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ON NORMAL AND CONORMAL MAPS FOR
AFFINE HYPERSURFACES
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Abstract. We prove two main results in affine differential geometry that char-
acterize ellipsoids among the ovaloids. The first theorem states that an ovaloid in the
3-dimensional affine space is an ellipsoid if and only if the Laplacian of the normal
map is proportional to the normal map. The second theorem says that a hyperovaloid
in an affine space of any dimension is a hyperellipsoid if and only if the conormal
image (or the normal image) is a hyperellipsoid with center at the origin.

L e t / : Mn^>Rn+1 be a nondegenerate hypersurface with affine normal ξ in the

affine space Rn+1. We then have the normal map φ: Mn-+Rn + 1 and the conormal

immersion v: Mn-+Rn + 1, where Rn+1 is the coaffine space of Rn + 1 (for the ter-

minology see [N-P]). Our main results are the following.

THEOREM 1. An ovaloid f: M2-^R3 is an ellipsoid if and only if the Laplacian of

the normal map φ: M2->R3 is proportional to φ.

THEOREM 2. For a hyperovaloid/: Mn-+Rn + 1, n>2, the following three conditions

are equivalent:

(1) The conormal image υ{Mn) is a hyperellipsoid with center at the origin of Rn + 1.

(2) The normal image φ(Mn) is a hyperellipsoid with center at the origin of Rn + 1.

(3) f(Mn) is a hyperellipsoid.

In Section 1 we study the normal and conormal maps for nondegenerate hyper-

surfaces. By using the notion of conjugate connection we express the relationships

between the three connections that arise when the normal map is an immersion. In

Section 2 we compute the Laplacian of the normal map and prove Theorem 1. We

may prove Theorem 2 in the case n = 2 using the same method, but the general case of

Theorem 2 requires a different approach and this is presented in Section 3.

We thank Professor U. Simon for calling our attention to the work of Shen [Sh]

after the results in Sections 1 and 2 were presented in his seminar at Technische

Universitat Berlin.
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1. Conormal and normal maps; conjugate connections. For a nondegenerate

immersion/: Mn^Rn+1 there is a transversal vector field ξ, unique up to sign and

called the affine normal, so that we have the basic equations for any vector fields X, Y

on AT:

(1) Dx(f+(Y)) = ft(yxY) + h(X9 Y)ζ ,

(2) Dxξ=-USX),

where D is the canonical flat connection in Rn+ί, V the induced connection, h the

affine metric and S the shape operator. The induced volume element θ given by

Θ(X19..., Xn) = dεt(UX1),..., UXn), ξ)

satisfies V0 = O and θ = ωh, where ωh denotes the volume element for the metric h. The

condition VωΛ = 0 is called apolarity. We have the fundamental equations of Gauss,

Codazzi (for h and S), and Ricci, respectively, as follows:

(3) R(X, Y)Z=h{Y, Z)SX-h(X, Z)SY,

(4) (

(5)

(6) h(SX, Y) = h(X9SY).

(For these equations, see, for example, [N-P].)

The conormal vector, say, vx at xeM" is a covector uniquely determined by

the conditions vx(f^(X)) = 0 for all Xe Tx(Mn) and vx(ξx) = 1. The conormal map

v: Mn-+Rn+1 is defined by x-*vxeRn + 1. By differentiating v(f^(Y)) = 0 we obtain

Vχ(X)(f^(Y))=—h(X, F), which shows that v is an immersion. Regarding v: M"->

Rn+1 as centro-affine hypersurface with transversal field —v, we get

(7) D^vjί Y)) = v*(Vx Y) + K(X9 Y){ - v),

where V is the induced connection and E is the fundamental form. It is known that

the two connections V and V are related by the equation

(8) Xh{ F, Z) = h(Vx Y9 Z) + A( Y9 VXZ),

where X, Y, Z are arbitrary vector fields on Mn. We say that V and V are conjugate to

each other relative to the metric h. (See [N-P] as well as [D-N-V].)

We now define the normal map φ associated to / : Mn^>Rn+1. For each

xeMn + 1 \etφ(x) be the end point of the vector ξx when it is displaced parallelly so as

to have the starting point at origin, say, o of Rn+ί. In this way, we get the map

φ: Mn-+Rn + 1. Since φ^(X) = Dxφ = Dxξ= -f*(SX), if follows that φ is an immersion

if and only if S is nonsingular. The following gives more specific information than that

found in [Sch, pp. 142-3] about the normal maps in general.
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PROPOSITION 1. Assume that S is nonsingular. Then

(i) the normal map φ is an immersion',

(ii) as centro-affine hyper surface with —φ as transversal field we can write

(9) DjtΦΛ Y)) = φJS'x Y) + h'{X, Y)( - φ),

where the induced connection V is equal to

(10) \7'xY=S-ί

and the fundamental form h' is given by

(11) h'(X,Y)

(iii) the connections V and V are conjugate relative to the metric h~=h.

PROOF, (ii) easily follows from φ*(X) = —fJβX). The verification of (iii) is also

straightforward computation. It can also be shown by a geometric observation that

both / : Mn-+Rn + 1 and φ: Mn^Rn + 1 have the same conormal, because for each

xeMn the tangent hyperplane to/(M") at/(x) and the tangent hyperplane to φ{Mn)

at φ(x) are parallel, and ξ at f(x) and — φ(x) at φ(x) are also parallel to each other.

It follows that the connection V is the conjugate of the connection V relative to the

metric h. (This geometric observation that / and φ are in Peterson correspondence is

from [Sch, p. 142]).

REMARK. Proposition 1 is valid more generally for any nondegenerate immersion

Mn^Rn+1 with an equiaffine transversal vector field ξ (that is, Dxξ is tangential,

without requiring that it be the aίfine normal).

2. Laplacian of the normal map. Now we compute the Laplacian of the normal

map φ. In general, we recall that the Laplacian can be defined for any differentiable

map / : M-*M, where M is a Riemannian or pseudo-Riemannian manifold with

metric, say h, and M is a manifold with a torsion-free connection D. First we define

the Hessian HesSy of/by setting Hess/X, Y) = Dx(f^(Y))-fjyxY\ where X, Y are

any vector fields on M and V is the Levi-Civita connection for the metric h. Thus

Hessj is a bilinear symmetric mapping of Tx(M)xTx(M) into Tf(x)(M). Then we

take Δ^trace^HesSy (that is, ΣlJ=1h
ijHessf(ei, βj)), where {eu . . . , en} is an arbitrary

basis in TX(M). For the conormal immersion, we have Av= —(trS)v. (See [N].) Thus

Δv is always proportional to v, as is known in the Lelieuvre formula [B, p. 133] for

the case of a nondegenerate surface.

We apply this definition to the normal map φ: Mn^Rn + 1 (without assuming that

it is an immersion). We get

Dx(φ*( 10) = Ar(/*( -SY)) = U - VX(SY)) + h(X, SY)( - ζ)

= U-(VxS)(Y)-S(VxY))-h(X, SY)ξ .
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Using the Levi-Civita connection V for the affine metric h we have

(13) ΦJ$χY) = h(-S<$xY)) = fJL-S{VxY) + SK{X, Y)),

where Kis the difference tensor: K(X, Y) = WXY-VXY. Thus

Hess,(*, Y) = U-(yxS)(Y)-SK(X9 Y))-h(X,SY)ξ.

Using apolarity in the form trΛΛ^=0 we get

(14) Aφ=-Utrh(VS))-tr(S)φ.

We have thus

PROPOSITION 2. For a nondegenerate hypersurface f: Mn-+Rn+1 with the affine

normal, the Laplacian of the normal map is given by (14). Consequently,

(1) φ is harmonic if and only ί/trΛ(V5') = 0 and tr £ = 0 {the affine mean curvature

H is 0);

(2) Δφ is proportional to φ if and only if trh(VS) = 0. In this case, the pro-

portion factor is —nH.

REMARK 1. We may establish the relationship

h(tτh(WS), Y)=Y tr S+2tτ(KγS) for every Ye Tx(Mn),

where KYZ=K(Y,Z).

REMARK 2. The terminology is somewhat different in [Sh], where the tangential

component of our Laplacian is computed in the case where S is nonsingular.

We shall now prove Theorem 1. Suppose Δφ is proportional to φ. By Proposition

2, (2) we obtain trΛ(VS) = 0. Now around each point in M2 we take an isothermal

coordinate system (x, y) for the affine metric h and write X=d/dx, Y=δ/dy so that

h(X,X) = h(Y, Y) = E, h(X, Y) = 0. Then we see that we have a globally defined

quadratic form

Ψ = {h(SX, X)-h(SY, Y)-2ih(SX, Y)}dz2 , where z = x + iy .

This form is holomorphic under the condition trΛ(VS) = 0, as we shall prove in the

lemma below. Our surface being homeomorphic to S2, Ψ must vanish everywhere.

Thus h(SX, X) = h(SY, Y) and h(SX, Γ) = 0, which imply that S=λl, that is, M2 is an

affine sphere. We note that S cannot be 0. By a classical theorem of Blaschke, it

follows that/(M 2 ) is an ellipsoid.

LEMMA. The form Ψ defined above is holomorphic if and only if ίτh(yS) is

identically zero.

PROOF. Let u = h(SX, X)~h(SY, Y) and υ= -2h(SX, Y). We compute to show

that the Cauchy-Riemann equations are valid. Since (x, y) is an isothermal coordinate

system, we have VXX= —VYY. Using KxX+KYY=0 (apolarity), we obtain
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(15) VXX=VXX+KXX= -VYY-KYY= -WYY.

Of course, we have also VXY=S/YX. Now we have

du/dx = X(h(SX,X)-h(SY, Y))

= (Vxh)(SX, X)-(Vxh)(SY, Y) + h((VxS)X, X) + 2h(SX, VXX)

-h((VxS)Y,Y)-2h(SY,VxY).

Similarly we get

-dv/dy= Y(h(X, SY) + h(SX, Y))

= (Vγh)(X, SY) + (Vγh)(SX, Y) + h((WγS) 7, X) + 2h(SX, Vy Y)

+ h((VγS)X, Y) + 2h(SY, VYX).

Using the Codazzi equations for S and A, the apolarity and (15), we get

δuldx-dv/dy = h(X, (VxS)(X)) + h(X, (VγS)(Y)) = Eh(tτh(VS% X).

By similar computation we have

du/dy + dv/dx = h( Y, (VXS)(X) + (Vy5)( Y)) = Eh{ Y, trΛ(VS)).

From these equations it follows that the Cauchy-Riemann equations are satisfied (and

the form Ψ is holomorphic) if and only if trh(V»S) = 0, thus proving the lemma and

completing the proof of Theorem 1.

REMARK. For a nondegenerate surface M2 with affine normal ζ one can easily

verify that trΛ(V5) = 0 holds if and only if (VWR)(X, Y)Z is symmetric in Z and W.

This fact can be used in order to prove a theorem in [O-V] that an ovaloid M2 with

VR = 0 is an ellipsoid.

3. Proof of Theorem 2. We start with the following proposition which sum-

marizes the relationships among the three connections induced by/, v, and φ.

PROPOSITION 3. Iff'- Mn—>Rn+1 is a nondegenerate immersion with an equiaffine

transversal field ξ and nonsingular S, then the following conditions are equivalent:

(la) VΛ = 0;

(lb) v(Mn) is an open part of a hyper quadric with its center at the origin of Rn + ί.

(2a) V7z' = 0;

(2b) φ(Mn) is an open part of a hyper quadric with its center at the origin of Rn+ί.

(3a) V' = V;

(3b) 2KxY=-S~1(yxS)(Y).

PROOF. The equivalence of (la) and (lb) (as well as that of (2a) and (2b)) follows

from a well-known theorem of Maschke-Pick-Berwald. The equivalence of (3a) and

(3b) follows from (10) and Vx — VX = 2KX. In order to prove the equivalence of (la),
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(2a) and (3a), it is sufficient to note in general that if two connections V1 and V2

are conjugate relative to a nondegenerate metric g, then they coincide if and only
if v1gf = O, or equivalently, if and only if V2# = 0. This completes the proof of
Proposition 3.

The essential part of Theorem 2 in the case where n = 2 and S is non-singular
follows from this proposition. From (1) or (2) we get 2KXY= —S~1(VXS)Y, as in
Proposition 3. By apolarity trΛ^=O, then, we get trΛ(V»S) = 0. Now we can use the
same argument as for Theorem 1 to conclude that f(M2) is an ellipsoid. We may
prove Theorem 2 in the general case as follows. First, (3) obviously implies (1). If we
assume (1), then we see that the immersion v is nondegenerate. This means that S is
nonsingular. Thus φ is an immersion and, by the equivalence of (la), (lb), (2a) and
(2b) in Proposition 3 we see that (1) implies (2). It now remains to prove that (2)
implies (3). For an arbitrary dimension «, we can do this as follows.

We start with the following observation.

PROPOSITION 4. Let f: Mn^Rn+1 be an isometric immersion of a pseudo-
Riemannian manifold Mn with metric g into a pseudo-Euclidean space Rn + 1. Let N be a
field of {space-like or time-like) unit normal vectors. Suppose the Gauss-Kronecker
curvature Kn {i.e. the determinant of the metric shape operator A) is nowhere 0. Then, f
is nondegenerate and the affine normal has the same direction as N if and only if Kn is
constant.

PROOF. The metric second fundamental form h is equal to g{AX, Y) and
hence nondegenerate. The affine normal is obtained in the form λN+f+iZ), where
λ = \Kn\

1/in + 2) and Z is a tangent vector field such that h(X,Z)=-(dλ)(X) for all
tangent vectors X. See [N]. (For the case « = 2, cf. formula (186) in [B, p. 166].) Thus
the affine normal has the same direction as N if and only if Z=0, that is, \Kn\
is constant.

Now assume that φ{Mn) is a hyperellipsoid with center at the origin. This means
that there is a Z>-parallel, positive-definite scalar product g in Rn+1 such that φ{Mn)
is the unit sphere Σ relative to g: g{ξ, ξ) = l. Thus we get g{Dxξ, ξ) = 0. Since
Dxξ = -f*{SX), it follows that g(f+(SX), ξ) = 0.

Let U be an open subset of Mn on which detS is not 0. Then/: U-+Rn+1 is an
immersion for which ξ is a unit vector field perpendicular to f{U). By Proposition 4
we can conclude that the Gauss-Kronecker curvature, namely, detS in this case is
constant on U.

Now go back to φ: Mn-+Rn+1. Since φ{Mn) is a hyperellipsoid, we cannot have
det S identically equal to 0 on Mn. Let det5 r =c^0 at some point and consider the set
W of all points where det S=c. Then W is a closed subset of Mn. On the other hand,
if x e W, then there exists an open neighborhood U of x on which det S is not zero and
hence constant according to the assertion above. Thus W is an open subset. We
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conclude that W=Mn, that is, detS is constant on Mn. It is known ([Sϋ]; also [Si])
that for a hyperovaloid this condition implies that it is a hyperellipsoid. We have thus
completed the proof of Theorem 2 in the general case.

REMARK 1. By using similar arguments we can prove, for a nondegenerate
hypersurface/: Mn->Rn + 1 with affine normal, the equivalence of the statements (lb),
(2b) given in Proposition 3 and the statement that f(Mn)-^Rn+1 is an open part of a
pseudo-Riemannian hypersurface with constant Gauss-Kronecker curvature isometri-
cally immersed in a pseudo-Euclidean space Rn+ί.
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