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S u m m a r y .  - Saturated.unsaturated flow o / a n  incompressible fluid through a porous medium is 
considered in the case o/time.dependent water levels. This corresponds to coupling the mass 
conservation law with a continuous constitutive condition between water content and pressure. 
A n  existence result for the corresponding weatc formulation is proved, ffinally we study the 
limit as the constitutive relation degenerates into a maximal monotone graph. 

I n t r o d u c t i o n .  

We deal with nons ta t ionary  sa tura ted-unsa tura ted  flow of an incompressible 
fluid th rough  a nonhomogeneons porous medium;  this is assumed to form a dam 

bounded  by  impervious layers,  water  reservoirs and air;  water  levels are assumed 
to change in t ime. 

By  sa tura ted-unsa tura ted  flow one means tha t  the  dependence of water  content  
on pressure is given by  a continuous funct ion;  this corresponds to exper iments  
(see fig. 1). In  ano ther  model  this relat ionship is represented  by  a step funct ion;  
this corresponds to a well-known free boundary  problem and can be in te rp re ted  
as the  large scale behaviour  of the  con t inuum case (see [2]). 

mathemat ica l  work on this problem was s ta r ted  with Baiocchi 's  fundamenta l  
Paper  [4] t rea t ing  the  s ta t ionary  free boundary  problem via a var ia t ional  inequali ty.  
Another  approach in t roduced by  AnT [1] was the  approximat ion  of the free bounda ry  
flow by  the  sa tura ted-unsa tura ted  flow in the s t a t ionary  case. 

The nons ta t ionary  s i tuat ion has been studied first by  TO~ELLI [11], who gave 
a t ime-dependent  version of the  Baioechi t ransformat ion.  La te r  on working with 
pressure directly,  G~A~DI [7] and VISI tant  [12] t r ea t ed  a more general  si tuation. 
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In this paper we apply the general method developed by ALT-:LucKtIAUS [3] 
to nonstationary saturated-unsaturated flow; our results include the one given in [8] 
by t t o ~ v ~ a  for flow without gravity. Then we study the limit free boundary 
problem; since in the general case we can just show the weak convergence of the 
approximated saturation, we prove existence of a solution for a weaker formulation, 
in which the non-linear relation between w~ter content and conductivity is replaced 
by a more general condition. 

If  one can show that  the unsaturated region has vanishing measure, which is 
not true for general inhomogcneous media, then there is equivalence with the physical 
problem. This is the same situation as in [7, 12]. 

However in the case of a single space dimension we can prove the strong conver- 
gence of the approximating saturation, hence we can take the limit in the non-linear 
relation between water content and conductivity; this gives a physical meaning 
to the solution. 

1. - The phys ica l  s i tuat ion.  

Let D c R 3 represent the region occupied by the porous medium and / '1  be the 
impervious part  of the boundary; let p denote the pressure, 0 the relative water 
content and k the permeability of the porous medium depending on 0 and x. 

We have the equation of continuity 

0 t +  V'~ = 0 in Q = D• T[ (we bar vectors) 

(where ~ is the flux) and Darcy's law 

= - - k ( V p  + o~g~) in Q 

(where @ is the density of the fluid, g is the gravity acceleration and ~ is the upward 
vertical vector); moreover 

O = 9(x)~(p)  inQ, 

where ~(p)e [0, 1] denotes saturation and ~0(x) is the proposity of the medium. 
The above formulae yield 

(1.1) ~(p) , - -  V'[$(~(p), x)(Vp + eg~)] = 0 in Q. 

The following figures represent typical experimental relationships for ~ and k. 
On the complement F~ of F1 in ~D we have the following: where the porous 

medium is in contact with water the pressure is prescribed and positive, where it is 
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Fig. 1 (el. [5] fig. 6-13). 

I 

Fig. 2 (cf. [5J fig. 6-16). 

is contact  with air e i ther  the ttux is zero and pressure non-positive (non-prescribed) 

or there  is overflow, t ha t  is non-negative flux and zero pressure. 

So we have (denoting the  outer  normal  by  ~) 

(1.2) $(V1o + @ g ~ ) . ~  0 on Z I = / ' i x  ]0, T[ 
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(1.3) p + =  io* (datum) on Z~ = / ' ~  X]0, T[ 
N - -  

(1.4) k(Vio + ~g~).~ _--< 0 on {(a, t) e 2~fp(~, t) = 0} 
N - -  

(1.5) k(Vp + eg~)"~ = o on ((q, t) e Z~lio(~, t) < o} 

:Note tha t  the last  two conditions can be formulated as follows 

(1.6) k(Vp 2v qg~).~(p -- v) ~ 0 on Z , ,  

We restr ict  to the case tha t  

(1.7) ~(~,x) = k(~)a(x) in Q.  

We introduce the t ransformat ion 

(1.s) ~ = f ~(~($) ) d~ 
0 

after  which (1.1) becomes 

Vv: Z:,-+ R such tha t  v+ = p* .  

in Q 

(1.9) v s (~ ) , -  ~ .  {~(~) [~  + k(8(u))~]} = o 

where s(~) = ~(~) has the  form of fig. 3. 

8 

in Q 

I 
I 
I 

S~ 

Fig, 3 
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We shall consider a fami ly  of problems with S~ as in fig. 3 (with q~:= 4 -[- s) 

and we shall s tudy  the  l imit  behaviour  as e --> 0. 

0 0 

88 is actual ly  ex tended  into a graph, since for the  init ial  sa turat ion we admi t  also 

values under  the  irreducible wetness s 
Since ~ does not  depend on t, in the  following we shall take  ~ -= 1 wi thout  any  

loss of general i ty .  

2. - Existence result for the problem with saturated-unsaturated flow. 

IJet D be connected and /'~, T'2 be Lipschitz manifolds.  Le t  

~*e RI(Q) n co(j0, r]; ~ ( 9 ) ) .  

Set 

v = { v e n ~ ( D ) l v  = 0 on  r2}  

K----- {v eL~(O, T; H~(D))Iv+: p* on X2}: 

Ys > 0 ,  Y~ e R ,  set W~(~) : =  

0 

Le t  s~ L~(D), 0 < s o < 1 a.e. in D. 

(P~) F i n d u ~ e K  such tha t ,  se t t ing 

0 

(2.1) 

(2.3) 

s~ = s~(u~) e L~(Q) • Hi(0, y; V'), 

D Q 

0 Q 

VveCo([o, I r ] ;HI (D) )NHI(Q)r3K,  Ve e C2(Q) with 0 < z t < l ,  

a ( ' ,  T) -= 0 in D .  

INTERPRETATION. - F r o m  (9.3), taking ~ = 0 on X~ and in tegrat ing by  par t s  
we get  (for any  v as in (2.3)) 

T 

(2.4) fv,<8~- V. [ ~ ( ~  + k(so)~)], ( ~ -  ~)~>vdt < o 
0 
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whence 

(2.5) 

and then  (2.3) yields~ 

12.6) 

~ , -  ~. [~(v-~o + e(~o)~)] = o in V% a.e. in J0, T[; 

s~(x, 0) = s~ a.e. in  D ,  

i n d e e d b y  (2.1) st is weakly star  continuous f rom [0, 2 ~] to  L~(~) ;  we get  also (1.2) 

and 

~- k(s~) e �9 ~,, u t - -  viH~o/o~(r2 < 0 in H-I(O, T) 

which corresponds to  (1.6). 

PROPOSITIO~ 1. - Vs > 0 problem (Pt) has at least one solution. 

PROOF. - E x t e n d  8~ to all of R by  

8~(r = r  4 for r < 

and ex tend  k by  zero. 

Note  tha t  

st(e) = s:(r § ~ R ( r  4):, 

where H is the t teavis ide funct ion,  and t h a t  k ( S ~ ( ~ ) ) =  k ( S : ( ~ ) +  $) depends on 

the  continuous pa r t  S: of S t only. 
To approximate  (2.3) we use an implicit  t ime-discret izat ion,  i.e. we have to  solve 

(2.3h) 

~2 

h (u~--  v) dx dt -+- 

Q D tr 

tx D 

for all 0 g t~ < t2 g T,  v e K~; where u~ 6 K~, s~ ~ St(uh), sa fulfills the  ini t ial  con- 

dit ion,  s~(t) = So for -- h < t < 0. g~ is defined by  gh  ----- {v e Z2(0, T:  Hl(D))]v  + -----s 
on /:2}, where p*(t) -= p*([t/h]h), [ ] denot ing the Gaussbrackets.  

The proof of convergence is quite anMogons to t h a t  in [3, ch. 5]; we outline i t  

here  for completeness.  
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Note  tha t  u~ ~ ~W~(s~), ~ denot ing the subdifferential .  
t es t  funct ion we arr ive ~t the  est imate  

(2.8) u~l ~ < cons t .  
o D 

So taking v----p~ as 

~ e x t  le t t ing  v range over the set v = u~ § ~, ~ e V we get 

(~.9) 1 
[]sh-- sly(" - -  h)l],' = I V .  (a(Vut~ -~ k~))]]v,~= cons t .  

A s  a c o n s e q u e n c e  

T 

nh D 

whenever  ~ is Lipschitz and ~ ~- 0 on X2. 
Now since %: is monotone  contimmus i t  fulfills the following est imate,  cf. [3, 

l emma 1.8] 

]S~(x)-  S:(y)l ~ ~o ( (~ -  ~ v ) ' ( x -  y)) for all y, x, ~ ,  ~ 

such tha t  ~ e  S~(x)~ ~ ~ S~(y), where o~ is ~ continnous hmet ion  with co(0)-~ 0. 
Consequently f rom the est imates  (2.8) and (2.10) we get the  compactness  of 

5~:(u~) in every  L~ with p < c~. ~Ioreover with the  help of the  same est imates using 
compensated compactness  result  [3~ lemma 5.3] we have for the  weak limits s, u 

Of 8h~ ~ 

s e % , ( ~ ) .  

~ow we show the inequality (2.3) for s, u; we take (i--~)uh§ ~v~ as test 

functions~ where ~, v are as in (2.3) ~nd we have set 

In tegra t ing  (2.3h) par t ia l ly  with respect  to t ime and going to  the  limit,  using 
the  lower semicont inui ty  of I!V" I[ 2 we get  (2.3). 

Final ly  qt is in K because Ph converges to p* s t rongly and u ~ d follows f rom 
the weak max imum principle of the  heat  equation.  [] 

PlC0POSITION 2. - I f  besides the assumptions of proposit ion 1 we have ~ _= s o ~ 1, 
then  there  is a solution of 2.3 wi th  s ~ ~. 

The proof is the  same as t h a t  of proposi t ion 1, except  t ha t  2H(~--  u) has to 
be replaced by  the  constant  s I 
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R E ~ K .  - The cont inui ty  condit ion v e C~ T; H~(D)) m ay  be weakened to 
v: ]0, T[ - - .H~(D)  piecewise continnons.  I f  we impose on p* the  ra the r  na tura l  

condit ion t ha t  p* is piecewise monotone  in t ime,  then  as H~(Q) (~ K (~ C~ T, H~(D)) 
is dense in H~(Q) ~ K, the  above cont inu i ty  condit ion on v m ay  be dropped alto- 

gether .  

3. - Study of the limit free boundary problem. 

In  this section we assume s ~  .2, which corresponds to the  s i tuat ion usually 

considered in l i terature .  
As we shall see, difficulties are encountered  in proving tha t  the  approx imated  

saturat ion s~ converges strongly. Therefore  here  we introduce a weak formulat ion 

of the  l imit  free boundary  problem in which the relationship between saturat ion 
and permeabi l i ty  is expressed in t e r m s  of the closed convex hull Z of the  graph 
of kIc;.~ 1 (see fig. 4). The l imit  sa turat ion graph is obtained taking u~ --> ~ (i.e. s --> 0) 

in fig. 3. 
if < g, 

S(~:):= [0,1] if 8 = 4 ,  

g }  if > 

(P) Find(u, s, ~) such t ha t  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

u e K ,  s e L~(Q) n Hi(O, T; V') ,  

s e S(u) a.e. in Q 

(s, z) e L a.e. in Q 

1) Q Q 

Vv e C~ T]; HI(D)) (~ H~(Q) (~ K ,  V~ e C~(Q) with 0 _ ~ -- 1 ,  

~( ' ,  T) = O in D .  

I~E~gK.  -- (3.2) and (3.3) entai l  

(3.5) ~ --  k,~ where u > g s.c. in Q .  

The h i ther to  known existence results of [7, 12] correspond to a linear relationships 

for k which of course is preserved at  the  l imit :  

k~ 
(3.6) u-~  ~ - ~ - ~ ( s -  ~) a.e. in Q. 
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graph o[ k 

'~>'  8 

Fig. 4 

Of course if the unsa tura ted  region {(x, ~) ~ Q [~ < s(x, t) < l} has vanishing measure, 
then  (3.3), (3.5) and (3.6) are equivalent.  

Tm~o~E~ 1. - There exists a sequence of solutions {u~} of (P~) (where e - +  O) 
and u, s~ u such tha t  

(3.7) ,~ -+ u weakly in L~(O, T, Hi(D)) 

(3.8) S~(u~) -+ s wealdy star  in L~176 weakly in /][1(0, T, V l) 

(3.9) k(S~(u~)) -+ z weakly star in L~176 

5[oreover this entails tha t  (u, s, ~) is a solution of problem (P). 

P~ooF. - Since the W~s are uniformly bounded, (2.3) yields 

][u~llL,(o,r;w(~))< constant  ( independent of e); 

then by (2.5) 

iI%t [IL'(0,T; v') ~ constant;  

moreover of course 

IlssI[~(Q) =< constant, it~(s,) ils| ~ constant. 
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Therefore  there exists a sequence {%}(e-+0) and u, s, z such t ha t  (3.7), (3.8), (3.9) 
hold. 

As W~ -+ 0, t ak ing  the  inferior l imit  as e -+ 0 in (2.3) we get  (3.4). 

B y  a compactness  result  due to Aubin (se [93, p. 57, e.g.) (3.8) yields for instance 

s~-+s s t rongly in L2(0~ T;  V'); 

C o(Q) with > 0  we have  therefore  for any  U e ~ q = 

T T 

f fs~u.~dxdt > f ~,<s~, u~ ~l}vdt ~ f  v,<s, uV)Fdt -= f fs~tvdxrZt; 
Q o o Q 

now let  ~ ,  u R -> R be convex functions such t ha t  ~/~ = S~, ~T  = S, ~ -*  T 

pointwise;  b y  (2.!) we have  

Q 0 

whence tak ing  the  inferior l imit  as ~ --> 0 

Q 

which yields (3.2), by  the  generiei ty of U. 

:Finally (3.3) is obta ined  apply ing  the  following result.  [] 

LEN:~IA 1. - Le t  ~9 be a measurab le  set~ C a subset  of R ~ (M --> 1) and  v, v, : D -> C 

(n ~ N) measurab le  functions such t h a t  v~ ~ v weakly  in (L~(D)) ~ (1 ~ p < ~ )  

or weakly  s tar  in (L| ~. 
Then a.e. in D ~(m)e cony(C) (closed convex hull of C). [] 

A na tu ra l  quest ion arises: is i t  possible to p rove  

(3 .10)  ~ = /~(s) a .e .  i n  Q 

for ~, s g iven b y  (3.8), (3.9)? In  the  nex t  section we shall  show t h a t  in the  ease 
of a single space dimension this holds; in the  general  s i tuat ion the  question remains  

open. 
About  this poin t  we r e m a r k  t h a t  l e m m a  1 has a converse:  

LE~u~A 2. - Let ~ be a measurab le  set, C a subset  of R M (M => 1) 

v: /2 --> cony(C) and  v e (Z~(D)) M (1 ~ p --< oo) .  
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Then there  exis ts  a sequence of measurab le  funct ions (G:  Y2-+ 0}n~N such t h a t  
v~ -+ v weakly  hi (L~(D)) M if 1 ~ p < ~o, weakly  s ta r  in (L~(D)) ~ if p = co. 

Fo r  the  proof,  see [10]. [] 

F r o m  this  resul~ we get  t h a t  (3.3) cannot  be  improved  using only (3.9) and  the  

fa.ct t h a t  s, -~ s weakly  s ta r  in L~(Q). 
We have  also the iollowing resul t :  

LE)L~A 3. -- Le t  C be a closed, convex subset  of R M, let ~: C -~ R be s t r ic t ly  

convex and  lower semi-cont inuous;  let ~ be a measurab le  set wi th  finite me~sure;  

let  v, v,: t9--> C (n ~ N) be measurab le  functions such t h a t  

Then Vq e [1, p[  

v~ -+ v weakly  in (L~(/2)) "~I (1 < p < co) 

~(v,) ~ ~(v) weakly  in Z~(/2). 

V n --> V 

~(v~) ~ ~(v) 

For  the  proof see [13]. [] 

s t rongly ia  (L~(O)) M 

stronlgy in JSq(/2). 

Hence,  if (3.10) held then  (3.8) ~nd (3.9) would yield for any  q ~ [1, co[ 

s~-+ s s~r0ngly in LqY2) 

k(s~) -+ ~ s t rongly  in Lq/2) . 

4. - Strong convergence of  the saturation in one space dimension. 

As we saw at  the  end of the  las t  pa rag raph ,  s t rong convergence of the  sa tura t io~ 

is equivalent  to fulfilling the  nonl inear  equat ion 

st----- V.  [a(Vu -~ k(s)~)] in ID'(Q). 

So a t  least  for one space dimension we are going to prove  s t rong convergence of the  s~, 
for noncons tan t  a, i.e. also in s i tuat ions where unsa tu r a t ed  regions will appea r  in 
the  l imit .  Le t  us poin t  out  t h a t  our me thod  for ge t t ing  Z 1 es t imates  on s~t is the  

one used in the  theory  of El-contract ions ,  see [6] e.g. 

THEORE)~ 2. -- Le t  u~ be the  solutions of (2.3), and & = &(u~) be the  corre- 
sponding sa tura t ions  in D = ]x~ x~[ c R ~. Suppose p independent  of t ime,  so ~= ~, 
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So= S~(u~) with (u~)+-~p * on /'~ and tha t  a and a(ug~ q-k(so)) are bounded 
in BV(D) .  We assume tha t  /c is s t r ic t ly  monotone on ]~, 1[ and tha t  for each e > O~ 
/coS, e C(oo(]4~, co[) with a H61der-exponent fl > �89 

Then a subsequence of s~ converges almost everywhere.  

P~oo~. - To prove the  theorem we show tha t  s~t is bounded in ~5~(Q) and k(s~)~ 
is bounded in L~o~(Q). Since k is s t r ic t ly  monotone we conclude tha t  

f f ls~-- s~(. -- r)l 4xdt ,--2~o o uniformly in ~. 

So s~ are compact  in .L~(Q), which finishes the proof, once the a priori est imates are 
obtained. 

F i rs t  let  us prove the  est imate  on s~t: To be absolutely correct  one should have  
to prove the est imate on the  solutions s~ of the approximat ing  inequalities (2.3h). 
Bu t  for simplieity of notat ion,  we work with s~ directly.  Take V~ as an approximat ion  
of the  sign. 

~(~) = [ 
--i for ~-- 

~/~ for -- @__< ~__< 

1 for ~ ~ ~. 

Since p* is constant in t ime, 

u~(t)- ~w~(u~(t)- u~(t- ~)) ~nd u~(t- ]i) + ~(u~(t)- uo(t- ~)) 

are admissible functions for the variat ionM inequal i ty  (2.3) at  t ime t and t -  
respectively.  We get 

T x~ T x~ 

' t �9 ~ ( ~ ( ) - -  u~(t-- ~))dx,~t + 

Tx~ 

+f =< 0. 

Using the Cauchy inequal i ty  we derive the est imate 

T ~2 T x2 

t - -  

w~(uo(t) - ~ o ( t -  ~ ) ) a x a t  <= o . 
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Now assuming for the  moment  tha t  koS, is in C~([J, co[), the  last  integral  converges 
to zero with ~. I f  instead koS, e C~oo(]u , co[) only, one has to modify the  tes t  func- 
t ion taking wo(max(u~(t), ~ @ e) -- m a x ( u d t - -  h), 4 @ e)) with e > 0. In  any  ease 
we get le t t ing d tend  to zero 

T x~ 

f f l~ . ( t )  - ~ . ( t -  ~)I,(X - x{..(,)<~.(~+o); z { , . ( , -~ )<~ (~§  <= o .  

So we have the est imate  
�9 2 x~ 

(~,, f )  d 

Now we have  to 6st imate the init ial  t ime difference. Multiplying the  inequah ty  
by  ~ o ( % ( t ) -  u~) and integrat ing f rom zero to h, we obtain 

f 
0 X~, 0 X~, 

and i t  follows that 

f f(s~--So)t~o(...)dxdt +f fa(u~- %)y~o(...)~dxdt @ 
0 ~ej. 0 xj. 

0 x 1 0 x l  

so finally taking d - +  0 as before 

0 ~1 

which gives the  desired est imate.  

After  the es t imate  on s~t we proceed to the proof of the  est imate  on k(s~)~. In  
r ean nse ~ • ~ ( (ma~r  ~ + ~l)x)V as a te~t function, where ~ is a cut 
off and ~ >  0; because by  the  assumption on koS~, the  second derivat ive (au~J~ 
is in Z~({u; > ~ @ ~}) with some p > 1. 

Let t ing  first d then  ~ then  h t end  to zero we get the es t imate  

T ~ T ~2 

0 Z 1 0 Zx T X~ 

--f fa(kts,))~ signtu,,)~Tdxdt a -- Ila]!~V(D)T'sup(k) . 
0 ~:~ 
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So we get  in ~he end 

T z~ T ~2 T ~ 

0 ~i 0 xz 0 Xl 

REFERENCES 

[1] H. W. ALT, StrSmungen dutch inhomogenc porSse Medien mit /reiem Rand, J. Reine 
Angew. Math., 3{)5 (1979), pp. 89-115. 

[2] It. W. ALT, The dam problem, Free boundary problems: theory and applications, 
I 52-68, Pitmaa,  Boston-London-Melbourne, 1983. 

[3] I{. W. ALT - S. LUCKHzkUS, Quasilinear elliptic-parabolic di/ferential equations, Math. Z., 
183, 311-341 (1983). 

[4] C. BAIOCr Su un problema di ]rontiera libera connesso a questioni di idraulica, Ann. 
hlat. Pura e Appl., 92 (1972), pp. 107-127. 

[5] J. B~A~, Dynamiv o/ fluids in porous media, American Elsevier, New York (1972). 
[6] P. B~NIDAN, Equations d'dvolutions dans ~n espace de Banach quelconque et applications, 

Th~se Univ. Paris XI,  Orsay (1972). 
[7] G. GILARI)I, A new approach to evolution /tee boundary problems, Comm. on Part. Diff. 

Eq., 4 (1979), pp. 1099-1122. 
[8] U. Ho~uNG,  A parabolic.elliptic variationa~ inequality, Manuscripta Mathematica, 39 

(1982), pp. 155-172. 
[9] J . L .  Lions, Quelques m$thodes de rgsolution des probl$mes aux limites non lindaires, Dunod, 

Gauthier-Villars, Paris (1969). 
[10] L. T~TA~,  Compensated compactness and applications to partial di]ferential equations, 

in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, vol. IV, ed. by R . J .  
Knops, Res. Notes in Math., no. 39, Pitman, London (1979), pp. 136-212. 

[11] A. TOR~LU, Su un problema a ]rontiera libera di evoluzione, Boll. Un. Mat. Ital., (4) 11 
(1975), pp. 559-570. 

[12] A. VISINTI~, Existence results/or some ]ree boundary/iltration problems, Ann. Mat. Pura 
e Appl., 124 (1980), pp. 293-320. 

[13] A. V I s ~ I ~ ,  Strong convergence results related to strict convexity, submitted to Comm. 
on Part. Diff. Eq. 


