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Abstract

In this work, we developed a bond-based cohesive peridynamics model (CPDM) and apply it
to simulate inelastic fracture by using the meso-scale Xu-Needleman cohesive potential [1].
By doing so, we have successfully developed a bond-based cohesive continuum mechanics
model with intrinsic stress/strain measures as well as consistent and built-in macro-scale
constitutive relations. The main novelties of this work are:
(1) We have shown that the cohesive stress of the proposed nonlocal cohesive continuum
mechanics model is exactly the same as the nonlocal peridynamic stress;
(2) For the first time, we have applied an irreversible built-in cohesive stress-strain relation
in a bond-based cohesive peridynamics to model inelastic material behaviors without pre-
scribing phenomenological plasticity stress-strain relations;
(3) The cohesive bond force possesses both axial and tangential components, and they con-
tribute a nonlinear constitutive relation with variable Poisson’s ratios;
(4) The bond-based cohesive constitutive model is consistent with the cohesive fracture cri-
terion, and
(5) We have shown that the proposed method is able to model inelastic fracture and simulate
ductile fracture of small scale yielding in the nonlocal cohesive continua.

Several numerical examples have been presented to be compared with the finite element
based continuum cohesive zone model, which shows that the proposed approach is a simple,
efficient and effective method to model inelastic fracture in the nonlocal cohesive media.
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1Email:shaofan@berkeley.edu

Preprint submitted to arXiv January 25, 2022

ar
X

iv
:2

20
1.

09
66

7v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
9 

Ja
n 

20
22



1. Introduction

Peridynamics [2, 3, 4, 5, 6] was originally proposed as a nonlocal reformulation of contin-
uum mechanics aiming at modeling fracture and damage in solids. Peridynamics research
has been an active research field in computational mechanics, especially in numerical simu-
lation of fracture and failure in materials and structures [7, 8]. The non-local peridynamics
theory is formulated with an integral form of equation of motion, which replaces the partial
differential form of equation of motion in conventional continuum mechanics of local form.
By doing so, it is applicable to a much broader class of displacement fields that allow discon-
tinuities and singularities, thus providing much needed physical modeling of many non-local
media such as cementitious concrete materials, soil and rocks, ice and snow, and many other
granular materials.

In spite of its success, the original bond-based peridynamics has some major limitations:
(1) It has been difficult to evaluate peridynamic stress in the bond-based peridynamics; (2)
Its main applications have been limited to model brittle fracture or crack growth in macro-
scale linear elastic solids with restrictions on certain material constants such as Poisson’s
ratio; (3) It needs a semi-empirical parameter, namely the critical bond stretch, s0, to
set up the onset of fracture or crack growth criterion, and (4) It has difficulty modeling
material or structure fracture with continuum mechanical stress and strain measures of
finite deformation, even though peridynamics is intrinsically formulated under the setting
of continuum mechanical finite deformation.

The main cause for these limitations is that the current formulation of the bond-based
peridynamics has not reached to a status to be a truly bond-based nonlocal continuum
mechanics, and these inadequacies are reflected by lacking of stress measures, corresponding
macro-scale constitutive models, as well as damage models or fracture criteria. For example,
Cauchy’s relation is an intrinsic limitation for the bond-based peridynamics for a fixed
Poisson’s ratio [9]. Moreover, the peridynamic stress formulated by Lehoucq and Silling
[10, 4] is cumbersome to use so that it has been rarely adopted in computations, which leads
to the lack of consistent macro-scale constitutive relations in the bond-based peridynamics.
In particular, the bond-based peridynamics almost does not have an universally consistent
inelastic constitutive relation at macro-scale.

To address all these fundamental issues in the bond-based peridynamics, in this work, we
developed a bond-based cohesive peridynamic (CPDM) model for nonlocal continua by uti-
lizing the meso-scale Xu-Needleman cohesive potential. In this paper, we shall demonstrate
that by combing the classical cohesive zone model [11]. The cohesive zone peridynamics has
been studied by several authors, e.g. [12, 13, 14], however, the focus of the present work is
not on cohesive zone peridynamics, but a general bond-based peridynamics that utilizes the
mesoscale cohesive potential to model a nonlocal continuum. From this perspective, we are
developing a novel nonlocal continuum mechanics modeling.

The paper is organized into six sections. In Section 2, we first lay out the kinematics of
nonlocal continuum. Then, in Section 3, we present the formal theory of cohesive nonlocal
continuum. One highlight of this work is the presentation of cohesive stress formulation,
which is elaborated in Section 4. Several numerical examples, both two-dimensional (2D)
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and three-dimensional (3D), are presented in Section 5, to validate and verify the proposed
CPDM theory and formulation. We summarize the work in Section 6 with a few remarks.

2. Nonlocal continuum kinematics

To establish a bond-based peridynamics model for cohesive continua, we first describe
the material bond kinematics. Given the referential and the current configurations B0 and
Bt, for any pair of peridynamic particles (X,X′) that interact with each other, the bond
vector is described by ξ and η as follows,

ξ = X ′ −X; η = u(X ′, t)− u(X, t), and ζ = x′ − x , (1)

where X is the marker of the material point in the referential configuration B0, while x
is the coordinate of the same material point in the current Bt. In Eq. (1), u(X, t) is the
displacement of the material point X.The schematic diagram is demonstrated in Fig. 1.

Figure 1: Kinematics of material points

Following the kinematic relation and notation of continuum mechanics, we have

x = X + u → ζ = ξ + η . (2)

where ξ describes the original bond vector, ζ describes the deformed bond vector, or the
bond vector in the current configuration, while η is the deformation of the bond vector.

We first define the first type nonlocal material gradient for a vector function G(X) at
the point X as

∇̃X ⊗ [G(X)] :=
[∫
HX

w(ξ)∆G⊗ (K−1ξ)dVX′
]

(3)
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where ∇̃X denotes the nonlocal differential operator in the referential configuration. For
more detailed discussions on nonlocal differential operators, the readers are referred to [15,
16]. The integration domain in Eq.(3), HX , is called as a horizon that is centered at X, and
ξ = X′ −X, ξ = |ξ| where X′,X ∈ HX . In the integrand of Eq.(3), ∆G := G(X′)−G(X),
and w(ξ) is a window function or weight function, which satisfies the condition∫

HX

w(ξ)dVX′ = 1 .

In practice, it is often chosen as the Gaussian distribution function or the cubic spline
function. The linear transformation K := K(X) is the shape tensor or the moment matrix
at the material point X that is defined as

K(X) :=

∫
HX

w(ξ)ξ ⊗ ξdVX′ . (4)

In actual computations, the nonlocal gradient of an arbitrary vector function G(X) may
be calculated based on the following formula,

∇̃X ⊗ [G(XI)] =
[ NI∑
J=1,J 6=I

w(XIJ)∆GIJ ⊗ (XIJK
−1
I )∆VJ

]
(5)

where

KI = K(XI) =

NI∑
J=1,J 6=I

w(XIJ)XIJ ⊗XIJ∆VJ .

and VJ is the discrete volume associated with the particle J .
For example, we can write the nonlocal deformation gradient in a form as

F̃(X) = ∇̃Xx =

[∫
HX

w(ξ)ζ ⊗ (ξK−1X )dVX′

]
→

F̃(XI) =
N∑
J=1

w(ξIJ)ζIJ ⊗ ξIJK−1(XI)∆VJ (6)

Then in an abstract form, we may denote the nonlocal gradient operator as a form of a
local gradient operator

∇̃X ⊗ (•)
∣∣∣
X

:=

[∫
HX

w(ξ)∆(•)⊗ (ξK−1X )dVX′

]
(7)

where the symbol (•) denotes the arbitrary vector field, and ∆(•) := (•)′ − (•). Note that
Eq. (7) defines the nonlocal differential operator by using linear function basis. For higher
order nonlocal differential operators theory, readers may refer to [17] and [18] and references
therein.
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3. Nonlocal cohesive continuum model

Following Silling and Lequcq (2008), we have the nonlocal balance of linear momentum
as follows,

ρ(X)ü(X, t) =

∫
B

(
ts(X′,X, t)− ts(X,X′, t)

)
dVX′ + b(X, t) (8)

where ρ is the mass density of the continuum medium; b(X, t) is the body force per unit mass,
and ts(X′,X, t) is called the force state vector, and f(X′,X) := ts(X′,X, t) − ts(X,X′, t)
represents the force density acting at the material point X by the material point X′.

As shown by Silling and Lehoucq [4], the force density can be related to the force state
vector as

ts(X′,X, t) =
1

2
f(η, ξ), and ts(X,X′, t) =

1

2
f(−η,−ξ) . (9)

where ts(X′,X) is the force state vector that material particle X′ exerts on the material
particle X, in which the superscript indicates the force state; VX is the volume of the
particle X depending on the specific discretization, while f(η, ξ) is a force density, which is
required to be antisymmetric, i.e.

f(η, ξ) = −f(−η,−ξ) . (10)

In the literature, we often express the above property in an equivalent form,

f(X′,X) = −f(X,X′) . (11)

3.1. Meso-scale Xu-Needleman model

To construct the internal force density in a nonlocal cohesive continuum, we adopt the
mesoscale cohesive potential as the material bond potential, in contrast with the prototype
microelastic brittle (PMB) potential adopted in the original bond based peridynamics, e.g.
[2].

In this work, we adopt the mesoscale Xu-Needleman potential [1] as the material bond
potential. Unlike atomistic pair bond potential in molecular dynamics, the meso-scale Xu-
Needleman potential can generate both axial interaction force as well as tangential inter-
action force. To construct a pair bond with normal and tangential cohesive bond force
components we define

ηn = (η · n)n and ηt = η − (η · n)n (12)

where

n =
ξ

|ξ|
(13)

in other words

η = ηn + ηt; ηn ⊥ ηt; η =
√
η2n + η2t . (14)

We consider the following meso-scale Xu-Needleman potential:
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φ(η) = φn

{
1 + exp

(
−η · n

δn

){[
1− r +

η · n
δn

]1− q
r − 1

−
[
q + (

r − q
r − 1

)
η · n
δn

]
exp
(
− 1

δ2t

∣∣∣ η − (η · n)n
∣∣∣2)}} . (15)

where φn, δn, δt, r, and q are coefficients which will later be determined. The dimension
of φn should be N/m5, δn and δt are characteristic lengths, r and q are dimensionless. One
can see that, the physical implications of the five coefficients are not the same as those in
original Xu-Needleman potential. The bond force density that particle X ′ acts on particle
X can be obtained as follows:

f =
∂φ

∂η
= fn + f t (16)

Considering the fact

∂

∂η
exp
(
−η · n

δn

)
= − 1

δn
exp
(
−η · n

δn

)
n

∂

∂η
exp
(
− 1

δ2t

∣∣ η − η · n ∣∣2) = − 2

δ2t
exp
(
− 1

δ2t

∣∣ η − η · n ∣∣2)(η − (η · n)n
)

we then have

f(X,X ′) = −φn
δn

exp (−η · n
δn

){[(−r +
η · n
δn

)
1− q
r − 1

− [q + (
r − q
r − 1

)
η · n
δn

] exp(− 1

δ2t
|η − (η · n)n|2)

+ (
r − q
r − 1

) exp(− 1

δ2t
|η − (η · n)n|2)]n

− [
2δn
δ2t

(q + (
r − q
r − 1

)
η · n
δn

)

· exp(− 1

δ2t
|η − (η · n)n|2)](η − (η · n)n)} (17)

It should be reminded that, when deriving f(X,X ′), the local coordinate system established
on origin X is adopted; in contrast, the derivation of f(X ′,X) is based on the coordinate
system whose origin is X ′. Then the bond force that particle X acts on particle X ′ is as
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follows:

f(X ′,X) = −φn
δn

exp (−η · n
δn

){[(−r +
η · n
δn

)
1− q
r − 1

− [q + (
r − q
r − 1

)
η · n
δn

] exp(− 1

δ2t
|η − (η · n)n|2)

+ (
r − q
r − 1

) exp(− 1

δ2t
|η − (η · n)n|2)](−n)

− [
2δn
δ2t

(q + (
r − q
r − 1

)
η · n
δn

)

· exp(− 1

δ2t
|η − (η · n)n|2)](−η + (η · n)n)} (18)

Equation (18) proves that the bond interaction f is anti-symmetric. Considering the
unloading process, we present the following scalar values of the normal and tangential com-
ponents of bond interaction:

fn =



φn
δn

exp
(
−η · n

δn

){η · n
δn

exp
(
− 1

δ2t
|η − (η · n)n|2

)

+
1− q
r − 1

[
1− exp

(
− 1

δ2t
|η − (η · n)n|2

)](
r − η · n

δn

)}
, if ηn < ηn,max and η̇n > 0

fn,max
ηn,max

ηn, if ηn < ηn,max and η̇n < 0

(19)
where fn,max = fn(ηn,max), η̇n > 0; and

ft =



2φn exp
(
−η · n

δn

) |η − (η · n)n|
δ2t

(
q +

(r − q
r − 1

)η · n
δn

)
· exp

(
− 1
δ2t
|η − (η · n)n|2

)
, if ηt < ηt,max and η̇t > 0

ft,max
ηt,max

ηt, if ηt < ηt,max and η̇t < 0

(20)

where ft,max = ft(ηt,max), η̇t > 0.
We define the normal direction as the direction along the bond between particles I and J ,

while the tangential direction is defined as the direction perpendicular to the normal direc-
tion. In two-dimensional cases, there is only one tangential direction. In three-dimensional
cases, there is a plane perpendicular to the normal direction, in which we can define two
mutually perpendicular tangential directions as ts1 and ts2 respectively. In computations,
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(a) (b)

(c) (d)

Figure 2: Tangential and normal stretches of a mesoscale pair bond: (a)(b) Two-dimensional case, and
(c)(d) Three-dimensional case.

we still consider one tangential direction tt, and this direction is determined as

t =
η − (η · n)n

|η − (η · n)n|
.

In other words, tt is the direction of the resultant force of ts1 and ts2. The cases for 2D
and 3D are shown in Fig. 2. Figure 3 shows the Xu-Needleman cohesive laws in the normal
and tangential directions as a function of ηn and ηt.

Adopting the Cauchy-Born rule, we assume that in a horizon centered atX, the following
relation holds:

ζ = F · ξ (21)

where F is the deformation gradient at X, which is a constant two-point tensor in the entire
horizon. Thus, Eq. (21) leads to the following equations:

F · ξ = ξ + η → ∂η

∂F
= I(2) ⊗ ξ (22)
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(a) (b)

Figure 3: The Xu-Needleman cohesive model: (a) Normal cohesive law fn(ηn) while ηt = 0 , and (b) Shear
cohesive law ft(ηt) while ηn = 0.

in which I(2) is the second order unit tensor.
If only considering the elastic range of the cohesive medium, we can find the second

derivative of φ as

∂2φ

∂η∂η
= − 1

δn
n⊗ ∂φ

∂η
− (

1− q
r − 1

)
φn
δ2n

exp
(
−η · n

δn

)
n⊗ n

+
2qφn
δ2t

exp (−η · n
δn
− 1

δ2t
|η − (η · n)n)|2)[−η ⊗

(
1

δn
n+

2

δ2t
(η − (η · n)n)) + I(2)]

− 2qφn
δ2t

exp (−η · n
δn
− 1

δ2t
|η − (η · n)n)|2)n⊗ [

n− η · n
δn

n− 2η · n
δ2t

(η − (η · n)n)]

+
φn
δn

(
r − q
r − 1

) exp (−η · n
δn
− 1

δ2t
|η − (η · n)n)|2)n⊗ [

1

δn
n+

2

δ2t
(η − (η · n)n)] +

2φn
δnδ2t

(
r − q
r − 1

) ·

exp (−η · n
δn
− 1

δ2t
|η − (η · n)n)|2){η ⊗ [n− η · n

δn
n−

2η · n
δ2t

(η − (η · n)n)] + (η · n)I(2)} − 2φn
δnδ2t

(
r − q
r − 1

) ·

exp (−η · n
δn
− 1

δ2t
|η − (η · n)n)|2)n⊗ [

2(η · n)n− (η · n)2

δn
n− 2(η · n)2

δ2t
(η − (η · n)n)] (23)

Now we can define the strain energy density as follows
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W (X) =
1

2VH

∫
H

∫
H
φ(η, ξ)dX ′′dX ′ (24)

where H is the horizon of X, VH is the volume of horizon.

We can then derive the first Piola-Kirchhoff stress tensor at X as

P (X) =
∂W (X)

∂F
=

1

2V

∫
H

∫
H

∂φ(η, ξ)

∂η
· ∂η
∂F

dX ′′dX ′ (25)

where
∂η

∂F
= I(2) ⊗ ξ . (26)

Substituting Eq. (16) and Eq. (26) into Eq. (25), we obtain the expression of the
cohesive stress as follows,

P (X) =
∂W (X)

∂F
=

1

2VH

∫
H

∫
H

(f ⊗ ξ)dX ′′dX ′ (27)

We can rewrite Eq. (27) as

P (X) =
1

2

∫
H
f̄ ⊗ ξdX ′ (28)

where

f̄ :=
1

VH

∫
H
f(X,X′)dX′ (29)

To find the macroscale elasticity tensors corresponding to the mesoscale Xu-Needleman
potential, we can compute

C(X) =
∂P (X)

∂F
=

1

2

∫
H

∂

∂F
(
∂φ

∂F
)dξ =

1

2

∫
H

∂

∂F
(f̄ ⊗ ξ)dVX (30)

To evaluate Eq. (30), one needs to carry out double integrations. For simplicity, we
may assume that the force density is continuous and smooth in the interior of the material
domain, so that when the size of the horizon is small enough we can adopt the following
approximation,

f̄(X) :=
1

VH

∫
H
f(X,X′)dX′ ≈ 1

VX

∫
VX

f(X,X′)dX′ (31)

where VX is an infinitesimal volume that contains the material point X i.e. the center of
the horizon H. By continuity of f(X), we then have

f̄(X) ≈ 1

VX

∫
VX

f(X,X′)dX′ = f(X), as VX → 0 . (32)
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By replacing the nonlocal force density to the local force density, we can obtain the
explicit expression of the elasticity tensor C(X), we first instead consider another fourth
order tensor C ′(X) as follows:

C ′(X) =
1

2

∫
H

(
∂f

∂F
⊗ ξ)dξ =

1

2

∫
H

(
∂f

∂η
· ∂η
∂F
⊗ ξ)dVX

=
1

2

∫
H

(∂f
∂η
⊗ ξ ⊗ ξ

)
dVX (33)

The relationship between C(X) and C ′(X) is as follows:

Cijkl(X) = C ′mnst(X)δmiδnkδslδtj (34)

When η = 0, φ(0) = 0 and considering

f =
∂φ

∂η
(0) = 0 (35)

finally we have

C′(0) =
1

2

∫
H

(φn
δ2n
− 2φnq

δ2t

)ξ ⊗ ξ ⊗ ξ ⊗ ξ
|ξ|2

dVX

+
1

2

∫
H

2φnq

δ2t
I⊗ ξ ⊗ ξdVX . (36)

Remark 3.1. By replacing the nonlocal force density with the local force density is an analog
of the Cauchy-Born in crystalline solids. Without such approximation, one may still be able
to find the macroscale elasticity tensor of the nonlocal medium. However, its value may be
different, because of taking into account of the nonlocal interaction effect.

3.2. Macroscale material constants for the Xu-Needleman potential

Considering spherical horizon and denoting the radius of the horizon as H, we then have

ΩX =
4π

3
H3 .

We can the explicitly evaluate the following integral∫
H

ξ ⊗ ξ ⊗ ξ ⊗ ξ
|ξ|2

dV =
(∫ H

0

r4dr
) ∫
H
n⊗ n⊗ n⊗ ndω

→
(∫ H

0

r4dr
)(∫

S2

nmnnnsntdω
)

=
(H5

5

)(4π

15

)(
δmnδst + δmsδnt + δmtδns

)
(37)
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and ∫
H
I⊗ ξ ⊗ ξdV =

(∫ H

0

r4dr
)∫

S2

I⊗ n⊗ ndω

→
(∫ H

0

r4dr
)∫

S2

δmnnsntdω =
(H5

5

)(4π

3

)
δmnδst (38)

Thus for three-dimensional nonlocal solids, we have

C ′mnst =
4πH3

3

{
H2

50

(φn
δ2n
− 2φnq

δ2t

)(
δmnδst + δmsδnt + δmtδns

)
+
H2

10

(2φnq

δ2t

)
δmnδst

}
(39)

and

Cijkl =
4πH3

3

{
H2

50

(φn
δ2n
− 2φnq

δ2t

)(
δikδlj + δilδkj + δijδkl

)
+
H2

10

(2φnq

δ2t

)
δikδlj

}
(40)

In particular, we can then find that

C1111 =
4πH3

3

H2φn
50

( 3

δ2n
+

4q

δ2t

)
, C1122 =

4πH3

3

H2φn
50

( 1

δ2n
− 2q

δ2t

)
(41)

where q = φt/φn.
For isotropic materials, we have

C1111 =
E

(1 + ν)(1− 2ν)
(1− ν), (42)

C1122 =
E

(1 + ν)(1− 2ν)
ν, (43)

Then φn and q can be accordingly solved as follows:

q =
1− 4ν

2(1 + ν)

δ2t
δ2n
, (44)

φn =
10Eδ2n

H2(1− 2ν)4πH
3

3

, (45)

where the Poisson’s ratio must obey the constraint ν < 1/4.
In two-dimensional cases, the plane strain problems should have the same formulations

as that of the three-dimensional case. Now, we consider the case of plane stress problems,
in which the horizon has the volume

ΩX = πH2B;

where B is the thickness of the planar plate. Thus, one can derive that∫
H

ξ ⊗ ξ ⊗ ξ ⊗ ξ
|ξ|2

dV = B
(∫ H

0

r3dr
) ∫
H
n⊗ n⊗ n⊗ ndω

→ B
(∫ H

0

r3dr
)∫

S1

nmnnnsntdθ =
(BH4

4

)π
4

(
δmnδst + δmsδnt + δmtδns

)
, (46)
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and ∫
H
I⊗ ξ ⊗ ξdV = B

(∫ H

0

r3dr
)∫

S2

I⊗ n⊗ ndω

→ B
(∫ H

0

r3dr
)∫

S1

δmnnsntdθ =
(BH4

4

)
πδmnδst . (47)

These lead to

C ′mnst = πH2B

{
H2φn

32

( 1

δ2n
− 2q

δ2t

)(
δmnδst + δmsδnt + δmtδns

)
+
H2

8

(2φnq

δ2t

)
δmnδst

}
(48)

and

Cijkl = πH2B

{
H2φn

32

( 1

δ2n
− 2q

δ2t

)(
δikδlj + δilδkj + δijδkl

)
+
H2

8

(2φnq

δ2t

)
δikδlj

}
(49)

In particular, we have

C1111 = πH2B
H2φn

32

( 3

δ2n
+

2q

δ2t

)
and C1122 = πH2B

H2φn
32

( 1

δ2n
− 2q

δ2t

)
.

For isotropic materials under the plane stress condition, we have

C1111 =
E

(1− ν2)
,

and

C1122 =
Eν

(1− ν2)
,

based on which q and φn can be accordingly obtained:

q =
1− 3ν

2(1 + ν)

δ2t
δ2n
, (50)

φn =
8Eδ2n

H2(1− ν)πH2B
, (51)

where the Poisson’s ratio must satisfy the condition ν < 1/3. By comparing with the original
bond-based peridynamics formulation, for the cohesive peridynamics model the nonlocal
Poisson’s ratio is variable, even though it is subjected an upper-bound constraint.

Remark 3.2. The above relations suggest that the mesoscale pair-wise Xu-Needleman po-
tential defies the Cauchy relation — a setback suffered for almost all pair-wise atomistic
potentials. This is because that the Xu-Needleman potential offers both tension bond and
shear bond simultaneously, making it a suitable candidate in nonlocal cohesive continuum
modeling.
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3.3. A Smith-Ferrante type cohesive model

For nonlocal cohesive media under finite deformation, we can also introduce the following
Smith-Ferrante type potential function [19] as an alternative mesoscale potential for the
nonlocal cohesive continuum, which provides a universal binding potential that can be also
written as,

φ(η, ξ) = φnσceηc

[
1−

(
1 +
|η|
ηc

)
exp
(
−|η|
ηc

)]
. (52)

and its corresponding force equals to

f(η) =
∂φ

∂η
= φnσc exp

(
1− |η|

ηc

) η
ηc

(53)

where ηc = |ηc| is the critical value, and when η = ηc the bond force,

f =
∂φ

∂η

∣∣∣
η=ηc

→ tmax

reaches its peak value.
In the elastic range, we can also derive the expression of the bond force vector as follows,

f(η) =
∂φ

∂η
= φnσc exp

(
1− |η|

ηc

) η
ηc

(54)

The magnitude of the bond force f = |f | can be defined as

f =
∂φ

∂η
= φneσc

η

ηc
exp
(
− η
ηc

)
(55)

and the normal and tangential components of the bond force can be derived in the following:

fn =
∂φ

∂ηn
=
φnηnσc exp

(
1− η

ηc

)
ηc

; and ft =
∂φ

∂ηt
=
φnηtσc exp

(
1− η

ηc

)
ηc

. (56)

It is straightforward to show that:

f = fn + f t (57)

The derivative of the scalar amplitude bond force relative to η is:

df

dη
= −φn

η2c

(
eσc exp

(
− η
ηc

(η − ηc)
)
. (58)

Equation (58) indicates that the bond force f reaches its maximum when η = ηc. We
expediently assume that for the case where η ≤ ηc, the material is in elastic phase, and when
η ≥ ηc the material is in inelastic phase. Also, this conclusion is invariant under coordinate
transformation.
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Figure 4: Loading-unloading relation for the Smith-Ferrante cohesive media

Considering the nonlocal strain energy density as follows

W (X) =
1

2VH

∫
H

∫
H
φ(η, ξ)dX′dX′′ (59)

we can then derive the first Piola-Kirchhoff stress tensor at the location of X as

P (X) =
∂W (X)

∂F
=

1

2VH

∫
H

∫
H

∂φ(η, ξ)

∂|η|
∂|η|
∂η

∂η

∂F
dX′dX′′

=
1

2VH

∫
H

∫
H

[
φnσc exp

(
1− |η|
|η|c

)η ⊗ ξ
|η|c

]
dX′dX′′

=
1

2

∫
H

[
f̄ ⊗ ξ

]
dX′ (60)

Accordingly, we can find the elasticity tensor for Smith-Ferrante type cohesive contin-
uum media as

CSF (X) =
∂2W

∂F∂F
=
∂P (X)

∂F

≈ 1

2

∫
H

φnσce
1− |η||η|c

|η|c

(
I(2) ⊗ ξ ⊗ ξ − η ⊗ η

|η||η|c
⊗ ξ ⊗ ξ

)
dVX (61)

One may find that the initial elastic tensor is given as

CSF (0) =
1

2

∫
H

φnσc
ηc

(
I(2) ⊗ ξ ⊗ ξ

)
dVX , (62)

which does not possess the initial shear modulus. This is because the Smith-Ferrante po-
tential is an atomistic pair bond potential that does not have tangential bond displacement
initially.
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3.4. Determination of characteristic lengths

One of distinguished features of the cohesive continuum is its internal length scale. For
the Xu-Needleman potential, δn and δt are two characteristic length scales that are defined
as the maximum elastic bond stretches, i.e.

δn(ξ) = |ξ| cn, (63)

δt(ξ) = |ξ| ct, (64)

where cn and ct are the two maximum elastic strains for normal and tangential deformations
of a pair bond, respectively. Comparing with the treatment in [1], we can also define two
critical bond strains or stretches sn and st for determining the critical or maximum stretches
of the bond: δnc and δtc:

δnc(ξ) = |ξ| sn, (65)

δtc(ξ) = |ξ| st, (66)

where sn and st are the critical bond strains or stretches before the bond is broken.
Before, we determine the critical stretches, we first note that the cohesive elastic potential

of a Xu-Needleman bond may be interpreted as the elastic bond energy when the bond force
reaches to the peak loading forces, which can be obtained as follows,

φIe = φn

{
1 + exp

(
−1
){[

1− r + 1
]1− q
r − 1

−
[
q + (

r − q
r − 1

)
]}}

=
e− 2

e
φn (67)

and

φIIe = φn

{
1 +

{[
1− r

]1− q
r − 1

− q exp
(
−1
)}}

=
e− 1

e
qφn (68)

To determine the critical stretches, we adopt the criteria of the critical energy release.
It is assumed that the critical energy releases are achieved when all the bonds connecting
to the center particle of a given horizon reach their corresponding critical stretches. We
assume that the critical stretch of the normal deformation of pairs of bonds is sn, while the
corresponding shear critical stretch is st, therefore the critical values of the cohesive energy
for each bond can be found as follows,

φIc = φn

{
1 + exp

(
−sn
cn

){
(1− r +

sn
cn

)
1− q
r − 1

−
[
q + (

r − q
r − 1

)
sn
cn

]}}
=

1

2
φn

[
1−

(
1 + λ−1n

)
exp (−λn)

]
(69)

φIIc = φn

{
1 +

{
(1− r)1− q

r − 1
− q exp

(
−s

2
t

c2t

)}}
=

1

2
qφn

[
1− exp (−λ2t )

]
(70)
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where we define
sn := λncm and st := λtct (71)

which are amplitude factors for critical stretches.

Figure 5: Integration domain for determine the critical energy release G0.

Following [20, 21], the corresponding energy releases can be related to the critical cohesive
energy under both tensile and shear deformation mode as follows,

GI0(λn) =

∫ H

0

∫ 2π

0

∫ H

z

∫ cos−1(z/ξ)

0

φIc(λn)ξ2 sinψdψdξdθdz (72)

GII0(λt) =

∫ H

0

∫ 2π

0

∫ H

z

∫ cos−1(z/ξ)

0

φIIc(λt)ξ
2 sinψdψdξdθdz (73)

The above integrations are performed in an integration domain shown in Fig. 5. Based
on the above equations, we can find critical stretches sn and st by implicitly solving two
nonlinear algebraic equations:

GIc −GI0(λn) = 0, and GIIc −GII0(λt) = 0 . (74)

Remark 3.3. In the proposed cohesive peridynamics modeling (CPDM), the critical stretch
is not necessary concept. This is because that the functional form of the mesoscale cohesive
potential implicitly determines the critical stretch — that is the critical stretch is a part of
the cohesive potential, and one does not need extra effort to break a bond. All the material
bond can be broken naturally without user interference. However, the determination of λs
and λt can help to set up the cutoff distance. In this sense, the cutoff distance of the material
bond should be chosen as

`c = sc`ξ, where sc = min(λncn, λtct).

17



4. Cohesive stress and peridynamic stress

A main task of cohesive nonlocal continuum mechanics is to find the underline cohesive
continuum stress measures based on the bond deformation and its corresponding bond force.
This is the step of micro to macro transition, which bridges the mesoscale description and
the macroscale description. This will help us to understand a host of physical phenomena
from different perspectives, such as the crack growth criterion [21].

To proceed, we first recall Eq. (31),

P (X) =
∂W (X)

∂F
=

1

2

∫
H

[
f̄ ⊗ ξ

]
dVξ (75)

Consider the following peridynamic force sampling formula,

f̄(X′,X) =
N∑
I=1

N∑
J=1,J 6=I

tIJw(XI −X)δ((XJ −XI)− (X′ −X)) . (76)

where X,X′,XI and XJ are material particles in the referential configuration, tIJ is the
bond force (not the force state) acting on the particle XI from the particle XJ .

By substituting the force sampling expression in Eq. (76) into Eq. (75), we have

P(X) =
1

2

∫
H

[
f̄ ⊗ ξ

]
dVξ

=
1

2

∫
H

N∑
I=1

N∑
J=1,J 6=I

w(XI −X)tIJ ⊗ ξδ((XJ −XI)− (X′ −X))dVξ . (77)

For simplicity, we may choose the radial step function as the sampling function, i.e.

w(r) =


1

ΩX

, r < δ

0, otherwise

(78)

where ΩX = HX and vol(HX) = (4/3)πH3, and H is the radius of the horizon.
Since X,XI ∈ HX , w(XI −X) = 1. We then have the mathematical expression of the

cohesive first Piola-Kirchhoff stress,

Pcoh(X) =
1

2ΩX

∫
H

N∑
I=1

N∑
J=1,J 6=I

tIJ ⊗ ξδ(ξIJ − ξ)dVξ

=
1

2ΩX

N∑
I=1

N∑
J=1,J 6=I

tIJ ⊗ ξIJ (79)
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In 2008, based on Noll’s lemma [22], Lehoucq and Silling [10] proposed a peridynamic
stress [10],

PLS(X) :=
1

2

∫
S2

∫ ∞
0

∫ ∞
0

(y + z)2f(X + yM,X− zM)⊗MdzdydΩM , (80)

where S2 is the unit sphere.
Now, we show that the cohesive stress derived in Eq. (79) is exactly the same as the

peridynamic stress defined by Lehoucq and Silling [10], i.e.

Pcoh = PLS .

Theorem 4.1 (Peridynamic Stress).
Assume that the average Peridynamic force density in a horizon that can be expressed as the

following discrete sampling expression of the Irving-Kirkwood-Hardy formulation [4, 23, 24],

f̄(X,X′) =

NX∑
I=1

NX∑
J=1,J 6=I

tIJw(XI −X)δ((XJ −XI)− (X′ −X)), (81)

where X,X′,XI and XJ are material particles in the referential configuration, tIJ is the
force (not the force state) acting on the particle XI from the particle XJ (see Fig. 6), NX

is the total number of particles inside the horizon HX , δ(X) is the Dirac delta function, and
w(XI −X) is a window function or kernel function.

The nonlocal peridynamic stress defined by Lehoucq and Silling [10]

PLS :=
1

2

∫
S2

∫ ∞
0

∫ ∞
0

(y + z)2f(X + yM,X− zM)⊗MdzdydΩM , (82)

can be expressed the following discrete summation form,

PLS(X) :=
1

2

NX∑
I=1

NX∑
J=1,J 6=I

tIJ ⊗ (XJ −XI)BIJ(X), XI ,XJ ∈ HX , (83)

where X is the center point of the horizon HX and X ∈ B, tIJ = f(XJ ,XI)VIVJ is the force
acting on the particle XI by the particle XJ , where XI ,XJ ∈ HX , VI and VJ represents the
volume of material particle XI and XJ , respectively, as shown in Fig. 6, and

BIJ(X) =

∫ 1

0

w(α(XJ −XI) + XI −X)dα (84)

is the bond function.
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Figure 6: Illustration of peridynamics particle sampling strategy

Proof Based on Noll’s lemma [22], we can write the first peridynamics Piola-Kirchhoff stress
as

PLS(X) =
1

2

∫
S2
dΩm

∫ ∞
0

R2dR

∫ 1

0

f(X + αRM,X− (1− α)RM)⊗Mdα

= −1

2

∫
3

dVR

∫ 1

0

f(X + αR,X− (1− α)R)⊗Rdα , ∀X ∈ B (85)

Considering the Hardy-Murdoch procedure [24, 25, 26], we have the following peridy-
namics sampling formulation (see Fig. 1)

f(X′,X) =

NX∑
I=1

NX∑
J=1,J 6=I

tIJw(XI −X)δ((XJ −XI)− (X′ −X)), (86)

where the window function, or sampling function, must satisfy the following conditions,∫
HX

w(y − x)dVy = 1 , (87)

and
lim
r→0

w(r) → δ(r) . (88)

Condition (87) is the averaging requirement, and Condition (88) ensures that the Dirac
comb sampling can converge to a correct continuum form of integrand in Eq. (3), i.e.

NX∑
I=1

NX∑
J=1,J 6=I

tIJw(XI −X)δ((XJ −XI)− (X′ −X)) → f(X,X′ −X) .
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Letting
X = X + αR, and X′ = X− (1− α)R

and substituting them into Eq. (86), we then have

f(X + αR,X− (1− α)R)

=

NX∑
I=1

NX∑
J=1,J 6=I

tIJw((XI −X)− αR)δ(R− (XI −XJ)), (89)

where XI ,XJ ∈ HXC
, XI 6= XJ .

Considering the following integration identities∫ ∞
−∞

δ(ξ − x)w(x− η)dx = w(ξ − η), (90)

we first integrate ∫ 3

δ(R− (XI −XJ))w((XI −X))− αR)RdVR

= (XI −XJ)w
(
(XI −X)− α(XI −XJ)

)
. (91)

Following [24], we may define the second integral as the so-called bond function, i.e.

BIJ(X) =

∫ 1

0

w(α(XJ −XI) + XI −X)dα (92)

Thus, we have

PLS(X) =
1

2

(NX∑
I=1

NX∑
J=1,J 6=I

tIJ ⊗ (XJ −XI)
)
BIJ(X) , (93)

which is called the Hardy stress (see [24, 27].
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Figure 7: Graphic illustration of the bond integration variable Xxα ∈ HX , where Xxα = αXxJ +(1−α)XxI .

If we choose w(x) as the spherical radial step function (see Eq. (78)), one can see that

w(α(XJ −XI) + XI −X) = w(α(XJ −X) + (1− α)(XI −X)) .

If XI ,XJ ∈ HX , we can see that

Xxα := α(XJ −X) + (1− α)(XI −X) ∈ HX

This is because that

|α(XJ −X) + (1− α)(XI −X)| ≤ |α(XJ −X) + (1− α)(XJ −X)| = |XJ −X| ≤ δ

if |XJ −X| ≥ |XI −X|, and vice vera

|α(XJ −X) + (1− α)(XI −X)| ≤ |α(XI −X) + (1− α)(XI −X)| = |XI −X| ≤ δ

if |XJ −X| ≤ |XI −X| as shown in Fig. 7.
Thus, it is readily to show that

BIJ(X) =
1

ΩX

, if XI ,XJ ∈ HX

For this special case, the peridynamic stress has the expression,

PLS(X) =
1

2ΩX

( N∑
I=1

N∑
J=1,J 6=I

tIJ ⊗ (XJ −XI)
)
. (94)

Equation (94) confirms that the peridynamic stress is the first Piola-Kirchhoff virial
stress, or it is equal to the cohesive first Piola-Kirchhoff stress.
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5. Numerical examples

In this section, we present several numerical examples to validate the proposed CPDM
method. All the 2D models or examples are computed under 2D plane stress conditions
using uniform particles. For the 3D example, we conducted a three-point bending beam
test, which is widely used to investigate mix-mode fracture behavior. Force-displacement
curves for all cases are compared with experimental results.

5.1. Two-dimensional crack growth

In this example, we used CPDM to simulate a 2D crack growth problem to validate the
proposed CPDM method. The specimen size and boundary condition setting are shown
in Fig.8. The morphology of the specimen after complete fracture is shown as the result
diagram in Fig. 9, and the color contour represents S22 distribution (PK-II stress component
in y-direction).

An advantage of using cohesive mesoscale potential is that by adjusting the numerical
values of the parameters we can observe both brittle and ductile fracture as well as their
transition . For example, by adjusting the ratio of the parameter δn to δt, the simulated
crack shape changes from ductile fracture to brittle fracture as shown in Fig. 9.

Figure 8: Sketch map of 2D crack test
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(a) δn = δt (b) δn = δt (c) δn = 5δt

(d) δn = 10δt (e) δn = 20δt

Figure 9: Crack patterns with respect to the different ratios of δn/δt

It can be seen from Fig.9 that from (a) to (e) with the increase of the ratio of δn/δt, the
feature of the brittle fracture gradually becomes obvious. We also compared the calculation
results of CPDM with those of FEM-CZM, which are shown in Fig. 10. The ratio of δn/δt
in the comparison example is chosen as 0.2. From 10, one may find that that the two results
are in a good agreement.

(a) Results of FEM-CZM (b) Results of CPDM

Figure 10: Comparison of FEM-CZM simulation with CPDM simulation in 2D crack propagation.

In addition, we also simulated the transit effect of the stress evolution at the crack tip
during the crack propagation by using the notched specimen. Figure 11 shows the stress
distribution of S22 at the crack tip from the moment of crack initiation to the stage that
crack propagated well into the middle . In this case, the ratio of δn/δn is chosen as 1.
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(a) t=0.176ms (b) t=0.192ms (c) t=0.242ms

(d) t=0.253ms (e) t=0.258ms (f) t=0.269ms

Figure 11: Stress distribution at crack tip at several typical moments

5.2. Trunk’s test: Wedge splitting fracture

In 1999, Trunk [28] conducted an experimental investigation into the size dependence of
non-linear fracture mechanics parameters for cementitious materials. The wedge splitting
test is adopted in his research, which was later widely replicated for the purpose of verifying
and validating various fracture simulations. In this work, we also conducted a numerical
experiment of Trunk’s test by using the proposed CPDM method to simulate wedge splitting
fracture test.

The geometry and boundary conditions are depicted in Fig. 12, and the dimensions of
the square-shaped specimen is chosen as 400mm×400mm×400mm, while the width of the
prefabricated crack is 10mm. Other geometric parameters are shown in Fig.12. The material
properties of the specimen adopted in the simulation are given as follows: Young’ modules
E = 28.3Gpa, Poisson’s ratio ν = 0.2, and the fracture energy release Gf = 0.017n/mm.
The specimen is subjected to a prescribed force at left and right side, while the bottom of
the specimen is fixed. The particle spacing is ∆ = 5mm, and the horizon radius δ is equal
to 3∆.

The simulated wedge crack splitting process is shown in Fig. 13 with damage color
contour and in Fig. 14 with the stress color contour. The sequences reflect the damage of
the specimen and stress variables at different time instances in the simulation.
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Figure 12: Schematic illustration of wedge splitting test.

Figure 13 shows the change of damage contour with respect to time. Material damage is
calculated for each material point. In traditional PD method, for each material point, when
the elongation of the bond between the two material points exceeds the critical stretch s0,
the irreversible fracture or bond breaking will occur. We call the ratio of the number of
broken bonds to the total number of bonds of a material point its damage [29], i.e.

d(X) = 1−
∫
HX

µ(X,X′)dVX′∫
HX

dVX′

where

µ(X,X′) =


1 if XX′ bond is broken

0 if XX′ bond is not broken

is the characteristic function of the material bond.
When the damage factor of a material point is 1, it means that all bonds are not damaged.

When the damage factor is equal to 0, it means that the material point has been completely
damaged. As shown in Fig. 13, the wedge specimen began suffering damages in about 1ms,
and it was tore obviously at the middle prefabricated crack in about 1.5ms, and the specimen
was completely torn apart after 1.75ms. The stress evolution process is shown in Fig.14,
and the stress evolution process is basically consistent with that of the damage evolution.
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(a) t=0ms (b) t=0.5ms (c) t=1.0ms

(d) t=1.5ms (e) t=1.75ms (f) t=2.0ms

Figure 13: damage at several typical moments

(a) t=0ms (b) t=0.5ms (c) t=1.0ms

(d) t=1.5ms (e) t=1.75ms (f) t=2.0ms

Figure 14: Stress distribution at several typical moments

5.3. Fracture of L-shape plate

In this example, to validate the proposed CPDM, we apply it simulating the fracture
of a L-shape concrete plate, which was studied in [30] by using a finite element analysis of
elasto-plastic damage constitutive modeling.
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The geometry and boundary conditions of the L shape plate are depicted in Fig. 15. As
shown in the figure, L shape plate side length is 500mm, the bottom end is a fixed boundary,
and there is an upward force on the right bottom edge. The material properties of the plate
are chosen as follows: E = 25.85Gpa , µ=0.2 and Gf = 0.015N/mm. In the numerical
simulations, the spacing between particles is 5mm.

To validate the proposed CPDM formulation, the L-shape plate has the same dimension
and material constants used in 16, except that we adopt the Xu-Needleman cohesive po-
tential rather an elasto-plastic damage model, while using nonlocal cohesive peridyanmics
rather than finite element crack smearing techniques. Fig.17 show the damage and stress
distribution of the L-shape plate. It can be clearly seen from the resulting figure that at
5.22ms, the crack originated at the right angle and gradually extended to the left side,the
L shape plate began to suffer damage at the bend corner, and stress concentration also ap-
peared at the bend corner in Fig. 17. The stress at the right margin in Fig. 17 is obviously
greater than the rest of the plate because this is where the external force is applied, this is
why this area also appear some damage.

Figure 15: Sketch map of L shape test
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(a) t=1.74ms (b) t=3.48ms (c) t=5.22ms

(d) t=6.96ms (e) t=8.7ms (f) t=10.4ms

Figure 16: damage at several typical moments

(a) t=1.74ms (b) t=3.48ms (c) t=5.22ms

(d) t=6.96ms (e) t=8.7ms (f) t=10.4ms

Figure 17: Stress distribution at several typical moments

5.4. Plate with the hole

In this example, we employed CPDM carrying out numerical simulation of a thin plate
with hole under uniaxial tension, which is under plane stress condition. For infinitesimal
deformation, this problem has a close-form solution, i.e. the well-known Kirsch solution [31].
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Figure 18: Schematic illustration of a plate with hole

The geometry and boundary setting are shown in Fig. 18. The side length of the square
plate is 100 mm, and a circular hole with a radius of 5 mm is opened in the center of
the square plate. In the numerical simulations,the spacing between particles is 5mm. In
addition, in order to verify the convergence of CPDM, we also use this example to compare
CPDM results with analysis values. The analytical Kirsch’s solution of stress components
around a circular hole in an elastic infinite plate under tension are give as follows,

σrr =
σ0
2

(1− a2

r2
) +

σ0
2

(1− a2

r2
)(1− 3

a2

r2
) cos 2θ (95)

σθθ =
σ0
2

(1 +
a2

r2
)− σ0

2
(1 + 3

a4

r4
) cos 2θ (96)

σrθ = σθr = −σ0
2

(1− a2

r2
)(1 + 3

a2

r2
)sin2θ (97)

where θ and r are the polar coordinates measured form the center of the circular hole. r
is the radial distance of the point of interests to the center of the hole, and θ is the angle
between the x-axis and the radial vector r as shown in Fig. 17. The comparison between
the CPDM solution and the analytical Kirsch’s solution given shown in Fig.19.

This example not only validate CPDM method, but also validate and verify the cohesive
stress formulation derived in this paper. The variation of stress distribution is shown in Fig.
20.
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Figure 19: Comparison of the CPDM solution and the analytical Kirsch solution.

(a) S11 (b) S12 (c) S22

Figure 20: stress distribution near the hole

5.5. Double-edge notched specimen test

In this example, we conducted a numerical simulation of a double-edge notched specimen
under tensile loading, which was based on the experiment reported in [32]. In the original
experiment, the notch was set to be asymmetric, and hence it is a mixed-mode fracture. This
example provides us an opportunity to test how CPDM to handle mixed mode fracture.

The problem setting is displayed in the Fig. 21. The numerical specimen is 120mm long
and 60mm wide. Two notches are set respectively at two lateral sides with 5mm from the
middle line from above and below. Each notch is 10mm long and 2mm wide. The material
parameters of the specimen are: E = 40GPa , µ = 0.2 , and Gf = 0.025N/mm. The particle
spacing in the numerical simulation is chosen as 5mm, and the horizon size is taken as 3.015
times the particle spacing.
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Figure 21: Sketch map of double edge notched tensile test

(a) t=0.66ms (b) t=0.715ms (c) t=0.77ms

(d) t=0.825ms (e) t=0.88ms (f) t=0.935ms

Figure 22: Damage distribution at different time instances

Figure 22 shows the sequence of crack growth with the damage contour at different time
instances, while Fig. 23 displays the sequence of crack growth with the stress S22 contour.
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(a) t=0.66ms (b) t=0.715ms (c) t=0.77ms

(d) t=0.825ms (e) t=0.88ms (f) t=0.935ms

Figure 23: Stress distribution at several typical moments

5.6. Three point bending test

The third example is a three-dimensional (3D) simulation of cohesive peridynamics,
in which we conducted a numerical test of the three-point bending of a beam [33]. This
example is widely used as a benchmark problem of 3D mixed mode fracture. The simulation
domain and boundary condition are shown in Fig.24. The material properties are set as
follows: the Young’ modules E = 20GPa; Poisson’s ratio ν = 0.2; and the fracture energy
Gf = 0.015N/mm. A concentrated downward load is acted at the upper midpoint of the
beam, and the left and right ends of the lower part are fixed by the fixative structure. In
the numerical simulations, the spacing between particles is chosen 5mm. The 3D numerical
specimen is shown in Fig.25.

We plot the fracture process of the simply supported beam in Fig.26. Figure 26 (a),
(b), and (c) show the stress distribution of the beam at different time instances during the
loading, and Fig.27 (a), (b), and (c) shows the damage evolution with respect to the time.

Fig.28 shows the change of force with respect to crack mouth opening displacement
(CMOD). In Fig.28, the dotted line represents the numerical calculation result obtained by
using the cohesive peridynamics and the gray area shows the experiment data, the other
lines present the results obtained by using the extended finite element (eXFEM) and the
state-based peridynamics that is mislabeled as the cohesive zone peridynamics method.
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Figure 24: Sketch map of three point bending test

-

Figure 25: Numerical model of three point bending test
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(a)

(b)

(c)

Figure 26: Von Mises stress distribution at (a) t = 5ms, (b) t = 6ms, and (c) t = 7ms,
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(a)

(b)

(c)

Figure 27: damage distribution at (a) t = 5ms, (b) t = 6ms, and (c) t = 7ms.
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Figure 28: Crack mouth opening displacement-force relations for the three point bending tests: Experiment
data [34]; the eXFEM simulation data [35]; a previous peridynamics (state based peridynamics) simulation
data [36], and the data from the present work (CPDM) .

6. Discussions and conclusions

It has been almost four decades since Xu and Needleman’s pioneer work on cohesive zone
model (CZM) [11], and finite element CZM method established itself as a primary numerical
method to model inelastic fracture at small scale yielding.

However, CZM has some technical issues such as mesh dependence, adaptive mesh re-
finement, and modeling on mixed mode fracture, among others. Among these shortcomings,
one of the major criticisms on CZM is its replacement of a homogeneous material by a
cohesive interface “composite” in its core mechanics model. On the other hand, the cohe-
sive peridynamics model (CPDM) proposed in this work is a nonlocal cohesive continuum
mechanics, and it has demonstrated its potential to address all the issues mentioned above,
which exist in finite element cohesive zone model. Moreover, unlike the prototype micro-
brittle (PMB) model in the bond-based peridynamics, the bond-based cohesive peridynamics
model (CPDM) has variable Poisson’s ratio, does not need the critical stretch parameter
s0, and provides intrinsic stress measure that is consistent with strain measure in the bulk
homogeneous continua. Thus, CPDM is a bona fide nonlocal cohesive continuum mechanics
modeling.

Furthermore, in this work, we have shown in the first time that the elastic tensor derived
from the mesoscale pairwise Xu-Needleman potential is not limited by the Cauchy relation.
This stunning discovery will greatly broaden applications of the bond-based peridynamics.

It should be mentioned that in the literature some authors labeled their state-based
peridynamics or coupling method between finite element method and the state-based peri-
dynamics as the cohesive peridynamics, e.g. [37, 36, 13]. Even though there are some
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cohesive zone features in these state-based peridynamics, they are not really cohesive peri-
dynamics model, because in those work the micrscale cohesive bond force models do not
govern the macroscale constitutive relations. Whereas, in the proposed CPDM model the
mesoscale or microscale cohesive bond potential determines the material constitutive rela-
tions at macroscale. Therefore, CPDM is a consistent cohesive zone model.
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