
On Nonparametric Image Registration

Peihua Qiu and Chen Xing

School of Statistics

University of Minnesota

Abstract

Image registration aims to map one image to another of a same scene. It is a fundamental

task in many imaging applications. Most existing image registration methods assume that the

mapping transformation has a parametric form or satisfies certain regularity conditions (e.g.,

it is a smooth function with continuous first or higher order derivatives). They often estimate

the mapping transformation globally by solving a global minimization/maximization problem.

Such global smoothing methods usually cannot preserve singularities (e.g., discontinuities) and

other features of the mapping transformation well. Further, the ill-posed nature of the image

registration problem, namely, the mapping transformation is not well defined at certain places,

including the place where the true image intensity surface is straight, is not handled properly

by such methods. In this paper, we suggest solving the image registration problem locally, by

first studying the local properties of a mapping transformation. To this end, some concepts for

describing such local properties are suggested, and a local smoothing method for estimating the

mapping transformation is proposed. Because of the flexibility of local smoothing, our method

does not require any parametric form or other global regularity conditions on the mapping

transformation. Both theoretical and numerical studies show that it is effective in various

applications. Supplementary materials are available online.

Key Words: Degenerate pixels; Discontinuity; Image mapping; Image transformation; Local

approximation; Local smoothing; Nonparametric transformation; Statistical properties.

1 Introduction

Assume that two MRI images of a brain tumor patient were taken at a same spot of his/her head at

two different times, to study the growth of the tumor. Although the two images are from the same

spot of the head, pixels on one image may not geometrically match up the corresponding ones on the

other image well, for various reasons, including the difference of the relative movement between the
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head and the imaging device at the two different imaging times. In order to properly compare the

two images for locating their differences accurately, the two images should be geometrically matched

up beforehand. Image registration (IR) is specifically for this purpose (cf., Zitova and Flusser 2003,

Modersitzki 2009). It is an indispensable step for many imaging applications, including medical

imaging (Klein et al. 2009), remote sensing (Li et al. 1995), finger print or face recognition (Liu

et al. 2006), image compression (Dufaux and Konrad 2000), video enhancement (Irani and Peleg

1993), and so forth. As a demonstration, Figure 1 presents two images to register. The image in plot

(b) is obtained from the one in plot (a), after certain image objects (e.g., the two circular objects

in the middle) are moved in their locations. In the literature, the image in plot (a) is often called

a reference image, and the one in plot (b) is called a moved image. The image intensity surface of

the reference image is shown in plot (c), and the true geometrical transformation, denoted as T,

that describes the geometrical movement from the reference image to the moved image is shown

in plot (d). One major goal of IR is to estimate the geometrical transformation that describes the

geometrical movement from the reference image to the moved image, and then match up the two

images well.

IR has been discussed extensively in the computer science and medical imaging literatures. One

group of existing methods first select two sets of features in the two images under consideration,

and then find a geometrical transformation T to best match the two sets of features (Althof et

al. 1997, Davis et al. 1997). Commonly used features include landmarks or control points that

can be selected manually or automatically by a computer (Wu et al. 2006), edge lines or curves

that are often detected by gradient-based methods (Hsieh et al. 1997), and regions, centroids or

templates that are usually determined by ways of thresholding and segmentation (Saeed 1998).

Because feature extraction is often a time-consuming and challenging task with much arbitrariness

involved, recent IR research focuses more on the search of the transformation T based directly on

the observed image intensities of the two images, instead of their features. Such methods are often

referred to as the intensity-based image registration (IBIR) methods in the literature (Bhagalia et

al. 2009). IBIR methods typically search for a transformation T in a certain transformation family,

such that the similarity (or dissimilarity) of the transformed image to another image is maximized

(or minimized). In the literature, both parametric and nonparametric transformation families have

been considered. Commonly used parametric transformation families, such as the rigid-body and

affine motion models, assume that the difference between the two images involves a global motion
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(a) (b)

(c) (d)

Figure 1: (a) A reference image. (c) A moved image. (c) Image intensity surface of the reference

image shown in plot (a). (d) The true geometrical transformation T.

that can be modeled parametrically (e.g., Denton et al. 1999). For instance, the rigid-body model

assumes that the distance between any two points in an image is unchanged after the geometrical

transformation, and the transformation T in 2-D cases can be modeled parametrically with two

translation parameters and one rotation parameter. In practice, however, the geometrical movement

from the reference image to the moved image is often too complicated to be described properly by a

parametric transformation family. In the MRI example discussed at the beginning of the paper, for

instance, besides the relative movement between the head and the imaging device, many organs and

tissues (e.g., the brain, the blood flow in blood vessels) inside the head would move or pulse over

time. This type of geometrical movement is often local and difficult to describe by a parametric

model. To handle such IR problems, nonparametric transformation families have been considered

in the literature, which do not assume any specific parametric forms. Instead, it is often assumed
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that T is a continuous function satisfying various regularity conditions. For instance, the free-

form deformation (DDF) technique considers transformation families consisting of B-splines with

knots properly chosen beforehand (Szeliski and Coughlan 1997, Tustison et al. 2009). Other IBIR

methods using nonparametric transformation families include the diffeomorphic image registration

method (e.g., Avants et al. 2008), image registration using Fourier transformations (e.g., Pan et

al. 2009), information-theoretical image registration (e.g., Rajwade et al. 2009), image registration

based on physical models (e.g., Wang and Staib 2000), among some others. Klein et al. (2009)

made a comprehensive evaluation of 14 IBIR algorithms using various test images.

Most existing IBIR methods mentioned above estimate the geometrical transformation T using

different global smoothing methods, although some smoothing methods (e.g., the B-spline methods)

allow more general T than the others (e.g., the parametric transformation methods). Global

smoothing methods are often convenient to implement, and they are efficient as well in cases

when the assumed parametric models or other global regularity conditions are satisfied. However,

validity of such model assumptions should be justified properly in practice, which is challenging

and currently lacking. As discussed recently by Xing and Qiu (2011), the IR problem is ill-posed

in the sense that the transformation T cannot be properly defined at certain places, including

the place where the image intensity functions of the two related images are linear. For instance,

in the example of Figure 1, it is impossible to define T in the gray background region of the

reference image, because the observed image intensities in that region are all the same and thus

it is impossible to know exactly how the pixels in that region are moved. However, the ill-posed

nature of the IR problem is difficult to discover by a global smoothing method, because the related

global maximization (or minimization) algorithm can always find a solution even when T is actually

undefined at certain places. This explains the reason why the ill-posed nature of the IR problem is

not adequately discussed in the literature yet.

It is our belief that, to handle the IR problem properly, we should first study the major

properties of the geometrical transformation T, including its ill-posed nature. Although the ill-

posed nature of T was first discussed by Xing and Qiu (2011), that issue has not been studied

systematically yet. For instance, Xing and Qiu (2011) did not provide formal definitions of the

places where T is well defined and the places where T is partially defined. It did not discuss how

to detect these places in a statistically consistent way either. Furthermore, there is no related

discussion in that paper about the statistical properties of the estimated T. The major goal of this
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paper is to overcome these limitations and provide a more detailed discussion about the properties

of T. To this end, several concepts, including the 2-D degenerate pixels, 2-D partial degenerate

pixels, 1-D degenerate pixels, and 1-D partial degenerate pixels, are proposed for describing the local

properties of T. The relationship among these concepts is also studied. Based on this study about

T, a local smoothing method is proposed for solving the IBIR problem. The local smoothing nature

of the proposed method makes it possible not to impose restrictive assumptions on T. As a matter

of fact, our method does not require any parametric form or other global regularization conditions

on T. Both theoretical and numerical studies show that it is effective in various applications. It

should be pointed out that, because of the local smoothing nature of the proposed IBIR method, it

can only handle cases when the magnitude of T (i.e., the geometrical movement from the reference

image to the moved image) is relatively small. In many real applications (cf., the two applications

discussed in Section 5), the geometrical movement involved is small; thus, our proposed method

can be applied to these applications directly. In cases when the magnitude of T is large, however,

a global smoothing method based on a parametric transformation family (e.g., the affine motion

transformation family) should be used first to account for part of T with a large magnitude, and

then our proposed method can be used to fine tune the parametric transformation locally.

The rest of the paper is organized as follows. In Section 2, we provide a statistical description

of the IR problem, and define several concepts for describing local properties of the mapping

transformation T. In Section 3, our proposed IBIR method is introduced in detail. Its statistical

properties are discussed in Section 4. Numerical performance of the proposed method is investigated

in Section 5. Several concluding remarks are given in Section 6. Some technical details, including

proofs of two theorems presented in Section 4, certain numerical results, computer source codes of

our proposed method, and the data related to the two real-image examples considered in Section

5, are given online as supplementary materials.

2 The IR Problem and the Mapping Transformation

In the literature, the IR problem is often described as a problem to geometrically match up two

images. However, to study this problem systematically, a statistically more precise description is

necessary. Let R(x, y) and M(x, y) be two true images to register, and M(x, y) be a geometrically

moved version of R(x, y). Then, there is a geometrical transformation T(x, y) = (T1(x, y), T2(x, y))
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such that

M(T1(x, y), T2(x, y)) = R(x, y), for (x, y) ∈ ΩR, (1)

where ΩR is the design space of the image R. For simplicity, we assume that ΩR = [0, 1]× [0, 1], and

the design space of the image M is also assumed to be ΩM = [0, 1]× [0, 1]. In practice, both T and

the true images R andM are unobservable. The major goal of IR is to estimate the transformation

T from the observed images of R and M , such that the two images can be well matched up. In the

IR literature, most people consider pointwise noise only in the observed images. In such cases, the

observed images of R and M can be described by

ZR(xi, yj) = R(xi, yj) + εR(xi, yj),

ZM (xi, yj) = M(xi, yj) + εM (xi, yj), for i, j = 1, 2, . . . , n, (2)

where {(xi, yj), i, j = 1, 2, . . . , n} are pixel locations (or design points in the statistical literature),

and {εR(xi, yj), i, j = 1, 2, . . . , n} and {εM (xi, yj), i, j = 1, 2, . . . , n} are i.i.d. random errors in

the two images with mean 0 and unknown variances σ2R and σ2M , respectively. In practice, the

pixel locations are always regularly spaced in rows and columns, although the number of rows and

the number of columns could be different. In model (2), the number of rows and the number of

columns are assumed to be the same for simplicity of presentation, and our proposed method can

also work well in cases when the two numbers are different. So, in model (2), the pixel locations

are actually assumed to be {(xi, yj) = (i/n, j/n), i.j = 1, 2, . . . , n}. Besides pointwise noise, in

practice, observed images may also contain spatial blur and other types of contamination. See Hall

and Qiu (2007) for a related discussion.

The IR problem described in (1) and (2) has the following boundary problem: when a given

pixel (x, y) is close to the border of ΩR, it is possible that T(x, y) is outside ΩM . In such cases,

M(T(x, y)) is not defined. Therefore, the transformation T(x, y) is well defined by (1) in ΩR,T

only, where ΩR,T = {(x, y) : (x, y) ∈ ΩR,T(x, y) ∈ ΩM}. To define T(x, y) in the whole ΩR, an

appropriate extension of the design spaces is necessary.

Intuitively, in cases when the image intensity function R(x, y) is a constant in the whole design

space ΩR, the transformationT(x, y) is not well defined, because the moved image intensity function

M(x, y) must be the same constant andT(x, y) can be any function defined in ΩR,T . More generally,

the transformation T(x, y) is not well defined in cases when the 2-dimensional (2-D) function

R(x, y) is degenerate, and it is actually a 1-dimensional (1-D) function. For instance, in cases when
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R(x, y) = φ(1+2x), where φ is a 1-D function, the geometric move along the y direction cannot be

uniquely determined based on R(x, y) and M(x, y). Consequently, T(x, y) is not uniquely defined.

In practice, it might be rare that the image intensity function R(x, y) is degenerate in the entire

design space ΩR. However, it could be degenerate in small regions of ΩR. To this end, we make

the definitions described below.

Definition 1 A pixel (x, y) is called a 2-D degenerate pixel of an image I if there is a

neighborhood O(x, y) of (x, y) such that the image intensity function of I is a constant in O(x, y).

Definition 2 A pixel (x, y) is called a 2-D partial degenerate pixel of an image I if there

is a neighborhood O(x, y) of (x, y) such that the image intensity function of I is a constant in a

connected proper subregion of O(x, y) whose closure contains (x, y), but there is no neighborhood

of (x, y) in which the image intensity function of I is a constant.

Figure 2 demonstrates the concepts of 2-D degenerate pixels and 2-D partial degenerate pixels.

In plot (a), the image intensity function of I is a constant in the entire neighborhood O(x, y) of

(x, y). So, (x, y) is a 2-D degenerate pixel of I. In plot (b), the image intensity function of I is a

constant only in a proper subregion of O(x, y). So, (x, y) is a 2-D partial degenerate pixel of I in

this case.

(a)

(x,y)

(b)

(x,y)

Figure 2: Examples of 2-D degenerate and 2-D partial degenerate pixels. (a) The pixel (x, y) is

a 2-D degenerate pixel of the image. (b) The pixel (x, y) is a 2-D partial degenerate pixel of the

image.

Let D2,I be the set of all 2-D degenerate pixels of I, and PD2,I be the set of all 2-D partial
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degenerate pixels of I. A subregion of the design space ΩI of the image I is called non-trivial if it

has a positive Lebesgue area. Then, we have the following results.

Theorem 1 Assume that there are only a countable number of disjoint, connected, non-

trivial subregions {D(j)
2,I , j = 1, 2, . . .} of ΩI , in each of which the image intensity function of I is a

constant. Then, (i) D2,I =
⋃∞

j=1

(
D

(j)
2,I\∂D

(j)
2,I

)
, and (ii) PD2,I =

⋃∞
j=1 ∂D

(j)
2,I , where ∂D

(j)
2,I denotes

the boundary set of D
(j)
2,I for each j.

The proof of Theorem 1 is quite straight forward, and can be briefly described as follows. To

prove (i), for a given pixel (x, y) ∈ D2,I , by Definition 1, we can find a neighborhood O(x, y) such

that the image intensity function of I is a constant in O(x, y). Because O(x, y) has a positive

Lebesgue area, (x, y) must be contained in one of {D(j)
2,I , j = 1, 2, . . .} and it is obvious that (x, y)

is an interior point of that region. Therefore, D2,I ⊆ ⋃∞
j=1

(
D

(j)
2,I\∂D

(j)
2,I

)
. On the other hand, for a

pixel (x, y) ∈ D
(j)
2,I\∂D

(j)
2,I with a given j, it must be a 2-D degenerate pixel because it is an interior

point of D
(j)
2,I and we can find a neighborhood within D

(j)
2,I such that the image intensity function of

I is a constant. Therefore, D2,I ⊇ ⋃∞
j=1

(
D

(j)
2,I\∂D

(j)
2,I

)
. To show the result (ii), let us consider any

pixel (x, y) ∈ ∂D
(j)
2,I with a given j. In such cases, obviously (x, y) is not a degenerate pixel. For

an open circle C(x, y; r) that is centered at (x, y) with radius r, let us consider C(x, y; r)
⋂
D

(j)
2,I .

Obviously, it is a connected proper subregion ofD
(j)
2,I with its closure containing (x, y), and the image

intensity of I is a constant in its interior region. Therefore, (x, y) ∈ PD2,I . So,
⋃∞

j=1 ∂D
(j)
2,I ⊆ PD2,I .

On the other hand, if (x, y) ∈ PD2,I , then by definition, there is a neighborhood in which a

connected subregion belongs to one of {D(j)
2,I , j = 1, 2, . . .}, and (x, y) is contained by the closure

of the subregion. Without loss of generality, let us assume that the subregion belongs to D
(j)
2,I for

a given j. Then, (x, y) is contained in the closure of D
(j)
2,I . Because (x, y) is not a 2-D degenerate

point of I, it is not an interior point of D
(j)
2,I . Consequently, (x, y) ∈ ∂D

(j)
2,I . So, PD2,I ⊆

⋃∞
j=1 ∂D

(j)
2,I .

Result (ii) then follows.

In practice, image intensity functions of most images are piecewise continuous, different con-

tinuity regions are separated by edge curves, and they are countable. In each continuity region,

it should be reasonable to assume that there are only a countable number of disjoint, connected,

non-trivial subregions in each of which the intensity function is a constant. Therefore, results in

Theorem 1 should describe D2,I and PD2,I of a typical image well.

Intuitively, if (x, y) is a 2-D degenerate pixel of the reference image R, then the image intensity
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function of R is a constant in a connected open set, denoted as D∗(x, y), that contains (x, y).

Then, the image intensity function of M should be the same constant in T(D∗(x, y)). As long

as T(D∗(x, y)) contains more than one point, T(x, y) is not well defined, because any point in

T(D∗(x, y)) could be a reasonable value ofT(x, y). This intuition can be generalized in the following

way. If a pixel (x, y) satisfying the condition that there is a neighborhood O(x, y) and a line l

containing (x, y) such that the image intensity function of R is a constant along l in O(x, y), then

T(x, y) is not well defined either, as long as T(Ol(x, y)) contains at least two points, where Ol(x, y)

denotes the set of all points in O(x, y) on the line l. Based on this observation, we have the following

definitions.

Definition 3 A pixel (x, y) is called a 1-D degenerate pixel of an image I if it is not a 2-D

degenerate pixel of I, and there is a neighborhood O(x, y) of (x, y) and a line l containing (x, y)

such that the image intensity function of I is a constant on l within O(x, y). The set of all 1-D

degenerate pixels of I is denoted as D1,I .

Definition 4 A pixel (x, y) is called a 1-D partial degenerate pixel of an image I if it is

not a 1-D or 2-D degenerate pixel of I, and there is a neighborhood O(x, y) of (x, y) and a line l

containing (x, y) such that the image intensity function of I is a constant on one side of l in O(x, y)

starting from (x, y). The set of all 1-D partial degenerate pixels of I is denoted as PD1,I .

For a 1-D degenerate pixel (x, y) of the image I, by definition, there is a neighborhood O(x, y)

of (x, y) and a line l containing (x, y) such that the image intensity function of I is a constant on l

in O(x, y). Assume that l has a normal direction of a and the intensity function of I is continuous

in O(x, y). Then, the 2-D image intensity function of I is asymptotically a 1-D function in O(x, y),

and it has the expression

I(s) = ψ(a′s) + o(‖s− (x, y)‖), for s ∈ O(x, y),

where ψ is a non-degenerate univariate function, and ‖ ·‖ is the Euclidean norm. In such cases, it is

obvious that the geometrical transformation T(x, y) in the normal direction a is possible to define,

but it is not uniquely defined in the tangent direction of l as long as T(Ol(x, y)) contains at least

two points. Similar to Theorem 1, under some regularity conditions, we can establish the results

that D1,I consists of a countable number of disjoint, open, line segments, and the set of endpoints

of the line segments is just PD1,I .
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3 Proposed Intensity-Based Image Registration Method

From the discussion in Section 2, the geometrical transformation T is not well defined in D2,R,

the set of all 2-D degenerate pixels of R. At a 1-D degenerate pixel of R, it is only partially

defined. In this section, we describe our proposed IBIR method in detail, which focuses mainly

on all 2-D non-degenerate pixels of R, the set of which is denoted as D2,R. Our description is

divided into three parts. In Section 3.1, a local smoothing procedure is suggested for detecting all

2-D non-degenerate pixels of R. Based on the detected 2-D non-degenerate pixels, an estimator of

the geometrical transformation T is defined in Section 3.2. Then, in Section 3.3, some practical

guidelines are given regarding selection of some procedure parameters used in our method.

As mentioned in Section 2, the IR problem has a boundary problem. Although the boundary

problem here is different from the boundary problem that is common to most local smoothing

procedures (cf., Qiu 2005, Section 2.3), some methods proposed in the local smoothing literature

to extend the design space, including the periodic extension, symmetric extension, and so forth,

can also be considered here. In all numerical examples in Section 4, we adopt the symmetric

extension approach as follows. Suppose that we want to extend the design space of the image R

from ΩR = [0, 1] × [0, 1] to ΩR,ǫ = [−ǫ, 1 + ǫ] × [−ǫ, 1 + ǫ], with ǫ > 0. Then, by the symmetric

extension, we define R(x, y) = R(−x, y) when x ∈ [−ǫ, 0) and y ∈ [0, 1]. In other boundary regions,

the extension is defined similarly.

3.1 Detection of the 2-D non-degenerate pixels

To detect 2-D non-degenerate pixels, there are different possible approaches. One natural approach

is to make a judgment based on the sample variance of the observed image intensities in a neigh-

borhood of a given pixel. If the sample variance is large, then it is an indication that the given

pixel might be a 2-D non-degenerate pixel. Otherwise, it is unlikely a 2-D non-degenerate pixel.

An alternative approach is to investigate the change of the underlying image intensity surface along

its gradient direction at the given pixel. Because the image intensity surface increases the fastest

along the gradient direction, if its change along that direction is small, then it is an indication that

the given pixel might be a 2-D degenerate pixel. The latter approach focuses on the directional

change which is about the variability of a univariate directional function, while the former approach

checks the variability of a bivariate function. Since the two approaches use the same amount of
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data, the latter approach would be statistically more efficient, compared to the former approach.

Further, by investigating the change of the image intensity surface along the direction orthogonal

to the gradient direction, which is called the normal direction hereafter, it is possible to detect 1-D

degenerate pixels. Because of these two benefits, we adopt the latter approach in this paper, which

is described below.

At a given pixel (x, y) ∈ ΩR, let us consider a circular neighborhood with radius h∗n, denoted

as O(x, y;h∗n). In O(x, y;h∗n), a local plane is fitted, using the local linear kernel (LLK) smoothing

procedure accomplished by the following minimization problem:

min
a,b,c

n∑

i,j=1

{ZR(xi, yj)− [a+ b(xi − x) + c(yj − y)]}2K∗
(
xi − x

h∗n
,
yj − y

h∗n

)
, (3)

where K∗(u, v) is a 2-D density kernel function with the support {(u, v) :
√
u2 + v2 ≤ 1}. The solu-

tion of (3) is denoted as (â(x, y), b̂(x, y), ĉ(x, y)), and it is the LLK estimate of (R(x, y), R′
x(x, y), R

′
y(x, y)).

Then, the gradient vector G(x, y) = (R′
x(x, y), R

′
y(x, y))

′ of R at (x, y) can be estimated by

Ĝ(x, y) = (̂b(x, y), ĉ(x, y))′, and the normal vector n(x, y) = (−R′
y(x, y), R

′
x(x, y))

′ can be esti-

mated by n̂(x, y) = (−ĉ(x, y), b̂(x, y)), as demonstrated in Figure 3(a).

(a)

(x,y)

G(x, y)

n(x, y)

(b)

(x,y)

NG
(1)(x, y)

NG
(2)(x, y)

Figure 3: (a) The estimated gradient vector Ĝ(x, y) and the estimated normal vector n̂(x, y) are

obtained by the local linear kernel smoothing procedure (3) in the neighborhood O(x, y;h∗n). (b)

The two one-sided narrow bands N
(1)

Ĝ
(x, y) and N

(2)

Ĝ
(x, y) along the estimated gradient direction

Ĝ(x, y) (the bands formed by solid lines), and the two one-sided narrow bands along the estimated

normal direction n̂(x, y) (the bands formed by dashed lines).

To investigate the directional change of the underlying image intensity surface of R along the
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estimated gradient direction Ĝ(x, y) at (x, y), we consider a narrow band in O(x, y;h∗n) formed by

two lines along the direction of Ĝ(x, y), as demonstrated in Figure 3(b) by the two longer solid

lines. The two lines are on two different sides of (x, y), and the Euclidean distance from (x, y) to

each line is ρnh
∗
n where ρn ∈ (0, 0.5] is a positive number. Then, the narrow band is divided into

two parts by a line passing (x, y) in the normal direction (cf., the shorter solid line in Figure 3(b)).

The two one-sided parts are denoted as N
(1)

Ĝ
(x, y) and N

(2)

Ĝ
(x, y), respectively. Then, we compute

the local constant kernel estimator of R(x, y) from the observed image intensities in each part (i.e.,

the solution to a of (3) when b and c are set to be 0 and when (xi, yj) are constrained to the region

considered). The two one-sided estimators are

a
(1)

Ĝ
(x, y) =

∑
(xi,yj)∈N

(1)

Ĝ
(x,y)

ZR(xi, yj)K
∗
(
xi−x
h∗

n
,
yj−y
h∗

n

)

∑
(xi,yj)∈N

(1)

Ĝ
(x,y)

K∗
(
xi−x
h∗

n
,
yj−y
h∗

n

)

a
(2)

Ĝ
(x, y) =

∑
(xi,yj)∈N

(2)

Ĝ
(x,y)

ZR(xi, yj)K
∗
(
xi−x
h∗

n
,
yj−y
h∗

n

)

∑
(xi,yj)∈N

(2)

Ĝ
(x,y)

K∗
(
xi−x
h∗

n
,
yj−y
h∗

n

) . (4)

Then, the difference between a
(1)

Ĝ
(x, y) and a

(2)

Ĝ
(x, y) can be used for measuring the directional

change of the image intensity surface of R along the estimated gradient direction Ĝ(x, y). So, the

pixel (x, y) is detected as a 2-D degenerate pixel of R if

Un(x, y) =
∣∣∣a(1)

Ĝ
(x, y)− a

(2)

Ĝ
(x, y)

∣∣∣ ≤ un, (5)

where un > 0 is a threshold value. Otherwise, it is detected as a 2-D non-degenerate pixel of R.

The set of all detected 2-D degenerate pixels of R are denoted as D̂2,R, and the set of all detected

2-D non-degenerate pixels of R are denoted as D̂2,R. It should be noted that the difference between

two one-sided local constant kernel estimators is used in (5), instead of the difference between two

one-sided local linear kernel estimators, because the latter could be small even when the image

intensity surface of R changes fast along the direction of Ĝ.

Among all detected 2-D non-degenerate pixels of R, we can further detect 1-D degenerate

pixels of R as follows. Let Vn(x, y) be defined in the same way as Un(x, y), except that N
(1)

Ĝ
(x, y)

and N
(2)

Ĝ
(x, y) in (4) are replaced by N

(1)
n̂

(x, y) and N
(2)
n̂

(x, y), respectively, where N
(1)
n̂

(x, y) and

N
(2)
n̂

(x, y) are two one-sided narrow bands in O(x, y;h∗n) along the normal direction n(x, y) (cf., the

two one-sided bands shown in Figure 3(b) by the dashed lines). Then, for a given pixel (x, y) ∈ D̂2,R,

it is detected as a 1-D degenerate pixel of R if

Vn(x, y) ≤ vn, (6)
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where vn > 0 is a threshold value. Otherwise, it is detected as a 1-D non-degenerate pixel of R.

The set of all detected 1-D degenerate pixels of R are denoted as D̂1,R, and the set of all detected

1-D non-degenerate pixels of R are denoted as D̂1,R. Obviously, D̂1,R
⋃
D̂1,R = D̂2,R.

The procedures (5) and (6) for detecting 1-D and 2-D degenerate pixels are based on certain

ideas used in the research area of jump regression analysis (JRA) (cf., Qiu 2005). For some recent

developments in JRA, see Joo and Qiu (2009), Mukherjee and Qiu (2011), Qiu (2009), Sun and

Qiu (2007), and the references cited therein.

3.2 Estimation of the mapping transformation T

As discussed in Section 1, the geometrical mapping transformation T is not well defined at a 2-D

degenerate pixel of R. So, we first define T at the detected 2-D non-degenerate pixels of R. Let

D̂2,M be the set of all detected 2-D non-degenerate pixels of M . Then, for a given detected 2-D

non-degenerate pixel (x, y) ∈ D̂2,R, define

T̂(x, y) = arg min
(xi,yj)∈O(x,y;rn)

⋂
D̂2,M

WSSD ((x, y), (xi, yj);hn) , (7)

where

WMSD ((x, y), (xi, yj);hn) =

∑√
s2+t2≤hn

[ZR(x+ s, y + t)− ZM (xi + s, yj + t)]2K
(

s
hn
, t
hn

)

∑√
s2+t2≤hn

K
(

s
hn
, t
hn

)

(8)

is the weighted mean squared difference (WMSD) between the observed intensities of the reference

image R in the neighborhood O(x, y;hn) and the observed intensities of the moved image M in the

neighborhood O(xi, yj ;hn). In (7) and (8), rn and hn are two positive radiuses, K is a 2-D density

kernel function, and the two summations on the right-hand-side of (8) are constrained to discrete

pixel locations, although it is not explicit in notation. Namely, the summations are over all (s, t)

satisfying the conditions that
√
s2 + t2 ≤ hn and {(x+ s, y+ t)} (or equivalently, {(xi + s, yj + t)})

are pixel locations.

In (7) and (8), for a given detected 2-D non-degenerate pixel (x, y) of R, we search all the

detected 2-D non-degenerate pixels (xi, yj) of M in the circular neighborhood O(x, y; rn), such

that the WMSD value defined in two corresponding neighborhoods O(x, y;hn) and O(xi, yj ;hn)

of the two images reaches the minimum. Therefore, by this procedure, our major goal is to best
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match the two images around the two sets of detected 2-D non-degenerate pixels using the local

smoothing procedure (8), which is consistent with the ultimate goal of most IR applications to

best match the two images in question. Because of the local smoothing nature of our procedure,

a term regularizing the smoothness of T, which is commonly seen in global smoothing procedures

(e.g., the smoothing spline procedure), is not included explicitly in (7). As a matter of fact, the

procedure (7)–(8) implicitly assumes that T can be approximated by a constant transformation in

the local neighborhood O(x, y;hn). There are several benefits to use a local smoothing procedure

here. One major benefit is that it does not require global smoothing assumptions on T; thus, it

is quite flexible and can handle certain cases when T is not uniformly smooth in the entire design

space. Another major benefit is that its computation is relatively simple. See Chapter 2 of Qiu

(2005) for an introduction about local smoothing and global smoothing procedures and their major

properties.

Although the transformation T is not well defined at a 2-D degenerate pixel of R, for the

convenience of comparing R with M , in practice it is helpful to define T in the entire design space

ΩR. To this end, let (x̃, ỹ) be the pixel in D̂2,R that is closest to a given pixel (x, y) ∈ D̂2,R,

q = T̂(x̃, ỹ)− (x̃, ỹ), and T̃(x, y) = (x, y) + q. Then, we define

T̂(x, y) =





T̃(x, y), if WMSD((x, y), T̃(x, y); h̃n) ≤WMSD((x, y), (x, y); h̃n)

(x, y), otherwise,
(9)

where h̃n ≥ 0 is a bandwidth that could be different from hn. In (9), T̃(x, y) is determined by

the estimated transformation at (x̃, ỹ). So, by (9), the estimator T̂(x, y) at a 2-D degenerate pixel

(x, y) of R is defined to be the identity transformation (i.e., T̂(x, y) = (x, y)) or the estimated

transformation T̃(x, y) defined at the nearest 2-D non-degenerate pixel (x̃, ỹ), whichever gives the

smaller WMSD value.

3.3 Practical guidelines for choosing procedure parameters

In our proposed IBIR procedure, there are some procedure parameters. Proper selection of these

parameters is important because they could affect the performance of the proposed procedure in

a substantial way. For the IR problem, procedure parameters can always be chosen such that a

registration performance measure (e.g., the RRMSmeasure defined in Section 5 below) is minimized.

However, an exhaustive search could take much computing time. For one set of parameter values,
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it takes about 10 seconds for the proposed procedure to register two 256× 256 images on a PC of

Intel(R) 2.40GHz Core(TM)2 Duo CPU with 2982 MByte memory. We have tried many different

images of the resolutions 128 × 128, 256 × 256, and 512 × 512. Next, we provide some empirical

guidelines for choosing the parameters, based on our numerical experience. When reading these

guidelines, readers are reminded that ΩR is assumed to be [0, 1]× [0, 1]. Also, selection of procedure

parameters always depends the specific images under study. So, in practice, when choosing the

parameters, we can try the recommended values first, and then make some adjustments around

the recommended values when necessary. In that way, much computation could be saved in many

cases.

Selection of h∗n and ρn: In detection of 2-D and 1-D degenerate pixels, there are two param-

eters h∗n and ρn involved (cf., (3)–(5)). h∗n is a bandwidth of the local smoothing procedure (3). If

it is chosen too small, then the procedure (3)–(5) would be sensitive to noise. On the other hand,

if h∗n is chosen too large, then some local image structures would be smoothed out by (3), and

the procedure (3)–(5) would be insensitive to these local structures. We recommend choosing h∗n

from the values {0.015, 0.02, 0.025}. The parameter ρn controls the widths of the one-sided narrow

bands shown in Figure 3(b). The IBIR results would be reasonably good if we choose ρn to be one

of the two values {0.2, 0.5}.

Selection of un: The threshold value un used in (5) controls the amount of detected 2-D

non-degenerate pixels. If it is chosen larger, then there are fewer detected 2-D non-degenerate

pixels. Our numerical experience shows that this parameter can be chosen such that |D̂2,R|/|ΩR| ∈
[0.1, 0.15], where |D̂2,R| denotes the number of detected 2-D non-degenerate pixels and |ΩR| denotes
the total number of pixels in ΩR.

Selection of rn, hn and h̃n: The size of rn is related to the expected magnitude of the

geometrical transformation (i.e., dE(T(x, y), (x, y))). In most IR problems, we find that it is good

enough to choose rn ∈ [0.05, 0.25]. If the expected magnitude of the geometrical transformation

is larger than 0.25, then we can consider to combine the proposed IBIR procedure with a global

smoothing method, as discussed in the second last paragraph of Section 1. For hn, we can choose

it to be min{rn, sn}, where sn is a number between 0.01 and 0.1. The parameter h̃n should be

chosen small. Usually, it is good enough to choose h̃n such that O(x, y; h̃n) only contains tn pixels

with tn ∈ {1, 5, 9}. That is, the pixel itself (1), or that pixel and those directly adjacent (5), or the

pixel and those directly or diagonally adjacent (9).
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4 Statistical Properties of the Proposed Method

In this section, we discuss some statistical properties of the proposed IBIR procedure. Theorem 2

below establishes the almost sure consistency of the detected 2-D and 1-D degenerate pixels, while

Theorem 3 builds the pointwise consistency of the estimated geometrical transformation T̂ at 2-D

non-degenerate pixels of R. First, we discuss the properties of the detected 2-D degenerate pixels

and the detected 1-D degenerate pixels of the reference image R. To this end, we introduce the

following notations where all pointsets are actually subsets of the grid {(xi, yj), i, j = 1, 2, . . . , n},
although it is not made explicit in notation:

• For a connected 2-D point set A ⊆ ΩR, we use A(h∗n) to denote the set of its interior points

{(x, y) : (x, y) ∈ A, dE((x, y), ∂A) ≤ h∗n} that are within h∗n of its boundary ∂A, and Ah∗

n
to

denote the set of its boundary points {(x, y) : (x, y) ∈ ΩR, dE((x, y), A) ≤ h∗n} that are within

h∗n of A, where dE denotes the Euclidean distance.

• G2,ǫn = {(x, y) : (x, y) ∈ D2,R, |R′
G
(x, y)| < ǫn, where R

′
G
(x, y) is the directional derivative

of R at (x, y) in the gradient direction G(x, y), and ǫn > 0 is a number that converges to 0

as n→ ∞.

• n1,ǫn = {(x, y) : (x, y) ∈ D2,R\D1,R, |R′
n(x, y)| < τn}, where R′

n(x, y) is the directional

derivative of R at (x, y) in the normal direction n(x, y), and τn > 0 is a number that converges

to 0 as n→ ∞.

• J denotes the set of step edge curves of R (i.e., the image intensity function of R has jumps at

points in J), and J1 denotes the set of roof edge curves of R (i.e., the first-order derivatives

of R have jumps at points in J1).

• Ω2(R, T, n) = ΩR,T

∖(
G2,ǫn

⋃
Jh∗

n

⋃
J1h∗

n

)
,

• Ω1(R, T, n) = D2,R

∖(
n1,ǫn

⋃
Jh∗

n

⋃
J1h∗

n

)
,

• Jn = {(x, y) : (x, y) ∈ J , (x, y) is not a crossing point of several step edge curves, the edge

curve containing (x, y) has a tangent line at (x, y), and the jump size of R at (x, y) is at least

ǫnh
∗
n}

• J1n = {(x, y) : (x, y) ∈ J1, (x, y) is not a crossing point of several roof edge curves, the roof
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edge curve containing (x, y) has a tangent line at (x, y), and the jump size in the slope of R

at (x, y) is at least ǫn}.

• The Hausdorff distance between two point sets A and B are defined to be dH(A,B) =

max
{
sup(x,y)∈A inf(x′,y′)∈B dE((x, y), (x

′, y′)), sup(x,y)∈B inf(x′,y′)∈A dE((x, y), (x
′, y′))

}
.

Theorem 2 Assume that there are only a countable number of disjoint, connected, non-trivial

subregions {D(j)
2,R, j = 1, 2, . . .} of ΩR, in each of which the image intensity function of R is a con-

stant. The image intensity function R has continuous second order derivatives in Ω\(J ⋃
J1).

The noise satisfies the condition E|εR(x1, y1)|3 < ∞. The kernel function K∗ is Lipschitz-1

continuous in its support. The bandwidth h∗n, the quantities ρn and ǫn, and the threshold value

un satisfy the conditions that (i) h∗n = o(1), (ii) ρn = o(1), (iii) 1/(nh∗n
√
ρn) = o(1), (iv)

log2 n/(nh∗3n ρ
3/2
n ) = O(1), (v) un/(ǫnh

∗
n) = o(1), (vi) h∗2n /un = o(1), and (vii) ǫn = o(1). Then, we

have

dH

(
D̂2,R

⋂
Ω2(R, T, n), D2,R

⋂
Ω2(R, T, n)

)
= o(1), a.s., (10)

and when n is large enough,
(
Jn

⋃
J1n

)
⊆ D̂2,R, a.s. (11)

If we further assume that vn = o(1), vn/(τnh
∗
n) = o(1), and h∗2n /vn = o(1), then

dH

(
D̂1,R

⋂
Ω1(R, T, n), D1,R

⋂
Ω1(R, T, n)

)
= o(1), a.s. (12)

Intuitively, when n gets larger, the point set Ω2(R, T, n) converges to the point set ΩR,T \(P
⋃
J
⋃
J1),

where P denotes the point set of all isolated points in ΩR at which the first order derivatives of R

are 0. Note that the 2-D Lebesgue measure of P
⋃
J
⋃
J1 is 0. Therefore, the equation (10) says

that D̂2,R converges to D2,R almost surely in Hausdorff distance, after a point set with Lebesgue

measure 0 is excluded. Expression (11) says that most points in J and J1 are actually detected as

2-D non-degenerate pixels. Equation (12) builds the almost sure consistency of the detected 1-D

degenerate pixels in Hausdorff distance.

For the estimated geometrical transformation T̂(x, y), because of the ill-posed nature of the IR

problem, we only discuss the properties of T̂(x, y) when (x, y) ∈ ΩR,T
⋂
D2,R. Namely, we confine

ourselves in cases when (x, y) is a 2-D non-degenerate pixel and when it is not in the boundary

region of the design space of R.
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Theorem 3 Besides the conditions in Theorem 2, assume that (x, y) is a given pixel in

(ΩR,T
⋂
D2,R)\(D1,R

⋃
P
⋃
J
⋃
J1), rn > dE((x, y),T(x, y)), hn = o(1), 1/(nhn) = o(1), the

kernel function K is a Lipschitz-1 continuous and circularly symmetric function in its unit circular

support, E|εR(x1, y1)|6 < ∞, E|εM (x1, y1)|6 < ∞, the two components of T have continuous first

order derivatives in O(x, y, hn), for any point (x′, y′) ∈ (O(x, y, rn)\O(T(x, y), hn)) the image inten-

sity function of M satisfies the condition that there is a subregion of area qn > 0 in O(T(x, y), hn)

such that the absolute differences between the values of M in that subregion of O(T(x, y), hn) and

the values of M in the corresponding subregion of O(x′, y′, hn) are at least τn, qn and τn satisfy the

conditions that h4n/(qnτ
2
n) = o(1) and hn log(n)/(nqnτ

2
n) = o(1), then we have

dE(T̂(x, y),T(x, y)) = O(hn), a.s. (13)

By (13) in Theorem 3, if (x, y) is a 2-D non-degenerate pixel and it is a 1-D non-degenerate

pixel as well, then T̂(x, y) is an almost surely consistent estimator of T(x, y) when rn is chosen

large enough so that O(x, y, rn) contains T(x, y) in the image of M , in cases when there is no

pixel in O(x, y, rn)\O(T(x, y), hn) such that M is almost identical in O(T(x, y), hn) and in the

corresponding neighborhood of that pixel (i.e., T(x, y) is not identifiable in O(x, y, rn)) and when

other regularity conditions hold. In our proposed IBIR procedure, rn should be chosen beforehand.

By Theorem 3, in order to estimate T properly in the entire design space, rn should be chosen

large. However, if rn is chosen too large, there will be more pixels in the design space that are not

identifiable. So, there is a trade-off between the two considerations. In practice, for a given IR

problem, if we believe that the geometrical transformation T is large at certain places in the design

space, then we can first apply a global smoothing approach to account for part of T with large

magnitude and then our proposed IBIR procedure is used afterwards to make local adjustments,

as described in the second last paragraph of Section 1.

5 Numerical Study

In this section, we present some numerical results concerning the performance of the proposed

IBIR procedure, in comparison with several existing IBIR procedures. The existing procedures

considered are the directly manipulated free-form deformation (DMFFD) method (Tustison et
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al. 2009) and the symmetric diffeomorphic image normalization (SyN) method (Avants et al.

2008). Both methods are based on global smoothing; they provide estimators of the geometrical

transformation T in the entire design space ΩR, even when T is degenerate in certain regions

of ΩR. Besides certain global smoothness conditions on T, they do not require T to follow a

parametric model, such as the rigid body and affine motion models. Results of both methods

depend on the similarity metric that they use. As suggested in the related papers, three similarity

metrics, including mean squared difference (MSD), cross-correlation (CC), and mutual information

(MI), are used respectively in the DMFFD method, and two similarity metrics, including CC and

the pure cross correlation (PCC), are used respectively in the SyN method. Therefore, a total of

five existing procedures are considered here, which are denoted as DMFFD-MSD, DMFFD-CC,

DMFFD-MI, SyN-CC, and SyN-PCC. These existing procedures are implemented using the release

1.9 of the software package ANTS, available at http://www.picsl.upenn.edu/ANTS/. Our proposed

nonparametric IBIR procedure is denoted NEW. In all numerical examples presented in this section,

no global smoothing methods based on parametric transformation families (e.g., the rigid-body and

affine motion transformation families) are used before executing NEW, because the magnitude of T

is quite small in these examples and the global smoothing methods are unnecessary. To evaluate the

performance of all six procedures, we use two popular measures in the IR literature, including the

root residual mean squares (RRMS) and the cross correlation (CC). When evaluating an estimator

T̂ of the geometrical transformation T, RRMS is defined to be

RRMS =





1

n2

n∑

i,j=1

[
ZR(xi, yj)− ZM (T̂(xi, yj))

]2




1/2

.

Basically, RRMS is the Euclidean distance between the observed reference image {ZR(xi, yj)}
and the restored reference image {ZM (T̂(xi, yj))}. Therefore, if its value is smaller, then the

registration is regarded better. The CC measure is defined to be the Pearson’s sample correlation

coefficient of the bivariate data {(ZR(xi, yj), ZM (T̂(xi, yj)))}. Intuitively, if the estimator T̂ is

good, then ZM (T̂(x, y)) would be close to ZR(x, y). Consequently, the CC measure would be close

to its maximum value 1. So, by this measure, the registration is better if the CC value is larger,

although this measure cannot reflect possible scale difference between ZR(x, y) and ZM (T̂(x, y)).

In procedure NEW, the kernel functions K∗(u, v) and K(u, v) are both chosen to be the truncated

bivariate Gaussian density function with support {(u, v) : u2 + v2 ≤ 1}. The design spaces of the

two images to register are extended as described at the beginning of Section 3 with ǫ = 0.3. Its

other procedure parameters are chosen as suggested in Section 3.3 for the smallest RRMS values.

19



For all five competitors, we try all possible values of their procedure parameters and use the ones

resulting in the smallest RRMS values.

We first consider an artificial reference image shown in Figure 1(c) as a 3-D surface, and in

Figure 1(a) as an image. We can see that it has several step edge curves at three corners and two

circular roof edge curves in the middle. The two circular regions in the middle constitute the set

of the true 2-D non-degenerate pixels, the several step and roof edge curves constitute the set of

the true 1-D non-degenerate pixels, and the flat region is the set of the true 2-D degenerate pixels.

Figure 1(b) presents the moved image in which the white circular region in the middle has moved

downwards by 0.06, the dark circular region has moved upwards by 0.06, the white triangular

region at the upper-left corner has moved upwards by 0.04 and to the left by 0.04 as well, and the

remaining parts are unchanged. The true geometrical transformation T is shown in Figure 1(d).

In this example, we consider two image resolutions n = 128 and 256, and four noise levels

σR = σM =0, 1, 5, and 10. For each combination of n and σR, we compute the RRMS and

the corresponding CC values of all six procedures, based on 10 replications. These values are

shown in Figure 4. From the plots of the figure, it can be seen that our proposed procedure NEW

outperforms the five competitors in terms of both RRMS and CC, and the outperformance is in

a quite large margin in all cases. In the case when n = 256 and σR = 5, one set of restored

reference images, defined to be ZM (T̂(x, y)), and the corresponding difference images, defined to

be ZR(x, y) − ZM (T̂(x, y)), of the six procedures are shown in Figure 5. From the images in this

figure, it can be seen that (i) procedure NEW restores the reference image well, (ii) procedures

DMFFD-MSD, DMFFD-CC, and SyN-CC can restore the two circular regions in the middle to

their original positions well, while procedures DMFFD-MI and SyN-PCC cannot satisfactorily

restore their original positions, and (iii) all five competing procedures have difficulty to handle

boundary regions. The detected 2-D non-degenerate pixels of the reference and moved images from

one simulation run in cases when σR = σM =0 and 5 are shown in Figure 6, from which it can

be seen that the true 2-D non-degenerate pixels are almost perfectly detected when σR = σM =0,

and there are some false detected 2-D non-degenerate pixels when σR = σM =5. The estimated

geometrical transformation T is shown in the two plots of Figure 7 in cases when σR = σM = 0

and 5. It can be seen that it is quite close to the true T (cf., Figure 1(d)), especially in the case

when σR = σM = 0. Note that certain pixels around the centers of the two central circular regions

are not detected as 2-D non-degenerate pixels because the true image intensity surfaces there are
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quite flat.
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Figure 4: RRMS and CC values of the six IBIR methods NEW, DMFFD-MSD, DMFFD-CC,

DMFFD-MI, SyN-CC, and SyN-PCC. (a) RRMS values when n = 128, (b) CC values when n = 128,

(c) RRMS values when n = 256, and (d) CC values when n = 256.

In the above example, the pointwise noise is assumed independent at different pixels. In

practice, the noise could be spatially correlated. In the supplementary file, another example is

considered, in which spatially correlated noise is added to the two images shown in Figure 1(a)-(b)

and all other aspects of the experiment are the same as those in the above example. The computed

RRMS and CC values of all six procedures show that NEW outperforms all other five procedures

in a quite large margin in this example as well in terms of both RRMS and CC.

Next, we consider two real IR problems. The reference and moved images of the first problem

are shown in Figure 8, which are the satellite images taken in 1990 and 1999, respectively, in the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Restored reference images (plots (a)–(f)), defined to be ZM (T̂(x, y)), and the correspond-

ing difference images (plots (g)–(l)), defined to be ZR(x, y)−ZM (T̂(x, y)), of the procedures NEW,

DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and SyN-PCC, respectively, in the case when

n = 256, σR = 5, and the original reference and moved images are shown in Figure 1(a)-(b). The

gray scale of all images in this figure is kept the same.
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(a) (b)

(c) (d)

Figure 6: Detected 2-D non-degenerate pixels of the proposed method NEW in the example of

Figure 1. (a) Reference image when σR = 0, (b) moved image when σM = 0, (c) reference image

when σR = 5, (d) moved image when σM = 5.

Chicago area. From the figure, it can be seen that the two images have many geometrical differences.

For instance, it seems that the left-side border of the reference image has moved to the right in

the moved image (cf., the dark spots in the middle and lower parts around the left-side border).

The left-side edge of the Lake Michigan seems smoother in the moved image, compared to left-side

edge of the lake in the reference image. Also, after a 9-year period, there seems to be more dark

spots in the moved image, which may reflect environmental worsening or changes of buildings and

other constructions. Some dark spots in the reference image remain in the moved image; but, their

sizes have changed (cf., some dark spots in the lower parts of the two images). These geometrical

differences are difficult to describe by a parametric model, and some differences are local in the sense

that they only affect small portions of the two images. Furthermore, all the geometrical differences

described above are small in magnitude. Therefore, procedure NEW should be appropriate to use

in this example. After applying the six IBIR procedures, their restored reference images and the

corresponding difference images are shown in Figure 9. It can be seen that (i) procedure NEW
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(a) (b)

Figure 7: The estimated T of the proposed method NEW in the example of Figure 1 in cases when

(a) σR = σM = 0, and (b) σR = σM = 5.

restores the reference image well, (ii) the five competing procedures have difficulty to restore the

reference image at certain boundary regions, and (iii) some of them cannot restore the boundary of

the Lake Michigan well (e.g., the bottom part of the Lake Michigan boundary is rough in plot (d)).

The RRMS and CC measures of the six procedures are presented in the upper part of Table 1. We

can see that procedure NEW is indeed better in terms of both RRMS and CC in this example.

Table 1: Performance measures RRMS (first line) and CC (second line) of the six IBIR methods

in the Chicago and Teddy Bear examples.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

Chicago 17.522 28.294 20.923 23.759 21.566 21.580

0.953 0.894 0.937 0.917 0.935 0.933

Teddy Bear 5.473 9.689 9.443 7.260 7.540 8.587

0.987 0.960 0.963 0.978 0.977 0.969

The second real IR problem concerns the two Teddy bear images shown in Figure 10. It can be

seen from the two images that the position of the Teddy bear has been changed in the moved image.

If we check the two images carefully, then it can be noticed that the background is moved only a

little bit in a different direction, making the overall geometrical movement from the reference image

to the moved image challenging to handle. The restored reference images and the corresponding
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(a) (b)

Figure 8: (a) A reference satellite image taken in 1990 in the Chicago area. (b) A corresponding

satellite image taken in 1999 in the same area.

difference images of the six IBIR procedures are shown in Figure 11. From the images in this figure,

it seems that all six methods move the Teddy bear to its original position reasonably well. But,

the five competing methods alter the background texture to different degrees (e.g., in plot (b)),

which explains why the background texture is partially visible in their difference images. These

five methods cannot handle the right boundary area well either. The RRMS and CC measures of

the six procedures are presented in the lower part of Table 1. We can see that procedure NEW

performs better in terms of both RRMS and CC in this example.

6 Concluding Remarks

The ill-posed nature of the IR problem that the related geometrical transformation T is not well

defined at certain places of the design space is described in this paper. Several concepts, including

the 2-D degenerate pixels, 2-D partial degenerate pixels, 1-D degenerate pixels, and 1-D partial

degenerate pixels, have been defined and used for describing the local properties of the transfor-

mation T. Based on these concepts, methods for detecting 2-D and 1-D non-degenerate pixels and

for estimating T have been proposed. A major feature of our proposed methods is that they adopt

the local smoothing approach, instead of the conventional regularization-based global smoothing

approach, so that the ill-posed nature of the IR problem can be properly accommodated. Both

theoretical arguments and numerical studies show that our proposed methods work well in various
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9: Restored reference images (plots (a)–(f)) and the corresponding difference images (plots

(g)–(l)) of the procedures NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and SyN-

PCC in the Chicago example. The gray scale of all images in this figure is kept the same.
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(a) (b)

Figure 10: (a) A reference Teddy bear image. (b) A moved Teddy bear image.

cases.

In the proposed methods, there are still some issues that need to be addressed in our future

research. For instance, in the proposed procedure for detecting 2-D degenerate pixels, our detection

criterion focuses solely on the variation of the underlying image intensity function in the gradient

direction (cf., Figure 3(b) and expressions (4) and (5)). It is unknown to us yet whether the

detection can be improved if the variation of the image intensity function in the entire neighborhood

O(x, y;h∗n) is taken into account. When estimating T, in the proposed procedure (7)–(9), the

related bandwidths rn, hn and h̃n are chosen to be the same in the entire design space. If variable

bandwidths are used, intuitively, estimation of T could be improved, which needs to be confirmed

in the future research. In the theoretical front, consistency of the detected 2-D and 1-D degenerate

pixels is established after the point set Ω(R, T, n) is excluded (cf., (10) and (12) in Theorem 2).

Behaviors of the detected 2-D and 1-D degenerate pixels in Ω(R, T, n) is unknown yet. Further,

Theorem 3 establishes the consistency of T̂(x, y) under certain conditions, and this consistency

result is for individual 2-D non-degenerate pixels. It is unknown to us at this moment whether the

conditions can be further weakened and whether the consistency result is true uniformly in certain

subsets of the 2-D non-degenerate pixels.

Supplementary Materials

supplemental.pdf: This pdf file provides proofs of Theorems 2 and 3 presented in Section 4

of the paper, and some numerical results related to the IBIR procedures considered in Section 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11: Restored reference images (plots (a)–(f)) and the corresponding difference images (plots

(g)–(l)) of the procedures NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and SyN-

PCC in the Teddy bear example. The gray scale of all images in this figure is kept the same.
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ComputerCodesAndData.zip: This zip file contains Fortran source codes of our proposed

IBIR method and the image data of the Chicago satellite image and the Teddy bear examples.
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