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ON NONLINEAR VARIATIONAL INEQUALITIES
E. TARAFDAR

ABSTRACT. In this note we have given a direct proof of the result which
states that if K is a compact convex subset of a linear Hausdorff topological
space E over the reals and T is a monotone and hemicontinuous (nonlinear)
mapping of K into E*, then there is a 4y € K such that (T (#), v — ug) > 0
forallv € K.

Introduction. Browder [1] has proved that if K is a closed convex subset of a
reflexive Banach space E such that 0 € K and 7T is a monotone and
hemicontinuous nonlinear mapping of K into E* satisfying the coercivity
condition, then there is a 4, € K such that (T (up), v — up) > Oforall v € K.
Hartman and Stampacchia [3] have independently proved a similar result and
made applications to second order nonlinear elliptic equations. This result
with ¢(u) = 0 (see Theorem 1.1 of [3]) is a special case of Browder’s result [1].
With the closed convex subset K of E as assumed in [3], the coercivity
condition on T reduces the problem to proving the existence of u, satisfying
the above inequality in a closed bounded convex subset of K (see remark
following Theorem 1.1 and Lemma 2.2 in [3]). Thus it is of interest to prove
the above result in a weakly compact convex subset of an arbitrary Banach
space. This would then contain Theorem 1.1 in [3] and the result of [1] as
special cases. In fact the main object of this paper is to prove this result in a
compact convex subset of a linear topological space over the reals without the
coercivity condition on 7. The techniques used in [1] and [3] are more or less
the same, ‘to prove the result in a finite dimensional case and then apply a
limiting procedure’. We will give a direct proof of our result by applying a
generalized version of a fixed point theorem of Browder [2].

The author is grateful to Dr. H. B. Thompson for discussions on this topic.

We first prove a slight generalization of a fixed point theorem of Browder
[2, Theorem I, p. 285] which will suit our purpose.

THEOREM 1. Let K be a nonempty compact convex subset of a Hausdorff
linear topological space E. Let T be a multivalued mapping of K into 2% such
that

(i) for each x € K, T(x) is a nonempty convex subset of K;

(ii) for each y € K, T~ (y) = {x € K: y € T(x)} contains an open subset
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O, of K (O, may be empty);
() U{O,:y € K} =K.
Then there exists a point x, € K such that x, € T (x).

ProOOF. Although the proof is similar to that in [2], we include it for the
sake of completeness. Since K is compact, by (iii) there exists a finite family
{y1> 92 -, ¥, such that K= U7_,0,. Let {f,,f,, ..., f,} be a partition
of unity corresponding to this finite covering, i.e. each f, i = 1,2,...,n,isa
real valued continuous function defined on K such that f; vanishes outside
0,,0 < fi(x) < L, forall x € Kand 27_, fi(x) = 1 for each x € K.

We define a mapping p: K — K by

P =2 [y xEK
Obviously p maps K into K and is continuous. Also for each k with f, (x) # 0,
x € 0, C T '(y), ie y € T(x). As T(x) is convex, this implies that
p(x) € T(x) for each x € K.

Let S be the finite dimensional simplex spanned by y,, v, ..., y,. Then
clearly p maps S into S. Also, since E is Hausdorff linear topological space,
the topology on S induced by the topology in E is Euclidean. Hence by the
Brouwer fixed point theorem, there is a point x, € S such that x, = p(xg) €
T (xo).

Let K be a subset of a linear topological space E over the reals and T a
single valued (nonlinear) mapping of K into E*. We say T is monotone
provided (7T (u) — T (v), u — v) > O for all 4, v € K. Here (-, - ) denotes the
pairing between E* and E.

T: K — E* is said to be hemicontinuous if T is continuous from the line
segments in K to the weak topology of E*.

A point u, € K is said to satisfy the variational inequality if

1) (T(up), v —up) >0 forallveK....

u, is also called a solution of (1).

LEMMA. If K is a convex subset of a linear Hausdorff topological space E, and
T is a single valued mapping of K into E* such that T is monotone and
hemicontinuous, then u, is a solution of (1) if and only if uy is a solution of

(2) (T(v),v—uy) >0 forallveK....

PROOF. The proof of this lemma on a Banach space in [1, Lemma 1] or in
[3, Lemma 2.3] also holds here. If u, satisfies (1), then an application of
monotonicity shows that u, satisfies (2). Now suppose that u, satisfies (2). As
in [1] and [3] we employ a device of Minty [4]. Let v be an arbitrary point of
K. Then since K is convex, v, = (1 — Hu, + tv € Kfor0 < ¢ < 1. By (2) we
have
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0 <(T(v), t(v = o)) = 1(T(v), v — wp)-

Since t > 0, (T (v,), v — uy) > 0.

Now letting ¢ — 0 and using hemicontinuity of T, T(v,) > T (u,) weakly in
E*. Hence (T (ug), v — ug) > 0.

REMARK. We note that in the proof of the first part the convexity of K is
not needed. In fact, if 7: K — E* is a monotone mapping of any set K C E
into E*, then given u € K, the set {v: (T (u),v — u) > 0} C {v: (T(v), 0 —
u) > 0}. This follows from the definition of monotonicity, i.e., (T(v), v — u)
> (T(u), v — u).

THEOREM 2. Let K be compact convex subset of a linear Hausdorff topologi-
cal space E. Let T be a (single valued) monotone (nonlinear) mapping of K into
E*. Suppose further that

(*) for each v € K there exists u € K such that (T (u), u — v) < 0.

Then there is a solution u, of (1), i.e. there is uy € K such that (T (u)g, v —
ug) > 0 forall v € K.

PROOF. We assume that there is no solution of (1). Then for each u € K,
the set {v € K: (T (u), v — u) < 0} is nonempty. We define a multivalued
mapping F: K — 2% by

F(u) = {v € K: (T(u), v — u) <0}.
F(u) is nonempty and clearly convex for each u € K. We now consider
F'(uy={vEK:u€F(v)} ={v€K:(T(v), u — v) <0}.
For each u € K, [F ()l = the complement of F ~'(u) in
K={v:(T(v),u~1v)>0} C{v:(T(u),u~v)>0}
by monotonicity of T = B(u), say. Obviously B(u) is a closed and convex
subset of K. Thus the complement of B(u) = [B(u)] is open in K. Since
[F~Y(w) C B(u), it follows that [B(u)’ C F~'(u). Thus for each u € K,
F ~ (1) contains an open set [B(«)]° of K. Now from the hypothesis that for
each v € K, there exists u € K such that (T'(u), u — v) <0, it follows that
U{[Bw)], u € K} = K. Thus F satisfies all the conditions of our Theorem

1. Hence there exists a point w € K such thatw € F(w),1.e. 0 > (T (w), w —
w) = 0, which is impossible.

COROLLARY. Let K be a compact convex subset of a linear Hausdorff
topological space E. Let T be a monotone and hemicontinuous (nonlinear)
mapping of K into E*. Then there is a solution uy of (1), i.e., there is uy € K
such that (T (uy), v — ug) > 0 for all v € K.

PrOOF. If (*) of Theorem 2 holds, then we have a solution u, of (1) by
Theorem 2. If (*) does not hold, then it means precisely that there is u, € K
such that (T (u), u — uy) > O for all ¥ € K. Since T is hemicontinuous, the
lemma implies that (7 (), u — uy) > 0 for all u € K, i.e. g is a solution of
the variational inequality.
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REMARK. It has already been pointed out in the introduction that our
corollary contains the result of [1] and Theorem 1.1 of [3] as a special case. It
is also worth noting that

(1) it follows from the proof of our theorem that we can replace the
monotonicity condition by a weaker condition that for each u € K,
{v: (T(v),u —v) > 0} C{v: (T(u),u —v)>0};

(i1) in case of a locally convex Hausdorff topological space E, it does not
matter whether we assume K to be compact or weakly compact. The corollary
still remains true as 7 remains hemicontinuous in either case.
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