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ON  NORMAL  DERIVATIONS

JOEL   ANDERSON

Abstract. Let AT be the derivation on SBpf) defined by

Ar(A')= TX-XT (T,Xe 93(^)). We prove that if T is an isometry

or a normal operator, then the range of AT is orthogonal to the null

space of Aj,. Also, we prove that if T is normal with an infinite

number of points in its spectrum then the closed linear span of the

range and the null space of Ar is not all of S8(^f).

Introduction. If <2f is a Hubert space and 23(Jf ) is the algebra of all

bounded linear operators on :ft', then for each fixed Te^S^'ft) the

operator equation

AT(X) = TX - XT

defines a bounded linear operator on 23(2%). AT is called a derivation

because, for all X, Y in 93(jf)>

AT(XY) = AT(X) Y + XAT( Y).

When A7 is a normal operator in 'ÎS(Jt) we will say that A v is a normal

derivation.

If Te 23(yf ) has a particular property it is often the case that AT has a

similar property. For example if Tis selfadjoint then it is easy to show that

the numerical range of AT is real; i.e., that AT is Hermitian in the sense of

Lumer and Vidav (see [4]). Also, if/Vis normal then it is shown in [1] that

AN is a generalized scalar operator. When N is a normal operator in

%}(je) with null space A^(N) and range 'R(N) it is elementary that

(i) ,3i(N)±^V(N),
(ii) ¡¡R(N)~®Jr(N)=je.

In this note we study the extent to which AN shares these properties.

We find that the range 5R(AA.) and the null space Jf (AN) are "orthogonal"

in a certain sense so that (i) holds, but that (ii) holds if and only if the

spectrum of N contains only a finite number of points. In the last section

we mention some open questions.
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(1.1) Notation. 5R(AT) is the (not necessarily closed) set of operators

in SBÍJf) of the form AT(X) when Xe 93pf). Note that the null space

jV'(At) is just the commutant of F.

(1.2) Definition. Let C be the complex numbers and let X be a normed

linear space. Let x, y e X. If \x— %y\ =■ [|Ay|| for all A e C then x is said to

be orthogonal to j. Let „# and jV be two subspaces in X. If || w+«|| _ ||«||

for allffiei' and for all n e jV then Jt is said to be orthogonal to ./f.

(1.3) Remark. This definition generalizes the idea of orthogonality in

Hubert space. (It is not new. See [5] for example.) Note that in general x

orthogonal to y does not imply y orthogonal to x. Also it is easy to show

that if Jé and Jf are closed subspaces of X and J4 is orthogonal to ¿V

then the algebraic direct sum Ji +^V is a closed subspace of X.

(1.4) Theorem. Let S be an isometry in $i(Jf). Then 9Î(AS) is orthog-

onal to ^V(AS).

Proof.    From [3, Problem 185] we know

2 S^'-^SX - XS)S* = SnX - XSn.

j=0

Thus if ST= TS,

nSn-lT  _  SnX  _  XSn  _ £ S^^^X  -  XS  -   T)S\

i=0

SO

||F|| = ||S"F|| ^ (I¡n) \\SnX - XSn\\ + \\SX - XS - T\\.

The result now follows by letting «->co.

(1.5) Theorem. Let A be a selfadjoint operator in 23(Jf). Then 5R(A^)

is orthogonal to Ar(AA).

Proof. Let U—(A—i)(A + i)-1 betheCayley transform of A. Then t/is

unitary and A = i(l + i/)(l - U)~\ Now if Xe <8(Jif),

¿LA(X) = (A - i)X - X(A - 0 = U(A + i)X - X(A + i)U

= AV((A + i)X) + AA+i(XU).

Hence

A„(*(l - £/)) = A^ + i)X).

Since 1 —Í7 and /l + z are both invertible, <iR(AA) = 3{(Au). Also it is clear

that AT= TA implies UT= TU so that (1.4) applies and the result follows.

(1.6) Lemma. LetPx, ■ ■ ■ ,Pnbe orthogonalidempotents(i.e.F¿F3=0if

i^jandP\=Pi fori—\, ■ ■ ■ ,ri).Let{Xx, ■ ■ • ,Xn}and{px, ■ ■ ■ ,pn}besets
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of nonzero complex numbers such that Xt^X¡ and p^p, if i^j. Let

Qx = 2xip.h    o2 = 2/Uy

Then 9i(A0i) = 9î(A02).

Proof.    Let P0=l -T?=i Pi, X0=p0=0, let X e &(Jf). Then a simple

computation shows

A<3tW = 2 tßi-x^xPj,
i=o ;=o

,=0    3=0

and since X^Xj and p^/ij if ¡V/ the assertion is now clear.

(1.7) Theorem.    Let N be a normal in ^ß(Jft) with spectral measure

£(•)• Then for all X e 93 (.30 and for all T e ^V(AN),

\\T-AN(X)\\ ^ \\T\\.

That is, 9?(AjV) is orthogonal to ^V(AN).

Proof.    By the spectral theorem it is sufficient to show that

(1) T- ßw,))ji-xßw)) ^ IIT||

holds for all JTeSBpf), for all TeAr(AN), for every disjoint collection

{(5J"=1 of Borel sets and for every collection {AJ"=1 of complex numbers.

Further, we may assume that Xi^Xj if ijáj. Now let

Qx = 2 A¿E(<U       ß2 = 2 í£(á¿).
¿=1 i=l

Then <R(AQi)=<R(AQ¡¡) by (1.6). But g2 is selfadjoint and Te^A^)

implies that Te jV(Aq), /=1, 2. (Recall that if Tcommutes with a nor-

mal operator N it commutes with each of the spectral projections as-

sociated with N. This fact will be used in the proof of (2.2) below.)

(2.1) Remark.    In view of the foregoing, one might be led to believe

that when N is normal

9((AA.)- + .^(AaO = 8<JT)

where 9l(AA.)_ is the uniform closure. It seems somewhat surprising that

when ¿e is infinite dimensional this occurs only in very special cases.
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(2.2) Theorem. Let Jg" be an infinite dimensional Hilbert space. Let N

be a normal operator in <¡8(¿4F) with spectral measure E(-). If the spectrum

o(N) of N contains an infinite number of points, then there is an operator

V e 23 ( J( ) such that 9?(AA-)- + -yV'(AA) is orthogonal to V. IfJt is separable

or if N has an infinite number of eigenvalues V may be taken to be an isom-

etry.

Proof. Suppose first N has a finite number of eigenvalues. Let P0 be

the projection onto the span of the eigenvectors of N and consider N' =

(1 — P0)N(] — P0). Then a(N') is infinite so we may choose a Cauchy

sequence of distinct points X„ e a(N'). Letr„ = infmy,„ \Xm—Xn\. Bypassing

to a subsequence if necessary we may assume that Xn $ a(P0NP0) and rn>0

for «=1, 2, ■ • ■ . Note that rn—*0 as «—»-co. Let on be the open disc of

radius rvJ3 about X„. The d„ are disjoint and En = E(ón) are orthogonal.

Note that EnM> is nonzero because Xn e ô„ and the dimension of EnJ^f is

infinite because N' has no eigenvalues. Now let U„ be a norm 1 trans-

formation from F„-'¡t into En+1Jlt. Note that if Jt is separable the

dimension of F„-3f is the same as the dimension of En+xJlif and Un may be

taken to be unitary. Now define V as follows: Let J^'=M'0®^C1@- ■ ■

where 3& ri=EnM' for «= 1, 2, • ■ • and Mf0 is the orthogonal complement

of .yfx®3€'2®- • ■. Let V be identity on -Yf0 and for x e 3tfn let Vx—Unx.

Clearly if Jf is separable F may be taken to be an isometry. Now from the

choice of En and the spectral theorem we know

\\NE„ - XnEn\\ = ||F„A/-¿„FJ <rJ3.

Now let Xe »(■#), Te .A (Av)and let a=|| V-AS(X)-T\\. Thus

«= l|£„+ill W -AN(X)- F|| IIFJI,

a ^ \\En+xVEn - F„rl(A.v(X))£J|    (since En+XTE„ = En+1EnT = 0)

and

1 - a ^ \\En+1NXEn - En+lXNEJ    (since ||F„+1KFJ| = 1)
so

1 - a < \\NEn+xXEn - Ân+lEniXXEJ + U„En+lXEn - En+lXEnN\\

+ \i(An+1 - Xn)En+1XEJ.

Therefore

(2) 1 - a ^ (rJ3 + r„,,/3 + |A„+1 - Xn\) \\X\\.

Letting «->oo the right-hand side of (l) goes to 0. Hence oc^l.

Now suppose N has an infinite number of eigenvalues. Choose {An)SL.i

a Cauchy sequence of distinct eigenvalues of N. Let {xn}%=1 be such that
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Nx„ = Xnxn. Let ,W „ = span of x„ for «=1, 2, • • • and let ->f0 be the or-

thogonal complement of Jf1®J(?2(B' ■ • • Let V be the identity on :ft0

and let Kx„=xM+1 for «5:1. Clearly V is an isometry. From this point on

the proof is the same as before.

(2.3) Remarks. If P=(\ J) is the projection onto ■ft9x with null space

J/f\, ^ = ,W-fi)M2, then

1    0\IW    X\   _ IW    X\l\    0\       /  0      X\

0   o/\y    Zl      \Y    Z/\0   0/ "   \-Y    0/

and it is clear that

JT(AP) = (^    °) : W e 93(^0, Z e 93(Jf2)j.

Thus in this case

9?(AA.) + ^(AA.) = 93(Jf ).

Slightly more complicated computations show that if o=2í=i ^¡^>¡ where

Pi are mutually orthogonal selfadjoint projections then again

9i(A0) + .(XA0) = 93(.3f ).

Since a normal operator has a finite number of points in its spectrum if and

only if it is a finite linear combination of orthogonal selfajdoint projections,

we have proved the converse to (2.2) which we record below.

(2.4) Theorem. Let N be a normal operator in %5(-ft). Then 9Î(AA.)- 4-

^V(A v)=93(>f ) if and only if the spectrum of N consists of a finite number

of points.

(3.1) Comments and Questions. The term "normal derivation" may

be justified as follows. We may define a "quasi-adjoint" to Ar by

A*(X) = (AT(X*))* = A_T.(X).

Then since A ,Ay¡— ABAA = AAJ¡_BA and 1 is not a commutator A|.AT =

ArA£ if and only if T* T= TT*.

We now know that the range of a derivation induced by an isometry or a

normal operator is orthogonal to its null space. Simple 2x2 matrix

examples show that this is not the case for nilpotent operators. (In fact,

if r2=0 there is an X e 93PO such that AT(X)=T.)

It is known (see [2]) that if N is normal then .yV(Ax) is complemented in

33PO- °n the otner nand by (2-4) it is in general false that "}?(Av)-4-

,yf"(AA-)=93(.?f ). Hence, the following questions arise;

(i) Is there a simple property which characterizes those operators in the

span of 5R(AA-) and Jr(Ay)1

(ii) What is an orthogonal complement of .#"(AA-)?

(
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