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On Non-Regularized Estimation of Psychological Networks

An important goal for psychological science is developing methods to characterize relation-
ships between variables. Customary approaches use structural equation models to connect
latent factors to a number of observed measurements, or test causal hypotheses between
observed variables. More recently, regularized partial correlation networks have been pro-
posed as an alternative approach for characterizing relationships among variables through
covariances in the precision matrix. While the graphical lasso (glasso) has emerged as the
default network estimationmethod, it was optimized in fields outside of psychologywith very
different needs, such as high dimensional data where the number of variables (p) exceeds the
number of observations (n). In this paper, we describe the glasso method in the context of the
fields where it was developed, and then we demonstrate that the advantages of regularization
diminish in settings where psychological networks are often fitted (p ≪ n). We first show that
improved properties of the precision matrix, such as eigenvalue estimation, and predictive ac-
curacy with cross-validation are not always appreciable. We then introduce non-regularized
methods based on multiple regression and a non-parametric bootstrap strategy, after which
we characterize performance with extensive simulations. Our results demonstrate that the
non-regularized methods can be used to reduce the false positive rate, compared to glasso,
and they appear to provide consistent performance across sparsity levels, sample composi-
tion (p/n), and partial correlation size. We end by reviewing recent findings in the statistics
literature that suggest alternative methods often have superior performance than glasso, as
well as suggesting areas for future research in psychology. The non-regularized methods have
been implemented in the R package GGMnonreg.

Keywords: network models, partial correlation, non-regularized, multiple regression, model
selection, ℓ1-regularization

Introduction

An important goal for psychological science is to charac-
terize the structure of associations among variables that re-
late to psychological constructs. A common approach is to
use latent variable analysis (e.g., confirmatory factor analy-
sis, latent class analysis, item response theory) to relate a set
of observed variables to a shared underlying latent variable.
More recently, proponents of a “network approach” to psy-
chological constructs have argued that the latent variable
framework ignores direct causal or functional associations
among observed variables (Borsboom & Cramer, 2013). For
example, a latent variable model of depression cannot ac-
count for the fact that lack of sleep leads directly to fatigue
(Cramer & Borsboom, 2015), and a latent variable model of
quality of life cannot account for the necessary link between
being unable to walk up one flight of stairs and being unable
to walk up several flights of stairs (Kossakowski et al., 2016).
In response to these criticisms, researchers are increasingly
employing network models in an attempt to capture these
direct associations among observed variables (Epskamp &
Fried, 2016). The goal of network modeling of psychological
constructs is to understand constructs as a system of direct
interactions among observable variables, instead of as un-
derlying, unobservable variables.

Network models are a general class of models that

can estimate any sort of association among variables (e.g.,
marginal or conditional associations) on many different
sorts of data assuming the cases are independent (e.g.,
cross-sectional data, single-person longitudinal data, or a
mix). Here, our focus is on the most popular type of
network that has been employed in psychology, namely
partial-correlation networks estimated on cross-sectional
data. These models seek to estimate a sparse network of
conditional relations (i.e., direct effects) among a set of ob-
served variables measured at a single time point in a sam-
ple of people. This is accomplished by identifying non-
zero off-diagonal elements of the inverse-covariance matrix
of the data (i.e., the precision matrix; Dempster, 1972) .
When the precision matrix is standardized and the sign re-
versed, elements of the matrix are partial correlations that
imply pairwise dependencies in which the effects of all other
observed variables have been controlled for (Peng, Wang,
Zhou, & Zhu, 2009). That is, a non-zero network “edge”
represents a direct association between a pair of observed
variables that cannot be explained by any other variables
in the model. Since direct effects are often sought after in
psychology, there has been an explosion of interest in net-
work models in both methodological and applied contexts.
Network models have been used to provide an alternative
perspective on a wide range of constructs, including politi-

https://github.com/donaldRwilliams/GGMnonreg
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cal attitudes (Dalege, Borsboom, van Harreveld, & van der
Maas, 2017), psychosis (Isvoranu et al., 2017; van Rooijen
et al., 2017), post-traumatic stress disorder (Armour, Fried,
Deserno, Tsai, & Pietrzak, 2017; McNally et al., 2015), sub-
stance abuse (Rhemtulla et al., 2016), and well-being (De-
serno, Borsboom, Begeer, & Geurts, 2017).

A wide range of methods have been proposed to es-
timate network model parameters (Kuismin & Sillanpää,
2017). These methods generally use some form of regu-
larization (i.e., shrinkage) to estimate the precision matrix
(Θ). In high-dimensional settings, where the number of vari-
ables (p) approaches or exceeds the number of observations
(n), regularization makes estimation of an under-identified
model possible. Themost common type of regularization ap-
plied to networkmodels is ℓ1-regularization (a.k.a., “least ab-
solute shrinkage and selection operator”, or “lasso”), which
adds a penalty to the estimation function that is based on
the sum of the absolute values of the edges. The effect of
this penalty is to push smaller estimates to exactly zero.
Though psychological data are rarely high-dimensional, by
pushing small edges to zero, ℓ1-regularization confers the
additional benefit of producing a sparse network. From the
theoretical network perspective, a system of direct effects
among observed variables would not allow for determin-
ing the conditional independence structure of psychologi-
cal constructs if it were fully connected (i.e., if every node
were connected to every other node); thus, identifying zeros
is an important theoretical goal of network modeling. Com-
pared to customary methods (e.g., ordinary least squares)
regularization procedures involves additional steps for esti-
mation, in which developing methods that are both accurate
and computationally efficient is an active area of research
(Kuismin & Sillanpää, 2017). However, in psychology, the
dominant estimation procedure is the graphical lasso (Fried-
man, Hastie, & Tibshirani, 2008), described below (Section:
Precision Matrix Estimation), in which the tuning parame-
ter (λ) is selected according to the extended Bayesian Infor-
mation Criterion (EBIC; Chen & Chen, 2008). We refer to
the combination of graphical lasso and EBIC-based tuning
parameter selection as glassoEBIC (Foygel & Drton, 2010).

Despite the popularity of glassoEBIC in psychology, there
has not been any work comparing it to alternative methods
for estimating networks of psychological variables. This is
problematic for two reasons. First, outside of psychology,
there are several methods that have been shown to outper-
form glasso (Ha & Sun, 2014; Peng et al., 2009; Van Wierin-
gen & Peeters, 2016). Compared to three alternative meth-
ods, for example, Williams, Piironen, Vehtari, and Rast
(2018) recently showed that glassoEBIC rarely had the best
performance with respect to identifying true non-zero co-
variances. Further, even with alternative methods for se-
lecting λ (e.g., cross-validation rather than EBIC), the per-
formance of glasso does not necessarily warrant being the

default approach in psychological applications (Kuismin &
Sillanpää, 2016; Mohammadi & Wit, 2015a). Second, and
importantly, statistical methods to estimate network mod-
els were developed to overcome the very specific challenge
of high dimensionality (Kuismin & Sillanpää, 2017). Un-
der these conditions, the maximum likelihood estimator be-
comes unstable or cannot be computed altogether, thus re-
quiring some form of regularization. Although these kinds
of data structures are common in fields such as genomics
(Y. R. Wang & Huang, 2014), they are the exception in psy-
chology. Indeed, the majority of network models fitted in
psychology are in low-dimensional settings (p ≪ n) (Mc-
Nally et al., 2015; Rhemtulla et al., 2016; Spiller et al., 2017).

Compared to other model selection procedures, glasso
may carry some distinct disadvantages. First, as a fully
automated procedure, inferences about specific edges are
non-trivial and require additional steps after model selec-
tion (K. Liu, Markovic, & Tibshirani, 2017; Wasserman
& Roeder, 2009). This general critique applies to all
automated procedures (e.g., backwards elimination), but
there are additional challenges for glasso that often re-
quire debiasing–unregularizing–the estimates (Javanmard
& Montanari, 2015). Second, regularization approaches
are also not common in psychology (McNeish, 2015), and
applied researchers may not be familiar with how infer-
ence based on such approaches differs from those of non-
regularized approaches, or of the speed with which the reg-
ularization literature is evolving (Avagyan, Alonso, & No-
gales, 2017; Tibshirani, 2011; Zou & Hastie, 2005). The nov-
elty of regularization methods in psychology may give the
false impression that they are necessarily superior to more
common approaches for automated variable selection such
as stepwise regression approaches (Henderson & Denison,
1989). In fact, in the context of network estimation, method
performance is often evaluated in situations that are uncom-
mon in psychology. For example, in Bühlmann and Van
De Geer (2011), it was shown ℓ1-regularization was consis-
tent for model selection when the number of variables (p)
grew exponentially. In psychology, a more realistic situa-
tion would fix the number of variables, for example the num-
ber of items in a questionnaire, and then allow the sample
size (n) to increase. Here more common approaches such
as best subset selection with the standard Bayesian infor-
mation criterion (BIC) are generally consistent for selecting
the true model (Casella, Girón, Martinez, & Moreno, 2009;
P. Zhao & Yu, 2006). Given that network models were popu-
larized and estimation techniques optimized in fields outside
of psychology with very different needs, it is important to
investigate the quality of estimation methods for situations
that are most common in psychological research.

The aim of the present work is to investigate the
properties of the glassoEBIC procedure compared to non-
regularized methods that can be used in low-dimensional
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settings (p < n). We thus determine whether regulariza-
tion offers distinct advantages compared to model selection
methods more familiar to psychologists. In the next sec-
tions, we first discuss precisionmatrix estimation in the con-
text of high-dimensional settings, which are common in ar-
eas such as functional neuroimaging (Das et al., 2017), but
rare in personality or clinical fields. We then introduce two
non-regularized approaches, that include multiple regres-
sion and a non-parametric bootstrap strategy, for estimating
networks. These approaches are novel in the context of esti-
mating networkmodels. In this section, we also describe the
relationship between multiple regression and the precision
matrix. Then, in two simulation studies, we characterize the
performance of each method under conditions that are com-
mon in psychological data. We end with recommendations
for both applied and methodologically oriented researchers.

Precision Matrix Estimation

The covariance matrix (Σ) plays an essential role in para-
metric analyses, particularly in multivariate settings such
as structural equation and network modeling. In particu-
lar, network models require the inverse of the covariance
matrix, called the precision matrix (Θ), to obtain partial cor-
relations ρi j as

ρp j =
−θp j√
θppθ j j

, (1)

which corresponds to the following elements within the pre-
cision matrix

Θ =


θpp
...
. . .

θp j · · · θ j j

 = Σ−1. (2)

In words, the partial correlations are computed by stan-
dardizing the off-diagonal elements of precision matrix and
reversing the sign (±). This is analogous to obtaining bi-
variate correlations from Σ, but with the additional step of
sign reversal. Although this appears straightforward, Equa-
tion 2 indicates that estimating partial correlations requires
inverting the sample covariance matrix Σ. Typically, Σ is
estimated via maximum likelihood (ML) but this approach
yields reliable estimates only under ideal conditions (Ledoit
& Wolf, 2004b; Won, Lim, & Kim, 2009). For example, Kuis-
min and Sillanpää (2016) demonstrated that ML-estimator
of the eigenvalues can be non-optimal, which then magni-
fies the estimation error when the covariance matrix is in-
verted (Ledoit & Wolf, 2004b). This can be seen in Equa-
tion 17, where the eigenvalues (i.e., D) play a critical rule
in inverting Σ. In particular, when the ratio of variables p
to observations n (p/n) approaches one (Wong, Carter, &
Kohn, 2003), it becomes difficult to reliably estimate the co-
variances. Furthermore, in high dimensional (n < p) set-

tings, the ML-estimate cannot be computed due to singu-
larity: det(Σ) = 0. That is, since the determinant equals
the product of the eigenvalues and the maximum number
of non-zero eigenvalues is min(n, p) (Kuismin & Sillanpää,
2017), inverting the covariance matrix is not possible (Hart-
lap, Simon, & Schneider, 2007). This is known as the “large
p and small n” problem (Kuismin, Kemppainen, & Sillanpää,
2017) and remains a central challenge in the field of statistics
(Kuismin & Sillanpää, 2016).

ℓ1-Regularization

To overcome the “large p and small n” problem, several
regularization approaches have been developed to make es-
timation possible when Σ is non-invertible. In the familiar
context of multiple regression, regularized estimation ap-
proaches estimate the ordinary least squares solution, but
do so with an added penalty. Different types of regulariza-
tion use different penalties: lasso uses the ℓ1-norm to find
coefficients that minimize

n∑
i=1

(
yi −

p∑
j=1

xi jβ j

)2
+ λ

p∑
j=1

|β j|. (3)

In this equation, λ is the “tuning parameter”, which deter-
mines the extent to which the penalty affects the estimates.
When λ = 0, no penalty is imposed and the resulting es-
timates are equal to the ordinary least squares estimates .
When a very high value of lambda is chosen, all the esti-
mates will be pushed to zero (H. Liu, Roeder, & Wasserman,
2010). Thus, some criterion is needed to choose the value
of λ such as predictive accuracy determined with cross-
validation or an information criteria (e.g., BIC; Chand, 2012).
Other regularization options are to minimize the ℓ2-norm
(a.k.a., “ridge” regularization, which penalizes the sum of
squared estimates, resulting in smaller estimates but typi-
cally none that are exactly zero) or to minimize a combi-
nation of the ℓ1 and ℓ2 norms (a.k.a., “elastic-net”; (Zou
& Hastie, 2005). Assuming the residuals are normally dis-
tributed,, minimizing the ordinary least squares estimate is
equivalent to maximizing the likelihood, or in this case the
penalized maximum likelihood. Importantly, by reducing
coefficients to exactly zero, lasso regularization has built-
in model and variable selection. For this reason, the lasso
method has become popular for both regression and for es-
timating network models.

Extended to multivariate settings, the penalized likeli-
hood for the precision matrix is defined as

l(Θ) = log det Θ − tr(ΣΘ) − λp

∑
i, j

(|Θi, j|), (4)

where Σ is the sample covariance matrix and λp a penalty
function (Gao, Pu, Wu, & Xu, 2009). The glasso method
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applies a penalty on the sum of absolute covariance val-
ues λp(|Θi, j|) (Friedman et al., 2008). The performance of
the glasso method is strongly influenced by the choice of
λ, which can be made in at least four ways: (1) choose λ
that minimizes the EBIC (Foygel & Drton, 2010) ; (2) choose
λ that minimizes the Rotation Information Criterion (RIC)
(T. Zhao, Liu, Roeder, Lafferty, & Wasserman, 2012); (3)
choose λ that maximizes the stability of the solution across
subsamples of the data (i.e., Stability Approach to Regular-
ization Selection; StARS) (H. Liu et al., 2010); and (4) k-fold
cross-validation (Bien & Tibshirani, 2011). Interestingly,
these methods can produce vastly different networks (Kuis-
min & Sillanpää, 2017). While a method would ideally be
selected with a particular goal in mind, or based on perfor-
mance in simulations that are representative of the particu-
lar field, the default method in psychology is currently EBIC

EBIC = −2l(Θ) + Elog(n) + 4γElog(p), (5)

where l(Θ) is defined in Equation 4, E is the size of the
edge set (i.e., the number of non-zero elements of Θ), and
γ ∈ [0, 1] is the EBIC hyperparameter that puts an extra
penalty on the size of the model space. As described in Chen
and Chen (2008), there is a Bayesian justification for γ that
corresponds to a prior distribution on the model space, thus
providing the reason it is bounded between 0 and 1. No-
tably, EBIC reduces to the Bayesian Information Criterion
(BIC) when γ = 0, where each model size has been assigned
an equal prior probability. The selected network then mini-
mizes EBIC with respect to λ. This is typically accomplished
by assessing a large number (e.g., 100) of values of λ and
selecting the one for which EBIC is smallest. There is no
automatic selection procedure for the EBIC hyperparame-
ter, but 0.5 was recommended in Foygel and Drton (2010)
and Epskamp and Fried (2016). The latter further suggested
that researchers who prefer to err on the side of discovery
(i.e., those who prefer to find more edges, including possi-
bly false ones) choose a γ value closer to 0, and those who
prefer a more conservative approach choose a value closer
to 0.5 (Epskamp & Fried, 2016).

Extensions to Psychology

Psychological applications of network modeling have
widely adopted ℓ1-regularization as the default statistical ap-
proach for estimation.. However, outside of neuroscience
related inquiries, there are typically far more observations
(n) than variables (p) in psychological networks. In other
words, the “large p and small n” (Section: ℓ1-Regularization)
is not often encountered. As such, regularization is not usu-
ally necessary to produce an estimate ofΘ. Further, findings
from simulation studies (e.g. Mohammadi & Wit, 2015a) in-
dicate that RIC and StARS show superior performance in
terms of F1-scores across a number of conditions in low di-
mensional settings. Second, while psychological inferences

are typically aimed towards explanation rather than predic-
tion (Yarkoni & Westfall, 2017), ℓ1-regularization is known
for reduced prediction error than accuracy of parameter es-
timates. Further, inference regarding the non-zero (or zero)
estimates is not straightforward, as valid standard errors are
not easily obtained (Hastie, Tibshirani, & Friedman, 2008).
Making inference entails corrections for model selection
bias (Efron, 2014; Hastie, Tibshirani, & Wainwright, 2015;
Leeb, Pötscher, & Ewald, 2015), and non-traditional boot-
strap schemes are often needed to achieve nominal frequen-
tist properties (Bühlmann, Kalisch, & Meier, 2014; Chatter-
jee & Lahiri, 2011). In the context of network models in
particular (Janková & van de Geer, 2017), statistical infer-
ence for Θ is an emerging area of research that often re-
quires desparsifying the regularized estimates to compute
confidence intervals (Janková & van de Geer, 2015; Ren, Sun,
Zhang, & Zhou, 2015) and p-values (W. Liu, 2013; T. Wang
et al., 2016).

Motivating Examples

In this section, we provide two motivating examples for
this work that focus exclusively on precision matrix estima-
tion. Most of the statistical literature has focused on high-
dimensional settings, or situation where p approaches n,
which stands in contrast to the most common psycholog-
ical applications. We conducted two brief simulations to
examine the performance of glassoEBIC compared to max-
imum likelihood estimation (MLE) in low-dimensional set-
tings. The first motivating example assessed eigenvalue re-
covery, that is directly related to the accuracy with which
Θ has been estimated. In particular, a “well-conditioned”
covariance matrix is such that the range of eigenvalues is
not too large (Schäfer & Strimmer, 2005b). Further, when
the eigenvalues show large variability, this can increase es-
timation error when Σ is inverted to obtain the precision
matrix Θ (Ledoit & Wolf, 2004a, 2004b). Indeed, there are
methods for estimating Θ that specifically target the eigen-
values in the literature (Kuismin & Sillanpää, 2016), which
can also be seen in this work (Equation: 17). An additional
advantage of ℓ1-regularization that is frequently reported is
reduced prediction error (Dalalyan, Hebiri, & Lederer, 2017).
For the second motivating example, we thus computed out-
of-sample predictive accuracy with the cross-validated log-
likelihood.

We simulated networks in which the edges connecting
pairs of variables were drawn from a Bernoulli distribution.
The corresponding precision matrix Θ ∼ WG(d f = 3, Ip)
was then obtained from a G-Wishart distribution with 3 de-
grees of freedom and scale matrix Ip (Mohammadi & Wit,
2015b). The precision matrices were all positive definite, the
graphical structure was random, and 90 % of the partial cor-
relations were between ±0.45, with the distribution approx-
imately normally distributed around zero. The number of
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variables p was fixed at 20 and the sample sizes varied: n
∈ {50, 100, 250, 500, 1,000, and 2500}. For each simulation
trial, of which there were 500, we computed two estimates
for Θ. The first was computed with glassoEBIC , with the
hyperparameter (γ) set equal to 0.5 (Equation: 5). The sec-
ond was computed using maximum likelihood estimation,
defined as

Θ = Σ−1 =

[
1
n

n∑
i=1

(Xip − X̄p)(Xip − X̄p)⊤
]−1

, X̄p =
1
n

n∑
i=1

Xip,

(6)
where i and p correspond to the ith row and pth column of
the data matrix X that is of dimensions n × p.

Insert Figure 1

Eigenvalue Recovery. The results for eigenvalue re-
covery are presented in Figure 1 (panel A). The y-axis is
the quotient, where the maximum eigenvalue has been di-
vided by the minimum eigenvalue, with the x-axis includ-
ing the sample sizes that gradually increase from 50 to 2,500.
Here the largest value for p/n was 0.40 (i.e., 20/50), where
it was revealed that the MLE showed large variability in
the eigenvalues. In particular, the largest eigenvalue was
estimated to be approximately 100 times greater than the
smallest eigenvalue, thereby indicating Θ̂ was not “well-
conditioned”, as defined by Schäfer and Strimmer (2005b). In
contrast, glassoEBIC not only shrunk the eigenvalues when
p approached n, but noticeably underestimated them when
compared to the true value (i.e., the grey line). Further, it
was also revealed that as n increased, which approaches
the most common dimensions of psychological networks,
the MLE quickly converged on the true eigenvalues. Said
another way, the advantage of glassoEBIC gradually dimin-
ished as the sample size approached those that are more
common to psychology (p ≪ n).

Cross-Validation. We assessed predictive accuracy
with k-fold (K = 5) cross-validation, where the estimate ofΘ
was used to compute the cross-validated log-likelihood. We
used the same simulation procedure as above, including the
true covariance matrix and sample sizes. The data were first
partitioned into 5 non-overlapping subsets Xk, k ∈ {1, ..., 5}.
We denote the training data as X−k and the test data as
Xk. The prediction error, herein referred to as the cross-
validated log-likelihood LCV , was then obtained as

LCV (Σ−k,Σk) =
1
k

k∑
i=1

[ − log detΣ−k − tr(ΣkΣ
−1
−k)
]
. (7)

Here Σ−1
−k is the inverse covariance matrixΘ estimated from

the training data X−k, and Σk is the covariance matrix ob-
tained from the test data Xk. For one simulation trial, as

indicated by the summation,LCV was averaged across the k-
folds. The final estimate, for each simulation condition, was
then averaged across 500 simulation trials which accounted
for variability in the partitions. Further details about this
procedure can be found in Gao et al. (2009) and Bien and
Tibshirani (2011).

These results are presented in Figure 1 (panel B). Of
course, since this measure is based on the log-likelihood,
larger values indicate a more accurate estimate (i.e., maxi-
mizing the likelihood). The y-axis denotes the estimate for
LCV , whereas the x-axis includes the sample sizes n. These
results reveal a similar patter as for eigenvalue estimation,
in that the largest p/n value showed a clear advantage for
glassoEBIC . That is, when there were 20 variables (p) and
only 50 observations (n). However, as the sample size in-
creased, this advantage dissipated quickly. For example,
even with n = 100, LCV (the mean) indicated that the MLE
was already more accurate than glassoEBIC . The estimates
were ultimately very similar, with increasing sample sizes,
thus indicating that ℓ1-regularization converges to the MLE
in these situations (Kuismin & Sillanpää, 2016).

Summary. These two motivating examples suggest
that glassoEBIC is advantageous in situations approaching
high-dimensions (p → n). However, when the sample size
became similar to those commonly used to estimate psycho-
logical networks, the maximum likelihood estimate (Equa-
tion: 6) often out-performed glassoEBIC . In particular, even
without selecting variables (i.e., the MLE is fully saturated),
the data was not overfit according to the cross-validated
log-likelihood. Although these results suggest that cer-
tain benefits of ℓ1-regularization–improved eigenvalue es-
timation and predictive performance–may not be realized
in the most common psychological settings, these examples
did not consider the additional benefit of identifying zero-
valued partial correlations. In the next section, we propose
two alternative methods for identifying zero-valued edges,
each of which does not make use of regularization (i.e., non-
regularized). The first approach, based on multiple regres-
sion, builds upon the work of Meinshausen and Bühlmann
(2006), where a brief example showed that non-regularized
regression was comparable to ℓ1-regularization for estimat-
ing network models in low-dimensional settings. The sec-
ond approach uses a non-parametric bootstrap strategy to
estimate the precision matrix directly. Both of these meth-
ods, and specifically the decision rules for identifying non-
zero effects, are novel contributions to the psychological net-
work literature.

Network Models

Thus far, we have focused exclusively on network models
in the context of precision matrix estimation. While the co-
variances within Θ correspond to conditional relationships
between variables in a network model, we now introduce
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Figure 1. A) Eigenvalue (λ) estimation. The maximum eigenvalue was divided by the smallest eigenvalue. The true value is
denoted with the grey line. A “well-conditioned” estimate will have a small disparity between these values. B) Predictive
accuracy measured with k-fold cross-validation. This measure is based on the likelihood, with larger values indicating
superior predictive accuracy (i.e., maximizing the likelihood). The ribbons denote one standard deviation.

terminology that is specific to network models. Depend-
ing on the field, undirected graphical models can refer to
Gaussian graphical models, covariance selection models, or
randomMarkov fields. Here we adopted network model, be-
cause it is common in the psychological literature (Epskamp
& Fried, 2016). Let X represent a p-dimensional random vari-
able

X = {X1, ..., Xp}T ∼ N(µ,Σ), (8)

where, without loss of generality, we assume all variables
have been standardized to have mean zero and variance one

0 = {µ1, ..., µp}T, and (Σpp) = 1. (9)

Following common notation, the network is then denoted
by G = (V, E) and consists of nodes V = {1, ..., p}, as well
as the edge set (conditional relationships) E. The maximum
number of edges is then p(p−1)

2 , which corresponds to the
unique elements in the off-diagonal of Θ. When two vari-
ables share a conditional relation, as indicated by a non-zero
partial correlation (i.e., edge), it is included in E. The aim of
the present paper is to, for the first time, compare the com-
monly used glassoEBIC method (Epskamp, 2016; Epskamp
& Fried, 2016) to a set of non-regularized methods that use
multiple regression and a non-parametric bootstrap scheme
for estimating these conditional relationships.

Neighborhood Selection

We first describe a regression based approach for estimat-
ing psychological networks. The regression strategy for esti-
mating conditional relationships is called neighborhood se-

lection (Li & Zhang, 2017; Meinshausen & Bühlmann, 2006;
Yang, Etesami, & Kiyavash, 2015), which takes advantage
of the correspondence between Θ and node-wise multiple
regression. The technique can be described with traditional
regression notation, in which p multiple regression models
are fitted. First let each node Vp be defined asY. Each node is
regressed on the remaining p−1 variables, which estimates
the “neighborhood” for each variable

Y = Xβ(p) + ε. (10)

Here X is a n × (p − 1) design matrix and β is (p − 1) × 1
vector. The intercept is excluded, due to standardizing the
data, so β(p) contains p − 1 regression coefficients. To be
clear, β(p) denotes the vector of coefficients for the pth re-
gression model, where the individual elements are defined
as βp j. The residuals are assumed to follow ε ∼ N(0, σ2

p),
where σ2

p is the residual variance for the pth node.
These estimated regression coefficients and error vari-

ances have a direct correspondence to Θ, for example,

θp j =
−βp j

σ2
p

and θpp =
1
σ2

p
, (11)

where θp j denotes the covariance corresponding to pth row
and jth column of Θ (p , j). The diagonal of Θ is then
denoted θpp. This relationship is exact, with proofs in
Stephens (1998) and further information provided in Kwan
(2014). From each regression model, the coefficients and
zero-entries are placed into a p × p matrix; that is, the soon
to be partial correlation matrix P̃ in which each row cor-
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responds to the neighborhood of conditional relationships
for Vp. We now define the rows of this matrix p and the
columns j. Because the off-diagonal elements, correspond-
ing to the lower and upper triangles of the matrix will be
different when using the regression approach (i.e., propor-
tional to σ2

p), the partial correlations are commonly com-
puted as

ρp j = sign(βp j)
√
βp jβ jp, p , j. (12)

In low-dimensional settings (p < n), these estimates are typ-
ically equivalent to standardizing the elements of Θ and re-
versing the sign (Equation: 2; Krämer, Schäfer, & Boulesteix,
2009). For a pair of nodes, there are two approaches to deter-
mine whether an edge is non-zero: The “and-rule” requires
both βp j and β jp to be determined as non-zero. On the other
hand, the “or-rule” requires only one of these to be non-zero.
Thus, from the p regression models, a p × p matrix is ob-
tained that corresponds to the underlying structure of G . Of
course, to estimate the neighborhood of conditional relation-
ships, a decision rule is required for determining non-zero
estimates. We propose two decision rules in the following
section, each of which is novel in the context of estimating
networks models.

Forward Search

We adopt two decision rules for determining non-zero
coefficients, each of which uses a forward search strategy
through the model space M (Forward search strategy). As-
sume, without loss of generality, both the outcome Vp = y
and design matrix X (defined in Equation: 10) have been
standardized to have mean zero and variance one. This no-
tation departs from above, slightly, but is used to be con-
sistent with customary notation for describing information
criterion. By using a forward search strategy, with the
model Mi ⊂M , the objective is to select one predictor vari-
able from V−p (denoting the pth node has been removed)
that minimizes some criterion. This automated procedure
is repeated until no variable within V−p can further reduce
the criterion compared to the previous step. We then as-
sume the selected variables are non-zero, thus providing the
neighborhood for the predicted variable Vp.

Akaike Information Criterion. The first decision
rule for determining E uses the Akaike Information Crite-
rion (AIC).There are at least two justifications for AIC based
model selection, or in this case neighborhood selection: 1)
expected out-of-sample prediction, since AIC and leave-one-
out cross validation are asymptotically equivalent (Zhang
& Yang, 2015) ; and 2) minimizing Kullback–Leibler (KL)
divergence from the target and approximating data gener-
ating model (Burnham & Anderson, 2004). Due to strong
theoretical justification, based on information theory (McEl-
reath, 2016), we frame the neighborhood selection problem
in terms of minimizing KL-divergence (Kullback & Leibler,

Algorithm Forward search strategy
1: Start with an empty model for each node Vp = y.
2: Search to find one node ∈ V−p that minimizes AIC (Equation:

13).1
3: Place the selected node into the design matrix X until the

search is complete.
4: Repeat steps 2 and 3 until AIC cannot be futher minimized.
5: Set the regression coefficients for the excluded nodes to zero

(β̂p j = 0).
6: Place the non-zero (βp j , 0) and zero coefficients (βp j = 0)

into the pth row of a p × p matrix P p,−p.
7: After the last node-wise regression compute the partial corre-

lation matrix (P̃ ; Equation: 12).

1951). In other words, at each forward step, we seek one
variable that minimizes the following equation

min[AIC = −2 log p(y|X, θ̂MLE) + 2k
]
, (13)

where p(y|X, θ̂MLE) is the log predictive density and k is the
number of parameters (i.e., the number of non-zero edges) in
Mi. For the rest of the forward search, each selected variable
is included in X. The decision rule for β , 0 is inclusion in
the final model when AIC cannot be further reduced.

Bayesian Information Criterion. The Bayesian in-
formation criterion also has two justifications: (1) expected
out-of-sample prediction, since minimizing BIC is equiv-
alent to leave-v-out cross-validation, where v = n

[
1 −

1/(log(n)−1)
] (Shao, 1997); and (2) minimizing BIC approxi-

mates selecting the most probable model, assuming the true
model is in the candidate set (Raferty, 1995). Due to the
connection to Bayesian methods, which similarly provides
strong theoretical justification (Wagenmakers, 2007), we
frame neighborhood selection in terms of posterior model
probabilities. The posterior probability of Mi ⊂M follows

P(Mi|y) ∝
∫

P(y|Mi, θi)P(θi)d(θi), (14)

where P(y|Mi, θi) is the likelihood , θi is the vector of parame-
ters for the ith model, and P(θi) the prior distributions for θi.
With a forward search strategy (Algorithm: Forward search
strategy), we select one variable from V−p that maximizes
P(Mi|y). Said another way, at each forward step, we select
a variable that minimizes

min[BIC = −2 log p(y|X, θ̂MLE) + log(n)k
]
. (15)

The decision rule for β , 0 is inclusion in the final model
when BIC cannot be further reduced.

Non-Parametric Bootstrap

Wenow describe an approach to estimateΘ directly. This
is the same method as in the Motivating Examples, but with

1The same procedure applies to BIC .
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the addition of a decision rule to set covariances to zero.
We also provide further details about the chosen inversion
method that uses the singular value decomposition (Schäfer
& Strimmer, 2005a). The maximum likelihood based covari-
ance matrix, obtained with Equation 6, can be decomposed
as

Σ = UDV⊤, (16)

where U and V are p × p matrices containing the eigenvec-
tors computed from ΣΣ⊤, and D is a vector of p eigenvalues.
It is then straightforward to invert the covariance matrix,
with the generalized inverse procedure (Schäfer & Strimmer,
2005a), that follows

Θ = VD−1U⊤. (17)

Of course, this only provides a point estimate for each el-
ement of Θ which then requires a decision rule for deter-
mining E. We propose using a non-parametric bootstrap-
ping procedure, with replacement, where percentile based
confidence intervals (i.e., α levels) are used to determine the
conditional relationships (Efron & Tibshirani, 1994) . For
each bootstrap sample, b ∈ {1, ..., B}, the estimated graph is
obtained with the following steps:

1. Randomly sample, with replacement, n rows from the
data matrix of dimensions n × p.

2. Compute the maximum likelihood estimate for Σb

(Equation: 6).

3. Decompose of Σb (Equation: 16).

4. Compute the generalized inverse of the covariance
matrix (Equation: 17), resulting in the precision ma-
trix Θb.

5. Convert Θb to corresponding partial correlation ma-
trix Pb.

With the B bootstrap samples in hand, it is then possi-
ble to compute the mean of a given partial correlation as
1
B
∑B

b=1 ρ
b
p j, whereas determining E requires obtaining a con-

fidence interval. We use the percentile based method, with
the intention of categorizing each partial correlation as 0 or
1. That is, the adjacency matrix A is constructed as

Ap j =

0, ρ∗α/2 < 0 < ρ∗1−α/2
1, otherwise ∈ E

, (18)

where ρ∗α/2 denotes the lower percentile of the bootstrap
samples. In words, when 0 is within the bounds of the 100(1
- α) interval, it is not included in E. To our knowledge, there
is no theoretical justification for using this approach to au-
tomatically perform variable selection (Lysen, 2009), but it
would still be possible to control error rates in practice (Dr-
ton & Perlman, 2004). Acknowledging this limitation, we
include this method as a point of reference and without a
correction for multiple comparisons.

Simulation Studies

In the psychological network literature, opposing net-
work estimation methods are not commonly compared
(to our knowledge), rather a single technique (i.e., ℓ1-
regularization) has been examined across many simulation
conditions (Epskamp, 2016; Van Borkulo et al., 2014). The
exception is Epskamp, Kruis, and Marsman (2017), where
a non-regularized method and a low-rank approximation,
was used to estimate fully connected Ising models (i.e., the
edge set was not determined). We thus followed common
simulation procedures in psychology (Epskamp, 2016; Ep-
skamp & Fried, 2016), but also compared performance be-
tween competingmethods. We performed two different sim-
ulations, each of which was meant to answer distinct ques-
tions about the performance of the methods under consider-
ation. The first used empirical partial correlations estimated
from an actual data set (Section: Empirical Partial Correla-
tions), whereas the second used simulated data to specifi-
cally evaluate performance across varying degrees of spar-
sity (i.e., the proportion of total edges that are connected;
Section: Synthetic Partial Correlations).

Performance Measures

We considered two measures to capture the accuracy of
the estimated partial correlations. The first was the correla-
tion between the true partial correlations and the estimated
partial correlations. In addition, we computed the sum of
squared errors ∑i, j(ρ̂i j − ρi j)2 for each trial and then mean
squared error was obtained by averaging across simualtion
trials (Schäfer & Strimmer, 2005a). Lower values indicated
less discrepancy from the true values such that the best
method was closest to zero. For edge set identification,
we considered three measures of binary classification per-
formance that are computed from the number of true and
false positives (TP and FP) and true and false negatives (TN
and FN). The first two measures are sensitivity (SN), the
true positive rate, and specificity (SPC) which is the true
negative rate. Sensitivity is analogous to “power”, where a
score of 0.50 would indicate only half of the true edges were
detected. Importantly, SPC corresponds to 1 - the false posi-
tive rate, so we will often refer to both when describing the
results. (1 − SPC = the false positive rate)

SN =
TP

TP + FN
and SPC =

TN
TN + FP

. (19)

We also wanted to include a measure that considers all as-
pects of binary classification. To our knowledge, Matthews
correlation coefficient (MCC) is the only measure that meets
this criteria. The MCC is defined as

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (20)



NON-REGULARIZED PSYCHOLOGICAL NETWORKS 9

0

20

40

60

−0.2 0.0 0.2 0.4

Partial Correlations

C
o

u
n

t

Figure 2. The distribution of empirically estimated partial
correlations. These were sampled from to generate the par-
tial correlation matrices for the first simulation study (Sec-
tion: Empirical Partial Correlations).

MCC can range between -1 and 1 (Powers, 2011). Its value is
equivalent to the phi coefficient that assesses the association
between two binary variables, but for the special case of bi-
nary classification accuracy. These measures were averaged
across simulation trials.

Computation and Software

All computations were done in R version 3.4.2 (R Core
Team, 2016). We performed 1,000 simulation trials for each
of the conditions, and recorded the elapsed time to fit each
estimation procedure. The glasso method was fitted with
the R package qgraph version 1.5 (Epskamp, Cramer, Wal-
dorp, Schmittmann, & Borsboom, 2012), where we used the
default settings. The non-regularized methods were fitted
with a custom function that used the package bestglm for
the forward search (Mcleod & Xu, 2017), whereas the non-
parametric bootstrap did not make use of any R packages.
All of the non-regularized methods have been implemented
in the R package GGMnonreg. The simulation code is pub-
licly available online (Code: Open Science Framework).

Insert Figure 2

Empirical Partial Correlations

For this simulation study, we estimated the sample par-
tial correlation matrix from a well-known area of research
in clinical networks; that is, post-traumatic stress disorder
symptoms (PTSD). These data are on a 5 value ordinal scale,
including 221 observations (n) and 20 variables (p). It
should be noted that we estimated Pearson correlations (as
opposed to polychoric correlations), which are known to be
attenuated in the case of ordinal data. This decision was

made for two reasons: (1) it is common to assume normal-
ity for ordinal data (Rhemtulla, Brosseau-Liard, & Savalei,
2012); (2) when preparing the simulations, we noted that
the glasso method struggles with larger values, so com-
puting Pearson correlations was more favorable to the cur-
rent default approach in psychology. We then followed the
approach described in Schäfer and Strimmer (2005b) and
Krämer et al. (2009), where new graphical structures were
generated at each simulation trial. The network structure
(connections between variables) was therefore random. So
while the partial correlations values were assumed to be rep-
resentative of a specific clinical application (Figure: 2), our
results are not conditional on a specific network structure.
These steps were followed for each simulation trial:

1. Randomly sample one p × p matrix p ∈ {10, ..., 20}
from the partial correlation matrix estimated from the
PTSD data set, and then set absolute values less than
0.05 to zero (Epskamp, 2016).

2. Convert the sampled partial correlation matrix to a
correlations matrix, and assume this is the covariance
structure for the p variables.

3. Generate data (continuous and 5-level ordinal) with
samples of size n ∈ {100, 250, 500, 1000, and 2, 500}.

4. Estimate the networks with the following three meth-
ods:

• glassoEBIC (γ = 0.5)
• Node-wise regression models were fitted with
the previously described decision rules (i.e., AIC
and BIC). For these models, we included both
the “and-rule” and “or-rule” that was described
above (Section: Neighborhood Selection). For
the “or-rule”, we assumed the partial correla-
tion was equal to the one non-zero coefficient.
We report the “or-rule” in the body of the text,
while the “and-rule” is presented in the Ap-
pendix. We also plotted the “or-rule” and “and-
rule” together, which allows for comparing their
performance (also provided in the Appendix).

• Non-parametric bootstrap to directly estimate
the precision matrix. The confidence level was
set to 99 % (i.e., α = 0.01) and 1,000 bootstrap
samples were generated.

5. Compute performance measures.

For the ordinal data, generated with the package boot-
net version 1.0.1 (Epskamp, Borsboom, & Fried, 2018), we
assumed normality for the non-regularized regression ap-
proaches. For glassoEBIC , we followed the default settings
and estimated polychoric correlations. This served as a

https://osf.io/zd4qe/
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Figure 3. Elapsed time for estimating each model. The glasso method estimated polychoric correlations for the ordinal data,
whereas the non-regularized methods estimated Pearson correlations.

valuable comparison, because it allowed for characteriz-
ing one important limitation of the regression based ap-
proaches that cannot estimate polychoric correlations. The
non-parametric boostrap approach also estimated Pearson
correlations, although it would be possible estimate poly-
choric correlations.

Results. Before discussing the results, we reiterate the
primary goal of this work. Our objective is not to sug-
gest non-regularized methods are “significantly” better than
glassoEBIC . Rather, while methods optimized for high-
dimensional settings were readily adopted as the default ap-
proach, it remains unclear whether they have advantages
compared to traditional statistical methods. For example,
the properties of non-regularized model selection with BIC
are well known in the social-behavioral sciences (p < n),
but the extension to regularized estimation with EBIC was
primarily made to address situations that are uncommon in
the network literature (i.e., n < p or p→ n).

Insert Figure 3

We first discuss the timing results that are displayed in
Figure 3. The introduced methods are computationally in-
tensive, which could limit their use in practical applications.
Indeed, for most of the simulation conditions glassoEBIC was
the fastest approach. However, the differences between
glassoEBIC and regression were often small. Each of these
methods typically took less than one second, with the ex-
ception being glassoEBIC for ordinal data (p = 20). Here
the default in the qgraph package is to estimate polychoric
correlations, which is apparently computationally intensive,
whereas normality was assumed for the non-regularized
methods (Rhemtulla et al., 2012). On the other hand, the
non-parametric bootstrap strategy was the slowest method,
with the elapsed time being influenced by the sample size.

Of course, this is the only method to provide a measure of
uncertainty for the edges, and it was recently shown that
bootstrapping glassoEBIC (B = 2,000) took almost 20 minutes
(Williams, 2018). This should be noted when interpreting
these results.

Insert Figure 4

We now discuss the results for accurate estimation of the
partial correlations, as measured by correlations and mean
squared error (true vs. estimated). For the body of the
text, the results have been simplified to improve clarity and
highlight specific findings. Here we primarily focus on p
= 20, the number of variables in the PTSD data set, with
the remaining results provided in the Appendix. For the
continuous data (Figure: 4; the left panel), the regression
methods (AIC and BIC) had similar performance compared
to glassoEBIC . The exception was for the smallest sample
size (n = 100), where glassoEBIC had the lowest correla-
tions. This was likely due to estimating empty networks
for some of the simulation trials. Of note, while the dif-
ferences were not large, AIC based model selection consis-
tently had the highest correlation and lowest MSE among
the non-regularized methods. In fact, these results make it
clear that directly estimating Θ does not necessarily result
in more accurate estimates. The regularized method did of-
fer some advantages, in that the MSE was often the lowest.
This was especially the case for ordinal data, where poly-
choric correlations were estimated. However, this was not
the case for the smaller networks (Figure: A1; p = 10). Here
the opposite pattern emerged, in that glassoEBIC rarely had
the best (referring to the average across simulation trials)
performance scores.

Accurate estimation is important, but an arguably more
important goal is identifying the edge set. We thus spend
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Figure 4. Simulation results of the larger networks (p = 20). The glasso method estimated polychoric correlations for the
ordinal data, whereas the non-regularized methods estimated Pearson correlations. The error bars denote one standard
deviation.

more time describing these results, which are displayed in
Figure 5. We begin with the top row, that includes the re-
sults for specificity, and then work our way down to the
MCC scores. Before interpreting the results, we again note
that 1 − the false positive rate is equivalent to specificity
(SPC). The results immediately point towards a potential is-
sue with glassoEBIC , in that SPC consistently decreased with
larger sample sizes. In otherwords, with increasing informa-
tion, the regularized method made increasingly more false
positives. For continuous data, the false positive rate was
around 0.10 (n = 100), whereas it was greater than 0.30 for
the largest sample size (n = 2, 500). It is possible to infer
the number of false positives, assuming the average sparsity
was ≈ 0.45, in relation to the number of covariances p(p−1)

2
= 190. That is, for n = 2, 500, the number of false positives
was roughly 190 × 0.45 × [1 − 0.67] ≈ 28. On the other
hand, the boostrap method with 99 % confidence intervals
had the nominal error rate for the same condition (α = 0.01),
resulting in approximately 1 false positive for a given sim-
ulation trial (190 × 0.45 × [1 − 0.988] ≈ 1). Further, the
regression approach using BIC showed the opposite pattern
as glassoEBIC , where more information resulted in improved
edge identification. That is, for each increase in n, SPC con-
sistently improved to be 0.991 for the largest sample size (n =

2,500). As a reminder, for the same condition, SPC was less
than 0.70 for glassoEBIC . A similar pattern was observed for
the ordinal data, although each method showed a slight de-
crease in SPC compared to continuous data. However, the
non-regularized methods clearly had the lowest false posi-
tive rate (n > 100), thereby indicating that the assumption
of normality did not present issues for identifying the edge
set.

Insert Figure 5

The results for sensitivity are displayed in the middle row
(Figure: 5). By definition (Equation: 19), sensitivity (SN)
is the proportion of true positives that were detected. For
p = 20, it is similarly possible to infer the number of de-
tected edges as 190 × 0.55 × SN, where 0.55 is 1 - the spar-
sity level. Interestingly, while glassoEBIC showed the low-
est specificity among the methods, SN was not always the
highest for continuous data. Here regression with AIC had
comparable ability to detect edges, but had higher SPC that
did not diminish with more information (i.e., larger sample
size). This is important in practical applications, when con-
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Figure 5. Simulation results of the larger networks (p = 20). Specificity (SPC) is the true negative rate and 1 - SPC is the
false positive rate. Sensitivity is the true positive rate. This is analogous to the “power” to detect the true edges for a given
network. The glasso method estimated polychoric correlations for the ordinal data, whereas the non-regularized methods
estimated Pearson correlations. The error bars denote one standard deviation.

sidering the false discovery rate (FDR)2. For n = 2500, the
FDR was approximately 0.21 for glassoEBIC . That is, approx-
imately 1 out of 5 edges detected by glassoEBIC was a false
discovery. On the other hand, it was less than 1 % for BIC
based model selection with ordinary least squares. Of note,
the non-regularized methods did have lower SN for ordinal
than continuous data, indicating one limitation of assuming
normality.

We end this section discussingMatthews correlation coef-
ficient (Figure: 5; bottom row). As previously motioned, the
MCC incorporates all aspects of binary classification, and
is a correlation between binary variables. Here glassoEBIC
had the highest score once (i.e.,ordinal data and n = 250),
although the difference from AIC was very small. When
considering p = 10, resulting in 20 conditions in total, reg-
ularized estimation only had the best score that one time.
On the other hand, the regression approach with AIC con-

sistently had the highest MCC scores. The exception was for
the largest sample size (n = 2, 500), although the score was
still higher than glassoEBIC .

Synthetic Partial Correlations

For this simulation study, we investigated method perfor-
mance in relation to network sparsity. This serves two pur-
poses. First, accurate model selection for ℓ1-regularization
depends on strong assumptions, most notably of which is
that few very effects are non-zero. This can refer to coordi-
nate (in regression) or row sparsity (in the case of the glasso;
Janková & van de Geer, 2017), but for our purposes it suf-
fices to state common simulation scenarios in the statistic

2 The FDR is defined as FP
TP+FP . This was computed by approximating

the number of false and true positives, which was done in
the preceding two paragraphs, then solving the FDR equa-
tion.
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literature to demonstrate model selection consistency. It is
common to assume less than 5 % of the effects are non-zero
(Waldorp, Marsman, & Maris, 2018), or in some instances
not even 1 % (Bühlmann & Van De Geer, 2011). Further,
when the sparsity assumptions is violated, the necessary (for
model selection consistency) irrepresentable condition is al-
most never satisfied (P. Zhao & Yu, 2006). This condition
is difficult to examine in practice, but essentially states that
the relevant and irrelevant variables may not be (highly) cor-
related with one another. In P. Zhao and Yu (2006), with
synthetic data generated from a Wishart distribution, they
showed that this assumption was often met with very few
non-zeroes (i.e., a sparse model), but was almost never sat-
isfied when over half of the effects were non-zero which ap-
pears to be common in psychological applications. Second,
this allowed for examining the decision rule based on α lev-
els, that did not include a correction for multiple compar-
isons.

We assumed one sample size (n = 500), two values for
p ∈ {10 and 20}, and 5 sparsity levels η ∈ {90%, 80%, 70 %,
60 %, and 50%}. The magnitude of the partial correlations
also varied by adjusting the degrees of freedom of the G-
Wishart distribution, corresponding to 90 % of the partial
correlations within ± 0.40 for the former and 90 % within ±
0.25. As point out by a reviewer, when the network becomes
more connected, the partial correlations must be smaller to
ensure the matrix is positive definite. We accounted for this
by determining which degrees of freedom, for given spar-
sity level and network size, resulted in the previously stated
ranges. As such, the only thing that varied in this simulation
study was sparsity and the partial correlation sizes. These
distributions were approximately normal, such that smaller
values were sampled more often than larger values. Of note,
theG-Wishart distribution is a generalization of theWishart
distribution, with some covariances constrained to be zero.
The network structure was again random, and all generat-
ing matrices were positive definite. For each trial, of which
there were 1,000, the simulation procedure followed:

1. Generate data n = 500 from a p dimensional G-
Wishart distributed precision matrix Θ ∼ WG(d f , Ip),
where Ip is a p dimensional identity matrix (Moham-
madi & Wit, 2015b).

2. Fit the same models as in the previous simulation
study (Section: Empirical Partial Correlations).

3. Compute performance measures

Insert Figure 6

Results. The results are displayed in Figure 6. We fo-
cus on the false positive rate for both network sizes (p = 10
and 20), with the remainder of the results provided in the
Appendix. As a reminder, the sample size has been fixed

(n = 500) and the primary objective is to evaluate the
influence of sparsity and partial correlation size on edge
set identification. There are striking differences between
the non-regularized methods and glassoEBIC . The boost-
rap method in particular, described above (Section: Non-
Parametric Bootstrap), provides an interesting contrast be-
cause there is an expected error rate (α = 0.01). Here, ir-
respective of sparsity and partial correlation size, the error
rate was consistently at the nominal level. In other words,
α can be used to directly control specificity which stands
in contrast to glassoEBIC , where neither lambda (Equation:
4) or gamma (Equation: 5) have a direct correspondence to
edge identification. Further, the accuracy of glassoEBIC was
influenced by the sparsity level and partial correlation size.
For example, with the larger partial correlations (±0.40), the
error rate was below 0.10 for the sparsest network, but con-
sistently increased to be over 0.40 when sparsity was 50
%. The error rate was lower for the smaller partial corre-
lations (±0.25), but also increased as the networks became
more dense. Of note, the regression approach with BIC
was also affected by the sparsity level in that the error rate
also increased with denser network. However, not only was
this less pronounced than glassoEBIC , the “and-rule” did not
show this increase in false positives (Figure: A9).

Discussion

In this paper, we compared the most popular estimation
method for estimating psychological networks, the graph-
ical lasso, with a number of non-regularized methods that
can be used to estimate networks in low-dimensional set-
tings (i.e., when p << n). We found that the non-regularized
methods typically out-performed the graphical lasso. Most
notably, whereas non-regularized methods showed better
performance with increasing n, for glasso increasing n si-
multaneously increases sensitivity to detect conditional re-
lationships and steadily inflates the false positive rate (1 -
specificity). This lack of (model selection) consistency is
particularly problematic in the context of psychological net-
work estimationwhere researchers typically aim to estimate
a network among a fixed set of variables (p) with the largest
sample size (n) possible. Second, as the true connectivity of
networks becamemore dense, the false positive rate substan-
tially increased for glassoEBIC , whereas this increase was far
less pronounced for the non-regularized methods based on
multiple regression and there was no increase for the non-
parametric bootstrap strategy. Third, the performance of
glassoEBIC varied substantially as a function of the range of
partial correlations (edge strengths) in the generatingmodel,
whereas non-regularized estimates were more stable. Al-
though these findings build a strong case for using non-
regularized methods in practice, we would prefer that ap-
plied researchers justify their method choice. The present
results, as well as the following exposition, can provide a
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Figure 6. Simulation results (n = 500). The ± denotes that 90 % of the partial correlations were in that range. Sparsity is the
probability an edge was zero for a given network. Sparsity decreases when moving from the left to right. The error bars
denote one standard deviation.

foundation for building this rationale.
The glasso method offers two potential advantages

over maximum likelihood estimation: (1) regularization–
shrinkage–that can either improve the estimate of the pre-
cision matrix, or ensure the matrix can be computed al-
together (n < p); and (2) improved predictive accuracy.
We demonstrated that these benefits may not be appre-
ciable when estimating psychological networks in low-
dimensional settings (p ≪ n). First, the improved prop-
erties of the precision matrix (i.e., eigenvalue estimation),
which allows for more accurate estimation, steadily dimin-
ished with increasing sample sizes to ultimately be compa-
rable to maximum likelihood. Second, the improved pre-
dictive accuracy of glassoEBIC , as measured by the cross-
validated log-likelihood, similarly diminished with increas-
ing samples sizes.

For estimating networks, we introduced two non-
regularized estimation methods that rely on multiple re-
gression with forward selection and a non-parametric boot-
strap strategy. To our knowledge, in the context of network
estimation, these methods each included a novel decision
rule for determining conditional relationships. With exten-
sive numerical experiments, we demonstrated that the non-
regularized approaches consistently recovered the true net-

work with increasing sample sizes. In contrast, the perfor-
mance of glassoEBIC , with respect to specificity, decreased
with larger samples sizes. This suggests that glassoEBIC does
not provide consistent model selection for common applica-
tions of network modeling in psychology. Further, we ex-
amined how the false positive rate is influenced by sparsity
which showed that glassoEBIC was especially sensitive to the
overall connectivity of the network (Epskamp et al., 2017).
Of course, while the exact definition of sparsity is a subjec-
tive one, many network models show over 50 % connectiv-
ity and ℓ1-based approaches assume only a small proportion
will be non-zero for accurate edge set identification (Figure:
6; P. Zhao & Yu, 2006). We would argue that it is unreason-
able to suggest this level of connectivity exemplifies sparsity,
which then influences the accuracy with which the network
is estimated. For constructs such as personality traits and
psychiatric symptoms, one could argue that the statistical
assumption of sparsity is questionable. The present results
suggest that the non-regularized methods are less sensitive
to this assumption, and therefore offer advantages in this
respect compared to glassoEBIC .
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Non-regularized Methods in Practice

The primary goal of this work was to compare non-
regularized methods to glassoEBIC . It was revealed that par-
tial correlation networks can readily be estimated with tools
already well-established to the social-behavioral sciences.
Building on this information, but applied to networks, it
makes sense that AIC had a higher false positive rate than
BIC and that confidence intervals can readily be used to con-
trol specificity (1 - α). In other words, although network
models are novel to psychology, the information provided in
countless methodological papers applies to estimating psy-
chological networks. For example, Casella et al. (2009) and
? that use BIC for model selection and Burnham and An-
derson (2004) that makes clear the distinction between AIC
and BIC. The importance of this cannot be understated, in
that it allows for applied network researchers to use and
review methods that they are more familiar with. For ex-
ample, to our knowledge, it has not once been stated why
BIC was extended in the first place. According to Chen and
Chen (2008), who introduced EBIC, “…yet our consistency
result has extended our understanding of the original BIC
for the small-n–large-P problem”, where it is clear BIC was
extended to address a problem uncommon to psychology.
Indeed, in that work, the applied example with real data in-
cluded 233 observations (n) and 1414 variables (p).

We found that, for the regression based approaches, not
muchwas gained from applying themore conservative “and-
rule.” Here both specificity and sensitivity were similar for
both decision rules. The one notable difference between de-
cision rules was for sparsity, where the “and-rule” provided
consistent edge identification across sparsity levels (Figure:
A8). Interestingly, it was also revealed that direct estimation
does not necessarily lead tomore accurate estimates than us-
ing multiple regression. This could have been due to detect-
ing fewer edges, thus error would naturally increase. In sup-
port of this notion, AICwas best among the non-regularized
methods for the correlations and MSE. However, as shown
throughout the simulation results, the direct method based
on confidence intervals allows for calibrating to a desired
level of specificity. These methods have been implemented
in the R package GGMnonreg.

Comparison to Previous Simulations

Although glasso has emerged as the default approach for
network estimation in psychology, and is a very popular
method outside of psychology (Kuismin & Sillanpää, 2017),
there have been many alternative methods that have shown
superior performance. It should first be noted that, while the
original glasso paper is highly cited (Friedman et al., 2008),
no comparisons were made to alternative methods with re-
spect to edge identification. In fact, when measuring cross-
validation error, it was demonstrated that a non-regularized

method was superior to glasso when p < n (Bien & Tibshi-
rani, 2011; Friedman et al., 2008). According to Friedman et
al. (2008), “…cross-validation curves indicate that the unregu-
larized model is the best, [which is] not surprising given the
large number of observations and relatively small number
of parameters” (p. 9). Their conclusion is consistent with
our results, and we further demonstrated reduced predic-
tion error with increasing samples sizes for the maximum
likelihood estimate. Further, the paper that introduced the
method of using EBIC to select the tuning parameter (λ)
similarly did not make comparisons to other network esti-
mation methods (Foygel & Drton, 2010). Rather, the focus
was on alternative γ values in comparison to using cross-
validations for selecting λ. This parallels the psychological
network literature, where to our knowledge the glassoEBIC
method has never been directly compared to alternative es-
timation methods.

However, since the introduction of the glasso method
in Friedman et al. (2008), there have been numerous pa-
pers that have compared novel methods to glassoEBIC .
Most recently, for example, Williams et al. (2018) intro-
duced a Bayesian approach based on predictive loss and
used the horseshoe prior distribution for regularization pur-
poses (Carvalho, Polson, & Scott, 2010; Piironen & Vehtari,
2017). They showed that glassoEBIC rarely had the best
performance among three methods for accurately detect-
ing edges. Similarly, Leppä-aho, Pensar, Roos, and Coran-
der (2017) introduced an approximate Bayesian method, us-
ing a marginal pseudo-likelihood approach, that showed
glassoEBIC was not always consistent with respect to Ham-
ming distance (Norouzi, Fleet, Salakhutdinov, & Blei, 2012),
whereas the lasso regression approach was consistent.
Moreover, Mohammadi andWit (2015a) compared their pro-
posed Bayesian method, based on posterior model probabil-
ities, to glassoEBIC . They also included the StARS and RIC
methods for tuning parameter selection. In addition to the
Bayesian method showing superior performance compared
to glassoEBIC , both StARS and RIC also showed clear advan-
tages compared glassoEBIC . This is particularly interesting
for psychology, because the simulation conditions were pri-
marily in low-dimensional settings (p < n). There are sev-
eral additional methods that have been shown to outper-
form glassoEBIC , but a thorough discussion is beyond the
scope of this paper. We refer interested readers to Kuismin
and Sillanpää (2017), where they review numerous methods
as well as the benefits and limitations of each.

Limitations

There are several important limitations of the present
research. First, although we argued that inferences from
regularized methods are not straight forward, the non-
regularized methods did not explicitly address these lim-
itations. As such, a limitation of the present work is

https://github.com/donaldRwilliams/GGMnonreg
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that we have only provided one method for making in-
ference about individual partial correlations–the bootstrap
approach–whichwould also require corrections formultiple
comparisons in practice. Of course, ℓ1-regularization only
provides a point estimate and would also require correc-
tions if attempting to make inference (assuming one could
obtain valid standard errors). However, there are several
reasons to prefer the non-regularized approaches. The lim-
itations of automated model selection are known for tradi-
tionalmethods (Harrell, 2001), and this readily allows for the
research community to critique inferences that are extended
beyond the exploratory nature of this approach. In contrast,
methods and corresponding inferences that are unfamiliar
to psychologists are much more difficult to evaluate and cri-
tique.3 Additionally, while inference is possible from lasso
estimates, their asymptotic properties (e.g. α) are often eval-
uated in high-dimensional settings (Bühlmann, 2012). How-
ever, there are methods that allow for valid inference in low-
dimensional settings when forward selection has been used
(Benjamini & Gavrilov, 2009; Blanchet, Legendre, & Borcard,
2008).

Second, our primary simulation results were obtained
from empirically derived partial correlations. This could be
problematic, because it is possible that performance would
change with different partial correlations. Indeed, our
simulation results showed that different partial correlation
strengths affected the relative performance of the estima-
tors. Third, our decision to not assume one network struc-
ture with fixed partial correlations values may be viewed as
a limitation. However, in our experience, performance can
differ substantially based on the assumed data generating
matrix. As such, when a simulation study examines results
under a single fixed population, the results are then condi-
tional on that population, which in our view limits gener-
alizability. Therefore, our simulation approach provided a
measure of robustness to uncertainty in knowing the truth,
such as network structure and partial correlation magni-
tude, although the latter were restricted to plausible ranges.
Fourth, it should be noted that we did not fully character-
ize the performance of the non-regularized methods. For
example, we did not consider a variety of graphical struc-
tures, which is commonly donewhen characterizing the per-
formance of a novel method compared to existing methods.
The generatingmatrices could have presented challenges for
ℓ1-regularization, as revealed in the section Synthetic Par-
tial Correlations. We investigated several structures (e.g.,
AR-1), and found that the decrease in specificity as n in-
creased was not specific to these particular generating net-
works. We further found that glassoEBIC can have excellent
performance as n increases, but this required strong assump-
tions regarding sparsity (η ≈ 0.95), which parallels the find-
ings in Figure 6. The decision to use this particular simula-
tion procedure, in particular the empirically derived partial

correlations, was made because we wanted to make our re-
sults comparable to the recent psychological literature on
network models: (1) Epskamp (2016) used empirical partial
correlation and set absolute values less than 0.05 to zero; and
(2) Epskamp and Fried (2016) also used these post-traumatic
stress data for simulation purposes and an applied example.

Fifth, we also did not consider ℓ2-regularization, for exam-
ple ridge regression that is commonly used in the context of
prediction (de Vlaming & Groenen, 2015; Hoerl & Kennard,
1970). This differs from lasso regression, in that variable se-
lection (i.e., estimation of exact zeroes) is not achieved by
minimizing the residual sums of squares with respect to the
penalty term. It is also possible to obtain a ridge-type estima-
tor of the covariance matrix, for example with the approach
described in VanWieringen and Peeters (2016) and Kuismin
et al. (2017). These approaches require a decision rule for set-
ting values to zero. A common approach for computing p-
values, with ridge-type estimators, relies on constructing a
null sampling distribution which also makes strong assump-
tions about sparsity and have primarily been characterized
in high-dimensional settings (Schäfer & Strimmer, 2005a).
Further, to our knowledge, only ℓ1-regularization has been
used to estimate psychological networks. For these reasons
we did not consider ℓ2-regularization, although it should be
noted that ridge approaches may offer some advantages for
psychology in particular (as point out by an anonymous re-
viewer). For example, assuming small effects are common in
psychology , ℓ2-based methods could preserve these effects
by proportionally shrinking all of the edges and not pushing
them to zero.

Lastly, our primary objective was to characterize method
performance across a variety of simulation conditions. We
did not extensively discuss the practical implications of a
40 % false positive rate (Figure: 5), although we did relate
this to the false discovery rate (FDR) in the results section.
Themagnitude of the false positives is important to consider;
that is, whether they were small or large would have differ-
ing effects on network interpretation. Assuming the false
positives were small in size, they may not be detrimental
for interpreting which relations are the strongest, but would
certainly affect inferences regarding global characteristics
including overall connectivity and neighborhood size. For
the boostrap method, the false positives will necessarily be
large, at least 1.96 × the standard error away from zero (as-
suming a 95 % confidence interval). However, in our view,
this is advantageous because researchers can readily per-
form null hypothesis significance tests that require nominal
α levels to achieve desired error rates. In other words, to
make customary inferences about the population, sampling
variability is a necessary component.

3 To understand the inferential challenges for lasso estimates, and
recently proposed methods for inference, we recommend
chapter six (Statistical Inference) of Hastie et al. (2015).
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Future Directions

The present paper suggests that more quantitative work
is needed on the topic of network estimation. First, these
non-regularized regression approaches compared to alter-
native methods for network estimation (Kuismin & Sillan-
pää, 2017). Second, for glasso, alternative tuning parame-
ter selectionmethods (Section: PrecisionMatrix Estimation)
can be investigated. These topics should be examined in
research settings common to psychology (p < n). Impor-
tantly, the necessary components for estimating a network,
outside of ℓ1-regularization, include parameter estimation
and a decision rule for including edges in a network. In
fact, even for the Bayesian version of the lasso, a decision
rule is needed to achieve sparsity (Khondker, Zhu, Chu, Lin,
& Ibrahim, 2013; H. Wang, 2012). This does stand in con-
trast to fully automated procedures (e.g., that automatically
set values to zero), but has the added benefit of requiring a
justification for the chosen decision rule (Sections: Akaike
Information Criterion and Bayesian Information Criterion).
Additionally, there are many possibilities to develop or char-
acterize existing methods specifically for psychology. Of
course, there are high-dimensional settings in psychology
to consider. For these fields, glassoEBIC should not be the de
facto default, because several methods have been shown to
have superior performance.

Conclusion

We conclude that network analysis is an important tool
for understanding psychological phenomenon. Since net-
work modeling is a burgeoning area, addressing the issues
that we raised will ensure a solid methodological foundation
going forward and a deeper understanding of this relatively
novel statistical method.
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Figure A1. Simulation results of the smaller networks (p = 10). The glasso method estimated polychoric correlations for
the ordinal data, whereas the non-regularized methods estimated Pearson correlations. The error bars denote one standard
deviation.



22 NON-REGULARIZED PSYCHOLOGICAL NETWORKS

Model AIC BIC Boot glasso_EBIC

Continuous Ordinal

p = 10

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ci
fic

ity
p = 10

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
p = 10

100 250 500 1000 2500 100 250 500 1000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Sample Size

M
C

C

Figure A2. Simulation results of the smaller networks (p = 10). Specificity (SPC) is the true negative rate and 1 - SPC is the
false positive rate. Sensitivity is the true positive rate. This is analogous to “power” for detecting the true edges for a given
network. The glasso method estimated polychoric correlations for the ordinal data, whereas the non-regularized methods
estimated Pearson correlations. The error bars denote one standard deviation.
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Synthetic Partial Correlations
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Figure A3. Simulation results (n = 500). The ± denotes that 90 % of the partial correlations were in that range. Sparsity is
the probability an edge was zero for a given network. Sparsity decreases when moving from the left to right. The error bars
denote one standard deviation.
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And-rule
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Figure A4. Simulation results of the smaller networks (p = 10). The glasso method estimated polychoric correlations, whereas
the non-regularized methods estimated Pearson correlations. The error bars denote one standard deviation.
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Figure A5. Simulation results of the smaller networks (p = 20). The glasso method estimated polychoric correlations, whereas
the non-regularized methods estimated Pearson correlations. The error bars denote one standard deviation.
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Figure A6. Simulation results of the smaller networks (p = 10). Specificity (SPC) is the true negative rate and 1 - SPC is the
false positive rate. Sensitivity is the true positive rate. This is analogous to the “power” to detect the true edges for a given
network. The glasso method estimated polychoric correlations, whereas the non-regularized methods estimated Pearson
correlations. The error bars denote one standard deviation.
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Figure A7 . Simulation results of the smaller networks (p = 20). Specificity (SPC) is the true negative rate and 1 - SPC is the
false positive rate. Sensitivity is the true positive rate. This is analogous to “power” for detecting the true edges for a given
network. The glasso method estimated polychoric correlations, whereas the non-regularized methods estimated Pearson
correlations. The error bars denote one standard deviation.
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Figure A8. Simulation results. The± denotes that 90 % of the partial correlations were in that range. Sparsity is the probability
an edge was zero for a given network. Sparsity decreases when moving from the left to right. The error bars denote one
standard deviation.
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Figure A9 . Simulation results. The± denotes that 90 % of the partial correlationswere in that range. Sparsity is the probability
an edge was zero for a given network. Sparsity decreases when moving from the left to right. The error bars denote one
standard deviation.
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Or-rule vs. And-rule
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Figure A10. Simulation results of the smaller networks (p = 10).
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Figure A11. Simulation results of the smaller networks (p = 20).
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Figure A12. Simulation results of the smaller networks (p = 10). Specificity (SPC) is the true negative rate and 1 - SPC is
the false positive rate. Sensitivity is the true positive rate. This is analogous to “power” for detecting true edges for a given
network. The error bars denote one standard deviation.
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Figure A13. Simulation results of the smaller networks (p = 20). Specificity (SPC) is the true negative rate and 1 - SPC is
the false positive rate. Sensitivity is the true positive rate. This is analogous to “power” for detecting true edges for a given
network. The error bars denote one standard deviation.
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