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Summary. For the one criterion analysis of variance problem, some nonparametric
generalizations of the two well-known methods of Mulfiple comparisons by Tukey
[26] and Scheffé [19], are proposed and studied here. The performance
characteristics of the proposed methods are compared with those of the others,

available in the literature.

1. Introduction. Let there be c¢(> 2) independent samples, the ith sample
comprising of n, independent and identically distributed random variables
(ieiedereve) distributed according to a gontinuous cumulative distribution
function (cdf) Gi(x), for i =1, +vey ¢c. In one way analysis of variance problem,
it is assumed that

(lll) Gi(X) = G(x - Gi), i = l, see; c’

g = (Gl, evey Qc) being a real c-vector. The null hypothesis to be tested
relates to

(1.2) Hyt 8 = ... =8, =0,

Under the assumption of G being a normal cdf, the classical variance ratio
(F-) test is known to possess some optimum properties as a comprehensive test
for Hb in (1.2). However, in msny situations, we may not be merely satisfied

with the rejection of (1l.2), but may also desire to test more detailed hypotheses

*
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concerning two or more of the components in 8. An important class of parametric

functions used for this purpose is the set of all contrasts among 91, evey Gc;

a contrast § being defined as
(1.3) 0= L0 &=y eves Ay £ L 1o = (s weny 1)

The class ¢ of all possible contrasts is generated by the space & (of rank
e~1) of all possible é vectors, satisfying (1.3). Obviously, we can have always
a set of c~l linearly independent conﬁrasts, say ¢l’ reny ¢c-l’ which spans
that ¢ is tranglation invariate in the sense that for any real scaler ¢,
(1.4) o=Le+ 51,) = f-0

The problem of making further inferences about these contrasts, arising
when the F-test rejects H_ in (2.2), has been considered by Nandi [15], Duncan
(4], Tukey [26], Scheffé [19], Bose and Roy [2], Roy [18], Ghosh [8], Dwass [6],
among many.others. The two mostly used methods are due to Tukey [26] and Scheffé
[19]. Essentially these methods are concerned with providing simultaneous
confidence regions to all possible contrasts with a view to carry out any
multiple comparison test having a preassigned level of significance. These
procedures are all valid for normal cdf's only.

Now with the steady advancement of nonparametric techniques in this field‘
of research, it has come to be recognized that the nonparametric competitors
not only compare quite favourably with their parametric rivals but also possess
some properties which may not be shared by the others (cf. Lehmann [12], [14]).
Further, an interesting method of eétimating shift parameters by rank order tests
considered by Hodges and Lehmann [11] has made the opening of a new line of
approach to the analysis of variance problems, on which further works are due

to Lehmann ([13], [14]), Bhuchongkul and Puri [1] and Sen ([22], [23]). However,



for the problem of simultaneous confidence regions or multiple comparison tests,
these results may not be directly applicable.

The object of the present investigation is to provide some nonparametric
generalizations of the well-known T and S methods of multiple comparisons
(cf. [20, pp. 66-83]) through the use of the same class of rank order statistics
as has been used in ([11], [13],\[14], [21], [22], [23]). Some of the ideas of
the present paper are scattered in rudimentary forms in the works of Dwass [7]
and Steel ([24], [25]). However, no systematic approach to this problem
(particularly the asymptotic theory) has yet been made elsewhere in the literature.
The asymptotic properties of the proposed methods are studied and compared with
those of the parametric S and T methods as well as the other ones by Steel ([24],

[25]) and Dunn [5].

2. Nonparametric generalizations of T-method of multiple comperisons. By
analogy with the homoscedasticity condition implicit in the use of the T-method
(ef. [28, p. 294]), we require here

(2.1) N, = ees =n_ =N,
1 c

Our proposed method is essentially based on Tukey's [26] principle as adapted
for the one way classification. We shall consider first the method of paired
comparisons, where we want to test for the difference of Qi - Qj (referred to
(141),) for all i # j = 1, +es, c. Subsequently, we will consider the method of
multiple comparisons, where we want to test for the significance of all possible

contrasts.

2.1. The paired comparisons. Let us formulate first the class of rank order

statistics which will be used throughout the paper. Let

I = (1, eeey 1);

),i=l, seasy C;3 Jn

(2.2) Xo= gy e Xy



-l

(2.3) E = (En,l’ veey B

=7 (<
~n n’zn), En,a Jn(zn)9 1 S a S. 21’1,7

where Jn is defined on the same line as in Chernoff and Savage [3, p. 972] and
it satisfies all the four regularity conditions of theorem 1 of [3]. Throughout
this paper, these regularity conditions will be implicit in the use of’§n. We

write then

n 2n

= _1 2_1 2 =2

(2.4) E =3= § En’a and A =3 § En,a E .
a=1 a=1

Also, we denote by J(u) = lim Jn(u) for 0 < u< 1l and write

n =0
1 1l
(2.5) p=§ J(u) du, p® = ) Jz(u) du - uz.
0 0
Then, we assume further that
(2.6) J(u) is 4 inu: 0< u<l;
(2.7) 1B -pl = on7®), [A - Al = o1).

Further, let Z(;’g) = 1, if the g-th smallest observation in the combined
H4
(1,j)-th sample is from the ith sample, and let Z(:’g) = 0, otherwise, for
b
a =1, «sey 2n, Then, we shall be concerned with the following class of Chernoff-

Sevage [3] type of rank statistics

=-rl; Z E z(l’a), fori# 321, «es, Cu

.8 .
(2.8) By (g X 2 Foya Py

j)
In conjunction with (2.6), we shall assume that

(2.9) h (X +el, X)is f inaforall X, X, 14§ =1, «uo, oo

It may be noted that statistics of the type (2.8) include as particular cases,
the Wilcoxonts [27] statistic, Normal score statistic, emong others. Let us

then consider the following statistic



(2.10) W)= 141, <o [2n% A~ )hn(ggi,gj) E |,

which plays the basic role in our propos'ed method,
THEORFM 2.1 Under H_ in (1.2),

lim —
n=oo b IW, £t =x,(t),

where xc(t) is the cdf of the sample renge in a semple of size ¢ drawn from a
standardized normal distribution.

PROOF. Let us define

X
(2.11) Y=B(X) = § J'[ax)] daa(f), a(x ) = 4.

X

o

1

Then, under (1.2), Yij’ =1, eeey, Ay i =1, ¢o., ¢ are N(=me) i*i*d*r'v. By
theorem 1 of [3], it is known that Y has a finite absolute mcment of order

R+ ’z , for some ) > 0, the variance of Y is Az, defined in (2.5), and we denote
its mean by % . Thus , on defining

3, n .
_ =5 -1 et 4=
(2.12) Zn,i =n A jfl[yij g ]’ 1 l’ s00y C,

it follows that Zn 1, *ees Zn o &re ieiederev* distributed asymptotically

Ly s )
normally with zero mean and unit variance. Consequently, it is easily seen that
for any given ¢,

~

lim [MaXO i —
(2.13) n=00Pi 1<, j<e ’Zn,i °Zn,j | £t f - xc(t)’

where xc(t) is defined in the statement of the theorem. Now, proceeding precisely
on the same line as in the proof of theorem 1 of [3], and then using Poincares

theorem on total probability, it is easily seen that
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1

T 41 - -1 - =
(2.14) [n? A §:hn(Xi, xj) w3 g(zn’i zn’j)] op(l),
Simultaneously for all i # j =1, «.., ¢. Thus, from (2.4), (2.5), (2.7),

(2.10) and (2.13), we get that

_ Max. ; Y =
(215) - 1ajico s " By 137 0000

Hence, the theorem follows from (2.13).

In small samples, the exact distribution of Wh(under~H5 in (1.2),) may
be quite involved and no suitable algebraic expression may be attached to it.
However, there appears to be a permutation procedure of evaluating the exact
null distribution of W . Let us write X, = Q§l’ ...,’gc). tnder (1'2)’,§N
is composed on N iei+dereve and hence conditioned on the given EN’ all possible
(N!) permutations of the variates among themselves are equally likely. This,
conditioned on the given X, all possible (N1/(n!)®,) partiticnings of these N
varisbles into c¢ subsets of equal sizes are equally likely, each having the
(conditional) probability [Nx/(n!)c]‘l. Thus, if we considerihe set of all these
partitionings and for each one of them, we compute the value of(Wh (with the aid
of formulation (2.10),) we will arrive at the permutation distrilbution function of
Wh. Since, G is assumed to be continuous (so that the possibili<ty of ties may be
ignored, in probability,) and as hngziﬂgj)(i"% j=1, ..., c) are all rank order
statistics, it follows that the permutation distribution of W, der:ived in this
manner will agree with the exact null distribution of Wh. This progredure may be
quite useful for small or moderately large values of n (particularly, if some
modern computing facilities are available), while for large samples, we may use
theorem 2.1 fo approximate the true null distribution of wn by xc(t), t.ables for
which are abailable in Biometrika tables [16, pp. 165-171]. It may be nfyted that

for Wilcoxon's [27] statistic, theorem 2.1 (in a slightly incorrect versiem) has



been considered by Dwass [7].
Let now a: 0 < ¢ < 1 be our preassigned level of significance. We denote

by hh o and Rc a,the upper 100g*/. point of the exact null distribution of Wﬁ
H H

and of Xc(t) respectively, so that

(2.16) P{W < wn,“}Hoj =1-a,x,(R, ) =1-0

and by theorem 2.1, Wn a-9 Rc o
H !
The simplest type of paired comparison test may now be formulated as follows:
1., For all 1 i< j £ ¢, compute the values of hn(§i, 53)5 the values

of the remaining set will be obtained from the relation that
(2.17) hy (X, X,) + by (X, X,) = 2B forelld, § =1, coeyc

2. Compute the value of wn o corresponding to the preassigned a.
’
3. Referred to (1.1), regard those (8; - Gj) to be significantly

different from zero for which
+ -1 - F
(2.18) 2n® A [h (X, xj) En| 2 Wy oo

1t is easily seen that the test is an exact size o0 < a < 1) multiple
comparison (similer) test.

Steel ([24], [25]) has used Wilcoxon's [27] statistic to derive some
multiple comparison tests analogous to Duncan’s [4] and'Tukey's [26] methods.
Here, we won't consider Duncan's method, while his generalization of Tukey!s
method may be regarded as a particular case of our paired comparison test in
(2.18). Moreover, his study remains appreciably incomplete in the sense that
he has not supplied any (asymptotic or exact) expression for Wh,a (even for his
simplest case,) not to speak of any property of his proposed procedure. For

¢ = 3, he has provided a table for the probsbility law of the minimum Wilcoxon-
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statistic (among the ¢(c-1) paired of samples) for sample sizes up to 6, and
also some approximate values for c¢ £ 10, n £ 10. Our results not only generalize
his procedure to a wider class of rank order statistics but also suggests some
asymptotically simplified form of Wh.

Now, often we are not merely satisfied with the detection of those pairs
of (Qi, Qj) for which Gi * Gj, but also we want to attach a simultaneous
confidence region to all possible Qi - Gj, i¥j=1, +o., c. For this, we shall
use (2.18) and a method of deriving confidence intervals for shift parameters,
considered by Lehmann [13] and Sen ([21], [22]). Let us write.

(2.19) Aia. =8, - e‘_j for i, j =1, «¢., co
From (1.1), we will have then
(2.20) Gi(x) = G(x—Gi) = Gj(x—Aij), for i, J =1, «e., C.

Let us then define

ro(1) _ = L =5
by @ =By -2 Anwn,a
(2.20)
-4
AW .

|
1., g
! by " =B n n'n,a

Now, by (2.9) hn(zi +oal , gj) is monotonic in a. Hence, by the sliding

principle, we arrive at the following two values:

] - : (1)
‘ Ai;j.L = Inf {a: hn(ﬁ}fi taln {)\Ej) > by oo

1
H

(2.21)

A

\ (2)y .
15,0 = Swp Lar b (X +al, X)) <p "} ;

which defines an interval

(2.22) Iy = {Aij: By $85S 85y s 1FI=D, o

Then, it follows from (2.18) though (2.22) that the probability is 1 - q that
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i i Y 3 i i A | = L
the inequalities AiJ.L <8 3 < AiJ.U hold simulteneously for all i # j =1, R

Ce

We shall now consider certain asymptotic properties of the propose paired
comparison procedure. To justify the approach theoretically and to avoid the
limiting degeneracy (2.22), we shall now conceive of a sequence of c-tuplets

of cdf's {G ;(x), 1 =1, ..., ¢}, for which (1.1) holds and
4
(2.23) n¥ @ > A= (N, see, N\ ) 85 n 700,

where 9n is defined as in (1.1) and ki i=1, ¢ss, ¢ are real and finite. We
]
also define

(2.24) Kij =N - kj for 4, §J =1, eee, Co

We will be then interested in paried comparisons in hi's, instead of Gi‘s. (It
may be noted that as for the simultaneous confidence region {_Iij: 1<i, j<£e¢e },

we may consider a somewhat more general formulation where as n —+ 00

3 N ;
(2.25) n (Aij Aij)-—ﬁ xij’ defined in (2.24),
Agj being some (fixed) real quantity, not necessarily equal to zero. Since, the

confidence intervals of the type (2.22) are all translation invariant (ef. [13],

[22]), for the study of the asymptotic properties, it is immaterial whether we

0

take Aij = 0 or not, for all i, § =1, ses; €.)s The above formulation is

analogous to Pitman's type of translation alternatives usually adopted to study
the efficiency aspects of the nonparametric analysis of variance tests. Let us

., in (2.19). For

now consider the Hodges-Lehmann [11] point estimate Bij of AiJ

this, we define

A0 - e e »

ij
(2.25) ¢ (
Al2) 2 i a1
L Aij = Sup. {a:h, (Ei + ain’,§j) eyt oo
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Then, conventionally
(2.26) By =% (’A%> N Zsi(?)), 1,321, een, oo

We also define
oo

(2.27) B(J,G) = § (a/ax)J[G(x)] 4G(x).
<0

Then by a simple and straight forward extension of theorem 1 of Sen [2%], it

follows that asymptotically I,. in (2.22) reduces to

ij

(2.28) Iij = 7‘13‘ /xij - “i;)’ <A Rc’a/B(J,G)} ,

where ;ij = ﬁ% (gij - Agj) is the derived form of Hodges-Lehmenn [11] estimate
in (2.26), and A and Rc,a are defined in (2.5) and (2.16) respectively.

Let us now compare (2.38) with the confidence interval obtained by T-method,
when G is assumed to be normal with & veriance o=, If we define Zij = ii - Xj’

as the difference of the ith and jth semple means, and if R is the

¢,c(n=1),a
upper 100q */* point of the studentized range R, c(n—l)(Cf' Wilks [28, p. 294]1),
)

then we have the probability 1 - o that the inequalities

e -

% _ =8 = p)
(2.29) Aij n SRc,c(n—l),u < Aij < Aij + n® sR

c,e(n-1),q

holds simultaneously for all i, j =1, ..., ¢, where s2 is the unbiased estimate

of 0@ carrying c(n-1) degrees of freedom (d.f.). As it is well-known that

P
2 o2 .
(2.30) s s and Rc,c(n—l),a _J;Rc,a as n —»0Q }

we get from (2:29) that asymptotically the confidence interval in (2.29) reduces
to
(2.31) .= [Ng I, =K SR 3,
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where kij = n2(Aij - Agj). Thus, if we take the ratio of the square of the width
of the confidence intervals as a measure of the asymptotic efficiency, the
asymptotic relative efficiency (A*R*E+) of our proposed method with respect to

the T-method reduces +to
(2.32) o(3,8) = 0® [B(J,6)]%/a%.

Thus, we arrive at the following theorem.

THEOREM 2.2. The A°’R*E* of the proposed nonparametric generalization of the

T-method of paired comparisons with respect to the T-method itself, is equal to
the AsR*E+ of the two sample rank order test (on which the proposed method is
based,) with respect to the Student's t-test.

We shall discuss more sbout (2.32) later on.

It may be noted that the present author, in an earlier paper [22], has
considered a method of estimating B(J,G) for any absolutely continuous G,
satisfying the conditions of lemma 7.2 of Puri [17]. If we estimate B(J,G)
separately from each (i,j)th samples (for 1 £ i < j £ ¢), we may combine these
together by an unweighted average, as the sample sizes are all equel. If we
denote this estimate by % (7,G), then it follows from (2.28) that asymptotically,

the confidence intervel for hi - Kj mey be written as

(2.33) RNy = AR,/ fa(J,G) <
1)

e A
1 Ry=hih

4 + A.Rc,a/ B(J,G).

J

A

2.2. The multiple comparisons. We start with a remark that the estimators Ai‘

J
in (2.26) are incompatible in the sense that they mey not satisfy the transitive
relations viz., Aij + Ajk = Aik’ which must be true for the corresponding

parametric quantities. To remove this drawback, Lehmann ([12], [14]) has

considered the following adjusted estimates. Let

(2.34) Z. =

L.

oI
i o]
'_LM

Aij fori =1, +u.y 03
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~ ~

= - i ﬁ = o0 .
(2.35) zij =0, AJ. for i # j =1, , ©

It is easy to see that zij satisfies the aforesaid transitive relation's. It is

also well known (cf. [1, theorem 3.1]) that

1 ~
(2.36) n?(Zij - Aij) ==op(l), for all i, J =1, ..., Cu
Our proposed method is based on certain properties of Zij's

Range ¢ Range 5 _ Max
LEMMA 2.3. g i'zlj a?g S Zyg - by g =< k,fsc! zk(-AkXI .

j%

PROOF. Suppose for any fixed i, the range of (Zij - Aij) is attained by the

pair of paired suffixes (i,k) and (i,{). Then, using (2.35) we get that
Range _ . =
(2.37) 3 (zij-Aij) = ;L(zik =bgp) - (Zil'Ail) Vo= (Zlk'AXk)‘

Since, the right hand side of (2.37) is independent of i, it holds for all

i=1, +¢¢, ¢, and hence, is also the unrestricted maximum. Hence,

Max.

R
B0 By = 8yg) = g fee i)

The other relation also holds similarly.

Hence the lemma.

c _
LEMA 2.4. If &= ? Iiei be any contrast in 8 and if for some L=, e, ),

A

c
we define ¢( = f XiZiX’ then

X '.ME.X. A

S 1
d ‘¢K 9 | < $32 it * IKj, ke ‘Zak

el

PMO

PROOF. We can rewrite b as @ = Ai[’ and hence,

I—‘MO
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| o -8l = lfxi (230 - 851
< 3EiA | RegEe (230 = 8441
1
2

MO MO

}Ki\ 12§f£gcl ij - Akjl » (by lemma 2.3).

Since, the right hend side of (2.38) is independent of {, and the inequality holds
for all { =1, <., ©, the lemma follows directly from (2.38).

If we now let

1
(2.39) '(13 =Sy for § =1, vesy 0, 121, ouuy o,
¢ c
then the contrast O may also be expressed as I 2 f.. 2,.. Consequently,
=1 gm0 M

from lemma 2.4 we get that

c
; Max.
(2.40)  |Q- ifl i fig?yy | (2 ‘X REVIRKIRLIER IR

Now corresponding to the c(c-1) estimates A, . in (2.26), we complete the
ij

values of Zij for i % j=1, ..., ¢, Further, from the c(c-1) simultaneous

confidence intervals Iij in (2.22), we compute the value of

(2.41) ¥2¥’k<c \z, . - o .| subject to A I,. for all i =1
A ! 13 8713 *° TI=d e

We denote this maximum by Hn,a' So that from (2.22) and the probability statement

made just after it, we get that

“Max. -
(2.42) P ilga,k(a - by | < Hn’u% =1-q.

Consequently, from (2.40) and (2.42), we conclude that the probebility is 1 - q
that the inequalities
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(2.43) iil jzlxij 13 2 n,a ? ](il $¢= ? £38; < iil JZ le 15'2 n,uE!X

hold simultaneously for all Q e & .

This may be regarded as a nonparametric generalization of the well known

t&a

T-method of multiple comparisons. (2.43) may be used to attach a simultaneous
confidence interval to any number of contrasts in @ or to test the significance

of them.
Now using (2.22), (2.28), (2.41) and (2.42), it readily follows that

’asymptotically

L
2
(2.44) n® H ¥ AR, /B(I,6),

where 4, R, and B(J,G) are defined in (2.5), (2.16) and (2.27) respectively.
b

Thus, if we define the derived estimates

(2.45) N0, =¥ (z,, - 22,

lJ J iJ ] i, j=l’ LA RN ] c

(Agj being defined in (R.25),) then from (2.43), (2.44) and (2.45), we get that
(2.43) asymptotically reduces to
(2.46) -‘ 2([ IR /B(J G) € 2 ( ) E(X ‘AR /B(J G).
i=1 j= 1j 13 i’

l =1 j=1
If we now compare (2.46) with Tukey's [26] results, as adopted in the case of
one way classified data with equal number of observations (cf. [28, p. 296]) we
again get the same A. R. E. as obtained in (2.32). Hence, the following.
THEOREM 2.5. The conclusions of theorem 2.2 also hold for the multiple comparison

tests considered here.

Now regarding (2.32), various known bounds are available in the literature.

For exsmple, if we use Wilcoxon's statistic, then for normal ecdf, (2.32) is equal
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to 0.95, it has the minimum value of 0.864 for any continuous G (cf. [9]),

while it can be arbitarily large for some specific G, Similarly, it is known
that the use of normal scores results in a value of (2.32) which is always at
least as large as one, while it may also be indefinitely large for some specific
G. The relative value of the efficiencies of the Wilcoxon's test and normal
score test depends on the particular G, and for various known G, a nice account

of this is available with Hodges and Lehmann [10].

3. Nomparemetrig generalizations of S-method of multiple comparisons, The
results of the preceding section have & somewhat limited scope of applicability
in the sense that they deem the sample sizes to be all equal. The method to be
considered now overcomes this drawback, and may be regarded as a nonparametric
generalization of the well known S-method of multiple comparisons (cf. Schefee
[19]). This method is essentially a confidence region procedurse which is based
primarily on the construction of a suitable simultaneous confidence region for
the set of all possible contrasts among 6.

In en earlier paper ([22]), the present author has ocnsidered such a
simultaneous confidence region to the (c-l) parameters (ei - § fori =2, vee,C)
which may be used here. However, from computational standpoint this procedure
eppears to be a little involved in the sense that here we are faced with a set
of (e-1) simultaneous equations in (c-l) unknowns, where each single equation
is an involved function of all these (c-1) unknowns and is only asymptotically
linear in them. Thus, the usuel method of iteration, which has to be mostly
adopted in such a case, becomes very tideous. To remove this difficulty, we
shall consider the following approach which is computationally much more simple,
and at the same time, asymptotically equivalent to the preceding one. This

method will be very appropriate if one of the c populations may be regarded as
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control and the rest as treatment group. On the otherhand, if there is no such
natural centrol group, our procedure is based on selecting one of the c groups
as the standard or control group. However, as we shall see later on that
asymptotically the procedure remains insensitive to the choice of any arbitary

control group.

In this situation, the sample sizes Dys eeey B, 8T not necessarily equal.

Let us denote by
(3.1) Nij =10y + 1y for 1 = § =1, ees, cand N=n) + c00 + 0.

Then, for the (i, j)th semples, we define hn(gi’ngj) precisely in the same |

" menner as in (2.8), with the only change that here By replaces B in (2.3)
i

and have N, , instead of 2n) elements, The mean of the entries in EN is
1] My 5

denoted by EN , and as in (2.7), we assume thet
ij
- -k

(3.2) EENij -p | =o(®),

where we define p (and A2) as in (2.5). Let us also define

N,
N ij N
(3.3) v, ==l (g ,-E 12 )=-Snx,x)E 1,
T A A P by l%s 5%y Nij]

fori%j=l, sesy Co
Conventionally, we let vN-ii =0 fori=1, ees, ¢ and we regard the first

sample to constitute the control group. Then, we define

i
2 |n,
2 j=2 *

|l—‘

(3:4) SN = (SijN-nj )/N]VNoli VN‘lj ’

N
Il MO

A" i

where gij is the usual Kronecker delta. If we write

MO

n, V n, V s
=1 i 'Neli j=p 1 N.li

™Mo

=1 =2
(305) vN‘l' - N i - N
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then (3.4) may also be written as

(3.6) s =42 2 o [V, -T 12
* N ca 4 'NJ1i Nol.-” *

i=1l
We may adopt a similar permutation approach (as in section 2) to find out the

exact null distribution of SN' On the otherhand, if N is large subject to

(3.7) n, [N —58&: 0< ¢, <1foralli=1, ...,ec,

then by an adaptation of the same proof as in lemma 1 of [1], we readily arrive
at the conclusion that under H in (1.2), Sy» in (3.4), has asymptotically a
chi-square distribution with (c-1) d.f. Further, from the same lemma, it
follows that under the sequence of alternatives in (2.23)(with n replaced by
N,) Sy has asymptotically a noncentral y' distribution with (c=1) degrees of

freedom and the noncentrality parameter

(3.8) 8 = (80,012 872 2 0,0 - V2,

i=

¢}
where A = 2 ¢ and B(J,G) is defined in (2.27).

1 Mo

|

Now from (2.20), we have

(309) Gl(X) = Gi(x - Ali) for i = l, *sey Ce

So, if we define
et
(3.10) vN.iJ.(a) = 3 (hy(X, + a‘I’ni’ ?53) - ENij] for i, 3 =1, vu., o}

then it follows from (1.1), (3.5), (3.9) and (3.10) that for all e
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-] 8=

2 3 ny [y g3 (8) - Ty g, @1

(3.11) 8y(8) =
i=}

has the seme distribution as of Sy in (3.6) under H, in (1.2). Further from
(2.9), (3.3) and (3.10) we may conclude that Vy ;,(a) is T in a for all
i#§=1, «os, co So if we denote by Sy  the upper 100a «/+ point of the
H
null distribution of 8 (so that
P
] 2 ] -
(3.12) SN,a — Xc—l,a Where P {X 2 Xc_l,a 25 as)s
then from (3.11) we get that
(3.13) Pesy@) <sy 184=1-a.
Now, equating hN(El + a ENl, %i) to ENli in the same way as in (2.25) and

(2.26), we arrive at the Hodges-Lehmann [11] point estimate Aij‘of A, for

=2, eoey °j the joint asymptotic normelity of the standardized form of these
estimates follow precisely as in the proof of theorem 3.1 of [1]. Let us now

denote by
(3.14) V= (Vg ooy V)

the running coordinate of the pointsny(A) = (VN.lZ(AlZ)’ coey VN.le(Alc))’

on the boundary of the ellipsoid in (3.13). For any particular X, if Vi is

3%
positive, we find out a value of Ali’ say Ali’ such that

# .
(3.15) Ay =Inf 050 Ty ga(805) 28 5

on the otherhand, if V:.L is negative, we define

(3.16) A¥; = Sup [A,: Vﬁ.li(Ali) £V,

for each 1 = 2, «es, ¢« In this manner, any point V on the interior neighbourhood
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of the boundary of the allipsoid in (3.13) is mapped into a point

(3.17) A% = (Afz, veey Aic).

Further, (3.13) is the equation of a closed convex set of points $ SN§§)§ , and

as each VN 14 (a) is 1\ in a, 1 =2, +esy, ¢, it follows that the set of points

(3.18) C(AL) = (b)) eees Alc): Sy(8) < SN,a

will also be a closed convex set in (Al2’ veny Alc), having the property that

(3.19) Pi(dygr vees ) e G (8 )10 =1 -,

For small samples, SN in (3.4) will have essentially a finite number of discrete
mass points and hence on the interior boundary of the ellipsoid SN < SN,a’ there
will be only a finite number of points ;Xi . So, if for each of these points,
we find out (by the process in (3.15) and (3.16),) the coreesponding (finite

number of) points ;¥ 7, in (3.17), then the convex hull of these set of points

will be our desired simultaneous confidence region for (Alz’ ceey Alc). For
large samples, we get by a straight forward generalization of theorem 4 of
Hodges and Lehmann [11] along with an extension of theorem 1 of Sen [22] (to

more than one parameter) that the set c(Al ) in (3.18) reduces to

L BZ jg) ¢ ¢ A
(3.20) o(dy ) =14, —-1—4—12 202 (g m Ny -0,,)(8) 50y

)¢
22 i= =2 301,087

where 4, = (Alz, coey Alc) and &, = (Alz,..., Alc) is the Hodges-Lehmann [11]

estimate of Ay . Thus, if as in (2.25) we write (replacing n by N)

~s

e
(3.21) W8y - Agj)e)\ij as N9oo, for i, j =1, wu., ¢,

A

1 ~
= N2 - o : T =
(3.22) xij N (Aij Aij) for 1 #J =1, ese, 0, N ( "12""”‘1c)‘
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where hij's are all real and finite, then (3.20) reduces to

) ( )—)'A)\ ; ze(g Q)(;\ A h )\)f.z.x_gg._ldﬂ/
(3.23 ¢ll1,) =ikt i=2 j=2 37 Ouah) (- W26 ¢

Consequently, if we attempt to estimate B(J,G) as in [22], separately for each
combination (1, i)th (i = 2, ..., c) samples, and pool these together into a

_ ~
single estimate B(J,G), then an asymptotic simultaneous confidence region to

N will be
(3.24) O Nt 22 €,(5,-0)G ><r—=ﬂ%
. o} ! H
R AN 13703 13 M j 200 -

We shall now use (3.18) or (3.23)(or (3.24),) to derive a simultaneous
confidence region to any number of contrasts in 8. Any contrast Q, £.© may

e e

also be written as —f L. 3By = —§ KiAli' Since c(él.) in (3.18) is a closed
convex set, its convex hull is contained within the intersection of all the
supporting hyperplanes of cQél.). Thus, given any g KiAli’ (which represents
the equation of a (c-2)-dimensional hyperplane,) we can always find two parallel
(c-2)-dimensional hyperplanes haiing the equations % L. 484 = ¢5s j =1, 2; such
that the convex hull of c(él.) is contained within the (c-1)-dimensional steip
defined by these two hyperplanes. Then, if we let ¢y < e, (without any loss of

generality), we get the condidence interval
' c
(3.25) ~e, < ¢=- g)(’iAli < -,

whose confidence coefficient will be at least as large as 1 - g, whatever be the
number of contrasts, we work with. In general, s C, will depend not only on
(Xl, cees Xc) but also the convex hull of the set cQé..). For large samples,

(3.25) simplifies to a great extent. For this, let us define
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(3.26) 8% =a% ) /8%(5,0) ana §° =% ) /BR(3,0).

Then, it follows from (3.23) and a few simple adjustments that the equations of

c
the two parallel (c-2)-dimensional hyperplanes Z XiAli = ¢y, j=1,2, reduce to
2

c ;’-(;-;"-—"'“""“"’""‘/“ s e e
(3.27) ;1221 N (A ) = E"zKJ(MJ-Mj) =%5 \. gg(i)(j(l/el ij/@ ) =
e 5
=5 >13 Xfl ¢y -

Consequently, asymptoticelly the probability is 1 - ¢ that the inequalities

4] 'y % c A c 2 1
(3.28) Z Aihys- 3(21/0 ) szx/i 11 <>2sli My +E @ £i/e,)?

hold s1multaneously for all @ = 2 [ 9., b ¢ » vhere £ is defined in (3.26).

-~

Since <> , in (3.26), converges stochastlcally to ) independently of @ € §? we

get that asymptotically the probasbility is 1 - o that the inequalities

c a f c C A c 9 _%_
(3.29) Ay My <>: /e g o= Z A3 12 hihgt§ G L3/ €4)

hold simultaneously for all O g o &
(3.29) may also be regarded as an extension of a similar result by Lehmann [14,
pe 1500] to a much wider class of rank order statistics.

Again, comparing (3.29) with the simultaneous confidence region provided
by the S-method of multiple comparison (cf. Scheffd [20, pp. 68-71]), we

conclude that the asymptotic relative efficiency (A.R.E.) of the nonparametric
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generalization with respect to the parametric S-method is equal to
(3.30)  e(3,6) = 0°B%(1,6)/A

which is the same as in (2.32). Hence, the theorem.
THEOREM 3.1, The conclusions of theorem 2.2 also hold for the ncmparametric
generalizations of S-method of multiple comparison.

Thus, the discussion made at the end of section 2 also apply to this case.

Finally, regarding the comparison of this method with the one proposed
by Dunn [5]}, we would like to point out the following.

(1) Our method is valid even when Agj's, defined in (2.25), are not
necessarily zero, while as the procadure by Dunn assumes that & is a null vector
(under Ho) ageinst the set of alternatives that at least one of the Qi in each
group is different from at least one from the other. Our method is naturally
applicable in a more wider class of situations. |

(i1) This is essentially a simultaneous confidence region based on the
principle of S-method of multiple comparisons, while Dunn's technique requirssa
selection of a fixed number of contrasts on which the level of significance to
each contrast depends. This is not really justifiable in many cases, whére we
may desire to test for any arbitrary number of contrasts and in that case, her

method will have some difficulty to apply.
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