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ABSTRACT

Let R be a commutative ring with 1 such that Nil(R) is a divided
prime ideal of R. The purpose of this paper is to introduce a new
class of rings that is closely related to the class of Noetherian rings.
A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of
R is finitely generated. We show that many of the properties of
Noetherian rings are also true for Nonnil-Noetherian rings; we use
the idealization construction to give examples of Nonnil-Noetherian
rings that are not Noetherian rings; we show that for each n� 1,
there is a Nonnil-Noetherian ring with Krull dimension n which is
not a Noetherian ring.
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1. INTRODUCTION

We assume throughout that all rings are commutative with 1 6¼ 0.
Let R be a ring. Then T(R) denotes the total quotient ring of R, Nil(R)
denotes the set of nilpotent elements of R, Z(R) denotes the set of zero-
divisor elements of R and dim(R) denotes the Krull dimension of R.
Recall from Dobbs (1976) and Badawi (1999b) that a prime ideal of R
is called a divided prime if P� (x) for every x2R nP. In Badawi
(1999a, 2000, 2001) the author paid attention to the class of rings
H¼fR :R is a commutative ring and Nil(R) is a divided prime idealg.
A generalization of pseudo-valuation domains that was introduced by
Hedstrom and Houston (1978) and a generalization of valuation domains
(chained rings) to the context of rings in the class H were established in
Badawi (1999a, 2000, 2001). In this article, we give a generalization of
Noetherian (commutative) rings to the context of rings that are in the
class H. An ideal I of a ring R is said to be a nonnil ideal if I 6�Nil(R).
Let R2H. We say that R is a Nonnil-Noetherian ring if each nonnil ideal
of R is finitely generated. Recall from Badawi (1999a) that for a ring
R2H with total quotient ring T(R), let f :T(R)�!K :¼RNil (R)

such that
f(a=b)¼ a=b for every a2R and b2R nZ(R). Then f is a ring homo-
morphism from T(R) into K, and f restricted to R is also a ring homo-
morphism from R into K given by f(x)¼ x=1 for every x2R. We say
that R is a Nonnil-Noetherian f-ring if each nonnil ideal of f(R) is a
finitely generated ideal of f(R).

In the first section of this paper, we show that many of the properties
of Noetherian rings are also true for Nonnil-Noetherian rings. In the
second section, we use the idealization construction as in Huckaba
(1988, Chapter VI) to establish examples of Nonnil-Noetherian rings
that are not Noetherian rings; we show that for each n� 1, there is a Non-
nil-Noetherian ring with Krull dimension nwhich is not a Noetherian ring.

2. BASIC PROPERTIES OF NONNIL-

NOETHERIAN RINGS

Throughout this section, H¼fR :R is a commutative ring and
Nil(R) is a divided prime idealg. For a ring R2H with total quotient ring
T(R), we define f :T(R)�!K :¼RNil(R) such that f(a=b)¼ a=b for every
a2R and every b2R nZ(R). Then f is a ring homomorphism from
T(R) into K, and f restricted to R is also a ring homomorphism fom R
into K given by f(x)¼ x=1 for every x2R.

We start this section with the following lemma.
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Lemma 2.1. Let R2H. Then R=Nil(R) is ring-isomorphic to
f(R)=Nil(f(R)).

Proof. Let a :R�!f(R) such that a(a)¼f(a)þNil(f(R)) for every
a2R. It is clear that a is a ring-homomorphism from R ONTO
f(R)=Nil(f(R)). Now, Ker(a)¼Nil(R). Hence, R=Nil(R) is ring-
isomorphic to f(R)=Nil(f(R)). &

Theorem 2.2. Let R2H. Then R is a Nonnil-Noetherian ring if and only
if R=Nil(R) is a Noetherian domain.

Proof. Suppose that R is a Nonnil-Noetherian ring. By Kaplansky
(1974, Theorem 8), it suffices to show that every nonzero prime ideal of
D¼R=Nil(R) is finitely generated. Hence, let Q be a nonzero prime ideal
of D¼R=Nil(R). Then Q¼P=Nil(R) for some nonnil prime ideal P of R.
Since P is finitely generated, it is clear that Q¼P=Nil(R) is a finitely gen-
erated ideal of D. Thus, D is a Noetherian domain. Conversely, suppose
that D¼R=Nil(R) is a Noetherian domain. Let I be a nonnil ideal of R.
Since Nil(R) is a divided ideal, Nil(R)� I. Hence, J¼ I=Nil(R) is a finitely
generated ideal of D. Thus, say, J¼ (i1þNil(R), . . . , inþNil(R)) for some
im’s in I. Let x be a nonnilpotent element of I. Then xþNil(R)¼
c1i1þ � � � þ cninþNil(R) in D for some cm’s in R. Hence, there is a
w2Nil(R) such that xþw¼ c1i1þ � � � þ cnin in R. Since x2 I nNil(R),
x jw in R. Thus, w¼ xf for some f2Nil(R). Hence, xþw¼ xþ xf¼
x(1þ f )¼ c1i1þ � � � þ cnin in R. Since f2Nil(R), 1þ f is a unit of R. Thus,
x2 (i1, . . . ,in). Hence, I is a finitely generated ideal of R. Thus, R is a
Nonnil-Noetherian ring. &

It is well-known (Kaplansky, 1974, Theorem 8) that if every prime
ideal in a ring R is finitely generated, then R is Noetherian. In light of
Theorem 2.2, we have the following similar result.

Corollary 2.3. Let R2H. If every nonnil prime ideal of R is finitely gen-
erated, then R is a Nonnil-Noetherian ring.

Proof. Suppose that every nonnil prime ideal of R is finitely gener-
ated. Then every (nonzero) prime ideal of D¼R=Nil(R) is finitely
generated. Hence, D is a Noetherian domain by Kaplansky (1974,
Theorem 8). Thus, R is a Nonnil-Noetherian ring by Theorem 2.2.

&

In light of Lemma 2.1 and Theorem 2.2 we have the following result.
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Theorem 2.4. Let R2H. The following statements are equivalent:

1. R is a Nonnil-Noetherian ring.
2. R=Nil(R) is a Noetherian domain.
3. f(R)=Nil(f(R)) is a Noetherian domain.
4. f(R) is a Nonnil-Noetherian ring.

Proof. (1)¼) (2). It is clear by Theorem 2.2. (2)¼) (3). It is clear by
Lemma 2.1. (3)¼) (4). Since f(R)2H, the claim is clear by Theorem
2.2. (4)¼) (1). Since f(R)2H is a Nonnil-Noetherian ring,
f(R)=Nil(f(R)) is a Noetherian domain by Theorem 2.2. Hence,
R=Nil(R) is a Noetherian domain by Lemma 2.1. Thus, R is a Nonnil-
Noetherian ring by Theorem 2.2. &

In view of Theorem 2.4. We have the following result.

Corollary 2.5. Let R2H. Then R is a Nonnil-Noetherian ring if and only
if R is a Nonnil-Noetherian f-ring.

Proof. Since R is a Nonnil-Noetherian ring iff f(R) is a Nonnil-
Noetherian ring by Theorem 2.4, the claim is now clear. &

It is shown in Gilmer et al. (1999, Theorem 1.17) that if R is a
reduced ring (i.e., Nil(R)¼f0g) and each prime ideal of R has a power
that is finitely generated, then R is a Noetherian ring. For a ring
R2H, we have the following result.

Theorem 2.6. Let R2H. Suppose that each nonnil prime ideal of R has a
power that is finitely generated. Then R is a Nonnil-Noetherian ring.

Proof. Let D¼R=Nil(R). Then D is an integral domain and hence a
reduced ring. Since every prime ideal ofD has the form P=Nil(R) for some
prime idealP ofR, we conclude that each prime ideal ofD has a power that
is finitely generated. Thus,D is Noetherian byGilmer et al. (1999, Theorem
1.17). Hence, R is a Nonnil-Noetherian ring by Theorem 2.2. &

Theorem 2.7 Let R2H. Suppose that R is a Nonnil-Noetherian ring.
Then any localization of R is a Nonnil-Noetherian ring, and any localiza-
tion of f(R) is a Nonnil-Noetherian ring.

Proof. First, observe that any localization ofR is an element ofH. Let S
be a multiplicative subset of R, and suppose that J is a nonnil ideal of RS.
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Then J¼ IS for some nonnil ideal I of R. Since I is finitely generated, we
conclude that J¼ IS is finitely generated. Now, since f(R) is a Nonnil-
Noetherian ring by Theorem 2.4, by an argument similar to the one just
given, we conclude that any localization of of f(R) is a Nonnil-
Noetherian ring. &

It is known that (Gilmer, 1992, problem 6, page 370) if R is Noether-
ian of finite Krull dimension n, then each overring of R has Krull dimen-
sion at most n. For a ring R2H, we have the following.

Theorem 2.8. Let R2H be a Nonnil-Noetherian ring of finite Krull
dimension n. Then each overring of R has Krull dimension at most n.

Proof. Let D¼R=Nil(R). Then D is a Noetherian domain by Theorem
3.4. It is clear that dim(D)¼ n. Now, Let S be an overring of R. Since
Nil(R) is a divided prime ideal of R, we have Nil(S)¼Nil(R) is a prime
ideal of S. Thus, S=Nil(R) is an overring of R=Nil(R). Hence, S has Krull
dimension at most n by Gilmer (1992, problem 6, page 370). Hence,
S has Krull dimension at most n. &

It is known (Kaplansky, 1974, problem 1, page 52) that if R satisfies
the ascending chain condition on finitely generated ideals, then R is
Noetherian. We have the following similar result.

Theorem 2.9. Let R2H. Suppose that R satisfies the ascending chain
condition on the nonnil finitely generated ideals. Then R is a Nonnil-
Noetherian ring.

Proof. Let D¼R=Nil(R). Then D satisfies the ascending chain condi-
tion on the finitely generated ideals. Thus, D is a Noetherian domain
by Kaplansky (1974, problem 1, page 6). Hence, R is a Nonnil-
Noetherian ring by Theorem 3.4. &

It is known (Kaplansky, 1974, Theorem 144) that if P�Q are prime
ideals in a Noetherian ring such that there exists a prime ideal properly
between them, then there are infinitely many. For a ring R2H we have
the following.

Theorem 2.10. Let R2H be a Nonnil-Noetherian ring, and suppose that
P�Q are prime ideals in R such that there exists a prime ideal properly
between them. Then there are infinitely many.
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Proof. Let D¼R=Nil(R). Then D is a Noetherian domain by Theorem
2.2. Suppose that P�Q are prime ideals in R such that there exists a
prime ideal F properly between them. Then the prime ideal F=Nil(R) of
D is properly between the prime ideals P=Nil(R)�Q=Nil(R) of D. Hence,
there are infinitely many prime ideals of D between P=Nil(R)�Q=Nil(R)
by Kaplansky (1974, Theorem 144). Thus, there are infinitely many prime
ideals of R between P�Q. &

Let R2H. Recall from Badawi (2001) that R is said to be a f-
chained ring if for every x2RNil(R)nf(R), we have x�12f(R); equiva-
lently, if for every a, b2R nNil(R), either a j b in R or b j a in R. It is
known (Badawi, 2001) that a f-chained ring is quasilocal. The following
result is a generalization of Gilmer (1992, Theorem 17.5(2)].

Theorem 2.11. Let R2H be a f-chained ring with maximal ideal
M 6¼Nil(R). Then R is a Nonnil-Noetherian ring if and only if R has Krull
dimension 1 and M is a principal ideal of R.

Proof. Let D¼R=Nil(R). Since R is a f-chained ring, it is easy to
see that D is a valuation domain. Now, suppose that R is a Non-
nil-Noetherian ring. Then D is a Noetherian domain by Theorem
2.2. Since D is a Noetherian domain and a valuation domain, D
has Krull dimension 1 and N¼M=Nil(R) the maximal ideal of D
is a principal ideal by Gilmer (1992, Theorem 17.5(2)). Thus, R
has Krull dimension 1. Since N¼M=Nil(R) is a principal ideal of
D, N¼ (mþNil(R)) for some m2M nNil(R). We will show that
M¼ (m). Let x2M nNil(R). Then xþNil(R)¼mcþNil(R) in D for
some c2R. Hence, x�mc¼w2Nil(R). Since Nil(R) is divided in
R, we conclude that x jw in R. Hence, w¼ xf for some f2Nil(R).
Thus, x� xf¼mc. Hence, x(1� f )¼mc. Since f2Nil(R), 1þ f is a
unit of R. Thus, m j x in R. Hence, x2 (m). Thus, M¼ (m). Conver-
sely, suppose that R has Krull dimension 1 and M is a principal
ideal of R. Then D has Krull dimention 1 and M=Nil(R) the maxi-
mal ideal of R is a principal ideal of D. Thus, D is a Noetherian
domain by Gilmer (1992, Theorem 17.5(2)). Hence, R is a Nonnil-
Noetherian ring by Theorem 2.2. &

3. EXAMPLES OF NONNIL-NOETHERIAN RINGS

In this section, we show that for each n� 1, there is a Nonnil-
Noetherian ring with Krull dimension n which is not a Noetherian ring.
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Once again, H¼fR :R is a commutative ring and Nil(R) is a divided
prime idealg. Our non-domain examples of Nonnil-Noetherian rings
are provided by the idealization construction R(þ)B arising from a ring
R and an R-module B as in Huckaba (1988, Chapter VI). We recall this
construction. For a ring R, let B be an R-module. Consider R(þ)B¼
f(r, b) : r2R, and b2Bg, and let (r, b) and (s, c) be two elements of
R(þ)B. Define:

1. (r, b)¼ (s, c) if r¼ s and b¼ c.
2. (r, b)þ (s, c)¼ (rþ s, bþ c).
3. (r, b)(s, c)¼ (rs, bsþ rc).

Under these definitions R(þ)B becomes a commutative ring with
identity. We recall the following proposition.

Proposition 3.1 (Huckaba, 1988, Theorem 25.1). Let R be a ring, B be an
R-module. Then The ideal J of R(þ)B is prime if and only if J¼P(þ)B
where P is a prime ideal of R. Hence, dim(R)¼ dim(R(þ)B).

We start with the following lemma.

Lemma 3.2. Let R be an integral domain, B be an R-module, and
D¼R(þ)B. Then Nil(D) is a finitely generated ideal of D if and only if
B is a finitely generated R-module.

Proof. It is clear thatNil(D)¼f(0, b) : b2Bg. Hence, suppose thatNil(D)
is a finitely generated ideal of D. Then Nil(D)¼ ((0, b1), . . . , (0, bn)).
Now, let b2B. Then (0, b)¼ (a1, c1)(0, b1)þ � � � þ (an, cn)(0, bn) for some
(a1, c1), . . . , (an, cn)2D. Thus, b¼ a1b1þ � � � þ anbn. Hence, B is a finitely
generated R-module. Conversely, suppose that B is a finitely generated
R-module, say, B¼ (b1, b2, . . . , bn). Then it is easy to check that
Nil(D)¼ ((0, b1), (0, b2), . . . , (0, bn)). Hence, Nil(D) is a finitely generated
ideal of D. &

Recall from Kaplansky (1974) that an integral domain R with quoti-
ent field K is called a G-domain if K is a finitely generated ring over R.
We recall the following result.

Proposition 3.3 (Kaplansky, 1974, Theorem 146). A Noetherian domain
R which is not a field is a G-domain if and only if dim(R)¼ 1 and R has only
a finite number of maximal ideals.
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In the following theorem, we show that there is a Nonnil-Noetherian
ring with Krull dimension 1 that is not a Noetherian ring.

Theorem 3.4. Let R be a Noetherian domain with quotient field K such
that dim(R)¼ 1 and R has infinitely many maximal ideals. Then
D¼R(þ )K2H is a Nonnil-Noetherian ring with Krull dimension 1 which
is not a Noetrherian ring. In particular, Z(þ)Q is a Nonnil-Noetherian ring
with Krull dimension 1 which is not a Noetherian ring (where Z is the set of
all integer numbers with quotient field Q).

Proof. By Proposition 3.1, we have dim(D)¼ 1. Since K is not finitely
generated ring over R by Proposition 3.3, we conclude that K is not a
finitely generated R-module. Hence, Nil(D) is not a finitely generated
ideal of D by Lemma 3.2. Thus, D is not a Noetherian ring. By Proposi-
tion 3.1, we have Nil(D)¼f0g(þ )K is a prime ideal of D. To show that
Nil(D) is divided: let (0,k)2Nil(D), and (a, c)2D nNil(D). Hence, a 6¼ 0.
Thus, (0, k)¼ (a, c)(0, k=a). Hence, Nil(D) is divided in D. Thus, D2H.
Now, it is easy to see that D=Nil(D) is ring-isomorphic to R. Since R is
Noetherian domain, we conclude that D=Nil(D) is a Noetherian domain.
Hence, D is a Nonnil-Noetherian ring by Theorem 2.2. &

In the following result, we show that for each n� 2, there is a Nonnil-
Noetherian ring with Krull dimension n which is not a Noetherian ring.

Theorem 3.5. Let R be a Noetherian domain with quotient field K and
Krull dimension n� 2. Then D¼R(þ )K2H is a Nonnil-Noetherian ring
with Krull dimension n which is not a Noetherian ring. In particular, if K
is the quotient field of R¼Z[x1, x2, . . . ,xn�1], then R(þ)K is a Nonnil-
Noetherian ring with Krull dimension n which is not a Noetherian ring.

Proof. First, by Lemma 3.2 and Proposition 3.3, Nil(D) is not a finitely
generated ideal of D. Hence, D is not a Noetherian ring. Now, use an
argument similar to that one just given in the proof of Theorem 3.4 to
complete the proof of this result. &
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