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1. INTRODUCTION

Since the beginning of the new millennium we have experienced a phenomenon of
information explosion, where the volume of produced digital data increased expo-
nentially in time. The growth was caused by many factors, like more powerful
computing resources, high-speed internet, and diffusion of the information society
all over the world. Additionally, an enormous production of data is attributed to
the quick dissemination of cheap devices for capturing multimedia data like audio,
video, and photography. Nowadays, more than 95% of web space is considered to
store multimedia content, and more multimedia data is stored in corporate and sci-
entific databases, personal archives, and digital libraries. In particular, 80 billions
of photographs are expected to be taken every year', while, at the same time, the
complexity of the data grows as well. Such vast amounts of complex data need to
be searched both efficiently and effectively. Search engines like images.google. com
are text-based, reusing the well-established technology of web search. However, the
enormous growth of multimedia (and other complex) data and the evolving forms
of data deployment show that text-based search lags behind. In particular, the
multimedia data (i.e., signals, measurements, etc.) are often delivered as raw data
files without any annotation needed for text-based search. Moreover, even an an-
notated data entity could not be successfully retrieved, because text-based retrieval
is inherently imprecise, subjective, and incomplete.

The content-based retrieval (CBR) of multimedia data, or other semantically
unstructured-type data, is often a more viable approach than the text-based search
[Blanken et al. 2007; Deb 2004]. It considers retrieval according to the actual
content of complex objects, rather than considering an external description (the
annotation). Instead of text-based query, the database is queried by an example
object to which the desired database objects should be similar, i.e., here the query-
by-erxample retrieval scheme is adopted. The concept of pairwise similarity plays
the role of a multi-valued relevance of every database object to a given query object.
For a long time, the similarity functions have been modeled by metric distances (in
the mathematical meaning), because the metric postulates allowed researchers to
design efficient (fast) access methods for similarity search. However, during the
last years the need for less restrictive modeling of similarity has gotten stronger
justification because of higher demands on more complex similarity models. Here
the restriction to metric case becomes a serious obstacle.

1.1 Paper Scope

The focus of this paper is the usage of nonmetric measures for efficient and effective
similarity search in a wide variety of research domains. Although the term non-
metric simply means that similarity function does not hold some (or all) properties
of a metric (see Section 2.3), it may exhibit any other properties. However, in order
to reasonably discuss the topic in the limited room of a single survey, we need to
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restrict the scope of the paper. In particular, this survey will not cover variants of
the problem such as:

—Context-dependent similarity functions. Similarity functions could be affected
by external causes, such as the time of measuring, or similarity learning. For
example, in the case of time of measuring, Web search engines can use historical
data to define time-dependent similarity measures [Zhao et al. 2006]. Also, the
similarity function (as everything in the world) could not be perfect, thus it may
be improved (learned or trained) [Mandl 1998]. For example, user feedback may
be used to adapt similarity measures for content-based image retrieval [Lee and
Lin 2008]. It should be mentioned that the changing semantics of a similarity
function (based on context-dependent properties) has been included in the prob-
abilistic types of psychological similarity theories [Ashby 1992]. In this survey,
we will focus on similarity measures where some of the metric properties may not
hold, but they do not depend on the context where they are used.

—Dynamic similarity functions. Similarity functions may be tuned with parame-
ters given by the user or the search system. An example of dynamic similarity
measures is the multi-metric approach [Bustos and Skopal 2006], where the simi-
larity function is defined as a linear combination of several metrics. The weights
for the linear combination must be set at query time either manually by the
user or automatically by the search system. In a broader sense, the multi-metric
approach is similar to the problem of object specificity, which plays a role in
case not all the objects are treated uniformly, e.g., when one compares flowers
based on colors, but cars based on shape, or when each object defines its own
similarity function [Ciaccia and Patella 2009]. We do not consider this type of
similarity functions, as they require a precise definition on how to select the
weights/similarity depending on the given object.

In summary, in this paper we consider only similarity functions that are, say,
“context-free and static” — a similarity between two objects is constant whatever
the context is, i.e., regardless of time, user, query, other objects in database, etc.

1.2 Paper Contribution

In the first part of this paper we gathered a motivating collection of various domains
where the nonmetric similarity search is needed. For the first time we show that the
need for nonmetric search is not an artificial problem, but there are many disciplines
(outside and inside computer science) for which the nonmetric search is crucial. In
the second — database-oriented — part of the paper, we survey the state-of-the-
art techniques for efficient nonmetric similarity search. The paper is organized as
follows. Section 2 introduces the concept of similarity measuring, defines the task
of similarity search, and discusses some properties of similarity functions. Section 3
presents some examples on general nonmetric functions and overviews a number of
domains where the nonmetric similarity search found its assets. Section 4 provides
a database-oriented analysis of nonmetric access methods that allow an efficient
implementation of nonmetric similarity search. Section 5 concludes the paper,
raising some challenges regarding nonmetric similarity search.
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Table I. Notation used in this paper

Symbol Description
U Universe of valid objects (descriptors)
ScU Database of objects (descriptors)
z,y,0, €U Objects from U
qelU Query object from U
s:UxU—R Similarity function between pairs of objects in U
§:UxU— R | Dissimilarity function between pairs of objects in U

2. SIMILARITY MEASURING AND SEARCH

The phenomenon of similarity perceived by human has been studied for centuries,
as it implicitly affects everyone’s world understanding, the decision making, and any
other reasoning in a fundamental way. The realm of similarity modeling were orig-
inally psychology and related disciplines. However, due to technological progress,
similarity is also studied in various disciplines related to computer science, like
computer vision, pattern recognition, data mining, and database systems.

As classified by psychological theories, similarity involves many aspects of the hu-
man’s perception of the real world, including judged and perceived similarity con-
cepts, deterministic and probabilistic perceptions and decisions, and so on. There is
plenty of literature concerning psychological background of similarity [Santini and
Jain 1999; Tversky 1977; Ashby and Perrin 1988; Ashby 1992]. In the following,
without losing generalization, we narrow our discussion about similarity to the area
of complex databases, where the subject of similarity evaluation is multimedia ob-
jects (e.g., images) or, more generally, any complex semantically unstructured data
(e.g., time series). Table I shows the symbols that we will use through this paper.

2.1 Similarity Spaces

As discussed in Section 1.1, we restrict our attention to similarity as a function
that accepts a pair of objects and returns a single real number. Formally, let s be
a function assigning to a pair of objects x, y from a universe U a similarity value
from R, defined as

s:Ux U~ R.

Such a function s is called pairwise similarity function. It produces a real number
representing a similarity score between two input objects from the universe. The
universe U itself is a set of all models (descriptors) that could be derived from
complex objects of a given kind where the objects induce some perceptual stimuli
that need to be evaluated as similar or dissimilar. The structure of element = €
U could be a vector, a sequence, a string, or an (ordered) set consisting of the
mentioned structures, recursively. In general, we have no requirements on the
internal structure of U, we just assume that a single descriptor in U corresponds to
a single complex object (stimulus).

Instead of a similarity function, there is often required an inverse concept — a
dissimilarity (or distance) function 6 — where a higher dissimilarity score stands
for lower similarity score, and vice versa. Hence, a dissimilarity J equivalent to a
similarity s must fulfill s(z,y) > s(z,2) < 6(z,y) < 0(z,2), Va,y,z € U. The
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couple (U, s) is called a similarity space and, analogously, (U,0) is called a dis-
similarity space. The possibility of choice between similarity and dissimilarity is
important especially for practical reasons. There exist many situations where the
formula/algorithm defining the function is available just in one of the two forms,
while its “manual” transformation to the inverse might lead to serious obstacles
(further discussed in Sections 2.4.2 and 2.4.4).

2.2 Similarity Search

At this moment, we have to detail the main subject of the paper — the similarity
search. In addition to the definition of the most popular similarity query types, we
also discuss the effectiveness and efficiency issues.

2.2.1  Queries and Retrieval Modalities. In the following, we consider the query-
by-example model for similarity search: Given a database of objects S C U and a
query object g € U, the search system returns all objects from S that are similar
to q. Let § be a dissimilarity (distance) function. There are two typical similarity
queries defined using d:

—Range query. A range query (q,r), ¢ € U, r € R™, reports all objects in S that
are within a distance r to ¢, that is, (¢,7) = {z € S | §(x,q) < r}. The subspace
V C U defined by g and r (i.e., Yo € V §(v,q) <r and Vo € X -V §(x,q) > r) is
called the query ball.

—k nearest neighbors query (kNN). It reports the k objects from S closest to g.
That is, it returns the set C C S such that |C| = kand Va € C,y € S—C, d(x, q) <
0(y,q). The kNN query also defines a query ball (g, 7), but the distance r to the
kth NN is not known beforehand.

Note that it is possible that many sets of k objects are a valid answer for the
kNN search. For example, if there are two or more objects at exactly the same
distance from ¢ as the k' NN, any of them can be selected as the k** NN. While
this is unusual when using continuous distance functions, it is frequent when using
discrete distance functions.

Figure 1la illustrates a range query (qi1,7) and a kNN query (g2, k = 3) in a 2D
vector space using the Euclidean distance. The answers are respectively:

(q1,7) = {02,06,ur}; (g2, k = 3) = {011, 012, 013}

Necessary to the query-by-example retrieval is the notion of similarity ranking.
Distance § generates a permutation of the objects S, so-called ranking, where the
objects are ordered according to their distances to q¢. Range queries and kNN
queries return the first objects of this ranking. For range queries, the number of
retrieved objects is not known a priori (it is a number between 0 and [S|). On the
contrary, for kNN queries it is known beforehand.

Another type of similarity query is the incremental search, also known as “give-
me-more” query [Hjaltason and Samet 1995]. For this type of query, the search
system returns a certain number of relevant objects (the first ones in their corre-
sponding similarity ranking), and the user may request additional relevant objects
(like when one performs a query in Google). Additionally, the similarity join [Zezula
et al. 2005] between two sets of objects A and B is defined as the set of pairs (a, b)
(a € A and b € B) such that d(a, b) < r for some tolerance value r > 0. Among other
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Precision vs Recall Figure
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Fig. 1. (a) Range query and NN query examples (b) Example of precision vs. recall figure

query types, we name (k-)closest pairs [Corral et al. 2000], reverse kNN queries [Tao
et al. 2004], and metric skylines [Chen and Lian 2008].

2.2.2  Effectiveness of Retrieval. Effectiveness is related to the quality of the
answer returned by a query, hence, the effectiveness measures the ability to retrieve
relevant objects while at the same time holding back non-relevant ones. Indeed,
improving the effectiveness of a search system is at least as important as improving
its efficiency. In the task of similarity search, the dominant piece of logic determin-
ing the retrieval effectiveness is provided by the underlying (dis)similarity function.
An effective distance function should treat two similar objects, according to the
human concept of similarity, as two close points in the corresponding space.

There are several effectiveness measures to rate similarity search engines. A
popular measure is the precision versus recall figure [Baeza-Yates and Ribeiro-Neto
1999]. Precision is the fraction of the retrieved objects relevant to a given query,
and recall is the fraction of the relevant objects retrieved from the set of objects.
Normalized precision versus recall figures are based on 11 standard recall levels
(0%, 10%, ..., 100%). Figure 1b shows an example of a typical precision vs. recall
figure. In the example, the search system B is more effective than the search system
A because for each recall level the precision of system B is higher than the precision
of system A.

Other widely used effectiveness measure is the R-precision [Baeza-Yates and
Ribeiro-Neto 1999], which is defined by the precision when retrieving only the
first R objects, with R the number of relevant objects for the issued query. The
R-precision gives a single number to rate the performance of a retrieval algorithm.
A similar measure is the Bull Eye Percentage, which is defined as the recall after
retrieving 2R objects.

2.2.3  Efficiency of Retrieval. Efficiency is related to the cost of the similarity
search (in terms of CPU and I/O time). A naive method to answer range queries
and k nearest neighbors queries is to perform a sequential scan of the database.
However, this method may be too slow for real-world applications. Usually, an
index structure is used to filter out irrelevant objects during the search, without
computing their distances to the query object. In this way, the search system can

ACM Journal Name, Vol. V, No. N, January 2010.



On Nonmetric Similarity Search Problems in Complex Domains . 7

avoid the sequential scan. The index is built in a preprocessing step, and the cost
of building the index is amortized with the savings obtained on each performed
similarity query.

Many of the indices proposed so far ensure that all relevant objects (according
to the performed type of similarity query) in the database will be retrieved. This is
specially true for metric [Zezula et al. 2005; Béhm et al. 2001] and multidimensional
(spatial) indices [Samet 2006; Chdvez et al. 2001], which discard only those objects
that can be proved to be irrelevant. However, the main bottleneck of the efficiency
issue in similarity search is the so-called curse of dimensionality [Chavez et al.
2001], which makes the task of searching some spaces intrinsically difficult, whatever
algorithm is used. A recent trend to remove this bottleneck resorts to approzimate
search [Chévez and Navarro 2001; Zezula et al. 2005; Samet 2006], where it has
been shown that one can find most of the relevant objects at a fraction of the cost
of the exact search algorithm. These algorithms are welcome in most applications,
because resorting to similarity searching already involves a fuzziness in the retrieval
requirements: The process of modeling similarity between objects involves generally
some loss of information. Thus, in most cases, finding some similar objects is as
good as finding all of them.

2.3 Topological Properties

Although a particular similarity function could exhibit various properties, the topo-
logical properties of similarity functions deserve a special attention.

2.3.1 Metric Postulates. Among a number of topological properties, the metric
postulates (axioms) are widely applied in similarity modeling. The metric postu-
lates are defined as (Vx,y, z € U):

6(z,y) =0 STr=y reflexivity

d(z,y) > 0 & o #y non-negativity

o(z,y) = o(y,x) symmetry
6(z,y) +6(y,2) = 6(z,2) triangle inequality

Reflexivity permits the zero dissimilarity just for identical objects. Non-negativity
guarantees that every two distinct objects are somehow positively dissimilar. If ¢
satisfies reflexivity, non-negativity and symmetry, it is a semimetric. Finally, if a
semimetric 0 satisfies also the triangle inequality it is a metric (or metric distance).
The triangle inequality is a kind of transitivity property; it says that if x, y and v,
z are similar, also x, z are similar. If there is a finite upper bound d* such that
§:Ux U [0,d"], then § is a bounded metric. In such case, M = (U, ) is called
a (bounded) metric space. To complete the categorization of functions based on
combining the metric axioms, we also distinguish pseudometrics (not satisfying the
reflexivity), and quasimetrics (not satisfying symmetry). For a formal definition of
the above mentioned properties we refer to Khamsi and Kirk, and Corazza [Khamsi
and Kirk 2001; Corazza 1999).

At this moment, we also define the category of nonmetrics, which we understand
as any dissimilarity functions that do not fulfill one or more of the metric axioms.

2.3.2  Other Properties. There have been other topological properties utilized in
similarity modeling. Some are more general (like four-point, pentagon, ultrametric,
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negative-type inequality) [Marcu 2004; Khamsi and Kirk 2001], some are restricted
to vector spaces (like segmental additivity, corner-point inequality) [Jdkela et al.
2008], some are set-theoretic (like matching, monotonicity, independence) [Tversky
1977], etc. Anyways, we consider the metric postulates restrictive enough yet suf-
ficiently general to be shared by a large class of similarity functions. Hence, any
other properties of a (dis)similarity function in this paper are discussed just in the
context of domain-specific examples.

2.4 Motivation for Nonmetric Similarity

In the following, we discuss the motivation for nonmetric similarity measuring and
the drawbacks of the metric case. First of all, we have to emphasize that we
observe two database-specific objectives — the efficiency of similarity search (the
performance issue) and the effectiveness of similarity search (the quality of query
answers). Historically, the metric similarities did represent a reasonable trade-
off concerning the efficiency/effectiveness problem [Zezula et al. 2005]. Metrics
allowed some degree of effective similarity modeling, while their postulates could
be used to index the database for efficient retrieval. However, as the complexity
of retrieval applications has grown in the last years, the demands for nonmetric
similarity measuring have become stronger. Hence, the universal effectiveness of
metric functions could not be considered anymore as sufficient enough.

2.4.1 Richness of Similarity Modeling. The strongest rationale for nonmetric
similarities is the increased freedom of similarity modeling — the author of a simi-
larity function (the domain expert) is not constrained by metric postulates. Various
psychological theories suggest the metric axioms could substantially limit the ex-
pressive power of similarity functions [Santini and Jain 1999; Tversky 1977].

J

(@)3(xx)>0  (b)3(xy)=0 (c) 3(x.y) < 8(y.x) ; (d) 3(xy)+ 3(yx) < 8(x,2)

Fig. 2. Objections against metric axioms in similarity measuring: (a) reflexivity (b) non-negativity
(c) symmetry (d) triangle inequality

In particular, reflexivity and non-negativity have been refuted by claiming that
different objects could be differently self-similar [Krumhansl 1978; Tversky 1977].
For instance, in Figure 2a the image of a leaf on a trunk can be viewed as positively
self-dissimilar if we consider a similarity which measures the less similar parts of
the objects (here the trunk and the leaf). Or, alternatively, in Figure 2b the leaf-
on-trunk and leaf could be treated as identical if we consider the most similar parts
of the objects (the leaves). Nevertheless, the reflexivity and non-negativity are the
less problematic properties.
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Symmetry was questioned by showing that a prototypical object can be less sim-
ilar to an indistinct one than vice versa [Rosch 1975; Rothkopf 1957]. In Figure 2c,
the more prototypical “Great Britain and Ireland” image is more distant to the
“Ireland alone” image than vice versa (i.e., a subset is included in its superset but
not vice versa).

The triangle inequality is the most attacked property. Some theories point out
that similarity has not to be transitive [Ashby and Perrin 1988; Tversky and Gati
1982], as shown by the well-known example: a man is similar to a centaur, the
centaur is similar to a horse, but the man is completely dissimilar to the horse (see
Figure 2d).

From a more applied point of view, the lack of metric postulates allows us to
model similarity functions that exhibit the following desirable properties:

—Robustness. A robust function is resistant to outliers (noise or deformed objects),
that would otherwise distort the similarity distribution within a given set of
objects [Donahue et al. 1996; Howarth and Ruger 2005]. In general, having
objects x and y and a robust function ¢, then an extreme change in a small part
of z’s descriptor should not imply an extreme change of 6(z,y).

—Locality. A locally sensitive function is able to ignore some portions of the com-
pared objects. As illustrated in the above example in Figure 2ab, we could model
a “smart” similarity function that decides which portions of object x are relevant
when evaluating its similarity with object y. This property leads not only to po-
tential violation of non-negativity, but also to the violation of triangle inequality.
For example, consider the centaur and the man (see Figure 2d); here we perform
such a locally sensitive matching — we compare either the human-like or horse-
like parts of the two images. The locality is usually used to privilege similarity
before dissimilarity, hence, we rather search for similar parts in two objects than
for dissimilar parts [Robinson et al. 2000; Smith and Waterman 1981]. As in real
world, highly similar objects are not very common when compared at a global
scale. An “augmentation” of similarity by locally sensitive functions provides a
way how to distinctly separate similar and dissimilar objects.

2.4.2 The Comfort of Similarity Modeling. Another rationale for supporting
nonmetric similarities, quite related to the first one, is to provide some comfort to
the domain experts. The task of similarity search should serve just as a computer-
based tool in various professions often not related to computer science. Hence, the
authors of custom similarity functions that are to be employed into the search en-
gines come from domains like computer vision, bioinformatics, medicine, material
engineering, meteorology, music, psychology, chemistry, and many others. Natu-
rally, when modeling their similarity functions, the domain experts should not be
bothered by some “artificial” constraints laid on their functions, for example, by the
metric postulates. As the domain experts often do not need a strong mathematical
background, the enforcement of metric postulates to become an obligatory part of
their “perfect” similarity functions represents an unpleasant obstacle. This is espe-
cially true when the similarity function is given by a complex heuristic algorithm
[Wild and Willett 1996], or even as a device digitizing output of some physical
phenomena [Tsukada and Watanabe 1995].

It should be noticed that, e.g., turning a semimetric into a metric could be
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easily achieved by adding a sufficiently large constant. Or, turning a similarity
into dissimilarity could be achieved as 6(-,-) = 1/s(-,-) or §(-,-) = constant—s(-, -).
However, such trivial transformations usually lead to inefficient similarity search,
as it will be discussed in Section 4.5.1.

2.4.3 Design & Implementation Issues. Besides descriptions of similarity func-
tions in closed forms (by various formulas), one can design a similarity that is
described just by an algorithm written in a context-free language — as a black box
returning a real-value output from a two-object input [Mandl 1998]. The topologi-
cal properties (i.e., the metric postulates) of an algorithmically described similarity
function are generally undecidable, so one has to treat such a function as a non-
metric.

Moreover, the similarity functions could be embedded in “black-box” hardware
devices. In particular, specialized hardware ASIC (Application-specific integrated
circuit) co-processors were designed to improve the performance of similarity mea-
suring, following the VLSI (Very-large-scale integration) paradigm. The ASICs
offer high performance for specialized tasks, e.g., a particular similarity measur-
ing [Mukherjee 1989]. However, a disadvantage of such specialized devices is their
limited usage when the similarity function has to be re-designed. A recent trend
in VLSI is the reconfigurable computing, where a general-purpose FPGA (field-
programmable gate array) is physically configured to act as a specialized processor
(instead of a brand new ASIC design). Unlike CPUs where just the control flow is
driven by software, the FPGAs allow to change the “native” data flow throughout
the circuit — in simple words, to configure a task-specific hardware design. An un-
known FPGA device implementing a similarity function [Freeman 2006; Freeman
et al. 2005; Perera and Li 2008] has to be considered also as a nonmetric black box.

2.4.4 Turning o Similarity into Dissimilarity. Besides developing “natively”
nonmetric dissimilarity functions, one could obtain a nonmetric function easily
when transforming a similarity function into dissimilarity. To obtain a dissimilarity,
one has to apply some decreasing monotonous function f on the original similarity
function. However, application of such a function could lead to violation of re-
flexivity, non-negativity, and also the triangle inequality. For example, f(s) = 1/s
ensures non-negativity (and reflexivity) for positive similarity functions, but it will
probably violate the triangle inequality. Even a simple subtraction of the similarity
value from a constant number (e.g., from the maximal similarity score) could lead
to dissimilarity that violates all the metric postulates except symmetry [Corazza
1999].

3. NONMETRIC SIMILARITY FUNCTIONS AND APPLICATION DOMAINS

In this section, we focus on solutions of domain problems that have employed the
nonmetric measuring either for similarity search, or for other retrieval-specific tasks,
such as clustering or classification. Note that in this section we are concerned just
with identifying similarity-search problems from very different domains, in order to
bring a real motivation for nonmetric functions and to justify the efforts spent on
implementing nonmetric similarity search techniques.

The identification of a similarity search technique (or a similarity function alone)
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in the domain problems is often not obvious (e.g., see protein matching in Sec-
tion 3.4.2), because of specific terminology, methodologies and conventions within
a particular domain. Hence, instead of simple surveying we also reinterpret the
techniques in order to clearly separate the concept that represents (implements)
a similarity search task. Moreover, we include only approaches employing inher-
ently nonmetric (dis)similarity functions, that is, such functions that could not be
trivially transformed into a metric distance suitable for efficient metric similarity
search (as it will be discussed in Section 4.5.1).

3.1 General-purpose Nonmetric Similarities

In the following, we list a dozen of general nonmetric similarity functions used in
various domains. Some domain-specific similarity functions will be additionally
presented within the discussion on domain applications from Section 3.2 on.

3.1.1 PFractional L, distances. A widely used family of distances for computing
similarity in vector spaces (i.e., U = R? for some dimensionality d) is the Minkowski
distance (L,). Given two vectors z,y € R, the L, distance is defined as

d 1/p
L= (S )
i=1

For parameter p > 1, it is well known that the L, distance holds the properties
of a metric. Some examples of Minkowski metrics are the Manhattan distance
Li(z,y) = Z?Zl |x; — y;|; the Euclidean distance Lo(x,y) = Zle |z; — y;|?; and
the Mazimum distance Lo (x,y) = max?_; |z; — y;|.

If p € [0,1], such L, distance function is known as fractional distance [Aggarwal
et al. 2001]. The triangle inequality does not hold in fractional distances, thus it

is only a semimetric. In Figure 3 see the ball shapes for various L, distances (the
ball border shows all the points at a fixed L,, distance from q).

X
@
L@ );
q H
® i
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Z &
(e)

Fig. 3. Ball regions of L, distances: (a) Lo.5 (b) L1 (¢) L2 (d) Ls (e) Loo

3.1.2  Dynamic Partial Function (DPF). The Dynamic Partial Function (DPF)
[Goh et al. 2002] is also related to the Minkowski distance. In DPF, only a few of
the coordinate values are used to compute the distance between two objects. Let
¢i = |x; —y;|, where z; and y; corresponds to the i-th coordinate of vectors x and y,
respectively. Let A,, be the set of the m smallest values of {c1, ..., ¢4} (m < d).
The DPF is defined as
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1/p
éprr(z,y) = ( > |$i—yi|p> ,p=1

i €A,

Note that for different pairs of objects (x,y) it may be possible that different
coordinates are the ones with minimum difference (i.e., the ones that belong to
A.,), thus DPF does not satisfy the triangle inequality.

3.1.3  Cosine measure & distance. The cosine measure [Baeza-Yates and Ribeiro-
Neto 1999] measures the cosine of the angle between two vectors. It is a suitable
similarity function in situations where the magnitude of the vectors is not impor-
tant — we are only concerned with the direction of the vectors. The cosine measure
is defined as

d
Z'L 13:191
\/Z’L 13’512 Zz lyl

Since Scos(,y) is a similarity function, by defining dcos(z,y) = 1 — Scos(x,y) W
get an equivalent semimetric distance, the cosine distance. When applying arccos
on Scos We get the angle distance dangle(T,y) = arccos(scos(x,y)), which is a metric
distance.

3.1.4  Kullback-Leibler divergence (KLD). The Kullback-Leibler divergence (KLD)
[Rubner et al. 2001] is used as a dissimilarity function between histograms based
on the information theory. It is defined as

T;
5KLD :ZJ y Zl} log( )

The KL-divergence, according to Rubner et al., “measures how inefficient on av-
erage it would be to code one histogram using the other as the true distribution for
coding” [Rubner et al. 2001]. Note that this distance function does not satisfy sym-
metry, nor non-negativity, nor the triangle inequality, and lim,, o+ dxrp(z,y) =
oo for any bin ¢ of the histogram.

3.1.5  Jeffrey-Divergence (JD). The Jeffrey-divergence (JD) [Rubner et al. 2001]
is also motivated by the information theory, and is defined as

5JD .13 y sz 1Og< ) +yi - log (fv;{:%>
2

JD satisfies symmetry, but it does not satisfy the triangle inequality.

scos T y

3.1.6  x? distance. The y?-statistic distance [Rubner et al. 2001] measures if two
empirical distributions were produced from the same underlying true distribution.
Let m(i) = 5% be the mean value of z; and y;. The x? distance is defined as

m(s
= )
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This distance is not symmetric, it is not non-negative, and it does not satisfy the
triangle inequality.

3.1.7  Dynamic Time Warping Distance (DTW). The Dynamic Time Warping
[Berndt and Clifford 1994] is a dissimilarity function for comparing time series.
Suppose that x € R™ and y € R™ are two time series, and let M be an n x m
matrix with M[i, j] = (z;—y;)?. A warping path W = {w1, ..., w;}, max{m,n} <
t <m+mn-—1,1is a set of cells from M that are “contiguous”, that is, (a) w; =
MI1,1], wy = M[m,n] (boundary condition), (b) if wy = MJa,b] and wi_; =
Mla’,b'], then a—a’ < 1Ab—V' < 1 (continuity), and (c) if wy = Ma, b] and wg_1 =
Mla’,b'], then a —a’ > 0Ab— 1 > 0 (monotonicity) [Keogh and Ratanamahatana
2005]. The DTW computes the warping path that minimizes the dissimilarity
between the time series, thus

1) = mi
DTW(% l/) mwl/n

The DTW violates the triangle inequality.

3.1.8 Longest Common Subsequence (LCS). Formally [Cormen et al. 2001], a
sequence x is a subsequence of a sequence y if there is a strictly increasing sequence
of indices such that there is a match between symbols in = and y (the symbols
in y must not be necessarily adjacent). Given two sequences z and y, a third
subsequence z is a common subsequence of x and y if it is a subsequence of both x
and y. The longest common subsequence (LCS) is the maximum length common
subsequence of x and y. LCS is a similarity function spcg (with spog(z,y) =0if
and y do not have a common subsequence). Even if modified to dissimilarity (e.g.,
drcs(2,Y) = Smaz — Spos(x,y), wWith S;,4, the maximum possible value returned
by srcs), it still does not satisfy triangle inequality.

3.1.9 FEarth Mover’s Distance (EMD). The Earth Mover’s Distance (EMD)
[Rubner et al. 1998] measures the least amount of work required to transform one
distribution of values (a feature vector) into another one. To compute EMD, one
needs to solve an instance of the transportation problem. Let ¢;; be the cost of
transforming one unit from z; to one unit from y; (we assume that the vectors
are non-negative and that the weight of both vectors is normalized). The EMD
computes the flows f;; such that the transform cost is minimum subject to some
constraints:

dpmp(z,y) = min {Z?Zl Z?Zl cijfij}
subject to
fij 0
Z?:lfij :yj ijl,,d
Z?Zlfij:xi Vlzl,,d

The EMD provides us with a tool to match not only corresponding dimensions,
but any pair of dimensions. Depending on the cost values ¢;; (also referred as
“oround distance”), the EMD may be a metric (e.g., it satisfies the triangle in-
equality if ¢;x < ¢ + cix Vi, j, k). But, if the ground distance is nonmetric, then

v
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the EMD is also a nonmetric (only symmetry is guaranteed).

3.1.10 Hausdor{f Distance Variants. The Hausdorff distance (HD) [Huttenlocher
et al. 1993] is a metric distance for sets of objects. Given sets A = {a1, ..., am}
and B = {b1, ..., b,} and a function h(A, B) = max,eca minyep d(a,b) (the di-
rected Hausdorff distance), with d(a, b) an underlying distance between objects, the
Hausdorff distance is defined as

éup(A, B) = max {h(A4, B),h(B,A)}

Some variations of the Hausdorff distance have been used for image retrieval.
For example, the partial Hausdorft distance (PHD) [Huttenlocher et al. 1993] only
considers subsets from A and B to compute the similarity between the sets. The
PHD is defined as

dpup(A, B) =max{hr(4, B),hx(B,A)},

where 1 < L < n and 1 < K < m are parameters that limits the computation of
h(B,A) (h(A, B)) to the K*" (L*") ranked object (according to distance &) in B
(A). hp(A,B) and hg (B, A) are known as partial distance functions. The PHD
violates the triangle inequality, thus it is nonmetric.

Another variant is called the modified Hausdorff distance (MHD) [Dubuisson and
Jain 1994], which considers the average of hi(A, B) distances. It is defined as

5MHD(A7 B) = Inax {hMHD(A7 B)’ hMHD(B; A)} >

with hMHD(A7 B) = ﬁ ZaEA minbeB (S(CL, b)

The described nonmetric variants are only two examples of the many variants
of Hausdorff-like distances, while most of them are nonmetric (either reflexivity
or triangle inequality is violated). See their categorization in Dubuisson and Jain
[Dubuisson and Jain 1994].

3.1.11 Normalized Edit Distance (NED). The edit distance (or Levenshtein dis-
tance) measures the minimum number of edit operations (insertions, deletions, and
substitutions) needed to transform one string into another one [Levenshtein 1966].
Each edit operation can be weighted by a non-negative real value v (y(a — b) for
substitutions, y(a — A) for deletions, and y(\ — b) for insertions). An editing path
P [Marzal and Vidal 1993] between strings « and y is a sequence of ordered pairs
(ik, Jx) (0 < k < m, with m(P) the number of associated edit operations) such that

0 <ir <lz[, 0 < gk <l|yl; (i0,70) = (0,0); (im,Jim) = (|2, |y]),
0<ip—ip—1 <1 0< g —jro—1 <1, Vb <1,
i — -1+ Jk T Jk—1 2> 1

The weights can be associated to the corresponding editing path,
m
W(P) = y(wi_, +1..in = g, +1... ),
k=1

and it follows that deait(x,y) = min{W(P)}.

The normalized edit distance (NED) [Marzal and Vidal 1993] between two strings
x and y takes into account the length of the editing path. Let W (P) = W (P)/m(P).
The normalized edit distance is defined as
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OnNep(T,y) = min{W(P)}

It has been shown that the NED does not satisfy the triangle inequality [Marzal
and Vidal 1993].

3.1.12  Sequence Alignment Distance (SAD). The SAD could be understood as a
nonmetric generalization of the classic edit distance [Levenshtein 1966]. In sequence
matching problems, one wants to compute the best alignment between a sequence
Y =1y1Ys2 - ..yq and a set of sequences S. The best match corresponds to the object
x € S that minimize a certain distance function §, which is defined using the
notion of sequence alignment. The distance ¢ is defined such that y matches the
sequence that needs the minimum number of edit operations (match, replace, delete
and insert) to be converted into = [Parker et al. 2007]. Let c(a,b) be the cost of
matching character a with b, ¢(a, —) the cost of inserting character a, and ¢(—, b)
the cost of deleting character b. The alignment cost for sequences  and y (starting
from position i and position j respectively) is defined as

c('r’nyj) + 6SAD(x?y7i + 1a] + 1)
dsap(z,y,4,j) = min c(—,y;) + dsap(x,y,i,5 + 1)
C(Ii, 7) + 6SAD(‘T7y7i + 1a])

Depending on how the cost function c¢ is defined, SAD may violate some or all
metric axioms. Among the nonmetric ones, the Smith-Waterman (SW) algorithm
can be used to efficiently find the best alignment between sequences [Smith and
Waterman 1981]. Unlike other sequence alignment algorithms, the SW algorithm
is a local-alignment function (i.e., allowing to ignore the non-matching parts of the
sequences), while it furthermore supports scoring matrices and specific weights for
inserting or enlarging gaps.

3.1.13 Combined Functions. Besides modeling the similarity functions by for-
mulas/algorithms associated with the internal form of descriptors, the similarity
functions could originate also as combinations of some underlying particular func-
tions. The combinations include summing of particular functions, their multiplica-
tion, picking a median similarity, etc. Here we have to emphasize that even if the
underlying functions are metrics, their combination could lead to nonmetric. For
example, summing two metrics always leads to a metric, however, their multiplica-
tion or picking a median similarity results in a nonmetric distance. Naturally, if the
underlying similarities are nonmetric, their combinations are nonmetrics as well.

Figure 4 shows the region balls for various combined similarity functions (one
metric and three nonmetrics violating the triangle inequality). The Lo + Jangle is
a summation of Euclidean distance and the angle distance (being thus a metric),
the Ly + dcos is similar, however using the cosine distance instead of angle distance,
being thus nonmetric. The L 3-QFD is a multiplication of nonmetric fractional L,
distance and the metric quadratic-form distance (resulting to nonmetric), while the
2-med(QFD, Jangle; WL2) distance picks the second smallest distance among the
quadratic-form distance, the angle distance, and the weighted Euclidean distance
(leading to nonmetric).
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)

q ."::
Vv (LoH8,)(a,X)

(0,0) (a) (b)

Fig. 4. Ball regions of combined distances: (a) L2 + dangle (b) L2 + dcos (¢) Lo.3-QFD (d)
2-med(QFD, angie, wl2)

In the particular case of vector spaces, as depicted in Figure 4, it might appear
that balls belonging to metrics should be of convex shape, while balls belonging
to nonmetrics should be nonconvex. However, this is not generally true as can
be seen in Figure 4a (nonconvex ball for a metric) and Figure 4b (convex ball
for a nonmetric). Another example could be the squared Lo distance, which is
a nonmetric but its ball shape is the same as for Lo (Figure 3b). In summary,
the notion of shape convexity/concavity is meaningful only in Euclidean vector
spaces, so the shape of a particular non-Euclidean region says nothing about triangle
inequality of the distance used.

3.1.14  Computational Complezity of Nonmetric Functions. The time complex-
ity of algorithms implementing the similarity functions can vary from linear to
exponential (regarding the size of the objects x and y to be compared). Fractional
distances are computed in O(d) time, and the DPF can be computed in O(d + kd).
KLD, JD, and x? distances have O(d) time complexity. DTW, LCS, and SAD are
O(nm) when computed by dynamic programming. In practice, the EMD is usually
implemented by a linear programming method (e.g., simplex). The simplex algo-
rithm has exponential worst-case complexity, but linear programming problems can
be solved in (weakly) polynomial time. In particular, if both feature vectors have
the same number of dimensions, the EMD can be computed in O(n?logn) time
[Rubner and Tomasi 2001]. The PHD can be computed in O(nm) - O(d), where
O(d) is the time complexity of the partial distance function. The NED can be
computed in O(mn?) time and O(n?) space, where |z| = n, |y| = m, and assuming
m > n.

3.1.15 Summary. In Table II we give an overview of various properties con-
cerning the general-purpose nonmetric functions mentioned in this section. In par-
ticular, a function could be similarity or dissimilarity (as defined in Section 2.1),
it satisfies some of the metric postulates, it is either global or local (as discussed
in Section 2.4.1). The time complexity ranges from cheap (i.e., O(n)) to expen-
sive (e.g., O(n?), O(2")). Furthermore, we give a real domain example and also a
reference to the section describing details of each function.

3.2 Nonmetric Similarity Functions in Multimedia Databases

The area of multimedia databases was one of the first suitable environments for
similarity search. Because multimedia documents capture fragments of the nature
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Table II. Properties of some general-purpose nonmetric functions (D = dissimilarity, S = similarity,
R = reflexivity, N = non-negativity, S = symmetry, G = global, L. = local)

3 g 8
% i 3 z = 3=
z o 2% = 8 =% = 22
= =8 % ) a, g g =9 s 9
T t%2 g gE g & <5 g &
o 5 S
@ £ag £ =8 < 3 S 8 S 8
Frac. L, | D RNS G O(n) image retrieval 3.1.1 3.2.1
DPF | D RNS L O(n) image retrieval 3.1.2 3.2.1
cosine sim. | S S G O(n) text retrieval 3.1.3 3.2.5
KLD | D R G O(n) audio retrieval 3.1.4 3.2.3
JD | D RNS G O(n) image retrieval 3.1.5 3.2.1
x| D R G O(n) image retrieval 3.1.6 3.2.1
EMD | D at least S G O(n® log n)  detection of 3.1.9 3.2.5
or O(2") phishing web pages
DTW | D RNS G O(n?) time series 3.1.7 332
NED | D RNS G 0O(n?) hand-written digit ~ 3.1.11  3.5.1
recognition
LCS | S NS L O(n?) music retrieval 3.1.8 324
SAD | D some G/L  O(n?) music retrieval 3.1.12 324
Hausdorff | D at least NS G/L > O(n?) talker identification 3.1.10  3.5.2
combinations | D/S  some G/L  some chemical retrieval 3.1.13  3.4.3

that can be seen and heard, measuring similarity of multimedia documents provides
a very natural tool for modeling human cognition of audio-visual stimuli.

3.2.1 General Images € Video. Content-based image similarity search has been
a very active research area in the last decade. A recent survey on image retrieval
cites almost 300 articles, and reports that publications in this area continue to grow
at a fast rate [Datta et al. 2008]. Indeed, it could be argued that image retrieval is
one of the most important research domains of similarity search.

The main problem in content-based image retrieval (CBIR) is to design algo-
rithms to find similar images, based primarily on the content (color values of the
pixels) of the image. Similarity is an inherently subjective concept, but in the case
of image similarity this “subjectiveness” is more pronounced. There are many dif-
ferent ways to define when two images should be considered similar, for example,
when they have similar color histograms, or when the textures of the objects de-
picted in the image are similar, or when the distribution of the objects in the image
is similar, and so on. For this reason, the flexibility that nonmetric similarity func-
tions give us is an important characteristic to be considered when implementing
CBIR systems.

Nonmetric functions for image retrieval have been used for a long time. For
example, Rubner et al. [Rubner et al. 2001] made an empirical comparison of sev-
eral dissimilarity functions for color and texture attributes in images. Among the
dissimilarity functions, they tested the x? distance, Kullblack-Leibler divergence,
Jeffrey-divergence, and the Earth Mover’s distance (although the last one in its
metric form). Their experimental evaluation showed that for classification and im-
age retrieval tasks with large sample sizes the nonmetric functions performed best.
Other nonmetric functions, like fuzzy feature contrast [Santini and Jain 1999], have
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also been used for texture retrieval with illumination invariant features [Vacha and
Haindl 2008].

The fractional L, distances have been suggested for robust image matching [Don-
ahue et al. 1996] and retrieval [Howarth and Ruger 2005]. Unlike the classic L,
metrics, the fractional L, variants allow us to inhibit extreme differences in coordi-
nate values (e.g., in a few bins of color histogram). This can be viewed as a robust
behavior to outliers compared with traditional distance functions like the Euclidean
distance. In another approach, the dynamic partial function (DPF) distance [Goh
et al. 2002] was used for image classification, where 144-dimensional vectors of im-
ages were established (the features included color histograms, color means, color
variances, color spreadness, color-blob, elongation, and texture features in three
orientations). In an empirical study [Goh et al. 2002] a more effective classification
was achieved using the DPF when compared with the metric Minkowski distances.
Yet another nonmetric distance that has been used for image retrieval includes a
nonlinear model based on a Gaussian function [Cha 2006]. Additionally, image
classification with nonmetric distances (Partial Hausdorff Distance and fractional
L,, distances) has also been studied [Jacobs et al. 2000].

Content-based video retrieval is another domain that is recently attracting much
attention from the research community. Since 2003, the TREC Video Retrieval
Evaluation [Smeaton et al. 2006] has been a common venue for researchers in this
area. There have been a few works where nonmetric functions have been proposed
for video retrieval. For example, Zhou et al. [Zhou et al. 2007] proposed to map
a video segment into a set of symbols (representing a cluster that contains similar
frames), and then to use the Probability-based Edit Distance for comparing symbol
sequences. This similarity function takes into account both the temporal ordering
in the video segment and the similarity between symbols.

3.2.2  Geometries €& Shapes. The problem of searching similar shapes in 2D and
3D arises in a number of fields. Example domains include Computer Aided De-
sign/Computer Aided Manufacturing (CAD/CAM), virtual reality (VR), medicine,
molecular biology, and entertainment. The improvement in 3D scanner technology
and the availability of 3D models widely distributed over the Internet are rapidly
contributing to the emergence of large databases of multimedia data. Additionally,
the rapid advances in graphics hardware are making the fast processing of these
complex data possible and available to a wide range of potential users at a relatively
low cost.

As 3D models are used in diverse application domains, different forms for object
representation, manipulation, and presentation have been developed. In the CAD
domain, objects are often built by merging patches of parameterized surfaces. Also,
constructive solid geometry techniques are often employed, where complex objects
are modeled by composing primitives. 3D acquisition devices usually produce vox-
elized object approximations (e.g., computer tomography scanners) or clouds of 3D
points (e.g., in the sensing phase of structured light scanners). Probably the most
widely used representation to approximate a 3D object is by a mesh of polygons
(usually triangles). For 3D retrieval, basically all of these formats may serve as
input to a similarity query.

There are several examples of nonmetric functions used for shape retrieval. For
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example, the Partial Hausdorfl Distance (PHD) has been shown to be useful for
shape-based image retrieval [Huttenlocher et al. 1993]. The problem is to match a
2D segment into an image, taking into account translations of the segment (but no
rotations). The PHD distance allows the system to effectively measure the degree
of similarity between the 2D segment superimposed to the image. In particular,
the PHD was shown to work well on images with some level of noise.

Additionally, a Fourier-based approach for shape similarity search called WARP
[Bartolini et al. 2005] uses the dynamic time warping distance (DTW) to compare
different shape descriptors. WARP computes features from 2D shapes by selecting
some of the coefficients obtained after applying the Discrete Fourier Transform
to the shape. Then, it uses the DTW for comparing the feature vectors. Its
advantage over the more usually used Euclidean distance is that DTW considers
elastic shiftings, thus it can match similar signals even if they are not completely
aligned.

Nonmetric functions have also been used for 3D model retrieval. For example,
Pu et al. [Pu et al. 2007] proposed to compute features from 2D projections of
the 3D models. The feature vectors are obtained using the spherical harmonics
transform applied to the 2D projections. Then, a similarity function based on the
Euclidean distance is defined between the computed feature vectors. However, the
match is performed between projections with minimum Fuclidean distance, which
means that for different pairs of objects different projections may be compared.
Thus, this similarity function violates the triangle inequality.

3.2.3  Audio — Speech € Music. A technique for classification and search of audio
records using nonmetric similarities was introduced by Foote [Foote 1997]. The
original audio waveform is converted (by use of sliding window) into Mel Frequency
Cepstral Coefficients (MFCCs), which are quantized and a histogram is produced.
A histogram could be produced not only for a single audio record, but also for
multiple records (e.g., a class of records). The histograms can be then compared
by various dissimilarity functions. Besides the Euclidean distance, there were also
nonmetric distances used, like the symmetric form of Kullback-Leibler divergence
and the Correlation distance (which is similar to the cosine distance). The approach
provides a general similarity search in databases of audio and music records, but
allows us also to classify music genres (by comparing histogram of a query record
with a histograms of classes associated with particular genres), and also distinguish
music and speech from non-vocal sounds.

Another approach to nonmetric music retrieval was proposed by Pampalk [Pam-
palk 2006]. The descriptor of music record was divided into four subdescriptors
— the average spectral shape (using MFCCs), fluctuation pattern (modulation of
the loudness amplitudes), the gravity of the fluctuation pattern, and the bass of
the fluctuation pattern. The nonmetric dissimilarity between two records was then
evaluated as a weighted linear combination of four particular distances — 70% of
the Kullback-Leibler divergence on the average spectral shape and three times 10%
of the Euclidean distance on the rest of the descriptors.

Yet another approach [Logan and Salomon 2001] proposed a descriptor of music
record that consisted of an ordered set of clusters, where the clusters were de-
termined from MFCCs of the frames in the record. Each cluster in the set was
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represented by just three values, the mean, covariance and weight of the cluster.
The similarity of songs was then measured by the Earth mover’s distance (EMD) on
the descriptors. Because the Kullback-Leibler divergence was used as the ground
distance on particular clusters, the resulting dissimilarity became nonmetric (for
the definition of EMD see Section 3.1.9).

A different approach was presented for speech audio retrieval [Ratanamahatana
and Tohlong 2006]. Instead of MFCCs, the descriptor of a speech record was
formed by time series consisting of frequency distribution obtained by Fast Fourier
Transformation of the waveform (additionally smoothed and normalized). Then,
DTW was used as a dissimilarity function of two speeches, exhibiting a significant
improvement in classification precision and speed with respect to MFCCs.

3.2.4 Musical Scores. Besides the raw recordings, a piece of music can be repre-
sented in a symbolic notation that does not depend on a real musical performance.
The symbolic notation could be either in form suitable for reading by human (the
musical score), or in a derived form suitable for computerized processing (e.g., MIDI
files or processed audio signal).

In Typke et al. [Typke et al. 2003] the monophonic score (i.e., just the melody)
was transformed into a set of weighted 2D points, where each note (musical symbol,
respectively) in the score was modeled by a point. The position of the point in the
space was determined by the timing of the note and its pitch, while the weight of a
point was determined by a musical property of the note. In addition to the metric
version of Earth Mover’s Distance (EMD), the pseudometric modification of EMD
— called the Proportional Transportation Distance [Giannopoulos and Veltkamp
2002] — was used for measuring similarity of two scores.

A method of similarity search in MIDI databases by use of audio-recording queries
(or vice versa) was introduced in [Hu et al. 2003]. A MIDI file or audio recording is
processed into so-called chromagram — a time series where each element of the series
consists of 12-dimensional chroma vector. The similarity of chromagrams was then
computed by DTW, where the Euclidean distance was used as ground distance on
the 12-dimensional vectors. When compared with MFCCs and pitch histograms,
the experiments showed that chromagrams with DTW performed the best.

Guo and Siegelmann proposed the time-warped longest common subsequence
similarity (TWLCS) for monophonic symbolic music matching [Guo and Siegel-
mann 2004]. The TWLCS is an alignment technique inspired by the suitable prop-
erties of DTW and the longest common subsequence (LCS) nonmetrics. Like DTW,
the TWLCS is robust with respect to variations in speed and rhythm. Like LCS,
the TWLCS does not necessarily penalize missing, redundant, or noisy notes.

In another approach, the classic LCS is used for retrieval of polyphonic music
given in symbolic representation (here MIDI files) [Suyoto et al. 2007]. However,
only the query is expected to be given in natively symbolic representation, while
the symbolic music scores in the database are produced by an automatic process-
ing of the raw audio waveform. The automatic transformation process produces
unnecessarily many notes — up to three times as many notes as actually present.
Nevertheless, the LCS is capable to ignore the extra notes by an alignment of the
(not noisy) query with the longest best-matching subsequence with the database
score, thus making the retrieval more robust.
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A study of music retrieval in folk songs was proposed [Parker et al. 2007], where
a song/query was represented as a sequences of notes, which themselves were rep-
resented as tuples (pitch, duration). Moreover, instead of absolute values, the
sequences contained "relative notes”, i.e., changes in pitch and duration with re-
spect to the previous note. Futhermore, the note tuples were binned to give a finite
alphabet, while the sequence alignment distance (SAD) was used as a dissimilarity
function on the resulting strings. The experiments have shown that such a model
performs an effective music retrieval.

3.2.5  Digital libraries €& Web pages. One of the first domains employing the
nonmetric similarity search was the vector model of text retrieval [Baeza-Yates
and Ribeiro-Neto 1999]. The text documents (e.g., plain texts, or web pages) are
modeled as vectors in high-dimensional space, where each particular dimension in
a vector belongs to a term (word) from the dictionary of terms appearing within
the entire collection of texts. The value of a coordinate on i-th position in the
vector then represents the contribution (weight) of é-th term in the dictionary to
the document. There was a number of techniques proposed for creating the weights,
the tf-idf scheme is probably the most popular.

The similarity of text documents is then evaluated by the cosine measure applied
on the vectors. The reason for favoring cosine measure over the Euclidean distance
is two-fold. First, the cosine measure ignores the quantity of text, that is, if we
compare a document A with document B, or document A with B concatenated
with its copy, we get the same similarity score. In other words, the angle between
the vectors is important, not the actual Euclidean distance. Second, because the
document vectors are very sparse (just tens out of hundreds of thousands dimensions
are non-null), text collections under the cosine measure are efficiently indexable by
the inverted index (for details, see Section 4.7.2). Note that in text retrieval domain
(or web search) we rather talk about ranking on the documents, instead of retrieving
a query result.

The latent semantic indexing (LSI) [Berry and Browne 1999; Berry et al. 1995] is
an algebraic extension of the classic vector model. Its benefits rely on discovering so-
called latent semantics hidden in the text collection. Informally said, LSI discovers
significant groups of terms in the collection (called concepts) and represents the
documents as linear combinations of the concepts. Moreover, the concepts are
ordered according to their significance in the collection, which allows us to consider
only the first k concepts as important (the remaining ones are interpreted as “noise”
and discarded). As for the classic vector model, also LSI uses the cosine measure
to rank the documents. To name the advantages, LSI helps to solve problems
with synonymy and homonymy. Furthermore, LSI is often referred to be more
successful in recall when compared to classic vector model [Berry et al. 1995],
which was observed for pure (only one topic per document) and style-free collections
[Papadimitriou et al. 1998].

A similarity-based approach for detecting phishing web pages was proposed by
Fu et al. [Fu et al. 2006]. The method uses low-resolution images made of visual
layouts of web pages, while a nonmetric version of the Earth Mover’s Distance on
the images is used for similarity search (phishing web page detection).
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3.2.6 XML databases. XML documents can be used to represent a large variety
of semi-structured data. Thus, huge XML collections have recently arisen (e.g., the
DBLP Computer Science Bibliography, which to date lists more than 1.2 million
publications). We expect that this trend will continue, as XML is a widely used
approach for exchanging documents in the Web.

An important problem in large XML collections is to quickly find XML documents
that have a similar structure or that have a subtree similar to a given pattern [Sanz
et al. 2008]. Also, there have been attempts to define semantic similarity of XML
attributes to combine it with the structural similarity [Tekli et al. 2007]. Buttler
[Buttler 2004] presents a survey of similarity functions for structured documents.
For example, the Tree Edit Distance compute the minimum number of edit opera-
tions to transform one tree into another. This distance is nonmetric, although it is
not difficult to convert it into a metric [Buttler 2004]. Additionally, the Weighted
Tag Similarity (WTS) computes how similar the tag sets of two documents are,
weighted by the tag frequency.

Many of these similarity functions for comparing XML documents are trans-
formed into distances that do not necessarily hold the metric axioms. For example,
the Level-based similarity [Sanz et al. 2008] is forced to be positive by assigning
the value 0 if it results to be negative. Thus, it does not hold reflexivity.

3.3 Nonmetric Similarity Functions in Scientific and Medical databases

Scientific and medical databases usually consist of various types of signals (1D,
2D, or even 3D) produced by measuring some physical phenomena. Because of the
inherent noise in the signal, the employed similarity functions are often designed as
robust to noise, and/or as locally sensitive, becoming thus nonmetric.

3.3.1 Imaging data. Nonmetric functions have been successfully applied in im-
age databases for medical applications. For example, Antani et al. [Antani et al.
2004] proposes a complex nonmetric similarity function (based on the minimum in-
tegral that measures the similarity between two shapes) for comparing spine X-ray
images. This approach obtained a better performance approach than the L, dis-
tance between Fourier descriptors. Also, several similarity functions in a content-
based image retrieval system for tomography databases were tested in Tsang et
al. [Tsang et al. 2005]. Their main result is that the Jeffrey-divergence was the
most accurate similarity function compared with metrics like L; and Ly. Saha and
Bandyopadhyay [Saha and Bandyopadhyay 2007] proposed a clustering technique
based on nonmetric functions, as part of a fully automatic segmentation of mag-
netic resonance images (MRI) of the brain. Schaefer et al. [Schaefer et al. 2005]
propose to use nonmetric multidimensional scaling to implement a visualization
tool for medical images.

3.3.2 Time series. The similarity search in times series has a huge number of
applications, including financial analysis, medical informatics, material engineering,
sensor networks, and many others. Among the nonmetric similarity functions for
time series, the dynamic time warping distance (DTW, see Section 3.1.7) and the
Longest Common Subsequence similarity (LCS, see Section 3.1.8) are the most
popular ones.

A newly proposed similarity for time series is the General Hierarchical Model [Zuo

ACM Journal Name, Vol. V, No. N, January 2010.



On Nonmetric Similarity Search Problems in Complex Domains : 23

and Jin 2007] (GHM), which computes correspondences between points belonging
to the same hierarchy or role. It uses a ground distance D (e.g., DTW) to measure
the distance between points in the same hierarchy. Thus, if D is nonmetric, GHM
will be also a nonmetric distance. Additionally, the Edit Distance on Real sequence
(EDR) [Chen et al. 2005] is a similarity function based on the Edit Distance that is
robust to noise, local time shifting, length of trajectories, and outliers. The EDR
violates the triangle inequality [Chen et al. 2005], thus it is nonmetric. Finally, the
Fast Time Series Evaluation (FTSE) [Morse and Patel 2007], while not a similarity
score for time series per se, is an algorithm that can speed up the exact computation
of similarity functions that rely on dynamic programming for their computation
(like the LCS and the EDR). Some application domains for time series are:

—FECG. The DTW proved its effectiveness in matching electrocardiograms (ECG)
[Tuzcu and Nas 2005]. Unlike wavelet analysis and Euclidean distance, DTW
is able to differentiate ventricular tachycardia from supraventricular tachycardia
in ECG signals, while differentiation of these two rhythm types has significant
clinical implications. The authors note that DTW can potentially be used for
automatic pattern recognition of ECG changes typical for various rhythm dis-
turbances. A DTW-based approach to ECG classification was also proposed by
Huang and Kinsner [Huang and Kinsner 2002].

—Seismological signals. Another playground for DTW dissimilarity offers the area
of seismologic signal search and classification. Angeles-Yreta et al. propose a
combination of Piecewise Aggregate Approximation (PAA), as a dimension re-
duction technique, together with DTW for matching seismologic signals [Angeles-
Yreta et al. 2004].

— Multivariate time series. Multivariate (multidimensional) time series (MTS) are
a common form of data representation in multimedia, medical, and financial ap-
plications. A nonmetric similarity function (called Eros) for MTS was proposed
by Yang and Shahabi [Yang and Shahabi 2004], showing its superiority to Eu-
clidean distance, DTW, and others. Since MTS could be understood as a matrix,
there can be an eigenvector matrix obtained using principal component analy-
sis for each MTS. The Eros similarity (being an extension of Frobenius norm)
then uses the eigenvector matrices to compute weighted sum of cosines of angles
between corresponding eigenvectors of the two compared MTSs.

— Trajectories of moving objects. The trajectory of a moving object could be re-
garded as a multidimensional time series, where each element of the series de-
scribes a position of the object in space and time. We already mentioned the
EDR [Chen et al. 2005] as a nonmetric function for trajectories of objects. An-
other method for robust matching of trajectories employing an extended version
of LCS was proposed in [Vlachos et al. 2005]. Because LCS in its basic form is
suitable only for symbolic time series (i.e., allowing just a match or mismatch of
two symbols), the authors have generalized LCS to work also with trajectories.
In particular, points on trajectories match if they are sufficiently close (achieved
by a threshold parameter €). The authors have also proposed a more advanced
version of LCS, the so-called LCS sigmoidal similarity, for which the parameter e
has not to be specified. The results have shown that LCS-based similarities out-
performed Euclidean distance (being sensitive to noisy points in the trajectory)
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but also DTW (which provides a global alignment, so it cannot effectively match
fragments of the trajectories).

3.3.3  Graph databases. A related problem to XML similarity retrieval is search-
ing and mining in graph databases, which has also become a relevant problem with
applications, for example, in bioinformatics, RDF databases and social networks.
Here, the main task is to search in complex structured data [Yan et al. 2005] or to
compute correlations between graphs [Ke et al. 2008]. Several similarity functions
can be defined for these kind of data. For example, the graph distance [He and
Singh 2006] is defined as the minimum edit distance (cost of transforming one graph
into another) under all possible graph mappings. This distance relies on vertex and
edge distances, thus if they are nonmetric the graph distance is also nonmetric.

3.4 Nonmetric Similarity Functions in Biological and Chemical databases

The similarity search in databases of (bio)chemical molecules/compounds has an
unforeseeable number of applications, including chemical activity prediction, bio-
logical function assessment, rapid drug trials, and many others. Simultaneously, the
complexity of chemical descriptors opens space for various nonmetric approaches
to similarity measuring. In the following, we point to several examples from the
large number of approaches to (bio)chemical similarity.

3.4.1 Proteins — primary structure. In the 1990’s there appeared tools for au-
tomated protein sequencing, so that the field of bioinformatic research got an op-
portunity to expand substantially. As any protein is a chain of amino acid bases
(there are 20 types of amino acids), its sequential representation is straightforward
— each symbol in the sequence stands for an amino acid within the protein chain.
The sequential representation of a protein is called the primary structure of a pro-
tein. The databases of protein sequences serve for a variety of bioinformatic tasks
(e.g., a classification of unknown biological functions), while the similarity between
proteins plays a key role in most of the tasks.

Apart from general-purpose similarity functions for strings (e.g., edit distance),
there appeared specific similarity functions (algorithms for sequence alignment, re-
spectively) that reflect not the pure sequential similarity, but should rather score
the biological similarity (i.e., similar biological functions). The biology-specific ex-
tensions include various scoring matrices (e.g., PAM or BLOSUM [Dayhoff et al.
1978; Henikoff and Henikoff 1992]) which allow one to determine the similarity of
a particular pair of symbols (a probability of mutation of one amino acid into an-
other). Another extension is a specific treatment of gaps in the alignment, while
the penalty (cost) for opening a new gap is greater than the penalty for a continu-
ation of the gap. A particular effect of such extensions is a violation of the triangle
inequality, so the protein alignment similarities are mostly nonmetric.

In particular, the Needleman-Wunch algorithm [Needleman and Wunsch 1970)
provides a global alignment of two proteins, hence, it is useful for measuring the
similarity of entire proteins. The Smith- Waterman algorithm [Smith and Waterman
1981] provides a local alignment, hence, it is useful for matching only the most
similar parts of two proteins. A very popular algorithm for local alignment is
also the BLAST (Basic local alignment search tool) [Altschul et al. 1990], which
represents not only a heuristic local-alignment similarity function, but it is designed

ACM Journal Name, Vol. V, No. N, January 2010.



On Nonmetric Similarity Search Problems in Complex Domains : 25

as a standalone search technique (i.e., the semantics of the function is adjusted to
the search algorithm). The FASTA algorithm [Lipman and Pearson 1985] has a
similar purpose as BLAST, though it was developed earlier and is less used than
BLAST.

The local alignment techniques for protein matching are more popular than the
global ones, because the biological functions are encoded as local fragments within
the protein chain.

3.4.2 Proteins — tertiary structure. Due to the advances in methods suitable
for analyzing proteins (e.g., X-ray crystallography, NMR spectroscopy), in the last
two decades there appeared more sophisticated three-dimensional representations
of proteins, the so-called tertiary structures of proteins®. Although there is no single
widely accepted type of tertiary structure, the basic tertiary structure of a protein
could be viewed as an open 3D polygon, where each vertex is labeled by a symbol
for an amino acid. That is, a tertiary structure could be used to derive the primary
structure but not vice versa, because the spatial information (especially the angles
between edges) plays an important role.

Since the tertiary structure provides a more precise representation of proteins,
it could be also used for more precise functional similarity measuring and search.
The scheme for evaluating a similarity between two proteins given by their tertiary
representations consists of two steps:

—Alignment. The vertices of two 3D polygons have to be aligned in a similar way
as the sequences (primary structures) are being aligned. However, the alignment
for tertiary structures is not based just on the symbols (sequence of amino acids),
but there come also spatial factors into play, like how deeply the atoms are buried,
hydrophobicity of submolecules, etc.

—Optimal rotation & similarity evaluation. The aligned polygons (their subparts,
respectively, because the alignment could also be local) are rotated in order to find
their optimal spatial superposition. For this reason the Kabsch algorithm is used
[Kabsch 1976], which tries to find a rotation that minimizes the root mean square
distance (RMSD) between the two polygons. Since RMSD is based on Euclidean
distance (being sensitive to outliers), there were also alternative classifiers of the
rotation proposed, like the elastic similarity score [Holm and Sander 1993]. The
resulting spatial matching score of the two polygons determines the similarity of
the two proteins.

The two-step implementation of similarity on tertiary structures, as discussed
above, appeared in a number of methods, like SAP [Taylor and Orengo 1989], Pro-
Sup [Lackner et al. 2000], STRUCTAL |[Gerstein and Levitt 1998], and MAMMOTH
[Ortiz et al. 2002]. Because of the two steps and because of many particular stages
of the measuring, the similarities are nonmetric.

3.4.3 General Molecules & Compounds. The similarity search in databases of
general chemical compounds and molecules represents a huge research subarea of

2For completeness, the secondary structures of proteins provide just an intermediate step towards
the tertiary structure — they describe particular fragments of the tertiary structure, rather than
an entire protein.
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chemoinformatics [Nikolova and Jaworska 2003; Willett et al. 1998]. The similarity-
related problems are essential to tasks like compound property prediction, virtual
screening, diversity analysis, pharmacophore searching, ligand docking, etc. Many
approaches for feature extraction from molecules and compounds have been pro-
posed together with many (dis)similarity functions complying with these feature
descriptors.

The most widely used descriptors for chemicals are strings of binary features
(fingerprints) and various real-valued vectors (e.g., CATS descriptors). Within the
huge area of chemical similarity search we can find many nonmetric dissimilarity
functions violating either triangle inequality or symmetry. For example, the cosine
distance and dice distance are simple nonmetric distances for measuring global
similarity of chemical descriptors. We could also find combined nonmetric distances,
such as the multiplication of Soergel metric and the squared Euclidean distance
[Dixon and Koehler 1999], which is a nonmetric (not only due to the squared
Euclidean, but also because of the multiplication, see Section 3.1.13). Although
the Soergel metric alone showed a bias towards molecule size and the squared
Euclidean distance alone placed greater emphasis on structural diversity of large
compounds, their multiplication showed to provide a reasonable trade-off.

Other types of descriptors include 3D models of molecules, where the local (non-
metric) alignment of molecules is essential for ligand docking [Robinson et al. 2000].
In addition to the violated triangle inequality (which is a typical property of par-
tial/local matching), the local alignment could be also asymmetric [Willett 1998;
Willett et al. 1998]. This allows one to model directional compound similarity
where a (smaller) molecule is present as a fragment in another molecule, but not
vice versa.

A technique for matching two molecules represented by 3D structures (their
molecular electrostatic potentials, respectively) was introduced in [Wild and Wil-
lett 1996]. The quality of a match was measured by the Carbo similarity (a variant
of cosine measure), while the best match of the molecules was searched by use of
a genetic algorithm (GA). The GA seeks to identify a combination of translations
and rotations that will align one molecule with the other, where the Carbo simi-
larity plays the role of a fitness function (i.e., the algorithm tries to maximize the
similarity). The resulting match of molecules then provides their final similarity
score — the Carbo index on (sub)optimally aligned molecules. As GAs could lead to
unpredictable suboptimal solutions (like any other soft-computing technique), we
have to generally assume the GA-based molecular similarity as a nonmetric one.

3.5 Nonmetric Similarity Functions in Biometric databases

The similarity search in biometric databases usually serves to identification or au-
thentication of a person, by means of anatomic (or physiologic) biometric features
(like human fingerprint, voice, iris, face, signature, etc.). Although the Hamming or
Euclidean distance represent a sufficient solution for identification by fingerprints or
irises, the signature, voice or face identification requires more complex (nonmetric)
similarity functions.

3.5.1 Handwritten recognition. The recognition of handwritten signatures or
handwritten text has many practical applications, such as the scanning of heritage
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documentation, the implementation of authentication systems, and the automatic
processing of forms. In this case, the recognition problem is not as easy as with
printed documents, where optical character recognition (OCR) techniques have
been well studied and have a high rate of effectiveness. Usually, the recognition is
performed at the character or word level by comparing the actual text with samples.
The main tasks in handwritten recognition are identification (i.e., to recognize what
was written) and verification (i.e., to validate that what was written corresponds
to an a priori known text).

In [Marzal and Vidal 1993] the authors use normalized edit distance (NED) for
classification of hand-written digits, where each image of digit is transformed into
a string. The alphabet here represents different discrete contours in the digit. The
experimental results show that, given the string representation of digits, the NED
classifies better than not normalized or post-normalized classic edit distances. In
another work, Zhang and Srihari [Zhang and Srihari 2002] propose a nonmetric
function for binary feature vectors and a k-NN algorithm for handwritten digit
recognition. The similarity function is based on L; but it violates reflexivity in
general. In another related work, Wirotius et al. [Wirotius et al. 2004] present
an approach based on DTW for online handwritten signature verification. Also,
Cha et al. [Cha et al. 2005] compare different similarity functions for handwritten
character recognition, and propose the so-called azzo similarity, which is based on
the inner product of binary feature vectors.

3.5.2 Talker identification. An approach similar to the music and speech sim-
ilarity retrieval (see Section 3.2.3) has been applied to talker identification [Foote
and Silverman 1994]. A talker’s utterance waveform is converted into Mel Fre-
quency Cepstral Coefficients (MFCCs), which are quantized and a histogram is
produced. Then, given a database of talkers’ utterances, for a query utterance the
nearest-neighbor utterance from the database is retrieved by use of applying the
symmetric form of Kullback-Leibler divergence (applied on the query histograms
and each of the database objects). A talker is positively identified if the similarity
threshold to its nearest neighbor is high enough.

Another approach to talker identification makes use of the so-called nearest neigh-
bor distance (NND) [Higgins et al. 1993]. A speech descriptor is represented by a
set of feature vectors, determined from the MFCCs of the speech waveform (as
discussed in Section 3.2.3). Actually, NND is similar to the modified Hausdorff
distance (see Section 3.1.10), where the squared Euclidean distance is used as the
ground distance on feature vectors.

3.5.3 2D face identification. A method for identification of a particular face in
a raster image using the modified Hausdorff distance (as defined in Section 3.1.10)
was proposed in [Jesorsky et al. 2001]. Having a database of face models (where
each model is represented by a set of 2D points describing the face), one would
like to determine whether a face in the query image matches a model face in the
database. The basic idea is to transform the raster image into a set of points and
compare sets of model faces in the database with the set obtained from the query
image. In the simplest form, a pair query image/database model is compared by
use of the modified Hausdorff distance. However, since the query image is generally
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not normalized, the modified Hausdorff distance is enhanced by an additional trans-
formation step, defined as minyep mHD(A,T,(B)), where p is a parameter into
a transformation 7,, mH D is the modified Hausdorff distance, A is the database
face and B is the query face. Such a transformation 7}, is used, which minimizes
the modified Hausdorff distance between A and B. In other words, we obtain a
transformation-invariant matching of faces by use of modified Hausdorff distance,
where the transformational extension makes the already nonmetric distance even
more nonmetric.

3.5.4 38D face identification. A modern approach to human identification by
faces is the matching of 3D models (surfaces) which are obtained either natively
(by use of 3D scanner) or as a 3D reconstruction from raster images (multiple pic-
tures of a person are taken from different angles). In particular, various deformable
models were proposed, where the 3D templates were matched (and deformed) to fit
each other as good as possible. For instance, in [Lu and Jain 2008] the authors pro-
pose a matching model as an optimization problem consisting of four steps. First,
a coarse alignment of the two 3D models is performed by use of 3 anchor points.
Second, an iterative closest point algorithm is applied to obtain the optimal ro-
tation and translation of the models. Third, the BFGS quasi-Newton method is
used to compute deformation parameters while minimizing the overall cost function
(regarded as the dissimilarity of the models). Fourth, steps 2-4 are repeated until a
convergence is reached, that is, a minimal value of the cost function is determined.
Since the matching algorithm performs highly nonlinear transformations, the re-
sulting dissimilarity function is nonmetric (the triangle inequality and symmetry
are violated).

4. EFFICIENT SEARCH IN NONMETRIC SPACES

The efficient (fast) similarity search is crucial for large-scale and /or query-intensive
applications. Even an extremely effective retrieval system (exhibiting high preci-
sion/recall values) is useless if it is not efficient, that is, requiring full sequential
scan of the database. Hence, the problems of efficiency and effectiveness must be
necessarily solved together. In the previous section, we have enumerated a number
of approaches to effective domain-specific nonmetric similarity search applications.
On the other hand, in this section we focus on principles and access methods that of-
fer efficient implementation of various nonmetric searches. While trivial sequential
processing of a single similarity query requires n = [S| (dis)similarity computations
(so-called computation costs), an efficient search should reduce the computation
costs to be sublinear on the database size.

4.1 The Framework for Efficient Nonmetric Search

Before we start a discussion on efficient similarity search in more detail, in this
section we propose a framework (or a “guide map”) that could help to orient the
reader in the problem. However, we emphasize we are not going to propose a
strongly formalized framework because of the vague nature of the problem. Since
the term “nonmetric” just says something is not metric, we have completely no
property common to all similarity functions. Hence, there is no fixed property that
could be used as a basis for a mathematical framework in a similar way the metric
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postulates are employed by a framework related to metric similarity search.
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Fig. 5. The framework of nonmetric similarity search
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Nevertheless, we propose a rather practical schema (see Figure 5) of the state-
of-the-art techniques, that can be combined into processes, that provide more or
less efficient nonmetric similarity search. At the top of the figure we assume a
domain expert with a clearly defined similarity search problem. The expert knows
the model, i.e., the techniques that transform some complex raw data into the de-
scriptors of the universe U and the domain-specific similarity function on U. We
also assume the domain expert requires efficient solution of similarity search for
her/his application, otherwise the naive solution (the sequential search) is suffi-
cient. In other words, the database is large enough and/or the similarity function
is computationally expensive enough to refuse the naive solution.

The proposed framework/map shows that a domain expert has several options
depending on certain characteristic of the particular problem:

—If the problem can be modeled in a metric space, there is plenty of efficient
solutions. The best one for a specific application will depend on the exact data
type, data distribution, intrinsic dimensionality, etc.

—If the problem uses a specific nonmetric distance function, the expert may have
luck and there is an efficient specific index available (e.g., inverted file, FASTA,
BLAST, see Section 4.7). A specific index is usually more efficient than a general
one, so this is the best case for the overall performance (i.e., best efficiency and
effectiveness).
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—If the problem is modeled as black-box similarity or there is no specific index for
the used nonmetric distance then:

—One can use mapping of the problem into another space/paradigm, but this
may imply loosing discriminative power or effectiveness of the (dis)similarity
function. Moreover, a mapping usually requires some preprocessing of the
database (slowing down the indexing process), while the database is often
required as static and known beforehand (preventing from searching in dynamic
databases). An advantage is usually a faster query processing in the simpler
target space (e.g., metric space).

—One can use some of the few general nonmetric index structures/algorithms.
The advantage is an all-in-one solution providing no or little parameteriza-
tion — the method alone analyzes the (sample of) database and indexes it
automatically. The drawback is usually slower query processing and also only
approximate search (thus decreasing the retrieval effectiveness).

As we motivated in the previous section, there are many application domains
where complex data types and complex (dis)similarity functions are used to compare
objects. However, as will be discussed further in this section, only a few distance-
specific and general nonmetric index structures were proposed so far. We believe
this is a huge motivation to continue developing algorithms and data structures for
performing efficient similarity search in complex domains, as applications from very
different domains would benefit from advances in this area.

4.2 The Metric Case

We start the discussion with an introduction to efficient metric similarity search.
Although the metric similarity search is not in the scope of this paper, we could
reuse the metric case when turning a nonmetric search problem into a metric one
(as discussed in Section 4.5).

The metric access methods (MAMs) [Chévez et al. 2001; Zezula et al. 2005;
Samet 2006] provide data structures and algorithms by use of which the objects
relevant to a similarity query can be retrieved efficiently (i.e., quickly). MAMs
build a persistent auxiliary data structure, called metric index, so we also talk
about metric indexing. The main principle behind all MAMs is the utilization of
the triangle inequality property (satisfied by every metric), due to which MAMs can
organize/index the objects of S within distinct classes. In fact, all MAMs employ
the triangle inequality to cheaply construct lower and/or upper bounds of a distance
d(gq,x) by use of an object p (called pivot), where the distances (p,x),d(p, q) are
known but 6(g,x) is not (see Figure 6a). The construction of lower bound and
upper bound distance by use of pivot p is easily computed as

10(g,p) — 0(p, x)| < d(q, ) < (g, p) + d(p, @)

As the non-hierarchical MAMs use directly these bounds for search (e.g., AESA,
LAESA), hierarchical MAMs, which is the vast majority (e.g., M-tree, GNAT, SAT,
vp-tree, D-index, etc.), use the bounds to form a hierarchy of search regions that
cover the underlying data. When a query is processed, many non-relevant database
objects or entire search regions are filtered out just by use of the lower/upper
bounds, so the searching becomes more efficient.
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In the rest of this subsection we survey several most representative MAMs based
on different techniques — the direct usage of lower /upper bounds (pivot tables), hier-
archy of ball regions (M-tree), hierarchy of hyperplane partitioned regions (GNAT),
and metric hashing (D-index).

Fig. 6. (a) Creating lower- and upper-bound distances using triangle inequality (b) M-tree (c)
GNAT (d) D-index

4.2.1 Pivot Tables. The most straightforward utilization of the lower-bound dis-
tances are various methods called pivot tables or distance matriz methods. In prin-
ciple, there are some pivots selected [Bustos et al. 2003] from the database and for
each object x in the database a vector consisting of all the distances from x to the
pivots are computed. The distance vectors of all the database objects then form a
distance matrix (or pivot table).

When querying by a range query® (g, r), a distance vector for the query object ¢
is computed the same way as for a database object. Then, a database object x is
cheaply discarded from the search if its lower-bound distance to ¢ is greater than r.
The lower bound distance is computed as the maximum value lower bound (given
by the formula above) over all the pivots p; we use. Conversely, if the minimal
upper bound distance is lower than r, the object x is cheaply confirmed as a part
of the result. If the object is neither filtered nor confirmed it must be checked by
(expensively) computing the actual distance 6(q,z). Of course, the more pivots
we use, the more tight the lower/upper bounds are and thus the more efficient the
query processing is. On the other hand, if we use too many pivots, the computation
of the distance vector for the query object ¢ will become expensive, so the overall
performance will deteriorate. There have been proposed many MAMs based on

3For kNN query the procedure is similar, but some heuristics for determining the dynamic query
radius » must be additionally taken into account.
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pivot tables, namely, the AESA [Vidal 1986], LAESA [Micé et al. 1994], PM-tree
(based on M-tree and pivot tables) [Skopal 2004], etc.

4.2.2  M-tree. The M-tree [Ciaccia et al. 1997] is a dynamic metric access method
that provides good performance in database environments. The M-tree index is a
hierarchical structure, where some of the data objects are selected as local pivots of
ball-shaped regions, and the remaining objects are partitioned among the regions
in order to build up a balanced and compact hierarchy (see Figure 6b). Each region
(subtree) is indexed recursively in a B-tree-like (bottom-up) way of construction.
The queries are implemented by traversing the tree, starting from the root. Those
nodes are accessed, the parent regions of which are overlapped by the query region,
e.g., by a range query ball (g, ). Moreover, each node contains the distances from
the pivots/objects stored in the node to the pivot of its parent region. Hence, some
of the M-tree branches can be filtered without the need of a distance computation,
thus avoiding the “more expensive” direct overlap check.

4.2.3 GNAT. The Geometric Near-Neighbor Access Tree (GNAT) [Brin 1995)
is a metric access method that extends the Generalized-Hyperplane Tree [Uhlmann
1991]. The main idea behind GNAT is to partition the space into zones that
contain close objects. The root node of the tree contains m objects selected from
the database, the so-called split-points. The rest of the objects is assigned to their
closest split-point. The construction is based on a greedy algorithm that selects
the split-points, such that they are far away from each other. Each zone defined by
the selected split-points is partitioned recursively in the same way (possibly using
a different value for m), thus forming a search hierarchy (see Figure 6¢). At each
node of the tree, a O(m?) table stores the range (minimum and maximum distance)
from each split-point to each zone defined by the other split-points.

4.2.4 D-index. An approach based on metric hashing was proposed by Dohnal
et al. [Dohnal et al. 2003], called the D-index. The database is partitioned by ball
partitioning p-split functions bps' 7, defined as:

| 0 if 6(0i,p;j) < dm —p
bps P9 (0;) = { 1 if 8(0i,pj) > dm + p
2 otherwise

where p; is a fixed pivot object assigned to the function bpstPJ, p is a splitting
parameter, and d,, is a median distance. When combined % such functions (and
k pivots), we obtain a complex hashing function bps*** partitioning the database
among 2* partitions and one exclusion set. For each indexed object a hash key of
its target partition is computed as a combination of binary values 0, 1 returned by
particular bps™* functions. In case that (at least) one 2 is returned by a bps':*»J
function, the object is assigned to the exclusion set. In simple words, the exclusion
set stands for a ”border territory” separating the partitions, so that objects in
different partitions can be easily distinguished during search.

The D-index itself then consists of an h-level hashing table, such that 2% buckets
are maintained at the i-th level (k; is the number of pivots used at i-th level), where
every bucket corresponds to one partition, and is accessible by the i-th-level hashing
function bpsfi’p . For the objects hashed into the i-th-level exclusion set, the ¢+1-th
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level of the table is created and the remaining objects are repartitioned by function
bpsfﬁll’p . The last level consists of a single bucket belonging to the exclusion set
of the entire D-index (see Figure 6d). For different D-index levels, the hashing
functions bpsf“p can vary in the number of p-split functions and, consequently, in

the number of pivots.

4.3 Measuring Indexability

The implicit topological properties of a dissimilarity function itself (e.g., the met-
ric postulates) is just a partial information needed for designing an efficient access
method. The dissimilarity function ¢ together with the descriptor universe U pro-
vide us with some topological characteristics of the entire “full” space. However,
according to some other properties, the particular databases embedded into the uni-
verse space could vary substantially. In particular, the volume of every database is
by far smaller with respect to the universe volume, and also the data distribution
in the universe could significantly vary from database to database.

In general, the distribution-specific properties of a database together with the
topological properties of the dissimilarity function could be used to establish vari-
ous concepts of data “separability” or “indexability”. Such a quantitative charac-
teristic should say to what extent could a database be partitioned in a way suitable
for efficient search, that is, for search in as few candidate partitions as possible.
In the following, we discuss two approaches to indexability measures, the intrinsic
dimensionality and the ball-overlap factor, even though their application is fully rel-
evant just for the metric case. Both of the indexability measures use some statistics
obtained from pairwise distances between database objects.

Since we are not aware of a general nonmetric indexability concept (which would
have to require some other constraint, anyways), an application of the metric-case
indexability concepts can still be useful. First, a nonmetric search problem could
be mapped to metric search problem (as discussed in Section 4.5), so here the
metric indexability concepts are fully correct. Second, even when using directly a
nonmetric distance, the metric postulates could be violated only slightly, so that
even in this case the metric indexability concepts might provide some information.

4.3.1 Intrinsic Dimensionality. The distance distribution can reveal a structure
inside the database, that is, whether there are clusters of objects and how tight they
might be. Given a database S and a metric distance 4, the efficiency limits of any
metric access method are indicated by the intrinsic dimensionality®, defined as

12
p(Sv 5) - 202
where p1 and o2 are the mean and the variance of the distance distribution in S
(proposed by Chévez et al. [Chévez et al. 2001]).
The intrinsic dimensionality is low if there are tight clusters of objects — some
objects are close to each other and far from the other ones. If all the indexed
objects are almost equally distant, then the intrinsic dimensionality is high, which

4 Actually, there exist other definitions of intrinsic dimensionality, e.g., the fractal dimensionality
[Faloutsos and Kamel 1994] or mapping dimensionality [Kao et al. 1997]. However, we consider
the one presented in this paper as the most appropriate to similarity search purposes.
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means the database is poorly intrinsically structured. A high p value says that
many (even all) of partitions created on S are likely to be overlapped by every
possible query, so the query processing deteriorates to a sequential search in all the
partitions. The problem of high intrinsic dimensionality is, in fact, a generalization
of the well-known curse of dimensionality [Weber et al. 1998; Chévez et al. 2001]
into metric spaces.

Figure 7a shows an example of a distance distribution histogram of a database S
under a metric . Since the mean of the distribution is quite high and the variance
is low, the resulting intrinsic dimensionality is quite high as well. The negative
impact of high intrinsic dimensionality on metric access methods can be recognized
easily. Remember that the triangle inequality a + b > ¢ (which holds when a, b,
and ¢ are distances between objects) is the only filtering tool of any MAM. To
be effective in filtering, by using distance estimators the a + b component of the
inequality must be lower than ¢ (e.g., the sum of ball radii must be lower than the
distance between the balls’ centers). However, from the histogram we can observe
that almost all distances sampled on the database objects are greater than the half
of the maximum distance d*, thus the sum of any two nonzero distances is likely
to be greater than any other distance. Hence, the filtering by any MAM must fail
on such a database.

A “mechanical” application of the intrinsic dimensionality for general nonmetric
distances is possible, however, its value becomes questionable. Since the general
nonmetrics do not satisfy the triangle inequality, we cannot evaluate a particular in-
trinsic dimensionality (the histogram, respectively) as too high for indexing, except
for some exotic cases (e.g., a single value in the distribution).

o Distance distrib_ution histogram

[ — .|||||: “hih ....... -

0 d*/2 d*
distance

(a) (b)

distance frequency [%]
4

2

Fig. 7. (a) Distance distribution histogram exhibiting high intrinsic dimensionality (b) Incorrect
filtering by nonmetric dissimilarity — a single object located in multiple “nonoverlapping” regions

4.3.2  Ball-Overlap Factor. Given a database and a dissimilarity function, the
intrinsic dimensionality gives us a spaceless and indirect prediction (or cost model)
about the indexing efficiency. However, instead of simple statistical properties like
mean and variance of distances, we would like to capture rather an information
about real relationships between data clusters described by some regions in the
distance space. The regions should be of a shape/form used by metric access
methods.
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The ball-overlap factor (BOF) [Skopal 2007] was proposed as a simple region-
based indicator, more suitable for predicting the efficiency of ball-based metric
access methods, defined as

2 -
BOF(S,d) = ————F——— E i, 0(0;, kNN (0;
k( ) ) |S*‘ * (|S*| 1) D=y Sgn(|(0 (0 (0 )))ﬂ

N(0j,6(05, kNN(0;)))])

where 6(0;, KN N(0;)) is the distance to o;’s k-th nearest neighbor in a sample of the
database S* and (0;, 6(0;, kNN (0;))) is thus the ball in metric space centered in o;
of radius §(0;, kNN (0;)). The statement sgn((-,-)N(:,-)) returns 1 if the two balls
overlap (in geometric-based, not data-based, meaning) and 0 if they do not. The
ball overlap condition is defined as 6(o0;, kNN (0;)) + d(0;, kNN (0;)) < (05, 05)).

In simple words, the BOF, calculates the ratio of overlaps between ball regions,
where each region is made of an object (from the database sample) and of such
a covering radius which guarantees k data objects are located inside the ball. In
such a way the balls can be regarded as indexing regions. The overlap ratio then
predicts the likelihood that two arbitrary ball-shaped regions will overlap or not.
The BOF factor can thus serve as a more appropriate MAM-independent efficiency
indicator for metric access methods based on ball partitioning, e.g., the M-tree.

Similarly as the intrinsic dimensionality, the ball-overlap factor cannot be quite
correctly used for nonmetric distances. In Figure 7b see an illustration of two
“nonoverlapping” balls in a nonmetric space (i.e., the sum of their radii is lower
than the distance between their centers). Although in the metric case the balls
cannot share any common object (so they really do not overlap), this is not true for
the nonmetric case. Although all objects of one region have their distance to the
region’s center smaller than the radius, the absence of triangle inequality allows the
objects to appear also in the second region, so the concept of region overlaps is more
or less incorrect in nonmetric spaces. In consequence, when used with nonmetric
distances the ball-overlap factor would produce a skewed information about the
database indexability.

4.4 Strategies for Efficient Nonmetric Indexing

Unlike metric search, an efficient nonmetric indexing and search cannot rely on the
metric postulates, however, the reflexivity, non-negativity and symmetry could be
easily added to any nonmetric, as discussed in the next subsection. On the other
hand, missing triangle inequality represents an absence of a powerful indexing tool.
Based on this fact, we can choose from two strategies that substitute or adopt the
full metric case:

4.4.1 Statistical (data-driven) indexing. The first strategy to nonmetric search
is an endeavor to analyze the only available implicit description of the similarity
function — the (portion of) distance matrix built on the database objects (possibly
including also query objects). Based on the distance distribution statistics, the
original database could be either transformed into another space (metric, vector, or
other space), or suitably clustered. In the former case, the transformed database
can be indexed by metric, spatial, or other access methods. The latter case (clus-
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tering) could be used as a standalone access method. The drawbacks of statistical
indexing is its restriction to more or less approximate search. Moreover, an ex-
pensive preprocessing is often needed prior to the indexing itself. The data-driven
methods are overviewed in Sections 4.5 and 4.6.

4.4.2 Indexing based on alternative analytic properties. Instead of the metric
postulates, a nonmetric function could be explicitly equipped by some other ana-
lytical properties, e.g., various relaxed forms of triangle inequality, transitivity rules,
etc. The alternative properties could be used to develop specific indexing schemes
or methods that are not dependent on the database statistics. In the extreme case,
the analytic properties could be represented by the definition of a particular sim-
ilarity function itself. The advantage of distance-specific access methods is their
higher search efficiency, however, traded for application to only a limited class of
similarity functions. Another advantage is an ability of both exact and approximate
search. The distance-specific methods are overviewed in Section 4.7.

In the following sections, we survey existing approaches to nonmetric similarity
search, including the statistical indexing, as well as indexing based on alternative
properties.

4.5 Mapping

In this section, we discuss transformational approaches to nonmetric search, where
the original nonmetric space is mapped into a target metric, vector or even Eu-
clidean space. An advantage of mapping methods is the ability of subsequent
indexing by some of the previously mentioned metric access methods (in case of
target metric space), or by a spatial access method [Samet 2006; Bohm et al. 2001]
(e.g., R-tree, X-tree, in case of target Euclidean or L, space).

4.5.1 Trivial Transformation of a Nonmetric into Metric. Given a nonmetric
similarity s, there are various trivial ways how to “automatically” turn s into a
metric §. The motivation for such a transformation might be a belief that database
under the transformed metric space will be efficiently searchable by a metric access
method. Unfortunately, any trivial (automatic) transformation usually leads to a
failure. In particular, three of the four metric axioms are usually not a big problem
(nonetheless, they may be in a particular case!), however, the triangle inequality
mostly becomes the crucial obstacle. Let us analyze a transformation of general
similarity into a metric.

Optionally, we need to turn similarity s into dissimilarity §, which could be eas-
ily done by applying a monotonously decreasing function h on s (already discussed
in Section 2.4.4), i.e., 6(-,-) = h(s(:,-)). The non-negativity could be satisfied by
shifting 6 by the minimum distance d~ (i.e., §(-,-) = h(s(-,-)) —d~)>. Concern-

5The minimum distance d~ and maximum distance d* could be provided by the dissimilarity
function in case the structure of input universe U is known. Or, if it is not, we can sample a number
of distances h(s(z,y)),z,y € S and determine the approximate minimum/maximum distances.
The outlier distances (exceeding the maximum distance or falling below the minimum distance)
can be represented directly by d~ or dT, while two objects falling into the ”d~-bucket” are
regarded as at most d~-distant. Similarly, two objects falling into the ”dt-bucket” are regarded
as at least dt-distant. When searching, the possibly relevant objects involved in outlier distances
6(q, ) (where q is a query object) are filtered sequentially in the original space (S, s).
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ing the reflexivity property, we just declare that every two identical objects are
zero-distant, while two non-identical are positively distant. That is, we shift the
distance of two non-identical objects by a sufficiently small constant € > 0. Further-
more, searching by an asymmetric function 644y, could be partially provided by a
symmetric function dsym, €.8., dsym (T, y) = max{dasym (=, V), dasym (v, z)}. Using
the symmetric function, some non-relevant objects can be filtered out, while the
original asymmetric function d4sym is then used to rank the remaining non-filtered
objects.
Finally, the triangle inequality can be enforced by an application of function

(2) = 0 (for z = 0)
&) = # (otherwise)

which turns every d*-bounded semimetric into a metric by shifting the distance
into the upper half of the distance domain. Unfortunately, such a metric is useless
for searching, since all classes of objects maintained by a MAM are overlapped
by every query, so the retrieval always deteriorates to sequential search. This
behavior is reflected by maximal ball-overlap factor, i.e., BOFy(S,09) = 1. The
intrinsic dimensionality p(S,d9) is also high, however, it is not appropriate here
since it does not recognize whether §9 is useless for indexing or the database is just
bad-structured. On the other hand, the distance distribution histogram used for
determining the intrinsic dimensionality provides a better information — it contains
only distances greater than d* /2.

As the trivial transformations of semimetric spaces into metric ones are not suit-
able for efficient similarity search, in the following we overview some more useful
transformational approaches.

4.5.2  Constant Shifting Embedding. A bit more advanced approach to the pre-
viously mentioned trivial distance shifting is the constant shifting embedding (CSE)
[Roth et al. 2002]. Instead of just scaling the distances into the upper half of the
distance domain, the CSE turns a semimetric into metric by adding a suitable con-
stant ¢ (i.e., 6'(-,) = d(-,-) + ¢). Obviously, an application of ¢’ instead of § leads
to fulfillment of the triangle inequality for a sufficiently large c.

In Roth et al. [Roth et al. 2002], the ¢ value is set to the minimum eigenvalue of
distance matrix that consists of pairwise distances among all the database objects.
However, an analysis of the c-shifted distance matrix shows that this minimum
eigenvalue is quite large, thus making it meaningless to prune by the triangle in-
equality. When employing just query objects from the database, CSE with the
minimum-eigenvalue ¢ provides an exact similarity search. However, the usability
of CSE for efficient search is questionable, because the entire matrix must be com-
puted, hence, the exact queries imply sequential search (a row for every possible
query object is already computed in the distance matrix).

4.5.3 The TriGen algorithm. The recently introduced TriGen algorithm [Skopal
2007; 2006] can non-trivially put more or less of the triangle inequality into any
semimetric ¢, while keeping the database indexable, i.e., BOF(S,d) < 1. Thus,
any semimetric distance can be turned into an equivalent (nearly) metric, allowing
(almost) exact search by MAMs, or into a semimetric which satisfies the triangle
inequality to some user-defined extent, allowing approximate search by MAMs.
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For its functionality, the TriGen needs a (small) sample of the database objects. In
fact, the TriGen algorithm generalizes the idea of constant shifting (see the previous
section) by “functional” shifting. The original semimetric distance is modified by
a function, making the resulting shifting value-sensitive.

The principle behind TriGen is a usage of triangle triplets and T-bases. A triplet
of numbers (a, b, ¢) is triangle triplet if a+b > ¢,b+ ¢ > a,a + ¢ > b. The triangle
triplets can be viewed as witnesses of triangle inequality of a distance § — if all
triplets (0(x,y),0(y, 2),d(x, 2)) on all possible objects x,y, z are triangle triplets,
then ¢ satisfies the triangle inequality. Using triangle triplets we measure the T-
error — a degree of triangle inequality violation, computed as the proportion of
non-triangle triplets in all examined distance triplets.

A T-base f(v,w) is an increasing function (where f(0,w) = 0) which turns a
value v > 0 of an input (semi)metric § into a value of a target (semi) metric
§7, ie., 67(-,-) = f(0(-,-),w). Besides the input distance value v, the T-base is
parameterized also by a fixed weight w € (—o0, 00) which determines how concave
or convex f should be. The higher w > 0, the more concave f, which means also
the lower T-error of any /. Conversely, the lower w < 0, the more convex f and
the higher T-error of any 6.

4.5.4  Embeddings into Vector Spaces. A bunch of methods was proposed for
mapping a database modeled in metric or Euclidean space into Euclidean space
(or generally into L, spaces). In the context of similarity search, the benefits of
mappings are two-fold. First, when mapping a metric space into L, space, we aim
to preserve the distance distribution as precise as possible, while reducing the com-
plexity of the original metric distance to be linear with the dimensionality. Second,
when mapping a high-dimensional L, space into lower-dimensional L,, space, the
mappings serve as a dimensionality reduction tool where the reduced dimensionality
turns into smaller database and cheaper evaluation of L,, distance. A query-specific
requirement on such mappings is an ability to quickly map an unknown query ob-
ject into the target space, otherwise they could not be effectively employed in most
similarity search tasks. From the dozens of mapping methods (designed to map
from metric or vector spaces) we name FastMap [Faloutsos and Lin 1995], Met-
ricMap [Wang et al. 2000], SparseMap [Hristescu and Farach-Colton 1999], and
BoostMap [Athitsos et al. 2004]. Regardless of a particular technique, the mapping
methods exhibit several major drawbacks. The mapping is often computationally
expensive (not scalable with database size), approximate (often without any er-
ror bounds), and inherently static (i.e., newly added/mapped objects increase the
approximation error). To the best of our knowledge we are not aware of a particu-
lar application of the mentioned metric mapping methods for the nonmetric case.
However, we believe they might be used also for mapping nonmetric data, since all
of the mentioned methods use a criterion on preserving the distances in the target
space, regardless of Euclidean, general metric, or general nonmetric source space.
Moreover, the following “explicitly nonmetric” approaches are based on more or less
similar principles as the metric methods (a kind of distance-preserving criterion).
Anyways, such a hypothesis needs to be verified in the future.

Among the explicitly nonmetric approaches, the nonmetric multidimensional
scaling (NMDS) represents the classic approach to embedding nonmetric spaces.
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In particular, the Shepard-Kruskal scaling (SKS) algorithm [Shepard 1962; Kruskal
1964] creates an embedding of an arbitrary symmetric zero-diagonal dissimilarity
matrix (representing semimetric pairwise distances between objects from S) into
Fuclidean vector space. The SKS embedding was posed as an optimization prob-
lem, where the stress-1 functional (measuring the aggregated error between the
original and mapped Lo distances) is being minimized. The optimization proce-
dure involves two parameters — the actual mapping X of S into multidimensional
Euclidean space, and the actual monotonic function # (applied on the original dis-
similarities in the stress function). The algorithm iterates two alternating steps.
First, having 6 fixed, the mapping X is fit to a particular transformation of the
dissimilarities using gradient descent. Second, having X fixed, 6 is aligned with the
actual mapping X with isotonic regression. The classic Shepard-Kruskal algorithm
is extensively used in data mining (i.e., classification and clustering rather than
similarity search).

Another nonmetric approach to mappings are the query-sensitive embeddings
[Athitsos et al. 2005] (a nonmetric extension of the BoostMap algorithm), where
the description of target distance changes depending on the query object employed.
The target distance is similar to weighted L, distance, but it is not a metric because
the weights change for each query object (for the object z in d(x,y), respectively).
Using the AdaBoost algorithm the method trains a number of classifiers, which
are used to map the source objects into the target vectors (each classifier maps
an object into one dimension of its target vector). Experiments have shown that
query-sensitive embeddings outperform the other mapping methods in both the
embedding precision (effectiveness) and the search efficiency, when searching the
embedded database using a kind of filter-and-refine strategy.

4.5.5 Different Paradigms. As yet, we have considered mapping of nonmetric
space into a metric or even L, space. Although there exist many mappings of
this kind, they all share the metric paradigm — the transformed similarity function
and/or data are “metrized” in order to be indexable by use of the usual metric
postulates.

However, a mapping approach could be based on completely different paradigm,
replacing the metric postulates by alternative properties. A recent example could
be transformation of the nonmetric search problem into the realm of fuzzy logic
[Vojtas and Eckhardt 2009; Eckhardt et al. 2009]. Instead of modifying the simi-
larity function and/or data, the fuzzy approach is based on adjustment of the fuzzy
logic formulas that are used for effective filtering of database objects. In particular,
instead of triangle inequality, the fuzzy approach provides a kind of transitive in-
equality s(z,z) > T(s(z,y), s(y, 2)), where T is a fuzzy conjunction. Furthermore,
given a residuation T'(z,y) < z — Ip(z,2) > y (where I is a fuzzy implication
residual to T'), there can be derived similarity estimation between a query ¢ and a
database object = (by use of a pivot p) by the following formulas:

T(s(q,p),s(p,x)) < s(q,x)

s(Qa ZL’) < mm{IT(S(q,p), 3(}7, (E)), IT(S(pa CE), S(qap))}
The above formulas are analogous to the lower bound and upper bound inequal-
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ities used for filtering in the metric case model (see Section 4.2), however, here the
similarity function s (being similarity, not dissimilarity) is not restricted by metric
postulates. On the other hand, to index a database under an arbitrary similarity
s, there must be a conjunction 7" found so that the transitivity property holds. As
a conjunction we could choose the well-known parametric family of Frank t-norms

Tf(y,w) = logy (1+ (A7 = 1)(A™ — 1))

A—1

where the \ parameter could be tuned as necessary. Here we can observe some
duality or analogy to the “metrization” of semimetric space (provided by the TriGen
algorithm, see Section 4.5.3). Similarly to T-bases in TriGen, also here we solve
a problem with finding the right parameter A that guarantees the transitivity of
similarity scores among the objects in database.

4.6 General Nonmetric Access Methods

In the following we discuss three general methods for nonmetric indexing, which
we could pronounce as nonmetric access methods (NAMs). Although all of them
reuse mapping approaches already mentioned in Section 4.5, they consider a more
complex scenario, including algorithms for indexing and querying.

4.6.1 NM-tree. The recently introduced NM-tree [Skopal and Loko¢ 2008] ap-
plies the indexing power of M-tree into the realm of nonmetric spaces by use of
the TriGen algorithm (described in Section 4.5.3). Using the TriGen algorithm,
an input semimetric is turned into a (nearly) full metric, i.e., preserving zero T-
error. The metric is subsequently used as the indexing metric in M-tree, hence, the
database could be efficiently queried by (almost) exact nonmetric queries. More-
over, the NM-tree allows faster approximate nonmetric search, where the desired
retrieval error is specified by the user at query time. Actually, when the T-modifier
leading to exact metric is determined by the TriGen algorithm (prior to the index-
ing), there are also other modifiers determined for various levels of nonzero T-error
tolerance. At query time the user can specify a threshold T-error level (the associ-
ated T-modifier, respectively), while the metric distances stored in the NM-tree are
re-interpreted to more or less nonmetric ones, with respect to the T-modifier used.
Because of its lower intrinsic dimensionality, searching using the modified metric
leads to more efficient (but approximate) query processing.

4.6.2 QIC-M-tree. The QIC-M-tree [Ciaccia and Patella 2002] has been pro-
posed as an extension of the M-tree (the key idea is applicable to other MAMSs),
allowing (not only) nonmetric similarity search. The M-tree index is built by use
of an index distance ¢;, which is a metric lower-bounding the query distance J, (up
to a scaling constant S;_,), i.e. dr(z,y) < Srgdq(x,y),Vo,y € U. As 6; lower-
bounds dq, a query can be partially processed by d; (which, moreover, could be
computationally much cheaper than ¢,), such that many non-relevant classes of ob-
jects (subtrees in M-tree) are filtered out. All objects in the non-filtered classes are
compared against ¢ using d,. Actually, this approach is similar to the usage of con-
tractive mapping methods, but here the objects generally need not to be mapped
into a vector space. However, this approach has two major limitations. First, for
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a given nonmetric distance J, there is no general way how to find the metric d;.
Although ¢y could be found “manually” for a particular d, (as in [Bartolini et al.
2005]), this is not possible for §, given as a black box. Second, the lower-bounding
metric should be as tight approximation of §, as possible, because this “tightness”
heavily affects the intrinsic dimensionality, the number of MAMs’ filtered classes,
and so the retrieval efficiency. Although both QIC-M-tree and NM-tree (Section
4.6.1) originate from M-tree, they are applicable under different conditions (NM-
tree is more general but could be less efficient, and vice versa).

4.6.3 Local Constant Embedding. Another recently introduced technique — the
Local Constant Embedding (LCE) [Chen and Lian 2008] — was inspired by the
Constant Shifting Embedding (see Section 4.5.2). However, instead of a single
global constant, in LCE the database is partitioned into multiple groups, where each
group G; owns a local constant ¢;. The motivation for LCE is an expectation that a
suitably partitioned database would lead to lower constants ¢;, which, in turn, would
reflect in more effective pruning of particular database groups when searching.
However, the construction of groups G; and their constants ¢; is not that simple
because a so-called grouping property must be satisfied. For every triplet of objects
z,y € G; and z € G, it must hold maz (M) — (min(M) +min(M — {min(M)})) <
¢i, where M = {é(x,y),d(x,2),0(y,2)}. The authors of LCE have proposed a
heuristic algorithm of cubic complexity that produces groups satisfying the grouping
property, while keeping the local constants as low as possible. When querying
by database objects, the grouping property guarantees no false dismissals when
pruning the groups, i.e., an exact search. In addition to the main idea, the authors
have proposed an indexing schema based on mapping the objects using pivots (each
group has its own pivots) and subsequent indexing by iDistance [Jagadish et al.
2005] (i.e., mapping + BT-tree based indexing).

Similarly as CSE, the drawback of LCE is the need to compute the entire distance
matrix on the database, which makes the exact search using LCE (involving just
query objects from the database) meaningless. Nevertheless, for query objects
outside the database the LCE can be used for approximate similarity search.

4.6.4 Clustering & Classification. Cluster analysis is an essential task in many
application domains. It allows one to find natural clusters and describe their prop-
erties (data understanding), find useful and suitable groupings (data class identifi-
cation), find representatives for homogeneous groups (data reduction), find unusual
objects (outliers detection), find random perturbations of the data (noise detec-
tion), and so on. A clustering algorithm identifies a set of categories, classes, or
groups (called clusters) in the database, such that objects within the same clus-
ter shall be as similar as possible, and objects from different clusters shall be as
dissimilar as possible.

Standard clustering algorithms, like k-means, assume that the objects are points
in a vector space and that the distance used is a metric (e.g., Euclidean distance).
For nonmetric spaces, there are a few algorithms that have been proposed in the
literature. For example, Su and Chou [Su and Chou 2001] proposed a k-means
algorithm with a nonmetric distance, so-called point symmetry distance. Also,
Becker and Potts [Becker and Potts 2007] presented a nonmetric clustering method
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based on distances to so-called fiduciary templates (some selected random objects
from the set). The distances to these fiduciary templates form a vector, which is
used to decide to which cluster a new object belongs. More recently, Ackermann et
al. [Ackermann et al. 2008] proposed a k-median clustering algorithm for nonmetric
functions (specifically, the Kullback-Leibler divergence), that computes a (1 + ¢)-
approximation of the k-median problem.

Quite many attempts to nonmetric nearest neighbor (NN) search have been tried
out in the classification area. Let us recall the basic three steps of classification.
First, the database is organized in classes of similar objects (by user annotation or
clustering). Then, for each class a description consisting of the most representative
object(s) is created; this is achieved by condensing [Hart 1968] or editing [Wilson
1972] algorithms. Third, the NN search is accomplished as a classification of the
query object. Such a class is searched, to which the query object is "nearest” — there
is an assumption the nearest neighbor is located in the "nearest class”. For non-
metric classification there have been proposed methods enhancing the description
of classes (step 2). In particular, condensing algorithms producing atypical points
[Goh et al. 2002] or correlated points [Jacobs et al. 2000] have been successfully
applied. The drawbacks of classification-based methods reside in static indexing
and limited scalability, while the querying is restricted just to approximate (k-)NN.

4.6.5 Combinatorial approach. A recent framework for similarity search based
on a combinatorial approach has been proposed by Lifshits [Lifshits 2009]. In this
framework, the only available information is the one provided by a comparison ora-
cle, which given three objects z, y, z answers whether s(z,y) > s(z, z) or vice versa.
Additionally, the rank rank,(y) of y with respect to x is defined as the position of
y in the ranking of elements in S ordered by similarity from z in decreasing order.
Then, the disorder inequality is defined as

ranky(z) < D - (rank,(z) + rank,(y)),

where D is the disorder constant. This property is then used for performing efficient
similarity search. Combinatorial algorithms, that is, algorithms that only rely on
the comparison oracle to perform the search, for the nearest neighbor search have
been proposed [Goyal et al. 2008]. Note that this approach works with similarity
functions (thus, triangle inequality does not hold), and it also does not assume that
s holds symmetry. Thus, the combinatorial approach may be a useful tool to deal
with complex data representations and similarity functions. However, finding an
optimal disorder constant is not easy.

4.7 Distance-specific Nonmetric Access Methods

Because of the absence of triangle inequality, the nonmetric methods need to com-
pensate this deficiency by some other tools. In the previous sections, we have
discussed statistical approaches, that is, an “aid” obtained using statistical pro-
cessing of the indexed database. In this section, we overview several methods
which follow the opposite strategy — instead of preprocessing data, the dissimilarity
function is supposed to be equipped by an alternative topological property useful
for indexing. Such a property does not depend on the database distribution, hence,
any data preprocessing is not necessary. In its extreme form, a nonmetric method
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could be designed for a single particular dissimilarity function, where formula of
the similarity function itself plays the role of the requested topological property.

4.7.1  General Alternative Properties. A method for exact nearest neighbor search
in constrained nonmetric spaces was proposed by Farago et al. [Farago et al. 1993].
Instead of triangle inequality, the nonmetric distance is expected to be equipped
by suitable pivots p1,p2...,pr € U and suitable numbers «, 8, such that for any
xz,y € S the following relaxed bounding property holds:

O[(S(I,y) > |(5(’I‘,pl) - 5(y,p1)|,l = 17 .. -7k

and

maz1<;j<k|0(x,p;) — 0(y,p;)| = B(z,y)

Obviously, the triangle inequality is a special case of the above property (then, e.g.,
a=1,0= % + any set of pivots). On the other hand, for any @« — oo and 8 — 0
the property holds for any nonmetric. However, an efficient similarity search using
the relaxed bounding property could be only useful when the « is as low as possible
and [ is as high as possible (while still guaranteeing the exact search). The authors
proposed a nearest neighbor algorithm which makes use of the relaxed bounding
property. The complexity of nearest neighbor search is O(n) in the worst case,
while the authors provide a probabilistic analysis showing that in average case the
nearest neighbor could be accomplished in O(1) timeS. The optimal choice of the
external parameters (the pivot set and «,3) is left to the provider of particular
nonmetric distance (the domain expert).

4.7.2  Inwverted file. The classic inverted file, used for implementation of vector
model in text retrieval under cosine measure [Berry and Browne 1999], represents a
domain-specific exact nonmetric access method. In vector model, a text document
is represented by vector of term weights, where each weight stands for significance
of a given term in the document. The query is represented the same (as a vector
of weights of terms in the query). For each term, the inverted file maintains a list
of documents (their identifiers, resp.) which have nonzero weight for that term.

The implementation of a vector query using inverted file is simple. Because the
cosine measure (or dot product) is used as the similarity function, it is sufficient
to process only the lists of those terms which contribute to the query. Because a
typical query consists of only a few terms, there must be only a few lists processed,
so the query processing by inverted file is extremely efficient. However, note that
the advantage of query processing by inverted file is only possible due to the usage
of cosine measure. The lists belonging to non-query terms can be skipped because
their weights in the query are zero, while the cosine measure applies multiplication
of weights (which would lead to zero for any weight in the list).

The inverted file is an excellent example that nonmetric access method could be
more efficient than a metric access method, even for the same case. If we replace

6However, the nearest neighbor search exhibits an exponential dependence on dimensionality of
some embedding of the database. This fact makes the O(1) result quite questionable, because the
dimensionality of the embedding depends on the database size.
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the cosine measure by Euclidean distance and normalize the document vectors
to become unitary, we get the same similarity search model (providing the same
similarity ranking as the cosine measure does). However, a usage of inverted file
under Euclidean distance is inefficient, because the query weights are being summed
with the document weights, hence, we cannot skip the lists belonging to non-query
terms.

4.7.3 IGrid. Inspired by the inverted file, the IGrid (inverted grid) was pro-
posed for high-dimensional vector indexing under a nonmetric modification of L,
distances [Aggarwal and Yu 2000]. Unlike classic L, distances, the proposed L,-
inspired distance was designed to “flatten” the distance distribution in the database,
regardless of the dimensionality of the data space. The flatness of distance distri-
bution was achieved by ignoring those dimensions of two data vectors, which values
were “too distant”. In particular, let us assume that each dimension of the data
space is divided into k4 ranges. The ranges [n;,m;] have to be equi-depth, that
is, each range is matched by a fraction 1/k4 of the total number of vectors in the
database. When measuring the distance of two vectors x,y, we ignore those di-
mensions where the values of the two vectors do not share a single range. In other
words, we pick only those dimensions from the data space, where the vectors z,y
are sufficiently close — such a subset of close dimensions is called the proximity set,
denoted as S[z,y, kq]. The similarity function is then defined as

1
P

p
Li —Yi
PIdist(xvya kd) = Z <1 B !ITL—’I’L|)

i€S[z,y,kd)

To efficiently search according to the proposed similarity function, the IGrid
index maintains a 2D grid of size d x k4 (i.e., the dimensionality times the number
of ranges). Each cell of the grid references a list of relevant vectors ids, that is,
those vectors whose values fall into the given range at a given dimension.

The IGrid approach killed even four birds with one stone. First, it established
a robust nonmetric similarity function that suppressed the extreme differences in
coordinate values (even more effectively than the fractional L, distances did, see
Section 3.1.1). Second, the uniformity of distance distribution means low intrin-
sic dimensionality (see Section 4.3.1) which allows to efficiently index a database.
Third, the distribution uniformity is achieved regardless of the data space dimen-
sionality, thus, reversing the curse of dimensionality to some extent. Fourth, even
though the similarity function is nonmetric, the IGrid provides exact similarity
search. On the other hand, the IGrid similarity function is context-dependent (and
thus not stable), as it depends on the data distribution.

474 Indexing DTW and LCS. Although DTW is a nonmetric distance (see
Section 3.1.7), it is possible to build an exact index for DTW. The idea is to
compute a lower bounding function of DTW. This can be used, for example, to
implement search algorithms based on filtering and refinement [Faloutsos 1996], or
to employ the QIC-M-tree (see Section 4.6.2). Several lower bounds for the DTW
have been proposed so far [Yi et al. 1998; Kim et al. 2001], but the lower bound
proposed by Keogh and Ratanamahatana [Keogh and Ratanamahatana 2005] (the
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so-called LB-Keogh) has been shown to be in practice very tight.

LB-Keogh makes some assumptions on how the DTW is computed. First, it
assumes that both sequences have the same length. Second, it assumes that the
warping path is constrained, that is, there is a limit on how far from the diago-
nal the path can be. Keogh and Ratanamahatana discuss in their paper that, in
practice, both assumptions do not really add restrictions to the DTW [Keogh and
Ratanamahatana 2005]. The authors adopted the GEMINI framework [Faloutsos
et al. 1994], that, given a lower-bounding function to a query distance function,
provides fast and exact similarity search in time series databases by use of a spatial
access method (e.g., the R*-tree [Beckmann et al. 1990]). The actual index (let
us call it GEMINI(LB-Keogh) because authors did not introduce a specific name)
maps first the time series to low-dimensional vectors by piecewise aggregate approx-
imation [Keogh et al. 2000]; then the vectors are packed into minimum bounding
rectangles (MBR). The defined distance between vectors is proved to be a lower
bound of the LB-Keogh (and thus, by transitivity, a lower bound of the DTW).
Then, another lower bound distance is defined between a vector and an MBR. Fi-
nally, a kNN algorithm, very similar to the incremental search algorithm proposed
by Hjaltason and Samet [Hjaltason and Samet 1995], is presented. This search al-
gorithm ensures that the exact answer will be always retrieved. Similarly, an upper
bound value has been defined for the longest common subsequence (LCS) [Vlachos
et al. 2003], which may be used also for indexing purposes.

4.7.5  Similarity Search in Protein Databases. In the area of bioinformatics, the
Smith-Waterman algorithm for local sequence alignment (SW, see Section 3.4.1) is
the most popular similarity function for protein sequences. Nowadays, the search
using SW is implemented in ScanPS [Barton 2002] (original SW algorithm enhanced
by so-called iterative profile search), SSEARCH [Green 1993] (SW with SWAT
optimizations), or MPsrch (parallelized version of the original SW algorithm)?.

The SW similarity gives the optimal solution to local alignment but it is com-
putationally expensive. Hence, there have been developed cheaper heuristics which
approximate the SW alignment. The first wide-spread method of this type was
the FASTA [Lipman and Pearson 1985], while nowadays the BLAST (Basic Local
Alignment Tool) [Altschul et al. 1990] algorithm is widely used. In most cases,
BLAST is faster than FASTA and gives better results (i.e., it suffers from less false
dismissals with respect to sequential search using SW alignment). Both FASTA
and BLAST search for seeds — contiguous fragments that are present in both of
the compared sequences. The seeds are then extended to larger portions to achieve
a final alignment. In particular, FASTA searches for totally aligned subsequences,
where each of them is valuated by use of a PAM scoring matrix. Then, top k of
the identical alignments is embraced by a narrow belt (in the alignment matrix), a
Needleman-Wunch alignment (NW, see Section 3.4.1) is computed on the reduced
matrix (the belt) which noticeably decreases the number of necessary computations.
Only sequences with sufficiently low NW score are passed to the final step where
full SW alignment is performed.

On the other hand, BLAST divides a query sequence into n-grams (for proteins

7Online at http://www.ebi.ac.uk/Tools/MPsrch/index.html (12/2009).
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n = 3, typically), where for each n-gram N the set of all such n-grams (from the n-
gram universe) is determined and stored into an n-gram index, that are more similar
to IV than a given threshold. Then, those database sequences are identified that
match an n-gram in the n-gram index. A particular match represents a rough local
alignment of the query sequence and a database sequence, while the alignment
is extended until the alignment score is higher than a given threshold. Finally,
the scores of the aligned database sequences are computed while those not having
sufficiently good alignment are dismissed. The remaining candidates are refined by
the classic SW algorithm.

4.8 Summary

Table III shows a summary and a comparison of the techniques presented in this
section, including the sequential scan as a naive method for searching in nonmetric
spaces. The main characteristics of techniques detailed in the table are: index
designed for general-purpose nonmetric or distance-specific index; index performs
exact or approximate search; index is static or allows insertions/deletions; index is
build in main memory or it can be natively maintained in secondary memory; other
characteristics or comments on the technique.

We observe that the available exact techniques are either slow in the general case
(e.g., sequential scan), require large amounts of space (e.g., CSE), require a deeper
knowledge of the nonmetric function (e.g., QIC-M-tree), or are indeed efficient but
distance-specific (e.g., Inverted file). NAMs that implement approximate similarity
search may cope better with general nonmetric functions (e.g., NM-tree). Most of
the index structures are static, except (mainly) those based on the M-tree.

5. CONCLUSIONS

In this paper, we have surveyed the current situation concerning the employment of
nonmetric similarity functions for effective and efficient similarity search in complex
domains. One of the main results of the paper is a surprising revelation that
nonmetric similarity measuring is widely used in isolated domains, spanning over
many areas of interdisciplinary research. This includes multimedia databases, time
series, medical, scientific, chemical and bioinformatic tasks, among others.

The assembled mosaic shows us that the need for an employment of nonmetric
similarity functions gets the stronger the more increasing complexity of the un-
derlying data space model is. Since simple descriptors (like low-dimensional vec-
tors) become insufficient and more complex descriptors replace them often (like
high-dimensional vectors, time series, 3D meshes, graphs, etc.), the classic metric
paradigm becomes quickly less effective.

Another contribution of this paper is a summary of the existing database index-
ing techniques suitable for efficient nonmetric search. Although there “hesitantly”
appear some pioneer approaches, the vast majority of similarity indexing techniques
still relies on the metric space restriction.

So far, the domain communities use their nonmetric techniques (mostly) without
any database indexing support, i.e., they use a simple sequential search over a
set of descriptors. However, as the volumes of all kinds of complex data expand
tremendously, the lack of efficient data processing would slow in the near future
any further progress in solving the domain tasks. Hence, it is our belief that the
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Table ITI. Overview of Nonmetric Access Methods
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database research community should pay an increased attention to the nonmetric
similarity search techniques.

5.1 Challenges for Database Research

The increasing efforts spent on employing nonmetric similarities in various areas
demonstrates that the nonmetric paradigm is a viable and desired generalization
of the classic metric approach. As the similarity search problems have started
to originate from more complex domains than before, the database community
will have to take into consideration the nonmetric similarity search approach. In
the following, we outline five directions for future research in nonmetric similarity
indexing:

5.1.1 Scalability. Today, the most common mean of nonmetric searching is the
sequential scan of the database. As such a trivial way of retrieval is sufficient only for
a low number of descriptors in the database, it is not scalable with database size. In
the future, the lack of efficient access methods could be a bottleneck for the domain
experts because the database sizes tend to increase even in domains that used to
be not data intensive (e.g., protein engineering). Thus, it is necessary to design
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new indexing techniques specifically designed to tackle with nonmetric spaces. In
particular, the streaming databases could benefit from nonmetric similarity search.
Here a concept similar to index-free metric search [Skopal and Bustos 2009] could
be applied.

5.1.2  Indexability. In Section 4.3 we have discussed the indexability concepts
related to metric space. Although nonmetric problem can be turned into metric
one and a metric indexability concept used, this might not be the best solution
of the nonmetric space analysis. However, due to lack of information provided by
black-box nonmetric function a native indexability concept for nonmetric problems
is not possible. A way how to better analyze a nonmetric space could be a combina-
tion of multiple indexability concepts, each applicable to different mapping of the
original problem (e.g., to metric space, fuzzy logic, or some future one). Of course,
a particular indexability model for specific nonmetric function and/or nonmetric
access method could be based on the specific properties of the problem.

5.1.3 Implementation Specificity. One way how to achieve an efficient and scal-
able nonmetric search is the design of made-to-measure access methods, where each
method is designed specifically for a particular similarity function. The inverted
file and the cosine measure could be an example (see Section 4.7.2). While spe-
cific access methods cannot be reused for other similarity functions (becoming thus
single-purpose), it might turn out that this is the only viable solution within the
restrictions given by the nonmetric similarity search approach. In other words,
although a general nonmetric access method would be more universal (in terms of
its reusability in various problems), its employment might not speedup the search
enough, making the whole similarity search problem infeasible.

5.1.4  Efficiency vs. Effectiveness. In the area of similarity search (metric and
nonmetric), one must not forget that the main objective is to retrieve relevant
objects according to the query specifications made by the user. Indeed, it makes no
sense to have a very efficient similarity search system if it will only return “garbage”.
Moreover, the effectiveness of the search system can only be improved with better
search algorithms (as opposed to efficiency, which may be improved with better
hardware). Thus, it is absolutely relevant to design algorithms that are not only
performing queries fast, but also are highly effective (depending of course on the
specific application domains).

Given the characteristics of searching in nonmetric spaces, this may imply focus-
ing the research on approximate and probabilistic techniques. These techniques, at
least in the case of metric spaces, have been shown to give a good trade-off between
efficiency and effectiveness regarding to similarity search. If one does not have any
information about the similarity function (like in black-box nonmetric similarity),
then every technique designed for discarding objects may produce false negatives,
thus approximation cannot be avoided. This may be enough for many application
where the similarity function is already an approximation of the human notion of
similarity. However, if one needs 100% recall with the given similarity function,
then the only available solution is the sequential scan. Thus, for this sceneario, the
proposal of an efficient sequential scan algorithm (like the VA-File [Weber et al.
1998] for the case of vector spaces) would be very useful.
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5.1.5  Eaxtensibility. Because of the simple assumptions on the syntax of pairwise
similarity function, the mechanisms of similarity search might be applied also in
contexts where the (dis)similarity function is interchangeable with another “syn-
tactically compatible” aggregating/scoring function. In fact, any function that
accepts two data descriptors and returns a number could be interpreted as a pair-
wise nonmetric (dis)similarity function. Thus, the existing techniques of nonmetric
similarity search might be reused in different retrieval scenarios, where a scoring
function determines the relevance of database objects to a query. Conversely, the
area of similarity search might profit from existing or future retrieval approaches
developed under different circumstances. Actually, a seeming difference between
similarity search and other kinds of retrieval that use pairwise scoring could reside
just in different terminology. In particular, we name some terms to be possibly
treated as pairwise similarity, like distance, correlation, transformation/unification
cost, probability, matching, and alignment.

From the implementation point of view, the domain-specific retrieval techniques
(such as BLAST, see Section 3.4.1, or retrieval of 3D models, see Section 3.2.2)
are often designed as one complex “monolithic” algorithm designed by a domain
expert, where the similarity function is not explicitly declared as an independent
module. For such a domain-specific technique, it may emerge a requirement on
improving its efficiency (the speed of retrieval) in the future, especially when the
algorithm involves sequential scan of the database. In such case it might be benefi-
cial to separate the actual similarity function from the existing retrieval algorithm.
The retrieval algorithm could be consecutively re-developed to take advantage of
an existing (non)metric access method, or to design a new domain-specific access
method, which might lead to a more efficient search technique.
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