x)�
1

2
�2sT (x)

@2V

@x2
(��)s(x) (10)

B(�; ��) =
@V T

@x
(�)g(x) + �

@V T

@x̂
(�)ĝ(x̂)k(x) + �2hT (x)

@2V

@x2
(��)s(x) + (f(x)� x)T

@2V

@x2
(��)g(x)

+ (f̂(x̂) + �ĝ(x̂)l(x)� x̂)T
@2V

@xT @x̂
(��)g(x) + �(f(x)� x)T

@2V

@x̂T @x
(��)ĝ(x̂)k(x)

+ �(f̂(x̂)� x̂)T
@2V

@x̂2
(��)ĝ(x̂)k(x) + �lT (x)ĝT (x̂)

@2V

@x̂2
(��)ĝ(x̂)k(x) (11)

D(�; ��) =
1

2
(f(xk)� xk)

T @
2V

@x2
(��)(f(x)� x) + (f(x)� x)T

@2V

@x̂T @x
(��)(f̂(x̂) + �ĝ(x̂)l(xk)� x̂)

+
1

2
(f̂(x̂)� x̂)T

@2V

@x̂2
(��)(f̂(x̂)� x̂) + �(f̂(x̂)� x̂)T

@2V

@x̂2
(��)ĝ(x̂)l(x)

+
1

2
�lT (x)ĝT (x̂)

@2V

@x̂2
(��)ĝ(x̂)l(x) (12)

�(vk � v�k)
TA(�k; �� )(vk � v�k) +

1

4
B(�k; �� )A�1(�k; �� )BT (�k; �� ) +

@V T

@x
(�k)(f(xk)� xk)

+D(�k; �� ) +
@V T

@x̂
(�k)(f̂(x̂k) + �ĝ(x̂k)l(xk)� x̂k) +

1

2
�2hT (xk)

@2V

@x2
(�� )h(xk) + k~zkk

2 (16)

f�V (�k)g+ fk~zkk
2g � 
2 fkvkk

2g

�
1

4
B(�k; �� )A�1(�k; �� )BT (�k; �� ) +

@V T

@x
(�k)(f(xk)� xk) +

@V T

@x̂
(�k)(f̂(x̂k)� x̂k)

+ �
@V T

@x̂
(�k)ĝ(x̂k)l(xk) +D(�k; �� ) +

1

2
�2hT (xk)

@2V

@x2
(�� )h(xk) + k~zkk

2

:= f (�k; �� )g (17)
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which means the desired H1 performance requirement is met. Next,
we show that the augmented system (4) with vk = 0 is stochastically
stable. It is not difficult to see that (9) implies

@V T

@x
(�)(f(x)� x) +

@V T

@x̂
(�)(f̂(x̂) + �ĝ(x̂)l(x)� x̂)

+D(�; ��) +
1

2
�
2
h
T (x)

@2V

@x2
(��)h(x) < (�; ��): (22)

Using Taylor’s formula again, we obtain (23), as shown at the bottom
of the page. Then, it follows readily from Lemma 1 that the augmented
system (4) with vk = 0 is stochastically stable and the proof of The-
orem 1 is complete.

Remark 3: From the proof of Theorem 1, it can be seen that we
have only used the Taylor expansion approach and the “completing the
square” technique which would not lead to much conservatism. Note
that the condition of Theorem 1 is dependent on the probability �.
Therefore, the possible conservatism of identifying the probability �

has an important impact on the overall results. In view of this, the iden-
tified probability � should be obtained as accurately as possible.

Remark 4: In this paper, the expectation of the stochastic variable
rk is used to scale the missing degree of the measurement data. Such
an approach is efficient for online application at the cost of reducing
the preciseness of the filtering performance, especially when the prob-
ability � is low. An alternative approach to improve the preciseness,
which is suitable for off-line implementations, is to develop some al-
gorithms to estimate the missing data and then use the estimated signal
in the filter design. This will be one of our future research topics.

In Theorem 1, a very general condition is given that can guarantee
the H1 performance as well as the stochastic stability of the filtering
process. To gradually reduce the difficulty of verifying such a condi-
tion, we are going to introduce a number of corollaries which provide
simplified by choosing different forms of the Lyapunov functionals. For

this purpose, we need the following assumption which is often used in
the literature concerning stochastic stability [14].

Assumption 1: V (1)(x) 2 C2( n) and V (2)(x̂) 2 C2( n) are two
Lyapunov functionals satisfying

V
(1)(x) � c1kxk

2
; V

(2)(x̂) � c2kx̂k
2 (24)

for some positive scalars c1 and c2.
Note that the existence conditions of the desired filter given in The-

orem 1 are described in terms of a second-order nonlinear inequality.
We first show that such a seemingly complicated inequality can be de-
coupled into two auxiliary ones that can be solved independently by
taking special form of the Lyapunov functionals. For this purpose, we
take the Lyapunov functional V (�) as V (�) = V (1)(x) + V (2)(x̂)
where V (1)(x) 2 C2( n) and V (2)(x̂) 2 C2( n) satisfy Assump-
tion 1, and the following corollary can be obtained from Theorem 1.

Corollary 1: Given the disturbance attenuation level 
 > 0
and the filter parameters f̂ , ĝ and m̂. If there exist two Lya-
punov functionals V (1)(x) 2 C2( n) (V (1)(0) = 0) and
V (2)(x̂) 2 C2( n) (V (2)(0) = 0) satisfying Assumption 1,
the inequality in (25), shown at the bottom of the page, for any x, x̂,
x�, x̂� 2 n, and the inequality in (26), also shown at the bottom of
the page, for any x 6= 0; x̂ 6= 0; x�; x̂� 2

n, where

B(�; ��) =V
(1)
x

T
(x)g(x) + �V

(2)
x̂

T
(x̂)ĝ(x̂)k(x)

+ �
2
h
T (x)V (1)

xx (x�)s(x)

+ (f(x)� x)TV (1)
xx (x�)g(x)

+ �(f̂(x̂)� x̂)TV
(2)
x̂x̂ (x̂�)ĝ(x̂)k(x)

+ �l
T (x)ĝT (x̂)V

(2)
x̂x̂ (x̂�)ĝ(x̂)k(x) (27)

then the stochastic H1 filtering problem for system (1) can be solved
by (3).

fV (�k+1)g � fV (�k)g

= V
T
� (�k)(�k+1 � �k) +

1

2
(�k+1 � �k)

T
V��(�� )(�k+1 � �k)

= V
T
� (�k)fe(�k) +

1

2
f
T
e (�k)V��(�� )fe(�k) +

1

2
�
2
h
T
e (�k)V��(�� )he(�k)

=
@V T

@x
(�k)(f(xk)� xk) +

@V T

@x̂
(�k)(f̂(x̂k) + �ĝ(x̂k)l(xk)� x̂k)

+D(�k; �� ) +
1

2
�
2
h
T (xk)

@2V

@x2
(�� )h(xk)

< f (�k; �� )g < 0 (23)

A(�; ��) = 

2
I �

1

2
g
T (x)V (1)

xx (x�)g(x)�
1

2
�k

T (x)ĝT (x̂)V
(2)
x̂x̂ (x̂�)ĝ(x̂)k(x)�

1

2
�
2
s
T (x)V (1)

xx (x�)s(x) > 0 (25)

(�; ��) =
1

4
B(�; ��)A

�1(�; ��)B
T (�; ��) + V

(1)
x

T
(x)(f(x)� x) + V

(2)
x̂

T

(x̂)(f̂(x̂) + �ĝ(x̂)l(x)� x̂)

+
1

2
�
2
h
T (x)V (1)

xx (x�)h(x) +
1

2
(f(xk)� xk)

T
V

(1)
xx (x�)(f(x)� x)

+
1

2
(f̂(x̂)� x̂)TV

(2)
x̂x̂ (x̂�)(f̂(x̂)� x̂) + �(f̂(x̂)� x̂)TV

(2)
x̂x̂ (x̂�)ĝ(x̂)l(x)

+
1

2
�l

T (x)ĝT (x̂)V
(2)
x̂x̂ (x̂�)ĝ(x̂)l(x) + k~zk2 < 0 (26)
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Proof: By Theorem 1, we only need to set V (�) = V (1)(x) +
V (2)(x̂), where � = [ xT x̂T ]T . It can be easily seen from (24) that
V (�) � min(c1; c2)k�k

2 2 CK . Furthermore, since

@V T

@x
(�) =V

(1)
x

T

(x);
@V T

@x̂
(�) = V

(2)
x̂

T

(x̂);

@2V

@x2
(�) =V

(1)
xx (x);

@2V

@x̂2
(�) = V

(2)
x̂x̂

(x̂);

@2V

@xT @x̂
(�) =

@2V

@x̂T @x
(�) = 0

then (9)–(12) of Theorem 1 reduce to (25)–(27) immediately. There-
fore, the proof of Corollary 1 follows directly from Theorem 1 and is
therefore omitted.

Before giving the next corollary, we introduce a lemma which will
be frequently used hereafter.

Lemma 2: Let x 2 n, y 2 n and " > 0. Then we have

2xT y � "x
T
x+ "

�1
y
T
y:

Under the standard assumption of kT (x)k(x) � I (see, e.g., [13]),
the conditions of Corollary 1 can be further decoupled into four in-
equalities that can be solved independently.

Corollary 2: Given the disturbance attenuation level 
 > 0 and the
filter parameters f̂ , ĝ and m̂. The stochastic H1 filtering problem for
system (1) is solved by (3) if there exist two positive constants �1, �2
and two Lyapunov functionals V (1)(x) 2 C2( n) (V (1)(0) = 0) and
V (2)(x̂) 2 C2( n) (V (2)(0) = 0) satisfying (24) and the conditions
in (28) and (29), as shown at the bottom of the page, for any x, x̂, x�,
x̂� 2

n, and the conditions in (30) and (31), also shown at the bottom
of the page, for any x 6= 0; x̂ 6= 0; x�; x̂� 2

n.

Proof: It is easily seen from (24) that V (�) �
min(c1; c2)k�k

2 2 CK . Now, using the elementary in-
equality ka + bk2 � 2(kak2 + kbk2), we can obtain

k~zk2 = km(x)� m̂(x̂)k2 � 2km(x)k2 + 2km̂(x̂)k2: (32)

Considering (28) and (29), it follows from (27) that we have (33), as
shown at the bottom of the page. By means of Lemma 2, we have

V
(2)
x̂

T

(x̂)ĝ(x̂)l(x) �
1

2
V

(2)
x̂

T

(x̂)ĝ(x̂)
2

+
1

2
kl(x)k2 (34)

and

(f̂(x̂)� x̂)TV
(2)
x̂x̂

(x̂�)ĝ(x̂)l(x)

�
1

2
(f̂(x̂)� x̂)TV

(2)
x̂x̂

(x̂�)ĝ(x̂)
2

+
1

2
kl(x)k2: (35)

Obviously, it follows from (28) and (32)–(35) that we get (36), as shown
at the bottom of the next page, and the rest of the proof follows directly
from Corollary 1.

In what follows, we take more special form of the Lyapunov func-
tionals in order to deduce more simplified conditions under which the
stochastic H1 filtering problem is solvable. Let us now consider the
case where V (�) is set as V (�) = xTPx + x̂TQx̂ and we have the
following corollary.

Corollary 3: Given the disturbance attenuation level 
 > 0 and the
filter parameters f̂ , ĝ and m̂. The stochastic H1 filtering problem for
system (1) is solved by (3) if there exist two positive definite matrices
P = P T > 0 and Q = QT > 0 satisfying the following conditions:

g
T (x)Pg(x) + �k

T (x)ĝT (x̂)Qĝ(x̂)k(x)

+�2sT (x)Ps(x) < 

2
I (37)

ĝ
T (x̂)V

(2)
x̂x̂

(x̂�)ĝ(x̂) � �1I (28)



2
I �

1

2
g
T (x)V (1)

xx (x�)g(x)�
1

2
�
2
s
T (x)V (1)

xx (x�)s(x) >
1

2
��1 + �2 I (29)

1(�; ��) =
3

2�2
V

(1)
x
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(x)g(x)
2

+ �
4

h
T (x)V (1)

xx (x�)s(x)
2

+ (f(x)� x)TV (1)
xx (x�)g(x)

2

+ V
(1)
x

T

(x)(f(x)� x) +
1

2
�
2
h
T (x)V (1)

xx (x�)h(x) +
1

2
(f(x)� x)TV (1)

xx (x�)(f(x)� x)

+
3�2�21

2�2
+
��1

2
+ � kl(x)k2 + 2km(x)k2 < 0 (30)

2(�; ��) =
3�2

2�2
+
�

2
V

(2)
x̂

T

(x̂)ĝ(x̂)
2

+ V
(2)
x̂

T

(x̂)(f̂(x̂)� x̂) +
1

2
(f̂(x̂)� x̂)TV

(2)
x̂x̂

(x̂�)(f̂(x̂)� x̂)

+
3�2

2�2
+
�

2
(f̂(x̂)� x̂)TV

(2)
x̂x̂

(x̂�)ĝ(x̂)
2

+ 2km̂(x̂)k2 < 0: (31)

1

4
B(�; ��)A

�1(�; ��)B
T (�; ��) <

3

2�2
V

(1)
x

T

(x)g(x)
2

+ �
2
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x̂
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(x̂)ĝ(x̂)
2

+ �
4

h
T (x)V (1)

xx (x�)s(x)
2

+ (f(x)� x)TV (1)
xx (x�)g(x)

2

+ �
2 (f̂(x̂)� x̂)TV

(2)
x̂x̂

(x̂�)ĝ(x̂)
2

+ �
2
�
2
1kl(x)k

2 (33)
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for any x; x̂ 2 n and the condition (38), as shown at the bottom of
the page, for any nonzero x; x̂ 2 n, where

B(x; x̂) = 2fT (x)Pg(x) + 2�f̂T (x̂)Qĝ(x̂)k(x)

+2�lT (x)ĝT (x̂)Qĝ(x̂)k(x) + 2�2hT (x)Ps(x): (39)

Proof: Set V (1)(x) = xTPx and V (2)(x̂) = x̂TQx̂. Ob-
viously, V (�) � minf�min(P ); �min(Q)gk�k2 2 CK where

� = [ xT x̂T ]T . On the other hand, in view of V (1)
x

T

(x) = 2xTP ,

V
(2)
x̂

T

(x̂) = 2x̂TQ, V (1)
xx (x) = 2P and V

(2)
x̂x̂

(x̂) = 2Q, it is easy
to verify that (37)–(39) can be obtained from (25)–(27), respectively.
Therefore, the proof of Corollary 3 can been easily accomplished from
Corollary 1.

Similarly, when V (�) = xTPx + x̂TQx̂, we have the following
corollary from Corollary 2.

Corollary 4: Given the disturbance attenuation level 
 > 0 and the
filter parameters f̂ , ĝ and m̂. If there exist two positive constants �1,
�2 and two positive definite matrices P = P T > 0 and Q = QT > 0
satisfying the inequalities in (40) and (41), as shown at the bottom of
the page, for any x; x̂ 2 n and the inequalities in (42) and (43), also
shown on the bottom of the page, for any nonzero x; x̂ 2 n, then the
stochastic H1 filtering problem for system (1) can be solved by (3).

Proof: After tedious calculation, one can obtain from the proof of
Corollary 2 that we get (44), shown at the bottom of the page. There-
fore, the proof of this corollary follows immediately from that of Corol-
lary 3.
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2
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2
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+ 2�f̂T (x̂)Qĝ(x̂)l(x) + �
2
h
T (x)Ph(x) + k~zk2 < 0 (38)

ĝ
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Remark 5: Note that we have obtained a series of analysis results
in Theorem 1, Corollary 1, Corollary 2, Corollary 3, and Corollary 4.
Based on the assumption that the filter structure is nonlinear, these anal-
ysis results offer sufficient conditions under which the filtering process
is stochastically stable and the filtering error satisfiesH1 performance
constraint for all admissible missing observations and nonzero exoge-
nous disturbances under the zero-initial condition. However, in prac-
tice, one is more interested in linear time-invariant filters that can be
easily implemented, and the goal of Section IV is therefore devoted
to the filtering problem for nonlinear systems but with linear filters. It
will be shown that the solvability of such a problem is dependent on
the feasibility of certain second-order inequalities.

IV. NONLINEAR H1 FILTERING WITH LINEAR FILTERS

For the purpose of practical applications, this section is devoted to
the study of linear H1 filters for nonlinear system (1).

The linear time-invariant filter under consideration is of the fol-
lowing structure

x̂k+1 = F x̂k +Gyk

ẑk = Mx̂k; x̂0 = 0
(45)

where x̂k is the state estimate, ẑk is an estimate for zk, and the constant
matrices F , G and M are filter parameters to be determined. Similar
to what we have done in Section II, we can obtain the following aug-
mented system:

�k+1 = fe(�k) + �k + ge(�k)vk + (he(�k) + se(�k)vk)wk

~zk := zk � ẑk = m(xk)�Mx̂k
(46)

where

fe(�k) =
f(xk)� xk

(F � I)x̂k + rkGl(xk)

ge(�k) =
g(xk)

rkGk(xk)

he(�k) =
h(xk)

0
; se(�k) =

s(xk)

0
: (47)

In virtue of Theorem 1, the following sufficient conditions for the
filter parameters F , G and M to satisfy can be easily acquired.

Theorem 2: Given the disturbance attenuation level 
 > 0 and
the filter parameters F , G and M . If there exists a Lyapunov func-
tion V (�) 2 C2( 2n) such that the inequalities in (48), shown at the
bottom of the page, hold where we have (49)–(51), as shown at the
bottom of the page, then the stochasticH1 filtering problem for system
(1) is solved by (45).

Proof: This proof is a straightforward consequence of that of The-
orem 1 and is therefore omitted.

In order to have more simplified conditions for solving the stochastic
H1 filtering problem with a linear filter, we set the Lyapunov function
V (�) = xTPx + x̂TQx̂ where P and Q are two positive definite
matrices. Subsequently, the following corollary can be obtained.

Corollary 5: Given the disturbance attenuation level 
 > 0 and
the filter parameters F , G and M . If there exist a positive constant �2
and two positive definite matrices P = P T > 0 and Q = QT >

0 satisfying the inequalities in (52), shown at the bottom of the next
page, for any x 2 n, and the inequalities in (53) and (54), shown
at the bottom of the next page, for any nonzero x 2 n, then the
stochastic H1 filtering problem for system (1) can be solved by the
linear filter (45).
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Proof: When f̂(x̂), ĝ(x̂) and m̂(x̂) are replaced by F x̂, G and
Mx̂, respectively, it can be easily known that (43) implies (54). In ad-
dition, if �1 is taken as 2�max(G

TQG), (40)–(42) imply (52)–(53).
Therefore, the rest of the proof follows from that of Corollary 4 imme-
diately.

Remark 6: As we know, the filter (45) is easy to be implemented in
practice owing to its linear structure. Nevertheless, it might be difficult
to verify the condition of Corollary 5 since nonlinear functions are in-
volved in the inequalities (52) and (53).

Remark 7: Let the nonlinear functions f(x), g(x), h(x), s(x), l(x),
and m(x) take the linear form as f(x) = A1x, g(x) = G1, h(x) =
A2x, s(x) = G2, l(x) = Lx, andm(x) = Nx. In such a special case,
the inequalities (52)–(54) can be reduced to a set of LMIs which can
be easily solved by resorting to the Matlab LMI Toolbox. Therefore,
the design problem of H1 filters for a linear discrete-time stochastic
system with missing measurement can be readily dealt with based on
the main results in this section.

Remark 8: Up until now, a series of criteria have been given for
the filter analysis of nonlinear stochastic systems with missing mea-
surements. Specifically, a filter of very general form is first designed
such that the filtering process is stochastically stable and the filtering
error satisfies H1 performance constraint for all admissible missing
observations and nonzero exogenous disturbances under the zero-ini-
tial condition. The existence conditions of the desired filter are then
described in terms of a second-order nonlinear inequality. Such an in-
equality can be decoupled into some auxiliary ones that can be solved
independently by taking special form of the Lyapunov functionals. As a
consequence, a linear time-invariant filter design problem is discussed
for the benefit of practical applications, and some simplified conditions
are obtained. In Section V, two numerical simulation examples will be
given to illustrate the main results of this paper.

V. ILLUSTRATIVE EXAMPLES

In this section, we demonstrate the theory presented in this paper by
means of two numerical examples, respectively, for the addressed H1
filtering problems with nonlinear and linear filters.

1) Example 1: H1 filtering design with a nonlinear filter.

Consider a nonlinear discrete-time stochastic system with missing
measurement as shown in (55), at the bottom of the page. Assuming
that the variance of wk is �2 = 0:25, the disturbance attenuation level
is prescribed as 
 =

p
3:05 and Probfrk = 1g = � = 0:8, we can

construct a filter of the form

x̂k+1 =
1
3
x̂
(2=3)
k sin x̂

(1=3)
k + yk

ẑk = 1
4
sin x̂k; x̂0 = 0

(56)

and then an augmented system can be given in the form of (4) with

fe(�k) =
1
6
sinxk � 5

6
xk

1
3
x̂
(2=3)
k sin x̂

(1=3)
k + 1

5
rkxk cosxk � x̂k

;

ge(�k) =
1

rk
;

he(�k) =

p
10
6

(xk � sinxk)

0
; se(�k) =

1

0
: (57)

It is not difficult to verify that f̂(x̂), ĝ(x̂), and m̂(x̂) satisfy the con-
ditions of Corollary 4 with the Lyapunov functional being V (x; x̂) =
x2 + x̂2. It follows from Corollary 4 that the filter of the form (56) is
a desired state estimator that achieves the stochastic stability as well
as the prescribed H1 performance constraint. Simulation results are
shown in Figs. 1 and 2, where the trajectory and estimation of the state
xk of (55) is given in Fig. 1 and the estimation error ~zk is depicted in
Fig. 2.

Remark 9: In general, the desired H1 filter is not unique. For ex-
ample, x̂k+1 = (1=3)x̂k sin x̂k + yk, ẑk = (1=4)x̂k is also a feasible
H1 filter for the stochastic system (55).

2) Example 2: H1 filtering design with a linear filter.
In this example, we consider the nonlinear discrete-time stochastic

system with missing measurement, as shown in (58), at the bottom of
the page. Let the probability � = 0:75, the variance �2 = 0:25 and the
disturbance attenuation level 
 =

p
1:625. We adopt a linear filter as

follows:

x̂k+1 =
1
3
x̂k +

1p
2
yk

ẑk = 1
5
x̂k; x̂0 = 0:

(59)


2I � gT (x)Pg(x)� �2sT (x)Qs(x) > (��max(G
TQG) + �2)I (52)

4

�2
kfT (x)Pg(x)k2 + �4khT (x)Ps(x)k2 + �2hT (x)Ph(x) + (f(x) + x)TP (f(x)� x)

+
4�2max(G

TQG)�2

�2
+ (�max(G

TQG) + 1)� kl(x)k2 + 2km(x)k2 < 0 (53)

4�2

�2
+ � F TQGGTQF + (F + I)TQ(F � I) + 2MTM < 0 (54)

xk+1 =
1
6
(xk + sinxk) + vk +

p
10
6

(xk � sinxk) + vk wk

yk = rk
1
5
xk cosxk + vk

zk = 1
4
sinxk:

(55)

xk+1 =
1
4
(xk cosxk + sin xk) +

1
2
vk + ( 1

3
xk cosxk +

1
2
vk)wk

yk = rk
1
8
(xk � sin 2xk) + vk

zk = 1
5
sinxk:

(58)
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Fig. 1. x (solid) and x̂ (dashed).

Fig. 2. Estimation error ~z (solid).

According to Corollary 5, it can be seen that the filter of form (59)
is a desired estimator for system (58) with the Lyapunov functional
V (x; x̂) = x2 + 2x̂2. Figs. 3 and 4 show the simulation results which
further confirm our theoretical analysis for the nonlinear H1 filtering
problem with the given linear filter.

VI. CONCLUSIONS

In this paper, we have investigated a robust H1 filtering problem
for a class of nonlinear discrete-time stochastic systems with missing
measurements. The missing measurements are modeled by a Bernoulli
distributed white sequence with a known conditional probability. A
sufficient condition of the form of a second-order nonlinear inequality
has been derived, which guarantees the augmented system is stochasti-
cally stable and the filtering error satisfies H1 performance constraint
for all possible missing observations and all nonzero exogenous distur-
bances under the zero-initial condition. Subsequently, the second-order
nonlinear inequality has been decoupled into two or more inequali-
ties which can be solved independently. Then, we have obtained more
simplified forms of the second-order nonlinear inequalities and some
independent inequalities are deduced directly from the main results.

Fig. 3. x (solid) and x̂ (dashed).

Fig. 4. Estimation error ~z (solid).

Moreover, the nonlinear H1 filtering problem with a linear filter is
investigated and some easy-to-verify criteria have been provided. The
results of this paper have been demonstrated by two numerical simula-
tion examples.
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Asymptotic Tracking for Uncertain Dynamic Systems
Via a Multilayer Neural Network Feedforward and

RISE Feedback Control Structure

Parag M. Patre, William MacKunis, Kent Kaiser, and
Warren E. Dixon

Abstract—The use of a neural network (NN) as a feedforward control
element to compensate for nonlinear system uncertainties has been inves-
tigated for over a decade. Typical NN-based controllers yield uniformly
ultimately bounded (UUB) stability results due to residual functional re-
construction inaccuracies and an inability to compensate for some system
disturbances. Several researchers have proposed discontinuous feedback
controllers (e.g., variable structure or sliding mode controllers) to reject
the residual errors and yield asymptotic results. The research in this paper
describes how a recently developed continuous robust integral of the sign
of the error (RISE) feedback term can be incorporated with a NN-based
feedforward term to achieve semi-global asymptotic tracking. To achieve
this result, the typical stability analysis for the RISE method is modified to
enable the incorporation of the NN-based feedforward terms, and a projec-
tion algorithm is developed to guarantee bounded NN weight estimates.

Index Terms—Adaptive control, asymptotic stability, Lyapunov
methods, neural network, nonlinear systems, RISE feedback, robust
control.

I. INTRODUCTION

Control researchers have extensively investigated the use of neural
networks (NNs) as a feedforward control element over the last fifteen
years. The focus on NN-based control methods is spawned from the
ramifications of the fact that NNs are universal approximators [1]. That
is, NNs can be used as a black-box estimator for a general class of sys-
tems. Examples include: nonlinear systems with parametric uncertainty
that do not satisfy the linear-in-the-parameters assumption required in
most adaptive control methods; systems with deadzones or discontinu-
ities; and systems with backlash. Typically, NN-based controllers yield
global uniformly ultimately bounded (UUB) stability results (e.g., see
[2]–[4] for examples and reviews of literature) due to residual func-
tional reconstruction inaccuracies and an inability to compensate for
some system disturbances. Motivated by the desire to eliminate the
residual steady-state errors, several researchers have obtained asymp-
totic tracking results by combining the NN feedforward element with
discontinuous feedback methods such as variable structure controllers
(VSC) (e.g., [5] and [6]) or sliding mode (SM) controllers (e.g., [6]
and [7]). A clever VSC-like controller was also proposed in [8], where
the controller is not initially discontinuous, but exponentially becomes
discontinuous as an exogenous control element exponentially vanishes.
Well known limitations of VSC and SM controllers include a require-
ment for infinite control bandwidth and chattering. Unfortunately, ad
hoc fixes for these effects result in a loss of asymptotic stability (i.e.,
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