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Abstract

The design of controllers for nonlinear, nonminimum-phase systems
is very challenging and is currently considered to be one of the most
difficult theoretical control problems. Most control algorithms for
nonlinear processes orm a linearization making use of an inverse
of the system. In the linear case, the system can be factored into
the minimum-phase and the nonminimum-phase parts and only the
first one is inverted for purposes of control design. A similar scheme
for nonlinear systems is still under investigation.

The present work adresses the problem of synthesizing nonlin-
ear state feedback controllers for nonlinear, nonminimum-phase pro-
cesses in three different ways. The first approach consists of a par-
tial linearization which preserves stability by using an approximate
stable/anti-stable factorization.The second technique can be viewed
as an inner-outer factorization based approach. And, finally, in the
single-output case, it is shown (through an example) that stabiliza-
tion of the internal dynamics of a nonminimum-phase system can be
achieved by using an additional input if this is feasible in practice. In
this case, the manipulated variables have different roles, i.e., one is
chosen such as to input /output feedback linearize the system and the
second is used to 1 y stabilize the resulting nonminimum-phase
internal dynamics.

1 Introduction

It is widely recognized that a controller must explicitly or im-
plicitly generate a process inverse. Methods with explicit inversion
include internal model control [5] and the generalized Smith pre-
dictor {11]. When dealing with nonminimum-phase systems, a sta-
ble/ le decomposition is necessary and the controller must in-
vert only the part with stable inverse. These approaches are roughly
equivalent (under the assumption of a perfect model) to controlling
the corresponding minimum-phase part of the system, leaving the
nonminimum-phase component in open-loop.

In the nonlinear case, the problem of constructing control al-
gorithms for processes with unstable inverses is equally important,
since the available algorithms also rely either implicitly gsee, e.g.
(8]) or explicitly (see, e.g., [3]) on generating an inverse of the pro-
cess. The main difficulty here is that results on decomposition into
minimum-phase and nonminimum-phase portions are available only
for second-order systems (see [9]).

Recently, Wright and Kravaris ({13]) presented an approach to
deal with nonlinear, nonminimum-p| systems on the notion
of statically equivalent outputs; a minimum-phase statically equiv-
alent output is estimated on-line and then an available nonlinear
control algorithm is used to control it to the set point. Therefore,
instead of looking for a decomposition of the process dynamics, this
formulation is based on the calculation of a suitable output function.

One assumption is central in all predictor-type approaches and
will also be necessary in this work. The system under consideration
is assumed to be open-loop stable.

Throughout the paper, we will consider nonlinear systems affine
in the input variables

& = f(z) +9(z)u, 1)
y = h(2), zeER,uER™, yeR?P
2 Stable/Anti-stable Factorization Approach

2.1 Motivation

Because controllers resulting from linearization schemes generate an
inverse of the process, nonminimum-phase systems do not admit
exact input/output linearization with internal stability. However,
one can try to linearize as much of the nonlincarities of the sys-
tem as possible under the constraint that internal stability is pre-
served. One way of approaching this problem involves an approx-
imate stable/anti-stable factorization of the zero dynamics of the
system. This is the technique presented in this section.

2.2 Technique

First system (1) is transformed into normal form (see, e.g., [7])
through a nonlinear change of coordinates (% = ¢;(z),i=1,...,n).
The resulting system in the transformed varibles is then written as:

Zi+1 i=1v"'vr—1
a(€,n) + b(&, n)u
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f=cé,n) &)
Vv=21

where £ and 7 are standard notations for the two sets of coordinates,
of dimensions r and n — r, respectively. Thus

] =]

In this form, the (n — r)— dimensional subsystem given by

=

= c(fv ’7)» (3)

is completely unobeervable and therefore called the internal dynam-

i;s of the system. If (3) is locally stable, the standard static control
w

v- a(f; 77)
= —t 4
WE,n) “
linearizes the input/output map of the system with % = H(s).

However, if the internal dynamics is unstable, this approach does
not work because some of the unobservable modes of the system
become unstable when linear input/output behavior is imposed. In
order to solve this problem, one can try to establish a compromise
between ing the input/output map “as linear as possible” and
some portion of the oriﬁ‘na.l internal dynamics observable in order
to achieve internal stability. Thus, instead of (4), one can think of
using a feedback control law of the form

u=g-a=r(6m) +)

where r(£, ) is a general function of the transformed variables chesen
such as to eliminate as much of the nonlinearities in the input/output
channel as possible under the constraint that the system

i1=22

L=z
4= —"(5,'1) +v
7 =c(§,m) (5)
is stabilizable.

An improved way of approaching this problem is to make only
the unstable modes of the internal gyna.mics observable. In order
to do this we should first be able to factorize the internal dynamics
into stable and anti-stable parts and leave only the stable compo-
nent unobservable. In general, this factorization cannot be exactly
performed. However, an approximate factorization approach can be
carried out as follows.

Once we have the system in its normal form, a diffeomorphic

transformation

r.Im =T

m =T(n)
is performed, factorizing the undriven internal dynamics (or zero
dynamics) .
_ = o(0, n)=e" () (®)
into an anti-stable part .
= ¢j(m)

and a stable part (when viewed as a driven system)

7 = c3(m,m)
where 7, is the unstable manifold coordinate and 7, is a coordinate
independent of n;.

Remark 1: Ji is not necessary that the transformation T de-
composes the sysiem into its anti-stable and stable parts. It is suf-
ficient for stabilization purposes to get the anti-stable part correctly,
Therefore, the calculation of T requires only construction of the local
stable manifold W _(0).

System (2) with transformation T leads to:

y=2
Z‘l =2
=23
o1 =2z (7)

4 = ﬁ(gf’hv ’72) + 5({1’“)’72)“
T = c1(€,m,m)



Th = c‘l(f’ M, 'h)
with

1(6m m) = ZEAE) ly=r-s(onm)

e(é,m,m) = %?;-:'C(E, n) Iq=T"(qx.h)

Therefore, in order for the stable part to have no influence on

the unstable one, the following condition
8 oT,
?‘;('#c(fv n) |1=T"(m,h)) =0
must hold everywhere. In general, this will not be the case. However
72 always enters the expression for 7y only in terms of order greater
than or equal to ¢ = 2. This minimal croes-over order is intrinsic
to the system and cannot be changed. Therefore, the unstable zero
dynamics can be thought of as having a part of order less than ¢
that does not depend on m and higher order terms depending on
&imym, e,
th = (€ m) + O nin])

witha+8+7=4q.

The application of the feedback

u= g(-a=r(Em) +v) ®
where r(£,m) is chosen such that the system
yv=z
1 =2
z'z =23
iv—l.= z,
ir =—r(517h)+|’ (9)

h = (& m) + O %)
1z = &(E,m,m)

is stabilizable when terms of order g and higher in the expression for
71 are neglected.

Thus, if we only consider terms of order up to g — 1, the unob-
servable part of the internal dynamics is stable. .

In many cases, the linear approximation can be made stabilizable
with a linear feedback term

r(&m) =pTE+ s m,
s and p being constant vectors of appropriate dimensions, when the
linear approximation of the original system is controllable.

Using a nonlinear dependency of r on 17, and £, the remaining
nonlinearities in the input/output channel can be influenced. Exact
guidelines on how to cﬁoose r{€,n) are however not easy to obtain
and there is no guarantee that there will always exist a function
(£, m) such that the system can be stabilized. If no such a r(§,m)
exists that renders the resulting system (9) stabilizable, one can also
try to make a part of the stable internal dynamics observable in order
to achieve stabilizability.

Remark 2: We assumed 20 far that it is possible to find a
transformation to factorize the zero dynamics globally into stable
and anti-stable parts. As oxr accxracy can never ezceed onder g,
it is sufficient for stability 1o locally decompose the wndriven inter-
nal dynamics up to order q. This can always be done using similar
technigues as in the center manifold theory (see, e.g., [1, 12]). It
should however be stressed that, in order to find g, not
only a lower bound on the actual q, we need to know the stable/anti-
stable transformation. Therefore, this has to be done in an iterative
manner.

Remark 3: By ssing this technigue, we get a partially lin-
earized system that is at least locally stable. However, no garantee
can be given that the resulting system is less nonlinear. It i, in gen-
eral, a nonlinear system of lower order and in many cases the term
r(§,n) can be chosen so as to minimize the effect of nonlinearitics
in the inpst/output channel.

2.3 Example

Let us consider the following simple example to motivate the stable/
anti-stable factorization approach to the control of nonminimum-
phase systems:

=1z,
L= ~2y — 222+ 23+ 1024 + 232+ u
T3 =—2r; ~ 322+ 23
Ty = —24+ 0.33; (10)
yv=2

This is an open-loop stable system with strongly nonlinear in-
put/output behavior and nonminimum-phase properties, This sys-
tem is already in its normal form and we can easily identify that the
last two equations constitute the internal dynamics. Moreover, z3 is
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the unstable mode of the internal dynamics and z4 the stable one.
Note that the stable and the unstable parts of the zero dynamics is
Byunn]comgpleulgnd upu'um? this eedback
ing stan control , this system cannot be f
linea.nyzed. owever, the following feedback control law:
u=2;+22; — 23~ 1024 — 2324 — p12; -z — 85123+ v
exactly linearizes the input/output map and permits the resuiting
system to achieve internal stability simultaneously. The interest-
ing feature about this simple example is that because the unstable
portion of the internal dynamics is linear, it is possible to exactly
Iinearize the input/output map and achieve internal stability at the
same time. However, the standard input/output linearization ap-
proach is not able to find such a stabilizing control law.
By choosing py = 3.6, p2 = 7,8, = —4.8, the closed-loop poles of
the linearized system are A; = —=1,A; = =2,A3 = =3, A = —1.
Simulations of the output behavior for the original system and
its linearized version for step changes in the input variables (u and
v, respectively) are presented below:

Koearized ex

2 " .
] 10 20 k] 4«
time

3 Inner-Outer Factoration Approach

3.1 Motivation

We have mentioned that exact linear behavior of the input/output

map can only be achieved for systems with well-behaved internal dy-

namics. Thus, the important question to be adressed is the system-
atic degradation of the linear input/output map in order to achieve
stable internal dynamics.

The previous section introduced a stable/anti-stable factoriza-
tion approach to accomplish this task. In this section, we seek an
inner-outer factorization-based approach.

3.2 Technique

The main objective here is, given a nonlinear dynamical system (P)

with unstable zero dynamics, to derive 2 minimum-phase nonlinear

system (Pps) with the following properties:

(i) Poles of the linearization of P around a given equilibrium point
= Poles of the linearization of Py around the same point (along
the whole equilibrium manifold),

(ii) Zeros of the linearization of P around a given equilibrium point
= “reflection” of the zeros of the linearization of Py around the
same point (along the whole equilibrium manifold),

(iii)Static gain of P = Static gain of Py.

From (ii) we can see immediatly that this technique requires all
zeros of the linearization of P around the equilibrium point to be in
the RHP (i.e., the system has to be maximally nonminimum-phase).
This restriction comes from the fact that this approach reflects all
the zeros of P when constructing the minimum-phase system Pjq.

Here we will not use the normal form of nonlinear systems in
the sense of Byrnes/Isidori (2) because, by manipulating ¢(¢, %) we
will not only affect the zero dynamics but also the pole dynamics,
which we do not want to disturb since the plant is assumed to be
open-loop stable. We will make use of the Fliess canonical form (4]
or Zeitz/Krener observability canonical form {14, 10}, whose interest-
ing feature is that the pole and zero dynamics manifest themselves
separately:

fi=xn
Zpel = Zn
Zy = F(z,u,4,...,4(*"")) (11)
y=2

In this case, feedback linearization can be achieved by dynamic
compensation of the form:

F(z,u,4,... ,u("")) = Zﬁ;:; +v
i=1
where the coefficients f; are chosen in the usual way (to achieve
desired closed-loop performance
By performing a Jacobian
obtain:

(12)

Zi.nea.rization of the system (11) we

i1=12



a1 = Zn
Zn =zt ezt +anza+fout fri+. ..+ fa,u*) (13)
where

o
at—az‘_ eqr
8F
ﬁ'=8$ Q) lqr

Note that the tranfer function for (13) is given by:

wWs) Bothis+...+ fars™"
=== 14
G () u(s) arta3s+...+as” (14)

The construction of the minimum-phase system Py is performed
by application of time reversal to the derivatives of u (a procedure
that affects only odd powered derivatives) in order to achieve the
“reflection” of the zerve through time t = 0. The key point here is
that any of the terms appearing in the calculation of the coefficients
B S‘vhnch determine the zeros of (14)) will influence the calculation
of the coeficients o; (which determine the pole dynamics of (13()2.

To make the idea of time reversal clearer, let us recall the def-
initions of local stable and unstable manifolds in the neighborhood
of a fixed point Z (W, _(Z), W (£)):

W (2)={z €U | ¢i(z) = 2ast — oo;¢(z) € UVt > 0}

We (2)={z €U | dfz) > 2ast — —o0;¢¢(z) € UVt < 0}
where U C R® is a neighborhood of # and ¢,(z) is the flow of the
dynamic system.

Therefore, we notice from these definitions that the spans of
the stable and unstable eigenvectors can be “interchanged” by time
reversal

This means that Py is, by construction, a (locally) minimum-
phase system. . . L .

The fundamental idea applied to the derivation of Py is analo-
gous to the inner-outer factorization of linear systems, in which the
transfer function of the system (G) is factorized into:

Gt minimum-phase (invertible) part; unstable zeros of G appear

“reflected” through the imaginary axis in G
Ga: stable part;“all-pass”; unity dynamic gain; its poles are equal

to the “reflected” zeros of G.
such that, G = Gy .G4.

Thus we can see the “reflection” of the unstable zeros of G across
the jw—axis to yield poles of G4 and zeros of Gy as a symmetry in
time.

The resulting dynamic control law is determined by the solution
of the following ordinary differential equation along trajectories of
the closed-loop system:

Fu(z,u,8,... ,u(""))

bud -

Y Bin+v

i=1

One of the advantages of the construction of Py from P is
that the calculation is straightforward and, aside from the maxi-
mum nonminimum-phase condition on P, no more restrictions are

resent.

P Other important characteristics of this inner-outer factorization

procedure are:

(i) The derivation is in the same spirit as the Hauser approximate lin-
earization approaches (neglecting/adding terms to higher order
derivatives of y) [6).

(ii) The derivation draws on tools from differential glgebra which
ap to be a more attractive framework for system inversion,
realization, etc [4].

(iii)In terms of complexity of the calculations, the only hurdle is
the inversion of the control dependent coordinate transforma-
tion. Other approaches for control of nonminimum-phase sys-
tems u&[n, 9]) involve at least the same level of complexity in
the calculation of their so-called “natural coordinates™. In par-
ticular, [13] also requires the system to be involutive.

(iv) Although we restrict ourselves to maximally nonminimum-phase
systems in this report, the possibility that we could use a stable/
anti-stable factorization (the technique described in the previ-
ous section) on the differential representation of the plant and
then perform the time inversion on the unstable part of the zero
dynamics may not be discarded.

Note that this approach provides a minimum-phase portion of
the system but does not actually factor P into nonlinear minimum-
phase and all-pass components. This is not as critical as it seems,
however, because for control design, we are primarily interested in
the minimum-phase portion itself.

Since [9] introduces a class of static feedback laws that makes the
closed-loop system equivalent, under appropriate coordinate
transformations, to a nonlinear first-order all-pass in series with a

F(z,u,—u,, —u® ... ,u(“")) = (18)
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linear first-order lag, we found it useful to examine the equivalence
between these and our results (in the case of two-dimensional sys-
tems). We concluded that the dynamics of the unobservable part
of the system in the two cases are not identical (although they can
be related by a diffeomorphism and share local stability properties).
Kravaris and Daoutidis seek an outer factor that has the same dy-
namics as the plant and only a different output map. This makes
the nonlinear ISE-optimization problem easier. In the present work,
the outer factor has dramatically different dynamics (in general, not
control affine). This makes the nonlinear ISE-optimization problem
somt’alv‘vhhat l:;)re difficult.

e plant Py approximates (to some degree) the original non-
linear plant P. Furthermore this “(appmxima.tlon”)becom the outer
factor (from inner-outer factorization) in the limit of linear behavior.

This suggests a control architecture like the Smith Predictor for
linear plants. The following block diagram illustrates the way the
control action, given by solving equation (15) along trajectories of
the closed-loop system, is implemented:

I NPT r— >
[ ] Contrella L 3
z |
Controller C Minimum Phase Correction Signal

Here Py is the outer factor which has the property that, along
the equilibrium locus, it yields an output equivalent to that of P (i.e.,
they are statically equivalent). Thus, tracking of y is guaran by
tracking of yx. The controller, C, is the standard input/output
linearizing controller (designed for Pp). We notice that an open-
loop observer is required.
3.3 Example
Let us counsider a CSTR reactor with isothermic Van de Vusse ki-
netics and a time delay in the output measurement (appoximated
with a Padé approximation). Here we will look at a first order Padé
approximation, but note that any other approximation is maximally
nonminimum-phase as well.

fl = —k;z; - k;z{ <+ u(:w - Z])
Z = k121 — k323 + —uzy

3= —2z34+ —2z
3 ta 3+t‘z

y=z3—o;
Straightforward calculations lead to:
W = F(z,u,i,8) = a(z) + z)u + e(z)u? + d(z)u®
+ e2)i+ f(e)ui + ()i
where z = [21,23,23]7.
erefore, for dynamic feedback linearization, we should syn-
thetize v such that:
F(zv u, i, ‘-‘) =-my- an - a3§ + kv
where the parameters k and a;,i = 1,2,3, are designed for closed-
loop performance. However, because this is a purely nonminimum-
phase system, the above synthesis would lead to an unstable con-
troller. Thus, instead of designing the controller based upon
F(z,u,u,i), we design it based upon Fa(z,u,t,4)=F(z,u, ~1i, 4).
. In terms of practical implementation, there is a further com-
plication: we need to construct an open-loop observer in order to
reconstruct the state variables (as mentioned before).
. So, there are two pieces to the controller design, i.e., generat-
ing u (d, ic compensator) and generating the transformed states
(zi,i = 1,2, 3), for the dynamic compensator to use. For the estima-
tor of the states, we employ an open-loop observer requiring u, %, @
as inputs. Additionally, for the dynamic compensator, we define the
following (transformed) Fy function (Fa):
Fy(z,u,i,8) = 8(z,u,%) + bz, u, )u + &z, v, u)u?
+d(z,u, 6)u® + &(z, u, 0)6 + (2, u, &)ut + §(z,u, 4)i (17)

Then, the resulting dynamical controller (with states ug, u1), is
given by:

(16)

U=u
[(—e121 — azz2 — aazz) + kv
g

ty




(@ + buo + éud + dud + éuy + fuom)] (18)

§

¥ =to
4 Multiple-Input Approach

4.1 Motivation
We know that if system (1) has relative d r at a point zo,
itisdwayspouibletoﬁn(d)anonlinwcwmen&ndg:wio‘::
that puts the system in the so-called normal form (in the sense of
Byrnes/Isidori) (2). Then it is easy to see that the state feedback
_"_a(E"’)

RG]
will transform the system into a system whose input/output behavior
is identical to that of a linear system having a transfer function

K) _pgg=L
) =H(s) = et

As in the normal form y = z;, asymptotic tracking of the output
may be achieved by selecting the external input v such that the
matrix associated wi r-dimensional in (2) has all
eigenvalues in the LHP. However, this procedure will work only in
the case that the internal dynamics of (2), given by

1=c(&,n)
are locally stable (i.e., in a neighborhood U of the point zg, all the
eigenvalues oftheSmennunon of 1 = ¢(0, 1) lie in the LHP).
If the zero dynamics is unstable one can take advantage of addi-
tional manipulated variables if available. While some of vari-
ables are used to linearize the input/output map, others may be used

to locally stabilize the internal dynamics (which remain unobservable
but can now be made stabilizable).

4.2 Technique

To make the explanation clearer, let us consider the single-output
case (the extension to MIMO systems is straightf Let us

supj that with respect to a certain input u;, the system has a
welmnedrdnﬁvedegxeeruthepointzo the operating point
around which we desire to operate the system, for example).

Remark: By well-defined relative degree we mean that the
point zo may not be a singularity. So far, we have i ified two
different types of singular points, at which the static control law re-
sulting from the inpui/oxtput linearization procedure described above
is not .ell-deﬁr the first case, the gain of the linearization
of the system changes sign at the singulsr point and, in the second,
ORe or more zeros move across the jw—azis. In both cases, we lose
controllability for all practical purposes.

Let us assume that the obtained zero dynamics is unstable (one
or more eigenvalues of its linearization around zo has a non-negative
real part). If there is another mani variable in the real sys-
tem, then we can consider an extra back control law u; that will
permit us to locally stabilize the zero dynamics. This means that
though the zero dynamics is completely undriven with respect to the
input u; it can have its stability characteristics changed by u3.

Of course, this approach is justified only if all the possible ma-
nipulated variables with respect to which the system has well-defined
relative degree at the operating point of interest, considered sepa-
rately for purposes of input/output linearization, generate
nonminimum-phase zero dynamics.

If we choose u; (input with respect to which the system has
relative degree r at zp) to linearize the input/output behavior, we
obtain the following “modified” normal form:

Z'l =2
=123

1=z
Z = a(§, 1, u2) + B&, 1, u2)m
"’ = c(sv 7, u?)
y=2

Then the next step is the selection of u3 = us(%), such that the
linearization of 5 = ¢(0, 7, u2) at zo has all eigenvalues in the LHP.
4.3 Example
The example we will consider here is a CSTR reactor with exothermic
Va.n)de Vusse kinetics (see {2] for the formulation of the isothermal
case):

(19)

Al
244%p
Model for the System:

£, = —k(z3)z1 — ks(23)2} + wi(z10 — 71)
L3 = h(:g)z; - b:(z;)zg -2z
£ ~AH ky(z3)z) — AHsky(z3)z2 — AHsky(z3)=}

<p
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u1(z30 — z3) + P
/Cp

y=2z1 (20)
where z, and z; are the concentrations of A and B, respectively, z3
is the temperature of the reactor, u; is the flow rate (I‘fV), g is the
heat exchanged between the reactor and the ings (@), 10
is the concentration of A in the feed :m, Zao is the temperature
of the feed stream and k;(z) = ke~ %, i = 1,2,3.

Now let us assume that both the flow rate u; and the heat input
to the reactor u3 can be chosen as manipulated variables. We know
thatlineariutionat‘thein}mt/outputmpcmbeperformedby
using a feedback law of the form:

1 .
u= m(—L!h(z)+ﬂ)
In the relati of uy i 1 and be
Lo g Tt gk Aol e gy

f101,92 are defined according to the format (1)). Therefore
thesystemhnweﬂ-deﬁnedrdsﬁnﬁ(r:l)sri) respect to
u; Vz € 8. However, if we choose to linearize the input/output
behavior of the system by using wy, the resulting sero dynamics is
nonminimum-

So, let us consider the possibility of using u3 in order to linearize
the input/output map of (20). As

o

K(z)=Ly, Lyh(z) = 7’710_1;8:, [k1(z3)z1 — k2(23)23),

we conclude that the relative degree of the system with respect to
uy is not defined everywhere (i.e., r # 2 at the points for which
K(z) = 0). This should not be a problem if the operating point we
select is not one of the points at which K vanishes identically.

Now su| it is desired to operate the reactor at the point
where B its maximum conversion on the equilibrium curve
(which we will call optimum point and denote by z°), i.e.,

dzy .
F (z")=0
Thus we are interested in operating at the point for which the
gain between the output y = z; and z3 i Since uj is the
heat input to the reactor and the gain between the concentration of
B (output variable) and the temperature is zero at the optimum,
intuiti the use of uy to control the system will be

We can easily show that K(z*) # 0, i.e., the gain of the lineariza-
tion of the system does not vanish at the optimum, which indicates
that the singular locus does not intersect the equilibrium manifold at
z*. However, because the only zero of the linearization of the system
moves from the LEP to the RHP through infinity, we have control-
lability ﬁlem at tll)lun pointl.l.]s Actu‘a;lllu);,r %e ;; , the ﬁ;n;e zero of the
system disappears. e to this peculi vior of the system at
z*, this point is considered to be a singular point.

Note that the kind of singularity that the optimum point repre-
sents in this example is different from the singularity that we find in
the case of a CSTR reactor with the exothermic kinetics A = B (for
a more detailed discussion of this example see [3]). In this last case,
the gain is zero and simultaneously the zero of the linearization of
the system disappears at the optimum point (K(z*) = 0).

Thus, by using u; to linearize the input/output bebavior we get
a nonminimum-phase zero dynamics and by using us for the same
purpose we get a not well-defined relative degree at the optimum
operating point (which means controllability problems). In order
to illustrate the resulting behavior in this last case when we try
to make the conversion of B aymptotically approach its maximum
value on the equilibrium curve, we have performed some numerical
simulations of the system for the given set of parameters: u; = 7,
AH, = -5AH; = -15AHy = -20,E, = 15,E, = 25,
E3 = 15, km = 1e8, kn = 1610, km = 167,210 = 10,:30 = 300,
pCp = 1,V = 1. Notice that we have redefined the variables in
terms of deviation variables with respect to the coordinates of the
optimum point. The external linearizing control variable v was se-
lected such that the matrix associated with the linearization of the
system around z* has one real negative eigenvalue and a pair of com-
plex conjugates with negative real part. Thus the kind of behavior
we wish to obtain is that for initial conditions sufficiently close to the
origin, the control u; is able to drive the system towards the origin.

However, we can clearly see in the plots shown below that de-
spite the huge magnitude of uj, the heat removed from the reactor,
trajectories starting very close to the origin do not approach the
origin and tend to behave in a very unpredictable way.
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Thus, as neither one of the inputs, u; and u,, is satisfactory
for linearization of the input/output behavior of the system in the
neighborhood of the optimum operating point, we tried to use both
of them simultaneously: u; for linearization (because the system has
a well-defined relative degree equal to 1 with respect to this input),
and uy for local stabilization of the zero dynamics. The simulation
results for the same set of parameters and uj = —332 (u3 is the
value of us at z*) are shown below. We notice that there exists
a considerably large neighborhood of the origin for which the zero
dynamics was e asymptotically stable. e operation around
the optimum point is feasible in this case and both manipulated
variables reach their equilibrium values for all trajectories starting
“close” to the origin.
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8 Conclusions

As a remlﬂl m wor(k‘l some control :uvzf;;ﬁ' for nonlinear
systems wi zero dynamics were de .

The stable/anti-stable factorisation approach is an attempt of
linearization of as much of the nonlinearities in the input/output
map of the system as possible under the constraint that the result-
ing closed-loop system is stabilizable. Therefore it consists of an
approach that establishes a compromise between exact linearization
of the input/output behavior and local stabilization of the zero d{-
namics. Moreover, it seeks an approximate decoupling of the stable
and anti-stable parts of the zero dynamics such that the resulting
feedback law uses only the first r modes of the normal form, (£),
and the unstable modes of the zero dynamics, (m). This makes the
unobservable part of the resulting closed-loop system stable (if one
neglects higher order terms).

The inner-outer factorization approach is a very straightforward
procedure for the construction of a locally minimum-phase plant Py
from the original plant P by applying time reversal to the derivatives
of the manipulated variable u. The resulting control architecture is
analogous to the Smith Predictor for linear systems.

Finally, the multiple-input approach is an attempt of local sta-
bilization of the internal dynamics by making use of extra degrees of
freedom in the choice of the variables to be manipulated.
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