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A b s t r a c t .  This paper considers the problem for testing symmetry of a dis- 
tribution in/~'~ based on the empirical distribution function. Limit theorems 
which play important roles for investigating asymptotic behavior of such tests 
are obtained. The limit processes of the theorems are multiparameter Wiener 
process. Based on the limit theorems, nonparametric tests are proposed whose 
asymptotic distributions are functionals of a multiparameter standard Wiener 
process. The tests are compared asymptotically with each other in the sense 
of Bahadur. 
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1. Introduction 

In this paper,  we deal with the problem of testing symmet ry  of a dis tr ibut ion in 
R "~. Throughou t  the paper,  we assume the center of symmet ry  is known. Hence, 
wi thout  loss of generality, we consider the problem for test ing symmet ry  about  0. 

In matched  pair t r ea tment  effect experiments  with rn measurements  on each 
member  of n pairs (each pair has one t rea ted  and one control member) ,  the natural  
null-hypothesis is symmet ry  about  the zero vector. In this case, the difference 
" t rea tment-control"  of the responses in each pair would be the basic X vectors 
and under the null-hypothesis of no t rea tment  effect, symmet ry  holds. Here a 
"stochastically larger than  symmet ry"  al ternat ive is called for. 

In the 1-dimensional case, many  statistics have been proposed for the good- 
ness-of-fit test  for symmetry.  For example, we can mention Butler  (1969), 
R o thma n  and Woodroofe (1972), Shorack and Wellner ((1986), Section 22), Aki 
(1987), Cs6rg5 and Heathcote  (1987) and Aki and Kashiwagi (1989). 

Let  X = (X1, X 2 , . . . ,  X,~) '  be a r andom vector  in R "~ which is symmetr ic  
about  0. Suppose tha t  F1, F 2 , . . . ,  F,~ are 1-dimensional cumulat ive dis tr ibut ion 
functions which are symmetr ic  about  0. Then  the distr ibution of (F1 (Xz), F2 (X2), 
. . . ,  F~ ( X , ~ ) ) '  is symmetr ic  about  (1/2, 1 / 2 , . . . ,  1/2) ' .  This can be seen as follows: 
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The symmetry of X and F 's  imply respectively that  

(Xl, X 2 , . . . ,  X~) '  =a ( - X l ,  - X 2 , . . . ,  - X m ) '  

and for every x E R,  Fi(x) + F i ( - x )  = 1, i = 1 , 2 , . . . , m .  Therefore, for each 
x l , x 2 , . . . , x m  e R, it holds that  

P(1 - F1(~-1) ___ Xl , . . . ,  1 - Fm(X~) <_ xm) 

= P(1 - F~ ( -X , )  <_ x ~ , . . . ,  1 - F m ( - X m )  <_ Xm) 

= P(FI(X1) <_ x l , . . . ,  Fm(Xm) <_ zm). 

In the above statement, if we take F,,  F2, . . . ,  Fm so as to be continuous and 
strictly increasing, every continuous and symmetric distribution about 0 in R m is 
transformed to a continuous and symmetric distribution about (1/2, 1 / 2 , . . . ,  1/2)' 
in [0, 1] m. Consequently, the problem of investigating the symmetry of a distribu- 
tion in R "~ can be reduced to that  of investigating the symmetry of the transformed 
distribution in [0, 1] m as far as we know the center of symmetry. 

Aki (1987) proposed a limit theorem which plays an important role for deriving 
asymptotic distributions of tests for symmetry based on the empirical distribution 
function. In Section 2, we give a limit theorem which can be regarded as the 
m-dimensional analogue of the limit theorem. The limiting process of the theorem 
is a (m-parameter) Wiener process w.r.t, a (m-dimensional) distribution function. 
Next, we consider a transformation of the process to a (m-parameter) standard 
Wiener process by using the idea of Khmaladze (1988). Further, these results are 
extended in a general framework on which the central limit theorem for empirical 
processes indexed by uniformly bounded families of functions is studied recently 
(cf. Gin~ and Zinn (1984, 1986)). In Section 3, an integral test is proposed whose 
asymptotic distribution is the L2-norm of a (multiparameter) standard Wiener 
process. The distribution is also investigated. The test is not coordinate free 
(see Remark 3.1 below). Hence, the test procedure is not invariant under the 
rotations of the data without extra considerations. Some statisticians may regard 
it as a defect. However, if we always rotate the data to a following data-dependent 
coordinate system before transforming them into the unit cube, then we can make 
the test procedure to be invariant under the rotations. For example, consider the 
following rotation of the data: Let X1 , . . . ,  X~ be independent observations in R m 
whose distribution is assumed to be symmetric about 0. Let al be the unit vector 
with the same direction of Ein=l X i and let <{al}} be the linear subspace generated 

by al. We denote by X ( 1 ) , . . . , X ~  (~) the orthogonal projection of X 1 , . . . , X n  

on <{a~}} ~-. Let ~ be the unit vector with the same direction of ~ i ~  X~ (1). 

Next, we denote by X} 2) , . . . ,  X (2) the orthogonal projection of X 1 , . . . ,  X~ on 
<{al, a2}} ±. Continuing this procedure, we can define a l , . . . ,  am almost surely. 
Before transforming the data into the unit cube, we always rotate the data so 
that  ai and e~ have the same direction for every i = 1, 2 , . . . ,  m, where ei is the 
unit vector whose i-th component is 1. Then the final data transformed into the 
unit cube are invariant under any rotation of the original data, since the mean 
directions are equivariant under rotations of the data. Of course, there may be 



NONPARAMETRIC TEST FOR SYMMETRY 789 

other methods for the test procedure to be invariant under rotations of the data and 
we can not show that the method given above is optimal in some sence. In Section 
4, three tests including the test proposed in Section 3 are compared asymptotically 
with each other in the sense of Bahadur (1960). Approximate Bahadur slopes of 
the statistics are obtained. Approximate Bahadur efficiency has been subject 
to some criticism. As a first step, however, it is still useful criterion especially 
for test procedures which have nonnormal limiting distributions like this case. 
Wieand (1976) studied the relationship between the limiting approximate Bahadur 
efficiency as the alternative approaches the null hypothesis and the limiting Pitman 
efficiency as the size of the test tends to zero. Recently, further investigation for 
efficiency concepts including approximate Bahadur efficiency has been done by 
Koning (1992). 

2. Asymptotic results 

Let G be a continuous distribution function on [0, 1]'h A Caussian process in 
D([0, 1] "~) with mean 0 and covariance function G(mAx') is called a Wiener process 
w.r.t. G, where m and m t belong to [0, 1] "~. For the definition and some properties 
of D([0, 1]'~), see, for example, Bickel and Wichura (1971). Let Y1, Y2, . . . ,  Y+ 
be i.i.d, random vectors with distribution function G. Let +1,+2,.. . ,  +~ be i.i.d. 
random variables with E+i = 0 and E~p = 1. We assume that (Y1, I"2, . . . ,  Y+) 
and (~1,+2,... ,  +~)are independent. We define a random element of D([0, 1] "~) by 

n+( t ) (=u, ( ta , . . . , t ,+) )  

1 
~ i / ( [ 0 ,  ta] X • X [0,+rn]; gi), 

~ i = 1  

where t = (EL, t2 , . . . ,  t,~)' E [0, 1] "~ and I(A; .) denotes the indicator function of 
the set A. 

THEOREM 2.1. Under the above assumptions, u~(t) converges weakly to a 
Wiener process w.r.t. G. 

We can easily prove this by checking directly the moment condition of Bickel 
and Wichura (1971). We omit the proof, since this theorem is essentially a corol- 
lary of Theorem 2.4 below. But, we have to note that the definitions of weak 
convergence are slightly different. 

As we explain in Section 3, the distribution function G is unknown and it must 
be estimated in the problem of testing symmetry. Moreover, for constructing 
an asymptotically distribution-free test statistic, a transformation of WG to a 
standard Wiener process is needed, as Khmaladze (1988) discussed in the situation 
of usual goodness-of-fit tests in R "~. 

Now we assume for the distribution function G, 
(A.1) G has continuous density 9. And there exist constants 0 < co < cl < oo 

such that e0 _< g(Y) -< el. 
Let g~(Y) be a density estimator based on I"1, . . . ,  Y~. For the estimator g~(Y) 
we assume 
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(A.2) E(9~(Y) - 9(?4)) 2 converges to zero uniformly in y E [0, 1] ~ 
to infinity. 
Define a stochastic process by 

_ 

as n tends 

THEOREM 2.2. I f  assumptions (A.1), (A.2) and the conditions of Theorem 
2.1 are satisfied, w~ converges weakly to a standard Wiener process W in 
D([O, 1]'~), as n tends to infinity. 

PROOF. From the definition of w~, w~(x)  can be written as 

1 1 

"fn Vg.~( Yi) 

Let @~(x) = (1/~/-~) 2iLl ~i(1/~( gi))"  ]([0, X]; Yi). Then we have 

1 /~1 ( 1 1 ) ' I ( [ O , x ] ; Y i ) ' ~ i  • (2.1) _ 

Then, from assumptions (A.1) and (A.2), it is easy to see that the second term of 
the r.h.s, of (2.1) converges to zero in probability uniformly in x. Thus, it suffices 
to show that t ~  converges weakly to a standard Wiener process. But it can be 
done by checking the moment conditions. This completes the proof. 

Here, we view our problem in a general framework of the central limit theorems 
for empirical processes indexed by uniformly bounded families of functions. 

Let Z1, Z2, . . .  be i.i.d, random elements of a Banaeh space /3 with norm 
I1" II. Suppose that EZ1 = 0 and ELIZllL 2 is finite. We assume that the central 
limit theorem holds for Z1, Z2 , . . . ,  i.e., there exists a/3-valued Gaussian random 
element 7, 

(A.3) (1/~/~) }-~i~1 Zi converges weakly to 7 on/3.  
Let ~1,42,... be i.i.d, real valued random variables with E~I = 0 and E ~  = 1 

and let {~} and {Z~} be independent. We assume that 
(A.4) fo(P{1411 > u})l/2d%~ < oc. 
The following theorem is given by Gin~ and Zinn (1984) (of. also Gin~ and 

Zinn ((19s~), Lemma 2.4 and Remark 2.5) and Ledoux and Talagrand (1986)) 

T,~4EOREM 2.3. Assume (A.3) and (A.4). Then (1/v/n) E i ~ l  ~iZi converges 
weakly to 7 on t3. 

Next, let (S, S) be a measurable space and let P be a probability measure on 
it. Define the probability space by (f), E, Pr) = (S N, sN,  pN).  Let X~ : f2 --+ S 

n be the projection of f~ into the i-th copy of S and let P~ = ( l /n )  ~ = l  6x~ be the 
empirical measure associated to P. Denote by us = x/~(P~ - P) the normalized 
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empirical process. Let )c be a class of real valued measurable functions on (S, 8) 
and 

sup If(s)] < oc for every s E S. 
f E 2 :  

If we define 
l~°(2F) = {F I F :  2= ~ R bounded}, 

then I~°(5 r) is a Banach space with norm IIFII = supf 7 IF(f)l. But 1°°(5 c) is not 
necessarily separable and we can not use weak convergence theory on complete 
separable metric spaces. 

For a function h : [2 --+ R,  the upper integral of h is defined as 

E*h = inf { /  g(~o)dPr(co);g is measurable, 9 >_ h } .  

A class of functions S introduced above is called a P-Donsker class with 
envelope F0 if the following conditions are satisfied: 

(a) there exists a real valued measurable function F0 on S such tha t  
fFo(s)2P(ds)  < oc and for every f E .7" and s E S, I/(s)l _< F0(s) holds. 

(b) the central limit theorem holds for the empirical process indexed by 5 c, 
i.e., there exists a centered Radon Gaussian measure 7p on l°~(5 c) such tha t  for 
every H : 1°~(5 c) ~ R bounded and continuous, 

E*H(~) -~ /Hd~/p a s  n - +  00 .  

The Gaussian measure 7P on 1°°(9 c) is the law of Gaussian process Gp indexed 
by 5 c whose difference variance is given by 

E ( G p ( f )  - Gp(g)) 2 = P ( f  - 9) 2 - ( P ( f  - 9)) 2 , 

where P f  = f fdP .  Gp is a generalization of the Brownian bridge (cf. Gin~ and 
Zinn (19s6)). 

Let Wp be the Wiener process indexed by 5 ,  i.e. E W p ( f )  = 0 and 
EwP(Z)WP(9)  = P( fg)  for every f ,  9 E 5 .  Then we have 

TtlEOREM 2.4. Let X 1 , X 2 , . . .  be i.i.d, random elements of (S,$) and let 
the law of X1 be P. Let ~1,~2,... be i.i.d, real random variables with E~I -- 0 
and E ~  = 1. Suppose that 5 is a P-Donsker class with envelope Fo. Then 
( / ~ / ~ )  E~=a ~f(X~)  converges weakly to Wp( f )  in l °°( f ) .  

PROOF. Since 5 c" is a P-Donsker class, the central limit theorem holds, i.e. 
1 n ( / , ~ )  }-~i=i(f(Xi) - P  f )  converges weakly to a generalized Brownian bridge 

• n X Gp( f )  Then Theorem 2.3 implies tha t  (1/x~n) }-~-~=1 ~ i ( f ( ~ )  - P f )  converges 
weakly to the same limit Gp(f ) .  

p Note tha t  (1/x/~) ~-~i=1 ~i f converges weakly to 2VPf, where 24 is (real) 
s tandard  normal random variable and independent of Gp.  
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Thus (1/x/~) E~L1 ~if(xi) converges weakly to Up( f )  + NPf whose law is 
the same as the Wiener process indexed by 5 c. This completes the proof. [] 

Now we reconsider Theorems 2.1 and 2.2, which treat weak convergence of, 
respectively, 

1 
~-~ ( [ ~  t]; Y~) and 1 ~ £ I ( [0  

o(/-2-f5~ ,L , t]; YS. V/~ i=1 

We set S = [0, 1] "~. Denote by Pc  the probability law of I"1. In the former case, 
we set  

5 = U([o,  t]; .), t c s}.  

It can be seen that  the (nonseparable) Banach space (1~(5~), [1" II) is regarded as 
D([0, 1] "~, I1" I1~), where I1' 112 is the usual supremum norm. It is well known that  
the multivariate empirical process 

1 E { i ( [ 0 ,  t]; Yi)-G(t)} 
v/~ i=1 

converges weakly to a Brownian bridge W~(t) on D([0,1] "~, I1' I1~), where 
E W ° ( t )  = o and EW~(8)W°( t )  = a ( s a t ) - a ( s ) C ( t ) .  Hence, 7 is Pa-Donsker 
class with envelope I([0, 1]; .). Then Theorem 2.4 implies that  

1 
E ~J([O, t]; Yi) -~ Wc v ~  
i=1 

on (D([0, 1] "~, II" II~). 
In the latter ease, we set 

We can see that  ~- is a Pc-Donsker class with envelope x/~-~I( [0 ,  1]; .) by virtue 
of Assumption (A.1). Define for every t E S 

1 
f t(Y)- X/-9~I([O,t];Y) e ~. 

Then the central limit theorem implies 

1 
7% 

E(ft(Yi) - Eft(Yi)) ~ Gp(ft). 
v/~ i=1 

Hence, from the proof of Theorem 2.4, we have 

1 E~iEft(yi)___~N.Eft(y1)=N. ~ gx/~)dy 
V/~ i=1 <t 

and 
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1 
~__£ ~ i f t (  Yi )  ~ a p ( f t )  ÷ N . E f t ( Y 1 ) .  ~ 
i=1 

The covariance of the limit process is the following: 

E ( a p ( f ~ )  + N -  E L ( Y 1 ) ) ( a p ( . h )  + Jr-  Ef t (Y~))  

= E G p ( f ~ ) G , ( f ~ )  + E f t ( Y 1 ) .  EA(Ya)  

which is the covariance of a multiparameter standard Wiener process. 

3. Tests for symmetry 

Let Xi,  X 2 , . . . ,  X,~ be i.i.d, random variables with continuous distribution 
function F on [0, 1] "~, where X i  = (X i l ,  X i 2 , . . . ,  Xi~n)', i = 1, 2 , . . . ,  n are column 
vectors. Define Yi = (Yil, Y~2,..., Y~,~)' and ~i by 

and 

2Xi1 
E1 = 2(1 -- Nil ) 

= { 

if Xil _< 1/2, 
if Nil > i/2, 

if Xil <_ I/2, 
ifXil > 1/2, forj = 2,3,...,m, 

1 if Xil _< 1/2, 
~ i =  - 1  i fXi l  > 1 / 2 .  

Remark  3.1. In the definitions of Yi  and ~i, Xii plays a special role. Of 
course, we can use Xij (j ¢; 1) instead of Xil and then the corresponding propo- 
sition to Proposition 3.1 below holds. 

PROPOSITION 3.1. I f  F is s ymmet r i c  w.r.t.  (1 /2 , . . . ,  1/2)', Yi and ~i are 
independent,  and hence ( Y1, . . . , Y~ ) and ( & , . . . , ~n ) are independent.  

PROOF. For t l , f 2 , . . . , t , ~  ¢ [0, 1], we have that  

P(Y/1 _~ t l ,~ /2  _~ t2 , - . . ,Y / rn  _~ tin) 

= P(~/1  ~- t l ,  ~ 2  <-- t 2 , . . . ,  Y~m <- tin, X i l  <_ 1/2) 

-~-P(E1 ~ tl, Yi2 ~ ~2,. . . ,  Ern ~ tin, Nil > 1/2) 

= P(Xi l  <_ fl /2,  Xi2 <_ t2 , . . . ,  Xim <_ tin) 

+ P ( X i l  >_ 1 -  t l / 2 ,  Xi2 >_ 1 -  ~ 2 , . . . , X i m  >_ 1 -  t ~ )  

= 2 F ( ~ l / 2 ,  f 2 , . . . , f m ) ,  

where the last equality follows from the fact that  cubes 

[0, t l /2] × [0, tu] × - . . ×  [0, t~] 

and 
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[1 - / ; 1 / 2 ,  1] x [1 -/;2, 11 x . . .  x [1 - ~ ,  1] 

are symmetric w.r.t. (1 /2 , . . . ,  1/2)'. It is clear that 

1°(~i : 1) = P(Xil < 1 / 2 )  = 1 / 2 .  

Similarly as above, we also have that 

P(Yil _</;1, ~/'/2 _ ~ / ; 2 , . . . ,  ~ m  --~ /;m, ~i = 1) 

= P(Xil <_ h/2,  Xi2 <_/;2,...,Xi~ <_/;~) 
= 

Thus, we obtain that P(  Yi _< t, {i = 1) = P(  Yi < t ) .  P({i = 1), which completes 
the proof. [] 

By using these Y's  and ('s, we set us, 9~ and w~ as described in Section 
2. Then, from Theorem 2.2 and Proposition 3.1, we can conclude that, if F is 
symmetric w.r.t. ( 1 /2 , . . . ,  1/2)' and the conditions of Theorem 2.2 are satisfied, 
the stochastic process w~ converges to a standard Wiener process W in D([0, 1]m), 
as n tends to infinity. 

If we define the L2-norm of w~ as a test statistic for symmetry w.r.t. ( 1 /2 , . . . ,  
1/2)', the statistic converges weakly to the L2-norm of a multiparameter standard 
Wiener process under the null hypothesis from Theorem 2.2 and the continuous 
mapping theorem. Thus, what we have to investigate for the testing problem is to 
derive the distribution of the L2-norm of W. Though few results for functionals 
of a multiparameter standard Wiener process are known, some properties of func- 
tionals of the multiparameter Brownian bridge are well-known. For example, the 
distribution of the L2-norm of the two-parameter Brownian bridge was obtained 
by Blum et al. (1961). Cotterill and CsSrg6 (1985) also investigated the distri- 
bution when the number of parameters is greater than two. Since the standard 
Wiener process is simpler than the Brownian bridge, we can immediately give the 
results for W corresponding to the above. 

As We have currently used, let W = W(yl ,y2 , . . . , y~)  be a m-parameter 
standard Wiener process. Then, we can write 

W(yl,. . .  ,Ym) = 2m/2 E "'" E (•i ~- 1/2)7I" ' Z n l - . . n m ,  
n l = 0  r im=0 i=1 

where Z~zl..,nr,~ a r e  i.i.d, sequence having standard normal distribution (see 
Cotterill and CsSrg6 (1985)). By using this formula, we have 

f01 f01 T ~  . . . .  W 2 ( > , . . . ,  y~,~)dy~ . . .  dy,~ 

= ' + 

n l : 0  n m : O  i : l  
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Hence, the characteristic function of Tm can be written as 

q2m(t) = E ' "  1 - -  (71_2~,~,] ' ~im l(7L/' -I- 1/2) 2) 
fZl=0 7~m:0 

From this formula, we can easily derive that  the n-th cumulant of T~ is given by 

£n ---- 2(2m--1)n ( re+ l ) (  22n -- 1 ) m j ~ z (  n -- 1 ) ! ( (2n ) ! )  - m ,  

where/3~ denotes the Bernoulli number. 
Aki (1990) calculated the distribution function of T2 numerically by Imhof's 

(1961) method and gave a table of the percentage points of some selected values. 
Though we can hardly expect the corresponding numerical calculation by the same 
method for m > 2, Martynov's (1975) result would be applicable. Further, we 
can use at least the Cornish-Fisher asymptotic expansion to calculate the critical 
values, since we have obtained all cumulants of the distribution. The method for 
the L2-norm of the multiparameter Brownian bridge was introduced by Cotterill 
and CsSrg5 (1982). In addition to the above methods for numerical calculation, 
we can note that the bootstrap approximation of the distribution function of the 
functional of the multiparameter Wiener process is useful. 

4. Asymptotic behavior of tests under the alternative hypothesis 

In the previous section, an integral test 

T(n2) = ~/E w2n(y)dy 

was proposed, where E = [0, 1] ~, and its asymptotic distribution under the null 
hypothesis was shown to be the distribution of the L2-norm of an m-parameter 

standard Wiener process. Instead of T~ (2), it is very natural to define the following 
statistics for the same problem, 

1> = Iw (y)rdy or Z,! 3> = s u p  I  (Y)I 
yEE 

Now, we investigate asymptotic behavior of these statistics under the alternative 
hypothesis. Let 5 r be the totality of the probability density functions on E which 
satisfy (A.1). Let 5Co = {f  E 5 c [ f is symmetric about c = (1 /2 , . . . ,  1/2)} and 
51 = 5 c \ 5o. In this section, we assume that X 1 , . . . ,  Xn are i.i.d, random vectors 
with pdf f E 5 .  Our problem is to test H0 : f E 5o against HI : f c 51 based on 
Xl,. . . ,Xn. 

Let X 1 , . . . , X n  be an i.i.d, sample with density f E f .  We denote by 
g(Y) the pdf of I"1,..., Yn. Let F be the distribution function of f and c~ = 
F(1/2,  1 , . . . ,  1). Define 

91(x)  = f ( x l / 2 ,  and g2(x)  = 
2(1-o0 
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Then we see that the conditional pdf of Yi given that ~i -- 1 (~i = -1 )  is gl 
(resp. 92) and g = °zga -7 (1 - o~)g 2. W e  s e t  

¢(f,  x) = L agl(y)  - (1 - c~)g2(y)dy. 

We also assume that the density estimator 9~(y) satisfies SUpycE Ign(Y)-9(Y)[  
0 in probability. Since f E 5 r,  the density 9(y) becomes uniformly continuous on 
t3 under the null and alternative hypotheses. If we use a kernel density estimator 
with bounded kernel with compact support and fold back g~(y)I(EC; y) symmet- 
rically with respect to the boundary, the above property follows from Theorems 
of Devroye and Wagner (1980). 

DEFINITION 4.1. (Bahadur (1960)) Let {Po,O E 0} be a set of probability 
measures on a measurable space (S, 8). Let 00 be some subset of (9 and let H 
be the hypothesis that 0 • 0o. Suppose we are given a sequence of real-valued 
statistics {Tn} defined on (S, 8) based on a sample of size n. We say that {T~} is 
a standard sequence if the following three conditions are satisfied: 

(i) There exists a continuous probability distribution function G such that, 
for each 0 • (9o, 

lim P(T~ < x) = G(x), for every x. 
n - - - + O G  

(ii) There exists a constant a, 0 < a < oc, such that 

a x  2 

l og (1  - o ( x ) )  - 2 [1 + o (1) ] ,  

where o(1) ~ 0 as x ~ oc. 
(iii) There exists a real valued function b(O) on 0 \ (9o, with 0 < b(O) < oc, 

such that, for each 0 • (9 \ 0o, 

lira P ( ~ - b(O) > x )  = 0 fo reve ryx .  
n ----+ O<3 

For every standard sequence {t~}, c(O) = ab2(O) is called approximate Bahadur 

slope. For two standard sequences {t (1) } and {t(2)}, the approximate Bahadur 

efficiency of {t (1) } to {t (2) } is defined by the ratio of the approximate Bahadur 
slopes, C 1 ( 0 ) / C  2 (0) ,  

TftEOI=~EM 4.1. {T(1)}, {T (2}} and iT  (3)} are standard sequences in the sense 
of Bahadur for each integer m > 1. 

For proving the theorem, we need to prove the following lemmas. 

LEMMA 4.1. Let X be a C(E)-valued Gaussian random 
E ( X ( t ) )  = 0 and E ( X ( s ) X ( t ) )  = R ( s , t )  for s and t e E. 
R ( s , t )  > O for each s and t E E. Then it holds that 

}o lim . l o g P  IX(8)ld  > - -  

t - ~  t 2 f fExE R( s, t )dsdt  " 

element with 
Suppose that 
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Remark 4.1. If X(t)  = W(t),  then/~(s ,  t) = s A t and hence it holds that 

l i m  1 ( f i e  ) 3"~ t__,oo~logP I W ( ~ ) l d ~ > t  - 2 

Aki and Kashiwagi (1989) proved the result of Lemma 4.1 for m = 1. Since the 
extension to the multivariate case is straightforward, we omit the proof. 

LEMMA 4.2. [f X l , X 2 , . . . , X  n are i.i.d, r.v.'s with pdf f E S,  then 

sup 
x c E  

1 I([0, x]' Yi)~ - ¢(f,  x) - ~ ' 
n i=1  

0 almost surely. 

PROOF. Since ¢(f ,  x) is the mean function of ( l /n)  Ei~__m (1/~9~ Yi))I([O, m]; 
Yi)~i, this statement is a special case of a uniform law of large numbers. Noting 
that 

1 1 
~ / ( [ 0 ,  x]; Yi)(i _< ~ - Fi(cJ) (say). 

Since EF~(c~) = 1, }-~=l(EF~(a~)/i 2) < oc holds. Then, Theorem 8.3 of Pollard 
(1990) implies the result. This completes the proof. [] 

LEMMA 4.3. For every m E N,  it holds that 

t~oolim ~ l°gP (sup lW(x)] > t)  2"1 

PROOF. From Theorem 5.3 of Adler (1990), there exists a finite positive 
constant C such that for all t > 0, 

c-'t (logt)- /2(1 - _< P <x E(sup Iw(x)l > t) 

<_ c t ~ ( 1  - ~ ( t ) ) ,  

where q)(t) denotes the cumulative distribution function of the standard normal 
distribution. 

Then, by using the well-known inequality, for w > 0, 

- _ - -  e x p  - , 

we have the desired result. This completes the proof. [] 

PROOF OF THEOREM 4.1. From Theorem 2.2 and the continuous mapping 
theorem, {T(~)}, {T (2)} and {T (3)} converge in law to the distributions under the 
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null hypothesis  with distr ibution functions G1, G2 and G3, respectively, where 

and 

\yCE 

Lemmas 4.1 and 4.a imply that the sequence {T~ <~) } and {~(3)} satisfy the second 
condition of Definition 4.1 with a = 3 '~ and a = 1, respectively. Since the distri- 
but ion  of G2 is a quadrat ic  form of i.i.d, normal random variables (see Section 3), 
we have 

log(1 - G~(~)) = logP w ~ ( y ) a y  > .~ - (1 + o(1)), 
2A~ 

from the result of Zolotarev (1961), where A, = (2/re) 2"~. Thus,  G2 satisfies the 
second condit ion of Definition 4.1 with a = (~-/2) 2m. 

Now we check the third condit ion of Definition 4.1. First,  we show tha t  {T (3) } 
satisfies the condition with b(f) = sup . cE  [O(f, x)]. For f E S ,  it is seen tha t  

sup  - ,~_=~=~_~ f ( [ o ,  x];  Y¢)~¢ - s up  ] ¢ ( f ,  x ) l  
xcE gt i = 1  ~/gn( [ i )  xEE 

*  ,llo < - x]; Yi)~i 
xcE ?% i = 1  

- sup - - -  
xcE ?% i = 1  

sup 1 -}- - -  _ _  

xEE ?% i = 1  

1 
~ I ( [ o ,  x]; y~)~ 

1 
~ f ( [ o ,  x]; y~)~ - sup 10(f, x)l 

x E E  

The  first t e rm of the r.h.s, of the above inequality is not greater  than  

sup Yi) 
xcE i:I 

_< c. sup Its(y) - g(y)l, 
y6E 

where C is a constant depending only on f. By the assumption in this section, 
we see that the first term of the above inequality converges in probability to zero. 
The second term of the r.h.s, of the inequality is not greater than 

sup - z([o, x]; y~)~ - , ( f ,  x) 
xcE ?% i 1 
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But, this converges to zero almost surely by Lemma 4.2. It is easy to see that 
b(f) > 0 and that b(f) = 0 if and only if f c 50. Secondly, we show that {T~) ) } 
satisfies the third condition of Definition 4.1 with b(f) = fEl@(f, x)Idx. Note that 

/E  1 ~i=1 ~ ' 1 Y i  /([O,x]; Y i ) ~  d x - / E  I¢(f'x)]dx 

_< sup - I([0, x]; Yi)~i - ¢(f, x) . 
xEE ~% i=1 ~/~7~'Yi)  

Then, we can see it from the above argument. Similarly, we see that {Tn (2) } satisfies 

the third condition of Definition 4.1 with b(f) = ~/ fs  ¢2(f ,x)  dx" This completes 

the proof. [] 

COROLLARY 4.1. The approximate Bahadur slopes of {T(1)}, {T (2)} and 
{%3)} give  by 3 I¢(/, (sup  . I¢(f, 
x) ])2 respectively. 
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