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Summary. — Saturated-unsaturated flow of an incompressible fluid through a porous medium. is
considered in the case of time-dependent water levels. This corresponds to coupling the mass
conservation law with a continuous constitutive condition between water content and pressure.
Amn ewmistence result for the corresponding weak formulation is proved. Finally we study the
limit as the constitutive relation degenerates into o maximal monotone graph.

Introduction.

We deal with nonstationary saturated-unsaturated flow of an incompressible
fluid through a nonhomogeneous porous medium; this is assumed to form a dam
bounded by impervious layers, water reservoirs and air; water levels are assumed
to change in time.

By saturated-unsaturated flow one means that the dependence of water content
on pressure is given by a continuous function; this corresponds to experiments
(see fig. 1). In another model this relationship is represented by a step function;
this corresponds to a well-known free boundary problem and can be interpreted
as the large scale behaviour of the continuum case (see [2]).

Mathematical work on this problem was started with Baiocchi’s fundamental
Paper [4] treating the stationary free boundary problem via a variational inequality.
Another approach introduced by ALt [1] was the approximation of the free boundary
flow by the saturated-unsaturated flow in the stationary case.

The nonstationary situation has been studied first by TorELLI [11], who gave
a time-dependent version of the Baiocehi transformation. Later on working with
pressure directly, GILARDI [7] and VISINTIN [12] treated a more general situation.
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In this paper we apply the general method developed by ALT-LUCKHAUS [3]
to nonstationary saturated-unsaturated flow; our results include the one given in [8]
by HorNvUNe for flow without gravity. Then we study the limit free boundary
problem; since in the general case we can just show the weak convergence of the
approximated saturation, we prove existence of a solution for a weaker formulation,
in which the non-linear relation between water content and conductivity is replaced
by a more general condition.

If one can show that the unsaturated region has vanishing measure, which is
not true for general inhomogeneous media, then there is equivalence with the physical
problem. This is the same situation as in [7, 12].

However in the case of a single space dimension we can prove the strong conver-
gence of the approximating saturation, hence we can take the limit in the non-linear
relation between water content and conductivity; this gives a physical meaning
to the solution.

1. — The physical situation.

Let D c Re represent the region occupied by the porous medium and I be the
impervious part of the boundary; let p denote the pressure, 0 the relative water
content and % the permeability of the porous medium depending on 6 and .

We have the equation of continuity

0,-~-V-7=0 in@Q=Dx]0,T[ (we bar vectors)
(where g is the flux) and Darey’s law
g=—k(Vp+oge) inQ

{where g is the density of the fluid, ¢ is the gravity acceleration and e is the upward
vertical vector); moreover

0 = gp(@)3(p) in @,

where 3(p)€[0,1] denotes saturation and g@(x) is the proposity of the medium.
The above formulae yield

(1.1) @3(p).— V- [E(3(p), 2)(Vp + 0g&)] =0 in Q.

The following figures represent typical experimental relationships for § and E.
On the complement I, of I in 2D we have the following: where the porous
medium is in eontact with water the pressure is preseribed and positive, where it is
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Fig. 1 (ef [5] fig. 6-13).
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Fig. 2 (of. [5] fig. 6-16).

is contact with air either the flux is zero and pressure non-positive (non-prescribed)
or there is overflow, that is non-negative flux and zero pressure.
So we have (denoting the outer normal by #)

(1.2) E(Vp + oge)#=0  on 2= I1Xx10, T[
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(1.3) pt= p* (datum) on Xy= I, %10, I[
(1.4) E(Vp + oge)# <0 on {(o,1) € Zulp(c, 1) = 0}
(1.5) E(Vp + oge)5=0  on {(o,?) € Zulp(s, 1) < 0}

Note that the last two conditions can be formulated as follows

1.6) E(Vp -+ og8)i(p—v)<0 on X,, Vo:Z,—R such that o+ = px.
We restrict to the case that

1.7) kG, 2) = k(@) a(x) in Q.

We introduce the transformation

(1.8) w=[k@E@)a inQ

after which (1.1) becomes

1.9) ps(u)— V- {a@)[Vu + k(s))e]} =0 in @

where s{#) = 3(p) has the form of fig. 3.

Y

Fig. 3
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We shall consider a family of problems with 8. as in fig. 3 (with #,:= 4 - ¢)
and we shall study the limit behaviour as ¢ — 0.

di=— [W(EE) dE,  wai=— [(3(6) d&

8: is actually extended into & graph, since for the initial saturation we admit also
values under the irreducible wetness &.

Since & does not depend on ¢, in the following we shall take ¢ = 1 without any
loss of generality.
2. - Existence result for the problem with saturated-unsaturated flow.

Let D be connected and I3, I be Lipschitz manifolds. Let

p*e H(Q) N C°([0, T7; H(D)) .

Set
V={veHD)p=0 on Iy}
K = {veL*0, T'; H(D))|v* = p* on Zy}:
7 8;1(8)
Ve>0, VéeR, setW. &) := sup (517 ——f e(A) dl) =f (& — 8e(A))dA.
pEn<e 0 0

Let ste L:(D), 0<s°< 1 ae. in D.

(P.) Findu.e K such that, setting

(2.1) se= 8:(uc) € L=(Q) N H0, T; V'),

-[ [We(s"@)) — 5°@) o(, 0)] alz, 0) dor — | [Wes) sudaat
D Q

| se(ver) daedt + | [a(Va L E(se)e) V(e — v) ] daxdt < 0,
v + oo + oo

Yoe 0o([0, T1; H(D)) NHYQ) N K, Vaue(C*Q) with0<as1,
«(,T)=0 in D.

INTERPRETATION. — From (2.3), taking « = 0 on 2%, and integrating by parts
we get (for any v as in (2.3))
T
(2.4) f y<8— Y [a(Vu, + k(s,)8)], (u,— v) 6>y dt < 0
; ,
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whence
(2.5) s~ V- [a(Vu,+ k(s)2)] =0 in V', ae. in 10, T[;
and then (2.3) yields

2.6) - : se(w, 0) = 8%x)  a.e.'in D,

indeed by (2.1) s. is weakly star continuous from [0, T] to L*(Q); we get also (1.2)
and

Othe
s zle 5. we— < i -1
(2.7 (H%,{,?(rz))’<a[3v -+ %(se) e] Py Ue v}H%Z(ra)_. 0 in H- (0, 7,

which corresponds to (1.6).
PROPOSITION 1. — Ve > 0 problem (P:) has at least one solution.
Proor. — Extend 8: to all of R by

Sa(§)=§——d for < i

and extend ¥ by zero.
Note that

8 (&) = 8:(&) 4 $H(E — 4,
where H is the Heaviside function, and that k(SE(é)) = k(82(£) 4 §) depends on

the continuous part 8 of S, only. .
To approximate (2.3) we use an implicit time-discretization, i.e. we have to solve

(2.3h) ffs’”t 2) “j"(t“h 2) (tt— ) d lt --
173

-|—f f Vu,, t, @) k(S“(uh(t —h, x)) + é') E) V(up—v)dwdt < 0

for all 0 <4, <t,< T, veK,; where u, € K,, s, € 8:(u,), s, fulfills the initial con-
dition, s,(f) = s, for — h <<t < 0. K;is defined by K; = {v e 120, T: H(D D))jv* = P
on 2'2}, where pZ(t) = ([t/h ) [ 1 denoting the Gaussbraekets

The proof of eonvelgence is quite analogous to that in [3, ch. 5]; we outline it
here for completeness.
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Note that wu, € oWe(s,), 0 denoting the subdifferential. So taking v = p: a8 a
test function we arrive at the estimate
7

(2.8) fJ\-V*uhP = const .

¢ D

Next letting v range over the set v = u, + 4, & V we get

1 . Ny
(2.9) 7 Isn— 82> — B)ly: = |V (a(Vus + k&) | < const .

As a consequence

T
(2.10) f fé(sh— sa(* — 7)) (un— wa(* — 7)) dwdi < o WCHL«J + 1)z
nh D

whenever { is Lipschitz and ¢ =0 on %,.
Now since 8; is monotone continuous it fulfills the following estimate, cf. [3,
lemma 1.8]

I85@) — 8| < o((Ee— &) (w—y))  for all y,m, &, &,

such that & € 8.(@), &, € 8e(y), where o is a continuous function with w(0) = 0.

Consequently from the estimates (2.8) and (2.10) we get the compactness of
S;(u,) in every L* with p < co. Moreover with the help of the same estimates using
a compensated compactness result [3, lemma 5.3] we have for the weak limits 8, U
of &,

s € 8:(u) .

Now we show the inequality (2.3) for s, u; we take (1— o) us-- v, a5 test
functions, where «, v are as in (2.3) and we have set

a9 o=(().

Integrating (2.3%) partially with respect to time and going to the limit, using
the lower semicontinuity of |V |2 we get (2.3).

Finally » is in K because p, converges to p* strongly and % = 4 follows from
the weak maximum principle of the heat equation. H

PROPOSITION 2. — Tf besides the assumptions of proposition 1 we have § < 0= 1,
then there is a solution of 2.3 with s = 4.

The proof is the same as that of proposition 1, except that §H(f— u) has to
be replaced by the constant §. m
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REMARK. — The continuity condition »e C°(0, T'; HY(D)) may be weakened to
v: 10, T[ — HY(D) piecewise continuous. If we impose on p* the rather natural
condition that p* is piecewise monotone in time, then as H\(Q) N K N 0°(0, T, H(D))
is dense in HY(@)) N K, the above continuity condition on » may be dropped alto-
gether.

3. — Study of the limit free boundary problem.

In this section we assume §°>§, which corresponds to the situation usually
congidered in literature.

As we shall see, difficulties are encountered in proving that the approximated
saturation s, converges strongly. Therefore here we introduce a weak formulation
of the limit free boundary problem in which the relationship between saturation
and permeability is expressed in terms of the closed convex hull L of the graph
of kliz i (see fig. 4). The limit saturation graph is obtained taking w, —d (i.e. & —0)
in fig. 3.

§ ité<a,
8 :=110,1] if =14,
{1} if >4,

(P) Find(u, s, #) such that

(3.1) weK, seL*@ nNHY0,T; V),
(3.2) se S(u) a.e. in Q
(3.3) (s,#)e L a.e. in @

fsv(w)v(x, 0) a(, 0) ds +J-fs(foac)tdwdt +jja<w @)V (u— v) a]dedt < 0
Q Q

D
Yo e C°([0, T); HY(D)) NHYQ)N K, VYaeCQ) with0=sa=sl,

(-, T)=0 inD.

REMARK. ~ (3.2) and (3.3) entail

(3.5) % =1Fk, Wwhere >4 a.e.in .

The hitherto known existence results of [7, 12] correspond to a linear relationships
for & which of course is preserved at the limit:
kum

(3.6) ®=17

(s— &) ae. in Q.
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graph of ¥

Fig, 4

Of course if the unsaturated region {(z, ) € @[§ < s(x, ) < 1} has vanishing measure,
then (3.3), (3.5) and (3.6) are equivalent.

THEOREM 1. — There exists a sequence of solutions {ue} of (P:) (where ¢ - 0)
and #, s, % such that

(3.7) e —> U weakly in L:(0, T, H'(D))
(3.8) Se(ue) — s weakly star in L®(Q), weakly in H(0, 7, V')
(3.9)  E(Sew))) >#  weakly star in L=(Q) . '

Mozreover this entails that (u, s, %) is a solution of problem (P).
Proor. ~ Since the W's are uniformly bounded, (2.3) yields
1%, ] 30, 7: mrpy) = constant (independent of e);
then by (2.5)
18.tlz20,7; ) = constant;
moreover of course

I8 llno@ = constant ,  [k(s,)]| =) < constant .
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Therefore there exists a sequence {uj(e —0) and w, s, » such that (3.7), (3.8), (3.9)
hold.
As W, — 0, taking the inferior limit as ¢ — 0 in (2.3) we get (3.4).
By a compactness result due to Aubin (se [9], p. 57, e.g.) (3.8) yields for instance
$;—s  strongly in L0, T; V');

therefore for any x e 07 (@) with n = 0 we have
T T
ffssue nda di >fyl<sa, )y dl »f,,(s, wny dt = fsqtndwclt;
2 0 0 @

now let ¥;, ¥: R — R be convex funections such that 8%, = 8;, ¥ = 8§, ¥, - ¥
pointwise; by (2.1) we have

ffsa(us— v)n dodt ;‘”(Tg(u@) — Yv))pdzdt
) @
whence taking the inferior limit as ¢ — 0
Hs(u— o)y dodi _2_”(5%) — Pw)) pdedt
a 2
which yields (3.2), by the genericity of #.
Finally (3.3) is obtained applying the following result. =
LEMMA 1. — Let Qbe a measurable set, C asubset of R¥ (M = 1)and 2, v,: 2 - C
(n € N) measurable functions such that v, — v weakly in (Z(Q))* (1< p < +o0)
or weakly star in (L”(Q))M.
Then a.e. in £2 »(x) € conv((C) (cloged convex hull of (). ®m
A natural question arises: is it possible to prove

(3.10) %= k(s) a.e. in @

for x, s given by (3.8), (3.9)% In the next section we shall show that in the case
of a single space dimension this holds; in the general situation the question remains
open.

About this point we remark that lemma 1 has a converse:

LeMMA 2. — Let 2 be a meagsurable set, ¢ a subset of R¥ (M = 1)

v: @ »conv(0) and wve(Lr(Q)Y (L=Zp= oo).
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Then there exists a sequence of measurable functions {v,: 2 — O},y such that
v, — o weakly in (L?(2))¥ if 1 < p < oo, weakly star in (L2(Q))* if p = oo.
For the proof, see [10]. MW

From this result we get that (3.3) cannot be improved using only (3.9) and the
fact that s; —s weakly star in L>(@).
We have also the following result:

LEMMA 3. - Let € be a closed, convex subset of R¥, let ¢: 0 — R be strictly
convex and lower semi-continuous; let 2 be a measurable set with finite measure;
let v, v,: Q — C (ne N) be measurable functions such that

v - weakly in (L*(2))¥ (1<p< o)

n

p(v,) = @) weakly in L#(Q).
Then Yq e€[1, p[

0, strongly in (L¢(£Q))™
@(v,) — (o) stronlgy in L¢(Q).

For the proof see [13]. W
Hence, if (3.10) held then (3.8) and (3.9) would yield for any ge&[1, oof

8s—> 8 strongly in L#(9)
Eiss) — 3 strongly in I#(Q) .

4, - Strong convergence of the saturation in one space dimension.

As we saw at the end of the last paragraph, strong convergence of the saturation
is equivalent to fulfilling the nonlinear equation

s;= V-[a(Vu + k(s)g)] in D'(Q).

S0 at least for one space dimension we are going to prove strong convergence of the s;,
for nonconstant a, i.e. also in situations where unsaturated regions will appear in
the limit. Let us point out that our mefhod for gefting I! estimates on s, is the
one used in the theory of I'-contractions, see [6] e.g.

THEOREM 2. — Let #. be the solutions of (2.3), and s. = S:(u¢) be the corre-
sponding saturations in D = Jz;, z,[ ¢ R'. Suppose p independent of time, s, = §,
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$o= Se(u§) Wwith (u5)"=p* on I, and that a and a(uf, -+ k(s,)) are bounded
in BV(D). We assume that % is strictly monotone on 14, 1[ and that for each & > 0,
ko8, € Cfy(14,, oo) with a Holder-exponent § > .

Then a subsequence of s; converges almost everywhere.

ProOF. —~ To prove the theorem we show that s, is bounded in L(Q) and k(s),

is bounded in L (Q). Since % is strictly monotone we conclude that

f lse— 8e(* — 7)|dedf -, 0  uniformly in ¢.

So ss are compact in L3(@), which finishes the proof, once the a priori estimates are
obtained.

First let us prove the estimate on s¢;» To be absolutely correct one should have
to prove the estimate on the solutions s* of the approximating inequalities (2.3h).
But for simplicity of notation, we work with s. directly. Take ys as an approximation
of the sign.

—1 for ¢f£-—-8
po(§) =1 &/6 for —0=E<4
1 for 6<E.
Since p* is constant in time,

us(t) — Opo(ua(t) — we(t — B))  and  we(t — K) - Sus(ue(t) — walt — h))

are admissible functions for the variational inequality (2.3) at time ¢ and ¢ — %
respectively. We get

T %, s
jf Sst — 8e,(t h)) %(ue( ) — ws(t — h )dwdt —{-—J‘f q,(,ex — U, (f— ﬁ))
h e i oy
“ps(ue(t) — ue(t — B)) dwdt -
T 2,
+f f K (s6(t— 7)) (teol) — et — B)) py(te(t) — elt — b)) dwdt < 0 .

Using the Cauchy inequality we derive the estimate

T @, T 2,
f(su(t) 85yt~ h)) po(te(t) — we(t — b)) dov dt —-f fg [E(s:(t)) — E(se(t —F))]2.
;L Xy ;b Xy

Po(Ue(t) — v, (t — B)) dwdt 0 .
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Now assuming for the moment that %o8; is in C%([4, oo[), the last integral converges
to zero with §. If instead koS, € C{fm(]d, o) only, one has to modify the test func-
tion taking w(max(ue(t), 4 -4 oc) max(us{t — h), 4 + oc)) with o> 0. In any case
we get letting J tend to zero

T @,

fflsa(t) — s,(t— )1 — Aisslty<Seta+ o)} Xissli—Ty<Sea+a)) XA X0 .

hoay

So we have the estimate

I5F]

sup f [se(t) — 86(t — A)|dz < f [se(k) — so|de .

(s 7)
®1

Now we have to estimate the initial time difference. Multiplying the inequality
by ws(u,(t) — u2) and integrating from zero to &, we obtain

hwz hwg
ff SetWolor.) dav dt +ff (thy + K(s,)) ps(...) dwdt < 0
0 @ 0 a4

and it follows that

fjizse— 80 tw(s dwdt +thj€2 /M’Ow 1/)6 ) dedt +
0z 0z )
—{—} }’ — K(39)) wol-..) dwdt < *f fa(u{;w—[— %(85)) w,(...), dov it
0 xy 6 2

so finally taking § — 0 as before

h oz,
%f f[sa(t) — ol dodt < ﬁ”“(’“ﬁw + K(80)) | z7in -
0 =z

which gives the desired estimate.

After the estimate on s,, we proceed to the proof of the estimate on %(s:),. In
(2.3%) we can use uj -+ y)a((max(u,i, 4+ “))w)ﬂ as a test function, where # is a cut
off and « > 0; because by the assumption on koS., the second derivative {au;,),
is in Z#({u > 4 - a}) with some p > 1.

Letting first § then o then b tend to zero we get the estimate

T g Tz,
ff 8, Sign(u,,) 7 da dt —f J-]auew{wndwdt—«
0 @ 0o T 2,

— [ [ali6s,)), signtu,) niwdt = — ) T-sup(®)

0 2
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So we get in the end

T xa T %, T @,
J‘falk(sa)mindmdt gf flsst]dmdt -+ Supf%lf fa([umlz -+ 1) de dt -+ sup(k) T\a)grpy. W
0 [ [T
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