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Abstract—A recently growing literature discusses the topics of di-
rect yaw moment control based on model predictive control (MPC),
and energy-efficient torque-vectoring (TV) for electric vehicles with
multiple powertrains. To reduce energy consumption, the available
TV studies focus on the control allocation layer, which calculates
the individual wheel torque levels to generate the total reference
longitudinal force and direct yaw moment, specified by higher
level algorithms to provide the desired longitudinal and lateral
vehicle dynamics. In fact, with a system of redundant actuators,
the vehicle-level objectives can be achieved by distributing the
individual control actions to minimize an optimality criterion,
e.g., based on the reduction of different power loss contributions.
However, preliminary simulation and experimental studies – not
using MPC – show that further important energy savings are
possible through the appropriate design of the reference yaw rate.
This paper presents a nonlinear model predictive control (NMPC)
implementation for energy-efficient TV, which is based on the
concurrent optimization of the reference yaw rate and wheel torque
allocation. The NMPC cost function weights are varied through
a fuzzy logic algorithm to adaptively prioritize vehicle dynamics
or energy efficiency, depending on the driving conditions. The
results show that the adaptive NMPC configuration allows stable
cornering performance with lower energy consumption than a
benchmarking fuzzy logic TV controller using an energy-efficient
control allocation layer.

Index Terms—Torque-vectoring, nonlinear model predictive
control, powertrain power loss, tire slip power loss, reference yaw
rate, control allocation, weight adaptation.

I. INTRODUCTION

E
LECTRIC vehicles (EVs) are the subject of intensive re-

search as they are considered a key solution to reduce air
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pollution caused by road traffic. However, the limited driving

range has been so far one of the main technical constraints to

the widespread adoption of EVs. The issue is being addressed

through the enhancement of battery technologies [1], as well

as the introduction of superfast charging stations on the road

network [2], [3]. In parallel, the efforts to increase driving range

are supported by the improvement of the energy efficiency of

electric powertrain components, and new vehicle controllers,

such as predictive energy management and optimal speed pro-

filing [4].

EVs with multiple powertrains allow torque-vectoring (TV),

i.e., individual wheel torque control to produce different longi-

tudinal tire forces on each EV side and, in turn, to generate a

so-called direct yaw moment. A wide literature shows the vehicle

dynamics benefits of TV in terms of handling and cornering

stability, see [5]–[15]. The variety of proposed TV algorithms

includes feedforward and proportional integral derivative (PID)

controllers [12], H� controllers [15], sliding mode controllers

[16], [17], linear quadratic controllers [18], and intelligent con-

trollers [19]. Owing to the increasing computational capabilities

of recent embedded platforms, model predictive control (MPC)

has become a viable solution for TV [20]–[22], even if many of

the available MPC TV implementations still use rather simplified

linearized or nonlinear prediction models.

TV can also improve energy efficiency. In fact, the wheel

torque distribution has an effect on the electric powertrain

power losses, including inverter, electric machine and mechan-

ical transmission (if present) power losses, as well as on the

longitudinal and lateral tire slip power losses, i.e., the power

losses associated with the longitudinal and lateral slip of the

tires [23]–[25]. Most of the available studies on energy-efficient

TV focus on multi-layer control structures [26]–[29], in which:

a) a top layer generates the total reference longitudinal force and

direct yaw moment to achieve a target yaw rate, independently

from any energy-efficiency consideration; and b) a bottom layer,

or control allocation layer, calculates the individual wheel torque

demands to meet the requests from the top layer, e.g., see

[30]–[36]. Given the redundancy of the electric powertrains,

the individual wheel torque distribution in b) can optimize a

secondary optimality criterion, for instance, related to energy

consumption. Some of the control allocation implementations

use MPC [28], [29].

Although the previous hierarchical arrangements are easy to

implement because of their modularity, they do not benefit from

the energy consumption effect of the top level controller. This is
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a major limitation, as recent experimental and simulation-based

research work, see [23], [24] and [37], shows that, during corner-

ing, the level of vehicle understeer (typically decided by the top

layer of the TV control structure) can have an equivalent impact

on the energy consumption as the control allocation algorithm.

The preliminary studies on this topic: i) discuss the potential

of enhancing energy efficiency by modifying the cornering

response through appropriate direct yaw moment characteristics

(energy-efficient direct yaw moment control); ii) evaluate the

impact of these techniques on powertrain and tire slip power

losses; and iii) obtain suboptimal rule-based or open-loop algo-

rithms. However, they do not propose systematic solutions based

on nonlinear optimal control. For example, Kobayashi et al.

[24] demonstrate that the minimization of the tire slip power

losses occurs if the tire slip velocity vectors are the same at the

four vehicle corners. De Filippis et al. [38] obtain an analytical

expression of the energy-efficient direct yaw moment in terms

of powertrain power losses, implying the activation of an in-

creasing number of powertrains with increasing torque demand.

In case of redundant optimal solutions from the viewpoint of

powertrain power losses, rules are set to select the best option in

terms of tire slip power losses. A quasi-static vehicle modeling

approach is used in [39] to derive rules for the calculation of a

feedforward energy-efficient direct yaw moment as a function of

torque demand, with a feedback contribution intervening only

in safety-critical conditions.

Although the previous studies show the energy saving po-

tential of shaping the reference cornering response, to be prac-

tically useful, the implementation of this approach should: i)

simultaneously account for the power losses associated with

the powertrains and tire slip; ii) be based on feedback control

structures, e.g., capable of compensating unexpected EV behav-

ior caused by the variation of system parameters or transients,

rather than using simplified feedforward or rule-based algo-

rithms; iii) integrate the reference direct yaw moment generation

and control allocation functions, to prevent conflicts between

different control layers involved in the power loss management;

and iv) provide significant operational flexibility depending on

the actual driving situation, i.e., prioritize energy efficiency

during normal driving, and vehicle safety and stability in extreme

maneuvers. In conclusion, to the best of the authors’ knowledge,

there is lack of TV control implementations systematically using

the reference cornering response as a control variable to reduce

energy consumption.

This study covers the identified gap, with the following novel

contributions:
� An implicit nonlinear model predictive control (NMPC)

implementation, integrating the direct yaw moment calcu-

lation layer with the control allocation layer, and includ-

ing consideration of the yaw rate tracking performance,

energy-efficient cornering response, and sideslip and actu-

ation constraints.
� The systematic adoption of an energy-efficient reference

yaw rate, i.e., the yaw rate to be tracked by the NMPC

in normal driving conditions provides an energy-efficient

cornering response, while a fuzzy-logic based adaptation

Fig. 1. Schematic of the implemented simulation framework.

mechanism mediates between the requirements of vehicle

stability and energy efficiency.
� An analysis of the relative significance of energy-efficient

understeer characteristics and control allocation, as well

as the benefit of considering the power loss aspects within

feedback controllers, rather than through feedforward al-

gorithms.

The manuscript is organized into six sections. Section II

presents the simulation framework for the control system evalu-

ation. Section III describes the off-line generation process of the

reference yaw rate characteristics and rear-to-total torque distri-

bution. Section IV covers the integrated and adaptive NMPC for-

mulation for energy-efficient TV. Section V discusses the results,

and compares the proposed approach with a benchmarking TV

controller from the literature. Finally, Section VI summarizes

the main conclusions.

II. SIMULATION FRAMEWORK AND HIGH-FIDELITY

SIMULATION MODEL

A. Simulation framework

The simulation framework, shown in Fig. 1, consists of:
� The virtual driver model, which tracks the reference speed

and path.
� The drivability layer, which converts the driver inputs on

the accelerator and brake pedals, pa and pb, into the total

longitudinal force demand for the electric powertrains,

Fx,ref (the actuation of the friction brakes is beyond the

scope of this study).
� The TV layer, which generates the individual powertrain

torque values, τij , where the subscript i = F,R indicates

the front or rear axles, and the subscript j = L,R in-

dicates the left or right sides. The main contribution of

this work is the NMPC TV approach (see Section IV)

of this layer, which: i) uses the energy-efficient reference

yaw rate and (when appropriate) rear-to-total torque dis-

tribution, Tr,ref,j , which will be defined in Section III; ii)

considers the different relevant power loss contributions

from the powertrains and tires; and iii) includes a fuzzy

logic algorithm for prioritizing its objectives depending

on the driving conditions. As alternatives to the NMPC

TV approach, the TV layer also includes: a) a ‘Passive’



PARRA et al.: ON NONLINEAR MODEL PREDICTIVE CONTROL FOR ENERGY-EFFICIENT TORQUE-VECTORING 175

Fig. 2. Case study vehicle (left) and the experimentally measured efficiency
map of the installed powertrains (right).

TABLE I
MAIN VEHICLES PARAMETERS

implementation, which implies zero direct yaw moment,

i.e., the reference longitudinal force is evenly distributed

among the two EV sides; and b) a benchmarking TV

controller (see Section V.B), based on fuzzy logic.
� The high-fidelity vehicle dynamics simulation model (see

Section II.B), receiving the steering input from the driver

and wheel torque demands from the TV layer, and gener-

ating the set of vehicle variables, Θ, for the operation of

the TV system and virtual driver.

B. High-Fidelity Vehicle Model and Case Study EV

The adopted high-fidelity vehicle dynamics simulation tool is

Dynacar, developed by Tecnalia, and experimentally validated

on multiple vehicles, see [40]–[42]. The model includes the

degrees of freedom of the sprung and unsprung masses, and con-

siders suspension kinematics. The multibody approach is based

on [43], using one coordinate for each degree of freedom through

macro-joints, which leads to high computational efficiency. The

tire forces are modeled with the Pacejka magic formula, version

2006 [44].

The case study vehicle is the four-wheel-drive variant of a

lightweight EV being developed within the European Horizon

2020 STEVE project. Fig. 2 shows the reference EV, together

with the measured in-wheel direct drive powertrain efficiency

map (the same at each corner), provided by the manufacturer,

Elaphe Propulsion Technologies Ltd [45]. Relevant EV pa-

rameters are reported in Table I, and Fig. 3 defines the sign

conventions of the main variables.

III. ENERGY-EFFICIENT REFERENCE YAW RATE AND

REAR-TO-TOTAL TORQUE DISTRIBUTION

In accordance with Fig. 1, the definition of the energy-efficient

reference rear-to-total wheel torque distribution and yaw rate

characteristics is the first step in the control design process.

Fig. 3. Top view of the vehicle with indication of the sign conventions for the
main variables.

Fig. 4. Experimental power loss characteristic of the case study individual
in-wheel powertrain as a function of torque and speed (the dots indicate the
measurement points), and its approximation adopted within the NMPC formu-
lation.

A. Power Loss Contributions

In this study, the relevant sources of power loss are the pow-

ertrains, because of their efficiency characteristics, and the tires,

because of their longitudinal and lateral slips. The aerodynamic

drag is also a source of power loss, but is not affected by the

proposed NMPC TV, as the case study EV does not feature

any system that controls this variable. Likewise, the rolling

resistance of the tires is a source of power loss that cannot be

influenced by the TV control action, as it mainly depends on

the tire properties and inflation pressure [44]. Based on this,

(1) defines the total power loss contribution, PLoss,tot, that is

reduced by the proposed NMPC TV:

PLoss,tot = PLoss,PWT + PLoss,T ire,Long + PLoss,T ire,Lat

(1)

where PLoss,PWT is the total powertrain power loss, and

PLoss,T ire,Long and PLoss,T ire,Lat are the total longitudinal

and lateral slip power losses of the tires. For energy-efficient

reference yaw rate design and control assessment, the calculation

of the power loss contributions is carried out by the Dynacar

model.

The individual in-wheel powertrain power losses,

PLoss,PWT,ij (see Fig. 4) are determined from the powertrain

efficiency map, ηij(τji, ωij), reported in Fig. 2:

PLoss,PWT,ij =

⎧

⎪

⎨

⎪

⎩

τijωij

[

1
ηij(τij ,ωij)

− 1
]

, τij > 0

τijωij [ηij (τij , ωij)− 1] , τij < 0

PLoss,PWT,res,ij (ωij) , τij = 0

⎫

⎪

⎬

⎪

⎭

(2)
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where τij is the torque demand of the ij machine; ωij is the

angular speed of the ij wheel; andPLoss,PWT,res,ij is the power

loss of the ij powertrain when this is switched off, caused by

the cogging loss and mechanical loss contributions. Hence, at

the vehicle level, the total powertrain power loss, PLoss,PWT ,

is given by:

PLoss,PWT =
∑

i = F,R
j = R,L

PLoss,PWT,ij (3)

The total longitudinal tire slip power losses, PLoss,T ire,Long ,

are given by:

PLoss,T ire,Long =
∑

i = F,R
j = R,L

Fx,ijVslip,x,ij (4)

where Fx,ij is the longitudinal tire force at the ij corner; and

Vslip,x,ij is the longitudinal slip speed of the respective tire:

Vslip,x,ij = ωijR− Vx,ij (5)

R is the tire rolling radius, and Vx,ij is the longitudinal compo-

nent of the linear wheel speed in the tire reference system.

The total lateral tire slip power losses are given by:

PLoss,T ire,Lat =
∑

i = F,R
j = R,L

Fy,ijVslip,y,ij (6)

where Fy,ij is the lateral tire force at the ij corner; and Vslip,y,ij

is the lateral slip speed of the respective tire:

Vslip,y,ij = −Vx,ij tanαij (7)

B. Energy-Efficient Rear-to-Total Wheel Torque Distribution

Within each EV side, the rear-to-total wheel torque distribu-

tion ratio, Tr,j , is defined as:

Tr,j =
τRj

τFj + τRj

(8)

An off-line brute force algorithm calculates the value of Tr,j

that maximizes the total powertrain efficiency, ηtot,j , on the j
vehicle side:

Tr,opt,j = argTr,j
max ηtot,j (9)

ηtot,j is the ratio of the total powertrain output power, Pout,j , to

the total powertrain input power,Pin,j , on the considered vehicle

side; in particular, in traction conditions, the mathematical def-

inition of ηtot,j , based on the efficiency of the two powertrains

on the j side, is:

ηtot,j = ηtot,j (Tr,j , τreq,j , ωFj , ωRj)

=
Pout,j (Tr,j , τreq,j , ωFj , ωRj)

Pin,j (Tr,j , τreq,j , ωFj , ωRj)

=
[1 − Tr,j ] τreq,jωFj + Tr,jτreq,jωRj

[1−Tr,j ]τreq,j
ηFj([1−Tr,j ]τreq,j ,ωFj)

ωFj +
Tr,jτreq,j

ηRj(Tr,jτreq,j ,ωRj)
ωRj

(10)

where τreq,j = τFj + τRj .

Fig. 5. Energy-efficient rear-to-total wheel torque distribution ratio as a func-
tion of vehicle side torque and speed.

The brute force algorithm works under a zero tire slip ratio

assumption, i.e.,ωF,j = ωRj ≈ V/R, whereV is vehicle speed.

The output is a look-up table of Tr,opt,j = Tr,opt,j(τj , V/R),
used for the design of the vehicle controllers. Fig. 5 shows the

optimization result, which is consistent with the one in [31]. For

a given speed, low torque demand values (< 100∼150 Nm) on

the EV side imply that only one powertrain is active, while at

medium-to-high side torque demands Tr,opt,j is 0.5, indicating

an even torque distribution among the powertrains within the

same EV side. The transition between the two conditions occurs

progressively, at a torque level varying with speed.

In the NMPC TV implementations of this study, the reference

rear-to-total distribution ratios,Tr,ref,j , are defined according to

the approach in [31]:

Tr,ref,j = ξ1 + 0.5 (ξ2 − ξ3) {1 + tanh (ξ4 [τreq,j − ξ5])}
(11)

where (11) is set to follow the profile defined by the map in

Fig. 5, through appropriate parametrization of the coefficients

ξ1, …, ξ5, as a function of the current vehicle speed.

C. Reference Understeer Characteristics

This subsection: i) discusses the effect of the vehicle under-

steer characteristic on energy consumption; and ii) derives the

set of energy-efficient understeer characteristics used for the

generation of the reference yaw rate of the TV controller.

To obtain the optimal understeer characteristics, ramp steer

maneuvers with slow steering input ramps at constant EV speed

were simulated with the Dynacar model. The maneuvers were

repeated with different constant direct yaw moment values,

ranging from -900 Nm to +900 Nm in steps of 100 Nm, using

the rear-to-total torque distribution map in Fig. 5 within each

EV side. Also, to emulate the cornering response with non-zero

longitudinal acceleration, ax, at a given speed, ramp steer tests

were performed with a constant longitudinal force applied to the

EV’s center of gravity.

Figs. 6 and 7 are examples of results at V = 60 km/h and a

tire-road friction coefficient µ = 0.9. For each lateral acceler-

ation ay , Fig. 6 reports the understeer characteristics (in terms

of dynamic steering angle, δdyn, see [46], [47] for the theory)

of the case study EV with: a) even torque distribution among

all wheels. This characteristic is indicated as “Passive” in the

plot; and b) the energy-efficient rear-to-total torque distribution
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Fig. 6. Example of % variation of the powertrain power input with the
understeer characteristic (V = 60 km/h, µ = 0.9).

Fig. 7. Example of % significance of the powertrain power loss with respect
to the total TV-affected power loss (V = 60 km/h, µ = 0.9).

ratio within each side, and the optimal direct yaw moment

within the considered range, i.e., the one minimizing the power

consumption for a given ay , based on the simulations. The

resulting understeer characteristic is indicated as “Optimal” in

the plot.

The color scale in Fig. 6, obtained by interpolating the ramp

steer results, shows the percentage increment of the powertrain

power input, Pin,incr,%, for a generic point (δdyn, ay), with

respect to the optimal condition at the same ay:

Pin,incr,% (δdyn, ay) = 100
Pin (δdyn, ay)− Pin,opt (ay)

Pin,opt (ay)
(12)

where Pin(δdyn, ay) is the total input power at the dynamic

steering angle δdyn and lateral acceleration ay , while Pin,opt is

the minimum input power at the specific ay .

The influence of the understeer characteristic on the EV

energy consumption is major, with peak values of Pin,incr,%

in excess of 50%. In particular, the average difference between

the Passive and Optimal configurations amounts to 6.62% for

the considered ay range.

The important conclusion is that an energy-efficient TV con-

troller must include appropriate design of the reference under-

steer characteristic, and hence the reference yaw rate. More-

over, an energy-efficient TV controller should also be able to

determine the most appropriate reference yaw rate in transient

conditions, thus going beyond the results in Fig. 6, based on

quasi-steady-state cornering conditions.

Fig. 7 shows the significance of the powertrain power loss

over the total power loss that can be affected by TV, through the

PLoss,% parameter, indicated by the color scale of the graph:

PLoss,% (δdyn, ay) = 100
PLoss,PWT

PLoss,tot

= 100
PLoss,PWT

PLoss,PWT + PLoss,T ire,Long + PLoss,T ire,Lat

(13)

At low ay , the contribution of the electric powertrains is

the most important one, and it accounts for up to 75% of

the total relevant power loss. With increasing ay , the relative

powertrain power loss contribution progressively reduces, and,

above 5 m/s2, becomes less than 50% of the total TV-affected

power loss. This observation implies that an energy-efficient TV

controller should consider all indicated sources of power loss,

as each of them could become predominant depending on the

operating condition.

The analysis of Figs. 6 and 7 was repeated for different vehicle

speeds, emulated longitudinal accelerations, and tire-road fric-

tion coefficients, which resulted in a set of energy-efficient refer-

ence understeer characteristics, expressed as a four-dimensional

map, δdyn,ref (ay, ax, V, µ).

D. Energy-Efficient Reference Yaw Rate

The energy-efficient understeer characteristics,

δdyn,ref (ay, ax, V, µ), can be expressed in terms of actual

steering angle, δref (ay, ax, V, µ), as:

δref (ay, ax, V, µ) = δdyn,ref (ay, ax, V, µ) +
lay
V 2

(14)

Through manipulation of δref (ay, ax, V, µ), and consider-

ing the relationship between ay and ψ̇, the nominal energy-

efficient reference yaw rate maps are obtained, in terms of

ψ̇ref,nom(δ, ax, V, µ). Fig. 8 reports examples of energy-

efficient reference yaw rate profiles as functions of steering

wheel angle, for different values of vehicle speed, longitudinal

acceleration, and tire-road friction coefficient. While the depen-

dency on V and µ is evident, the effect of ax is rather limited

for the studied longitudinal acceleration values, corresponding

to normal driving conditions.

With appropriate first-order filtering to achieve the desired

reference dynamics, the nominal reference yaw rate character-

istics are used to calculate the reference yaw rate, ψ̇ref , given

as input to the TV controller described in Section IV. However,

the NMPC will be designed to allow deviations from ψ̇ref , as

during transients or EV operation with non-nominal parameters,

the reference yaw rate calculated off-line can be different from

the most energy-efficient yaw rate.

IV. NONLINEAR MODEL PREDICTIVE CONTROLLER FOR

ENERGY-EFFICIENT TORQUE-VECTORING

A. Control Structure

The overall NMPC TV structure is shown in Fig. 9. The inputs

are: i) the total force demand, Fx,ref ; ii) the steering angle, δ;

iii) the energy-efficient reference yaw rate, ψ̇ref , discussed in
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Fig. 8. Examples of nominal energy-efficient reference yaw rate profiles
as functions of steering wheel angle, for different values of vehicle speed,
longitudinal acceleration, and tire-road friction coefficient.

Fig. 9. Simplified block diagram of the NMPC TV system.

Section III; and iv) the estimated variables and vehicle param-

eters, organized in the vector Θ. The outputs are the individual

torque demands, τij .

B. Internal Model Formulation

The internal NMPC model is expressed through the following

continuous time formulation [48]:

ẋ (t) = f (x (t) ,u (t)) (15)

where the state vector x is:

x =
[

V β ψ̇ ωFL ωFR ωRL ωRR

]T

(16)

x is also part of Θ (see Fig. 1), and its current value, xin, result

of the on-board measurements and state estimation, is provided

to the controller at each time step, as initial condition for the

prediction based on the internal model. The control action is

defined as:

u = [τFL τFR τRL τRR]
T

(17)

Similarly to some of the recent NMPC implementations for

TV [20], the prediction model formulation (15) includes 7 de-

grees of freedom, described by the following force and moment

balance equations.
� Longitudinal force balance:

V̇ =
1

m
{[Fx,FL + Fx,FR] cos (δ − β)

− [Fy,FL + Fy,FR] sin (δ − β) + [Fx,RL + Fx,RR]

× cosβ + [Fy,RL + Fy,RR] sinβ} (18)

� Lateral force balance:

β̇ =
1

mV
{[Fx,FL + Fx,FR] sin (δ − β)

+ [Fy,FL + Fy,FR] cos (δ − β)− [Fx,RL + Fx,RR]

× sinβ + [Fy,RL + Fy,RR] cosβ} − ψ̇ (19)

� Yaw moment balance:

ψ̈ =

1

Iz

{

[Fx,FL+Fx,FR] lF sin δ+[Fy,FL+Fy,FR] lF cos δ

− [Fy,RL + Fy,RR] lR +
[

Fx,FR cos δ

− Fy,FR sin δ + Fx,RR

]d

2

− [Fx,FL cos δ − Fy,FL sin δ + Fx,RL]
d

2

}

(20)

� ij wheel moment balance:

Iωω̇ij = τij − Fx,ijR (21)

whereβ is the sideslip angle and Iω is the mass moment of inertia

of the wheel. Aerodynamic drag and tire rolling resistance are

neglected, as they are not affected at the overall EV level by the

wheel torque distribution.

The longitudinal and lateral tire forces, Fx,ij and Fy,ij , are

given by the product of the respective tire force coefficient, µx,ij

and µy,ij , by the vertical tire load, Fz,ij :

Fx,ij = µx,ijFz,ij (22)

Fy,ij = µy,ijFz,ij (23)

A simplified version of the Pacejka magic formula has been

used, which determines the resultant total tire force coefficient,

µij :

µij (sij) = MF (sij) = D sin (Catan (Bsij)) (24)

whereMF indicates the magic formula;B,C andD are constant

magic formula coefficients, calculated to match the actual tire

characteristics; and the total slip, sij , results from the compo-

sition of the longitudinal and lateral slip components, sx,ij and



PARRA et al.: ON NONLINEAR MODEL PREDICTIVE CONTROL FOR ENERGY-EFFICIENT TORQUE-VECTORING 179

sy,ij :

sij =
√

s2
x,ij + s2

y,ij (25)

sx,ij is defined as:

sx,ij =
Vslip,x,ij

ωijR
(26)

and sy,ij is given by:

sy,ij =
Vslip,y,ij

ωijR
(27)

where the linear longitudinal and lateral slip speeds, Vslip,x,ij

and Vslip,y,ij , are defined in (5) and (7). In the calculation of

Vslip,y,ij , simplified linearized expressions are adopted for the

tire slip angles αij :
{

αFL ≈ αFR ≈ −δ + β + ψ̇lF
V

αRL ≈ αRR ≈ β − ψ̇lR
V

(28)

The longitudinal and lateral tire load coefficients, µx,ij and

µy,ij , are obtained by decomposing the tire load coefficient from

(24) according to the slip components.

µx,ij =
sx,ij
sij

µij (29)

µy,ij =
sy,ij
sij

µij (30)

The adopted tire model is a simple yet realistic formulation,

easy to tune and independent from the specific complete set

of Pacejka magic formula coefficients of the high-fidelity plant

model in Section II.B. The NMPC feedback set-up based on

the receding horizon approach tends to compensate for the

inevitable tire model mismatches, which – in any case – would

characterize the implementation on a real vehicle.

Fz,ij is calculated as the sum of the static load, F 0
z,ij , longi-

tudinal load transfer, ∆F x
z , and lateral load transfer, ∆F y

z,i:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fz,FL = F 0
z,FL −∆F x

z −∆F y
z,F

Fz,FR = F 0
z,FR −∆F x

z +∆F y
z,F

Fz,RL = F 0
z,RL +∆F x

z −∆F y
z,R

Fz,RR = F 0
z,RR +∆F x

z +∆F y
z,R

(31)

where the static loads are:
{

F 0
z,FL = F 0

z,FR = 1
2
mg lR

lF+lR

F 0
z,RL = F 0

z,RR = 1
2
mg lF

lF+lR

(32)

The longitudinal load transfer is given by:

∆F x
z =

1

2

m h ax
lF + lR

(33)

while the front and rear lateral load transfers are given by:
⎧

⎨

⎩

∆F y
z,F =

m ay

d

[

hRC lR
lF+lR

+ γhRoll

]

∆F y
z,R =

m ay

d

{

hRC lF
lF+lR

+ [1 − γ]hRoll

} (34)

wherehRC is the roll center height,hRoll is the distance between

the center of gravity and the roll axis, and γ is the front-to-total

suspension roll stiffness distribution.

Within the NMPC prediction model, the tire slip power losses

are obtained through (4) and (6), while a polynomial formulation

is used for the electric powertrain power losses:

Ploss,PWT

=
∑

i=F,R
j=R,L

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p00 + p10τij + p01ωij + p20τ
2
ij + p11τijωij

+p02ω
2
ij + p30τ

3
ij + p21τ

2
ijωij + p12τijω

2
ij

+p03ω
3
ij + p40τ

4
ij + p31τ

3
ijωij

+p22τ
2
ijω

2
ij + p13τijω

3
ij + p04ω

4
ij + p50τ

5
ij

+p41τ
4
ijωij + p32τ

3
ijω

2
ij + p23τ

2
ijω

3
ij

+p14τijω
4
ij + p05ω

5
ij

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)

(35) provides a good approximation of the experimental power

loss characteristic, defined in (2), see Fig. 4; in fact, with the

adopted parametrization, the root mean square (RMS) of the

power loss error across the operating range of the motor is 75 W.

C. Optimal Control Problem Formulation

The idea of nonlinear model predictive control is to use a

model of the plant to predict and optimize the future system

behavior. This optimization is achieved by applying a control

action, which is obtained by solving, at each sampling instant, a

finite horizon optimal control problem, using the current state of

the plant. The optimization yields an optimal control sequence,

and the first control in this sequence is applied to the plant.

The proposed NMPC control law minimizes the cost function

J , subject to appropriate equality and inequality constraints. The

optimal control problem is defined in discrete time as:

min
u

J (x (0) ,u (·)) := ℓN (x (N)) +

N−1
∑

k = 0

ℓ (x (k) ,u (k))

s.t. x (0) = xin

x (k + 1) = fd (x (k) , u (k))

x ≤ x (k) ≤ x̄

x ≤ x (N) ≤ x̄

u ≤ u (k) ≤ ū

u (·) : [0, N − 1] (36)

where ℓN (x(N)) is the terminal cost; N is the number of steps

of the prediction horizonHP , in this implementation equal to the

control horizon Hc, i.e., Hc = Hp = N Ts, with Ts being the

discretization time; k indicates the discretization step; x and x̄

are the lower and upper limits forx;u and ū are the lower and up-

per limits for u; x(k + 1) = fd(x(k), u(k)) is the discretized

model defined in (15), detailed in the previous subsection; and

ℓ(x(k),u(k)) is the stage cost function associated to each time

step, defined as a least-squares function:

ℓ (x (k) ,u (k))

= Wu,Fx
{Fx,ref − [Fx,FL + Fx,FR + Fx,RL + Fx,RR]}

2

+Wu,ψ̇

[

ψ̇ref − ψ̇
]2

+Wu,αR
α2
R +Wu,PWTPLoss,PWT

2

+Wu,T ire[PLoss,T ire,Long + PLoss,T ire,Lat]
2
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+Wu,LD

[

τRL

τFL + τRL

− Tr,ref,L

]2

+Wu,LD

[

τRR

τFR + τRR

− Tr,ref,R

]2

(37)

where Fx,ref is the total force demand from the drivability

controller; αR is the rear axle slip angle; PLoss,PWT is the

total electric powertrain power loss estimated through (35); and

PLoss,T ire,Long and PLoss,T ire,Lat are the tire slip power losses

calculated through (4), (6), and the simplified version of the

magic formula of the internal model.

Wu,Fx
, Wu,ψ̇ , Wu,αR

, Wu,PWT , Wu,T ire and Wu,LD are

the cost function weights, respectively prioritizing longitudinal

force tracking, reference yaw rate tracking, rear axle slip angle

reduction, powertrain power loss reduction, tire slip power loss

reduction, and rear-to-total torque distribution tracking within

each EV side. Given the different range of the variables in (37),

each weight is expressed as the ratio of a weighting coefficient

(ru,Fx
, ru,ψ̇ , ru,αR

, ru,PWT , ru,T ire and ru,LD, referring to

the different terms of the cost function) to the square of a

corresponding scaling factor coefficient (Usc,Fx
, Usc,ψ̇ , Usc,αR

,

Usc,PWT , Usc,T ire and Usc,LD), e.g., Wu,Fx
= ru,Fx

/U 2
sc,Fx

.

The scaling factor coefficient represents the maximum ex-

pected value of the respective cost function variable, i.e., the

squared ratio of the variable factor of each cost function term

to the scaling factor coefficient ranges from 0 to 1. This for-

mulation brings equivalent influence of the weighting coeffi-

cients, which are thus representative of the level of priority

assigned to the cost function terms, and offers ease of controller

tunability.

The following state and control action constraints have been

implemented in (36) as box constraints (lower and upper limits):
� Yaw rate constraint fixed for the whole prediction horizon,

based on the tire-road friction coefficient µ, i.e., |ψ̇| ≤
µg/Vin.

� Sideslip angle constraint, i.e., |β| ≤ βmax, set to 5 deg.
� Individual tire slip ratio constraints, i.e., |sx,ij | ≤

sx,max,ij , where sx,max,ij is the maximum allowed value

of longitudinal slip, set to 0.15 for the simulations of this

study.
� Individual wheel torque constraints, i.e., |τij | ≤ τmax,ij ,

where τmax,ij is the maximum powertrain torque at Vin.

D. Controller Implementation and Selection of Prediction

Horizon and Time Step

The controller was set up through the ACADO toolkit [49],

which can automatically generate code for Gauss-Newton it-

eration algorithms for fast NMPC with constraints. The se-

lected solver parameters were: multiple shooting discretization

method, fourth order Runge Kutta integrator, and qpOASES QP

optimization algorithm.

By using the ACADO toolbox, the proposed algorithm has

been implemented in real-time on a dSPACE MicroAutoBox

II unit, see Fig. 10. A sensitivity analysis was carried out to

investigate the effect of the NMPC prediction horizon, HP ,

and internal model discretization time, TS , and identify the best

Fig. 10. Implementation set-up for the proposed NMPC TV real-time assess-
ment.

Fig. 11. Effect of HP and TS on the average execution time on a dSPACE
MicroAutoBox II device: RMS of the yaw rate error, and peak value of sideslip
angle, during an obstacle avoidance from an initial speed of 56 km/h.

compromise between controller performance and computational

effort.HP ranged from 250 ms to 750 ms, while TS ranged from

10 ms to 30 ms. The implementation step of the controller, ∆T ,

i.e., the time step at which the controller updates its outputs, was

set to be larger, with appropriate and consistent margin, than the

maximum execution time on the available control hardware, and

therefore was different for each set of HP and TS .

Fig. 11 reports the average NMPC execution time as a function

of the RMS value of the yaw rate error, eψ̇ , and the peak value

of |β|, for a double lane change from an initial speed of 56 km/h

and with µ = 0.9. In all configurations, |β| is below the critical

threshold of 5 deg, set as a constraint for high tire-road friction

conditions, and therefore the controller performance should be

evaluated in terms of yaw rate tracking. As HP = 500 ms and

TS = 20 ms represent a good compromise between performance

and computational effort, with a maximum recorded execution

time of 10.81 ms, this controller set-up, indicated by the dashed

circles in Fig. 11, was selected for all the following simulations,

with ∆T = 20 ms.

E. Cost Function Weight Adaptation

The tuning of the NMPC cost function weights influences

the controller behavior. As the NMPC formulation includes two

main aspects in J (see (36) and (37)), i.e., yaw rate tracking and

power loss reduction, a fuzzy logic weight adaptation algorithm

was developed to prioritize energy efficiency during normal

driving, and yaw rate tracking as well as rear axle sideslip angle

limitation in critical conditions.
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Fig. 12. Fuzzy logic weight adaptation system membership functions.

TABLE II
ADOPTED FUZZY RULES

TABLE III
COST FUNCTION WEIGHTING COEFFICIENTS

In this proof-of-concept implementation, large values of |eψ̇|
and |β| are considered as indicators of undesirable EV behavior.

A distribution of three membership functions was chosen for

both inputs, |eψ̇| and |β|, and for the output coefficient, see

Fig. 12. Trapezoidal functions were selected for the boundaries

of each variable, while the middle one is triangular. This configu-

ration is computationally efficient (no substantial increase of the

computational time was experienced with respect to the values

in Fig. 11), while maintaining acceptable response smoothness

[50]. The corresponding rules, see Table II, were implemented

based on the authors’ experience with the system.

During the controller implementation phase, the active safety

performance of the NMPC TV system was assessed during

obstacle avoidance maneuvers (see Section V for additional

details on the test), with four cost function weight configura-

tions (see Table III), i.e., with: i) yaw rate tracking oriented

weights, which prioritize vehicle dynamics performance and

active safety; ii) energy efficiency oriented weights; iii) balanced

weights between energy efficiency and vehicle dynamics; and

iv) the fuzzy logic adaptation algorithm.

Fig. 13 shows the resulting EV trajectories for the test from an

initial speed of 56 km/h andµ = 0.9. The adaptation mechanism

provides an EV response that is very similar to that of case i),

focused on vehicle dynamics. Moreover, Table IV reports the

maximum speed – the critical speed, Vcr – at which each con-

figuration successfully completes the test, i.e., without hitting

Fig. 13. Double lane change trajectories (initial speed of 56 km/h) associated
with different tunings of the NMPC cost function weights (µ = 0.9).

TABLE IV
EFFECT OF COST FUNCTION WEIGHTS ON CRITICAL SPEED FOR

OBSTACLE AVOIDANCE

a cone. In this case, the NMPC with the adaptation mechanism

provides the same performance as the vehicle dynamics oriented

tuning, corresponding to 5 km/h and 3 km/h higher initial speeds

than for the energy-efficiency and balanced tunings. The energy-

efficiency benefits of the adaptation with respect to the vehicle

dynamics oriented tunings of the controller will be reported in

the following Section V.

V. RESULTS

In this section, the NMPC TV system is implemented in the

simulation framework defined in Fig. 1, and compared with other

controller configurations, which are introduced in Sections V.A

and V.B.

A. Analyzed EV Controller Configurations

This section analyzes the performance of the following EV

configurations:
� Passive, evenly distributing the torque among the wheels.
� Passive + LUT, providing the same total wheel torque on

the two EV sides, i.e., zero direct yaw moment, while the

rear-to-total torque distribution within each side is carried

out according to the energy-efficient map in Fig. 5.
� Fuzzy + LUT, with a direct yaw moment generated by the

fuzzy logic controller in Section V.B, while the rear-to-total

torque distribution within each side is carried out according

to the energy-efficient map in Fig. 5. This set-up is used as

benchmarking TV system in the following analyses.
� NMPC Yaw Rate, i.e., the proposed NMPC TV approach

only considering the yaw rate tracking and rear slip angle

terms in the cost function, while Wu,PWT = Wu,T ire =
Wu,LD = 0.

� NMPC PWT Losses, which, on top of the NMPC Yaw Rate

features, considers the powertrain power loss term in the

cost function, while Wu,T ire = Wu,LD = 0.
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� NMPC Tire Losses, i.e., the proposed NMPC TV ap-

proach that considers the yaw rate tracking, rear sideslip

and tire slip power loss terms in the cost function, while

Wu,PWT = Wu,LD = 0.
� NMPC Complete, i.e., the proposed NMPC TV approach

that considers yaw rate tracking, rear slip angle, powertrain

losses and tire slip power losses, without using the cost

function terms related to the rear-to-total wheel torque

distribution within each side, i.e., Wu,LD = 0.
� NMPC Complete WCA, i.e., the proposed NMPC TV

approach using all cost function terms, with constant values

of the weights.
� NMPC Complete WCA Adaptive, i.e., the proposed

NMPC TV approach using all cost function terms, and

also including the fuzzy adaptation mechanism of the cost

function weights.

B. Benchmarking TV Controller

The proposed NMPC TV is evaluated against the bench-

marking TV controller from [19], based on fuzzy logic. The

controller uses the Mamdani inference method, as it provides

intuitive tuning [51]. With respect to the membership functions,

the system considers the yaw rate error, the yaw rate derivative

error, and the sideslip angle error. The output is represented by

the wheel torque level to be applied to each side of the EV, to

generate the direct yaw moment that tracks the reference yaw

rate.

A distribution of five membership functions was chosen for

the yaw rate error and its derivative, while three membership

functions were selected for the sideslip angle. Trapezoidal func-

tions were used for the boundaries of each variable, and also

for the middle one of sideslip angle, since the controller tries to

minimize this variable, and thus accuracy is not the highest prior-

ity. The triangular functions were adopted for all other cases, as

they provide computational efficiency while maintaining smooth

response, which makes them suitable for implementation in

conventional automotive electronic control units (ECUs) [52].

C. Skidpad Tests

50 m radius skid pad simulations for µ = 0.9 and 0.7 were

run to assess the relative importance of: a) the reference yaw

rate characteristic; and b) the wheel torque control allocation.

The results in Figs. 14 and 15 were obtained by keeping the

EV at different constant speeds, each of them corresponding

to a marker in the graphs, for several laps. All controllers

using the energy-efficient reference yaw rate maps show similar

benefits, i.e., relative power input reductions ranging from 5.0%

to 6.8% with respect to the Passive configuration. The control

allocation layer of the Passive + LUT configuration can reduce

the energy consumption only up to 3.6%, with an average saving

of 1.8%, and its effect is more significant at low ay values,

corresponding to low speeds. In these conditions the electric

powertrains operate in their least efficient region; therefore, the

LUT based control allocation algorithm deactivates one of the

axles according to the map in Fig. 5, and the torque demand is

Fig. 14. Percentage power input variation for a selection of configurations,
with respect to the Passive configuration, for µ = 0.9.

Fig. 15. Percentage power input variation for a selection of configurations,
with respect to the Passive configuration, for µ = 0.7.

only provided by the rear axle, which thus operates in a more effi-

cient region. The considerable consumption difference between

the Passive + LUT and all the other controlled configurations

can be ascribed to the effect of the energy-efficient yaw rate.

In summary, the results show that during steady-state cor-

nering: i) the control allocation aspects of the TV controller,

which are the focus of the majority of the existing literature,

are less important than the reference yaw rate characteristics;

and ii) any TV controller capable of tracking the appropriate

energy-efficient reference yaw rate provides rather similar en-

ergy consumption results.

Despite the statement in ii), a sophisticated TV algorithm can

still provide energy efficiency benefits in specific quasi-steady-

state cornering conditions. In fact, as discussed in Section III, the

optimal yaw rate reference depends on µ, and thus the friction

coefficient estimation is crucial to the correct operation of the

algorithm. However, in practice, accurate µ estimation when

the EV operates below its friction limits is rather difficult to

accomplish. Therefore, a second set of skidpad tests at µ = 0.7

was simulated at a constant ax of 1 m/s2, with incorrect (µ =
0.9) and correct (µ = 0.7) friction information provided to the

TV controller, to evaluate its ability to compensate for incorrect

ψ̇ref profiles.

Fig. 16 visualizes a selection of the resulting EV trajectories.

The Fuzzy + LUT configuration is unstable, while the Passive

one is affected by significant understeer, with respect to the

NMPC TV. Fig. 17 reports the corresponding power consump-

tion results. For the cases with the incorrect yaw rate reference,

the power consumption is always greater than for the Passive

vehicle, up to∼6% at around 5 m/s2 for the NMPC Yaw Rate. In

contrast, the configurations with the correct yaw rate reference
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TABLE V
CRITICAL SPEED ACHIEVED DURING OBSTACLE AVOIDANCE

Fig. 16. Skidpad trajectories for a selection of controllers, with ax = 1 m/s2

and µ =0.7. The solid boxes indicate the motion of the cars. Left: full maneuver;
right: zoom of trajectories towards end of maneuver.

Fig. 17. Percentage power input variation for a selection of controller con-
figurations with respect to the Passive configuration, during a skidpad test with
ax = 1 m/s2 and µ = 0.7.

achieve a power saving of about 6% compared to the Passive

case almost across the entire investigated ay-range. Although

the NMPC Complete WCA Adaptive configuration receives the

same incorrect ψ̇ref , its power consumption is lower, on average

by∼2%, than for the other cases with the incorrect ψ̇ref . In fact,

the complex NMPC cost function in (36) and (37) accounts and

partially compensates for the increased tire slip power losses

caused by the inappropriate reference understeer characteristic.

D. Obstacle Avoidance

The obstacle avoidance, which is frequently used by car

makers and supplier to assess vehicle dynamics control systems,

was simulated for µ = 0.9 and 0.7, according to the ISO

3888 specification [53]. The vehicle enters the course at a set

speed, and the accelerator pedal is released. Then the driver,

i.e., the Dynacar driver model in this study, attempts to track

the reference path without hitting a cone. The test speed is

progressively increased up to its critical value, Vcr, at which

the course can no longer be successfully negotiated.

Table V reports the Vcr values for the Passive vehicle and

the controlled configurations, with the best performance being

provided by the NMPC Yaw Rate and the NMPC Complete

Fig. 18. Power loss profiles during an obstacle avoidance test, for µ = 0.9
and an initial speed of 56 km/h.

Fig. 19. Yaw rate tracking performance during an obstacle avoidance test, for
µ = 0.9 and an initial speed of 56 km/h.

Fig. 20. Motor torques profiles during an obstacle avoidance test, for µ = 0.9
and an initial speed of 56 km/h.

WCA Adaptive, achieving 61 km/h and 45 km/h with the two

friction conditions, respectively, against 54 km/h and 37 km/h

of the Passive vehicle, and 58 km/h and 43 km/h of the NMPC

Complete. The Vcr results confirm the functionality of the fuzzy

adaptation mechanism.

Figs. 18–23 report a selection of the time profiles of the

main variables during obstacle avoidance tests from 56 km/h

(µ = 0.9) and 40 km/h (µ = 0.7), which are the lowest critical
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Fig. 21. Power loss profiles during an obstacle avoidance test, for µ = 0.7
and an initial speed of 40 km/h.

Fig. 22. Yaw rate tracking during an obstacle avoidance test, for µ = 0.7 and
an initial speed of 40 km/h.

Fig. 23. Motor torques profiles during an obstacle avoidance test, for µ = 0.7
and an initial speed of 40 km/h.

speeds of the controlled vehicle for the respective µ, achieved

by the Fuzzy + LUT set-up. In particular, Figs. 18 and 21 show

the vehicle sideslip angle, powertrain power losses, the sum of

the longitudinal and lateral tire slip power losses, and the total

TV-affected power losses for four TV controller configurations.

Figs. 19 and 22 plot the yaw rate tracking performance for the

Fuzzy + LUT and NMPC Complete WCA Adaptive set-ups.

Figs. 20 and 23 show the profiles of the four wheel torques

for the NMPC Complete WCA Adaptive configuration. The

inclusion of the tire slip power loss term in the NMPC cost

function reduces the sideslip angle, as β is directly related to the

tire slip angles (see (28)), and the lateral tire slip power losses

(see (6)). As expected, the combination of all cost function terms

brings the most balanced, and therefore, most efficient result.

Tables VI and VII include the values of objective performance

indicators to assess the performance of the different configura-

tions during the two considered obstacle avoidance tests. The

adopted indicators are:
� The final vehicle speed, Vfin, i.e., the speed at the exit of

the course, which is an indicator of vehicle agility and the

level of tire slip power loss.
� The root mean square value of the yaw rate error,

RMS(eψ̇), which evaluates the yaw rate tracking perfor-

mance and vehicle agility.
� The peak absolute value of the rear axle slip angle,

|αR,max|, which assesses vehicle stability as well as tire

slip power losses.
� The normalized integral of the absolute value of the steer-

ing angle δSW :

IAδSW
=

1

tfin − tin
∫
tfin

tin
|δSW | dt (38)

where tin and tfin are the initial and final times of the

relevant part of the test, calculated when the EV enters and

leaves the obstacle avoidance course. IAδSW
assesses the

required steering effort to follow the reference path.
� The normalized integral of the absolute value of the ref-

erence direct yaw moment, Mz,ref , calculated from the

individual reference wheel torque demands:

IAMz,ref
=

1

tfin − tin
∫
tfin

tin
|Mz,ref | dt (39)

The results confirm the superior performance of the NMPC

Complete WCA Adaptive, which has the highest Vfin in both

tests (ultimate proof of reduced power loss), and consistently

good performance in all other indicators. The results also high-

light that energy-efficient TV control should account for both

powertrain and tire slip power losses to achieve energy saving

in a wide range of vehicle operation. For µ = 0.9, Vfin is

comparable for the NMPC PWT Losses and NMPC Tire Losses

configurations, while for µ = 0.7 the latter configuration is

significantly more efficient.

To show the robustness of the NMPC WCA Adaptive set-up

with respect to the Passive configuration, Table VIII reports the

values of RMS(eψ̇) and |αR,max| for obstacle avoidance tests

at µ = 0.9, from 50 km/h, with significant variations (given

the specific vehicle category) of the vehicle inertial parameters.

The results confirm that the proposed controller provides safe

performance for any inertial condition, while the Passive set-

up, which is still stable with the nominal inertial parameters,

experiences a major increase in |αR,max|, which exceeds 30 deg

for the most extreme variation of inertial parameters. Hence,

based on this analysis and the one in Figs. 16 and 17, it can

be confidently concluded that the proposed controller is robust

with respect to a very wide range of operating conditions of the

vehicle.

E. Driving Cycles

Driving cycle simulations were run to evaluate the effect of

the rear-to-total wheel torque distribution during straight-line
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TABLE VI
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.9 AND 56 km/h

TABLE VII
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.7 AND 40 km/h

TABLE VIII
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.9 AND 50 km/h, FOR DIFFERENT INERTIAL PARAMETERS OF THE VEHICLE

operation. The selected cycles (World harmonized Light Vehi-

cles Test Procedure (WLTP), excluding the extra high speed

section; New European Driving Cycle (NEDC); ARTEMIS

road; and ARTEMIS urban, see [54]-[56]) cover a wide range

of longitudinal speeds and accelerations, corresponding to urban

and extra-urban driving conditions.

The total powertrain energy consumption, Etot, is calculated

as:

Etot = ∫
tfin

tin

∑

i = F,R
j = R,L

(τijωij + PLoss,PWT,ij) dt (40)

where (40) considers only the energy consumed by the electric

powertrains, and neglects the energy consumption of the vehicle

ancillaries, such as the lights or the air conditioning system.

The results are reported in Table IX only for the most advanced

NMPC set-up, as the energy consumption is very similar with

all controlled configurations. This outcome is expected, consid-

ering the nature of the mission profiles, involving EV operation

only in straight-line, the low torque levels, and, thus, the low

longitudinal tire slip values. Hence, the energy consumption

during the driving cycles is dominated by the powertrain power

loss characteristics.

For all schedules, the NMPC Complete WCA Adaptive leads

to reduced energy consumption with respect to the single axle

configuration, using only the rear powertrains (while the front

powertrains are switched off), and the even distribution strategy,

TABLE IX
ENERGY CONSUMPTION RESULTS ALONG A SELECTION OF DRIVING CYCLES

i.e., the Passive configuration defined in Section V.A. Depending

on the driving cycle, the saving of the NMPC TV implementation

ranges between 0.21% and 2.46%, with an average saving of

1.06%, with respect to the single axle case, and between 0.47%

and 3.18%, with an average saving of 2.04%, compared to the

even distribution configuration. The results are aligned with

those in other recent energy-efficient rear-to-total wheel torque

distribution studies [35], [36].

F. Circuit

The final test assesses the controllers in a complex scenario,

i.e., the circuit of the 2015 Formula Student Germany competi-

tion. Fig. 24 shows the vehicle path along the track, and the fixed

speed profile followed by all controller configurations, which
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TABLE X
PERFORMANCE INDICATORS OF THE EV CONFIGURATIONS ALONG THE SELECTED CIRCUIT

Fig. 24. Vehicle path along the circuit of the 2015 Formula Student Germany
competition; colors indicate the fixed speed profile along the track.

corresponds to a rather “aggressive” driving style within the

limit of handling, with peak values of lateral acceleration of

∼6 m/s2.

Table X reports the main performance indicators. The fast

driving style does not allow the LUT based control allocation

to bring substantial benefits, which is confirmed by the energy

saving of only 0.59% of the Passive + LUT with respect to the

Passive. Thanks to the adoption of an energy-efficient reference

yaw rate characteristic, the Fuzzy + LUT achieves a 3.93%

energy consumption reduction with respect to the Passive con-

figuration.

Importantly, all NMPC implementations, including the

NMPC Yaw Rate, consume less than the benchmarking Fuzzy

+ LUT set-up. In fact, although the NMPC Yaw Rate formu-

lation does not consider the power loss contributions or the

energy-efficient rear-to-total wheel torque distribution within its

cost function, it provides significantly better yaw rate tracking

performance than the Fuzzy + LUT, which is beneficial to both

active safety and consumption. The energy saving is very similar

for the NMPC PWT Losses and the NMPC Tire Losses, i.e.,

∼6-7%, while all NMPC configurations that consider all power

loss terms in l reduce the consumption by more than 9%. In

general, these results confirm the importance of the reference

understeer characteristic on the EV energy consumption.

The implementation of energy-efficient TV configurations

does not compromise the vehicle cornering response with re-

spect to the Passive vehicle; on the contrary, despite achieving

higher stability, i.e., larger values ofVcr in the obstacle avoidance

tests, the energy-efficient TV controlled configurations alleviate

the steering effort, with IAδSW
reductions ranging from 6% to

nearly 13%.

G. Summary and Discussion

The results of the extensive simulation analysis on a case-

study lightweight electric vehicle with in-wheel motors can be

summarized as follows:
� In quasi-steady-state cornering conditions, the reference

understeer characteristic has more influence on the energy

consumption than the control allocation algorithm (see Figs

14 and 15 in Section V.C). This effect is progressively more

evident with increasing lateral acceleration.
� Although the inclusion of the power loss terms in the TV

controller formulation only marginally improves the power

consumption during steady-state cornering, it significantly

enhances system robustness by compensating for the power

consumption increase caused by state estimation errors,

e.g., on the tire-road friction coefficient (see Figs. 16 and

17 in Section V.C).
� The adaptation mechanism of the cost function weights

of the nonlinear model predictive controller formulation

provides significant operational flexibility with respect to

the actual driving situation, i.e., by prioritizing energy

efficiency during normal driving, and vehicle safety and

stability in extreme maneuvers. With such mechanism, the

NMPC TV system is characterized by the same critical

speed in obstacle avoidance maneuvers as its version tuned

only for vehicle dynamics performance, i.e., 61 km/h at

µ = 0.9 and 45 km/h at µ = 0.7, against 54 km/h and

37 km/h for the Passive configuration, and 56 km/h and 40

km/h for the benchmarking Fuzzy + LUT controller (see

Section V.D).
� With respect to the Passive configuration, the most ad-

vanced control configuration proposed in this study, the

NMPC Complete WCA Adaptive, reduces energy con-

sumption by ∼2% on average during the selected driving

cycles in straight-line conditions (see Section V.E), and

∼9% along the considered circuit (see Section V.F). Also,

along the circuit, the NMPC Complete WCA Adaptive

brings a consumption reduction in excess of 5% with

respect to the Fuzzy + LUT set-up, which is a remarkable

energy saving, given that the benchmarking controller uses

energy-efficient reference yaw rate and rear-to-total wheel

torque distribution.

VI. CONCLUSION

This study presented a set of nonlinear model predictive

controllers for electric vehicles with multiple powertrains,
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targeting energy efficiency enhancement through the appropriate

control of the cornering response and wheel torque allocation,

with formulations considering powertrain power losses and tire

slip power losses, while providing the expected level of vehicle

dynamics performance.

Comprehensive results showed the significant positive impact

of the generated energy-efficient reference yaw rate map on

energy consumption in steady-state cornering conditions. Such

improvement was evident also for the benchmarking controller,

i.e., a torque-vectoring system based on a fuzzy logic implemen-

tation, coupled with an energy-efficient control allocation layer.

Nevertheless, the inclusion of the different relevant power loss

contributions in the cost function terms of the developed NMPC

formulations allows to compensate for inaccuracies, e.g., related

to the estimation of the tire-road friction coefficient in the online

generation of the energy-efficient reference yaw rate, and for the

effect of cornering transients, thus providing robustness to the

energy efficiency enhancement.

A single NMPC setting was unable to concurrently provide

the best energy consumption performance in normal driving

conditions, and the safest cornering response during emergency

maneuvers, e.g., obstacle avoidance tests. Therefore, the paper

presented an adaptation mechanism of the NMPC weights,

which was implemented in the most advanced proposed con-

troller configuration, i.e., the NMPC TV WCA Adaptive, which

provided the most significant improvements in all considered

scenarios, thanks to its operational flexibility in prioritizing the

energy efficiency or vehicle dynamics aspects.

Future developments will include the experimental assess-

ment of the developed NMPC algorithms on electric vehicle

demonstrators, and their extension to vehicle plants with addi-

tional chassis control actuators.
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