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ON NORMAL (f, g, u, v, )-STRUCTURES ON SUBMANIFOLDS
OF CODIMENSION 2 IN AN EVEN-DIMENSIONAL
EUCLIDEAN SPACE

By KENTARO YANO AND MasaruMl OKUMURA

§ 0. Introduction.

It is well known that a hypersurface of an almost Hermitian manifold admits
an almost contact metric structure naturally induced on it.

The study of hypersurfaces of a Euclidean space and of a Kihlerian manifold
on which the induced almost contact metric structure satisfies certain conditions
has been started by one of the present authors {4, 5].

On the other hand Blair [1, 2], Goldberg [3], Ludden [1, 2], Yamaguchi [8] and
the present authors [6, 9] started the study of hypersurface of an almost contact
manifold and of submanifolds of codimension 2 of an almost complex manifold.

These submanifolds admit, under certain conditions, what we call (f,g, %, v, A)-
structure. An even-dimensional sphere of codimension 2 of an even-dimensional
Euclidean space is a typical example of a manifold which admits this kind of
structure.

In a previous paper [9], we have studied the (f, g, #, v, 2)-structure and given
characterizations of even-dimensional sphere.

In the present paper, we study submanifolds of codimension 2 in an even-
dimensional Euclidean space which admit a normal (f, g, #, v, 2)-structure.

In §1, we consider submanifolds of codimension 2 of an even-dimensional
Euclidean space regarded as a flat Kihlerian manifold. In the next section, we
deal with (f,g,#,v, A)-structure induced on a submanifold of codimension 2 of an
even-dimensional Euclidean space.

In § 3, we find differential equations which £, ¢, #, v and 2 satisfy. §4 is devoted
to the study of relations between the structure equations of the submanifold and
the induced (f, g, #, v, A)-structure.

In §5 we prove a series of lemmas which are valid for normal (f,g,#,v, 2)-
structures and in § 6 we study properties of the mean curvature vector of the
submanifold with normal (f, g, %, ¢, A)-structure.

In the last §7, we study hypersurfaces of an odd-dimensional Euclidean space
and determine all the hypersurfaces admitting a normal (f, g, %, v, A)-structure.

Our main theorem appears at the end of §7.
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§1. Submanifolds of codimension 2 of an even-dimensional Euclidean space.

Let E be a (2n+2)-dimensional Euclidean space and denote by X the position
vector representing a point of £. Since E is even-dimensional, £ can be regarded
as a flat Hermitian manifold, and hence there exists a tensor field F of type (1,1)
with constant components such that

1.1 Fi=—T
and
(1. 2) (FX)-(FY)=X-Y

for any vectors X and Y, where I denotes the identity transformation and a dot
the inner product in the Euclidean space F.

We consider an orientable submanifold M of codimension 2 of E covered by a
system of coordinate neighborhoods {U; z*}, where here and throughout the paper
the indices #4,1,7, &k, --- run over the range {1,2, ---, 2n}.

We put

then X, are 2x linearly independent vector fields tangent to the submanifold M
and

1.4 g5i=X; X,

give components of the fundamental metric tensor of M regarded as a Riemannian
manifold referred to the coordinate system {U;z*}. We denote by C and D two
mutually orthogonal unit normals to the submanifold M such that X, C, D form
the positive orientation of E. Then we have

X;-C=0, X;-D=0,
(1.5
Cc-C=1, C-D=0, D.D=1.

Now the vectors X,, C and D being linearly independent, the transforms FX,
of X, by F can be expressed as

F‘sz :ﬂhXh + Mic—f—UiD,

where f,* are components of a tensor field of type (1.1) and #, and »; are com-
ponents of 1-forms in M.
As to the transform FC of C by F, we have

(FC)- Xo=(FC)-(FX)=—C-(FX))=—us,
(FC)-C=(FC)-(FC)=—C-(FC)=0
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by virtue of (1. 2) and consequently
FC=—urX;+2D,
where
w=ug'",

¢'" being contravariant components of the metric tensor and A a function of M.
As to the transform FD of D by F, we have

(FD)-X,=(F*D)-(FX)=—D-(FX,)=—v;,
(FD)-C=(F*D)-(FC)=—D-(FC)=—2,
(FD)-D=(F*D)-(FD)=—D-(FD)=0,

and consequently
FD=—v"X;,—2C,
where
v =0,9%",
Thus we have

FX. =Xt uC+vD,
(1.6) FC=—u"X,+2D,

FD=—ov"X;,—iC.

We note here that the 1-forms #; and »; depend on the choice of unit normals
C and D but the function 1=(FC)-D does not depend on the choice of C and D.
In fact, if we choose another set of mutually orthogonal unit normals C’ and IV,
we have

C’'=Ccosf—Dsiné,
D’'=Csind+D cos 4,
and consequently
(FC"-D'=(FCcos §—FD sin 6)(C sin §+D cos §)
=(AD cos 0+ AC sin §)(C sin §+ D cos )

=2
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§2. (f,g,u,v, A)-structure on a submanifold of codimension 2.

Now applying the operator F to the first equation of (1. 6) and taking account
of (1.6), we find

X =1 FXi+tu FCt+o.FD,
— X = Xn+uC+0.D) + 1 — " X+ 2D) + v —0" X, —2C),
from which
M= =0t up vt
e i = Avs, v fil=—uts.
Applying the operator IF to the second equation of (1.6), we find
F*C=—u'FX;+4-2FD,
—C=—u¥(f* Xp +u,C+ v, D)+ 2(— 0" Xp—2C),
from which
Siltut=— ", wut=1-22, vut=0.
Applying also the operator F to the last equation of (1. 6), we find
F*D=—v'FX;—FC,
—D=—v¥(f" X +2:C+0:D)—A—u" X +2D),
from which
for=Au?, uvt=0, vr=1—4%
Thus summing up, we have
fitfit ==t um o0,
witif =204, v S = — 2,
2.1
fitut=—n,  flvt=du?,
wt=1-—2%, #:0t=0, var=1—2
Now, substituting the first equation of (1. 6) into
(FX) (FX)=X; X,
we find

(f* Xi+u,C+v;:D) (fS Xs+uiC+v:D)=g 4,



176 KENTARO YANO AND MASAFUMI OKUMURA

that is,

2.2 i Flgs=g—uu—0s0s.
If we put

2.3) Su=1 g5

we find, from the first equation of (2. 1),

Fitfu=—gntumtov;
and from (2. 2)

i fu=gu—uui—v0;
From these two equations, we find
2.4 S fa+Su)=0.

Transvecting (2. 4) with f/ and taking account of the first equation of (2. 1),
we find
(— 0+ w50t +050°) (fru+14)=0,

from which
(2. 5) Jsitfis=0,

because of the second and the third equations of (2.1). Thus the tensor f;; defined
by (2. 3) is skew-symmetric.

We call an (f, g, %, v, A)-structure the set of f,g,#,v, and 2 satisfying (2.1) and
2. 2).

§ 3. Differential equations which £, g, u, v and 2 satisfy.

We denote by {%} the Christoffel symbols formed with ¢; and by F, the
operator of covariant differentiation with respect to {;}. Then the equations of
Gauss of M are

h

3. 1) VJ&=aJx—{j i}Xh=hﬁc+knD,

where
/lj,;=}lij and kjizkij

are the second fundamental tensors of M with respect to the normals C and D
respectively.
The equations of Weingarten are
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3.2) riC=0,C=—h"X,+1:D,
and

3.3 ViD=0;D=—kX,—IC,
where

3.9 Rt =hug'™, ki =Fkyg'™

and /, are components of the third fundamental tensor with respect to the normals
C and D. The /, define the connection induced in the normal bundle of M.

Now applying the operator F, of covariant differentiation to the first equation
of (1. 6) and taking account of V;F=0, we find

F7 X =, f) X+ 10, X+ (Fu)C +ui(ViC) + (P D+ (V3 D),

or
R ji(— " X+ 2DY+ B — 02 X5, — 2C)
=, 1) Xn+ Lk CH kD) + (Pitts)C+ 16— by X+ ;D) + (Pw3) D+ v — k2 X0 — 150,
from which
V,fit=—hyut*+ htwu,— ko + ko,
Vits=—hjft— kst 10,
Vivi=~kyf+ M u—L .
Applying the operator F, to the second equation of (1. 6), we find
FP,C=— (™) X~ uV. X0+ V) D+ X V.D),
F(—n" X+ 1:D)=— (V") X — (7, X0) + (P A) DA 2(V;D),.
or
—ht(fi" X+ u,.C+0.D)+ L —v" X, — 2C)
= — (V") Xp— (s C+ ks D)+ (F:2) D+ 2(— k" X5 — 1,C),
from which

Ve =hi fi— 2™+ L™,
VM = —‘"hitl)g -+ ku%t.

Applying the operator F, to the last equation of (1. 6), we find
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FrD=—Fp") Xp—v (7. X)) — (V) C—AV:C),
F(—kt Xi—1,C) = — (V") X — /(7. X)) — () C— A(F:C),
or
— k" X+ uC v D)y —Il(—u Xn+2D)
=—Fw") X — v (huC+ kuD)— (NC— A — I X +-1,D),
from which
Poh =kt fil+ A" — L,
Vid=—hut' + kiuts.
Thus, summing up, we have
V,fit=—hut" +hius— ko™ + kMo,
Vigs=—hjfl— k4105,
(3. 5)
Vivi=—kjf.t+ 2 ji—lu,
Vid= —hut'+ Ry,

§4. Normal (7, g, u, v, 2)-structure.

We now compute

4.1 Sji"= N+ (V0,— Viue gy -+ (Vj0;— Vi o,
where
4. 2) Nyt= itV fir—f iV f =T fE =V

is the Nijenhuis tensor formed with f;%.
Substituting (3. 5) into (4. 1), we find

Sit=Ff{—hure®+ ko, — k0™ + ko;)
—fH(—hogtt -+ bt j— ke 0"+ Bv;)
— (ko —hitug+ R —Riog) i
— (St =k St — Lo+ L ut
— (ks St — RSt L — L )0,
that is,
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Syit=(f1hi* =R, f i~ (e — b o )u g
4.3) +(f R =R — (R —REf M),
+ v —Lw yur— (o — L )o™.

When the tensor S;* vanishes identically, the (f,g,#,», A)-structure is said to
be normal.
Now the equations of Gauss of the submanifold M are

4.4 Keji" =l hji—hi bt Rk jy— R R,

gar=al = L

are components of the curvature tensor of M, the equations of Codazzi are

where

Vibji—Vihwi— Ik s+ 1k, =0,
(4. 5)
Vik ji—Vikws+lehji— Uil =0,

and the equations of Ricci are
(4 6) VJZL—V«L[]‘I‘h]tkn—h;tk“ :0

In the sequel, we assume that the connection induced in the normal bundle of
M has no curvature, that is, we can choose C and D in such a way that we have
[,=0, and we say in this case that the connection induced in the normal bundle
is trivial.

In this case, we have, from (4. 5),

4.7 Vil js—V b =0, Vil j;—V ikrs=0,

which say that the tensors Pk, and Fik; are both symmetric in all the three
indices, and, from (4. 6),

4. 8) hitky—hiks; =0,
or
4.9 kythi—kythi=0,

which says that %4 and k;* are commutative as linear transformations in the
tangent space of M.

Now for the normal (f,g,«,v, A)-structure of M such that the connection
induced in the normal bundle is trivial, we have, from (4. 3),

4.10)  (f S —ht s —(Flhd —he [+ (R — Rt o — (FlRM— RS i), =0.
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Since 1-forms u; v; and /, depend on the choice of unit normals C and D, the
tensor Sy* also depends on the choice of the normals. However, the left hand side
of (4.10) does not depend on the choice of C and D. In fact, if we choose another
set of mutually orthogonal unit normals C’ and D’, we have

C'=Ccosd—Dsin g,

(4. 11)
D’'=Csin 6+ D cos 4.

Then the second fundamental tensors ;' and k;’ with respect to C’ and D’
are defined by
(4.12) 7, X,=h;'C'+ ki’ D’
Substituting (4. 11) into (4. 12) and comparing the resulting equation with (3. 1),
we get
h.,h=/2” CcOS (9—13]7, sin 0,
(4.13)
Eyi=hgisin 04k ; cos .
On the other hand (4.11) and the first equation of (1. 16) show that

;' =u; cos 0—v; sin 0,

(4. 14)
v’ =u; sin 04v; cos 6.

Consequently we have
(f b =R s — (b — Rt fimyay+ (R — B f0) — (R — R f )
=(f b =R Fue— (F RS — R s+ (F R — R F 0 — (i ke — ki £,

This shows that the conditions imposed on M are of intrinsic character.

§5. Some lemmas on normal (7, g, u, v, A)-structure.

As we have seen in §4, the condition imposed on the submanifold A/ does not
depend on the choice of unit normals C and D.

The main purpose of the following discussions is to determine submanifolds of
codimension 2 of E which satisfy (4. 10).

Assuming that the function A(1—4?) does not vanish almost everywhere on
M, we prove following series of lemmas.

LemMma 5. 1. For the normal (f,g,u, v, A-structure of M such that the con-
nection induced in the normal bundle is trivial, we have

5.1 T —ht = au + b(u o + 000 + co ot
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and
(5. 2) Tk —k i =bu ™+ c(u v+ v;u™) + do oty
a, b, ¢, and d being scalars of M.
Proof. We put

. 3) Pje= £ ht— D o Q=f ki —kffi
and note that
(5. 4) Pji=ffht fithey, Qsi=Sikut ki

are both symmetric with respect to j and i.
Then equation (4. 10) can be written as

(5. 5) Pirui— Pituy+ Qv — @i, =0,
from which, by transvection with #?,
Pr(1—28)— (P u)u;—(Qi '), =0

by virtue of (2. 1), that is, P;* is of the form
(5. 6) Pir=u; PP+ v;Q",
and consequently Py is of the form
6.7 Pii=u;Pi+0,Q;.

Since Pj; is symmetric, we have, from (5. 7),
(5.8) u;Pi—u Py+v,Qi—0:Q,=0,
from which we see that P, must be of the form
(6.9 Pi=au;+bv;
and @; of the form
(5. 10) Qi=du;+cv..

Substituting (5.9) and (5. 10) into (5. 8), we find

wj(aus+bvy) —uau;+bvy)+ v (dus+ cv) —vi(du;+cv;)=0,
or
(b—d)(uw;—uw;)=0.

from which, #; and »; being orthogonal to each other, we have
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b=d,
and consequently we have
P,=au;+bv,, Qi=bu;+cv;,
or
Ph=qu"+bov", Q=bu"+co™.
Substituting these into (5. 6), we obtain
(6.11) Pt =au "+ b(u o -0 ;u") +co ot
Similarly, we have
(5.12) Q= auju™+b(up"+v;u™)+dv .
Substituting these into (5. 5), we find
(u05—uw){(b—a)u"+(c—b)o*} =0,
from which
(5. 13) a=b, b=c.
Equations (5. 11), (5. 12) and (5. 13) prove the lemma.

LEMMA 5. 2. For the novmal (f, g, u, v, 2)-structure of M such that the connection
induced in the normal bundle is trivial, we have

hitut=au"+ po", hv'=Bu+yo*,
(5.14) . .
ki'u= &u"+ Bo”, ki"v*= Bu”+ 7o,
Proof. Transvecting (5. 1) with f%?, we find
(— 8%+ uprt + 00 ) — [l bt = advgu® - DA(00" — wurtt™) — cAurp™
by virtue of (2.1), or
— hn (0 Psn) + V(0 Pin) - Frus 5 S0 = @Avssen -+ bA(VRVL — Uthn) — CArzDn,
from which, taking the skew-symmetric part,
(06 n) — 2 (66 i) F 00 hen) — 0 (0 bas) = — A a =+ ) (0010 — 1n01).
This equation shows that #'%,, and oA, should be respectively of the form
% hn = attr, - B0, V= Bttn+70n,

that is,
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hihuzz auh_]_ﬁvh’ hihvz :ﬁuh‘l' th'

The other two equations will be proved in a similar way.
We note here that «, 8, y and &, §, 7 are given by

A=Ba=lhjun, (1—=22)p=huuv, 1=y =hwv,
A-Bya=kuww, (QA—F=kum'v, (Q—2DF=kuv7v.

LeMMA 5.3. In Lemma 5.2, we have

(5. 15) 28=a—7, 28=r—a.

Proof. In (4.10), we contract with respect ot z and i, then we obtain

(5. 16) f]t(}hl%i) _th(ftlui) +f;t(kzq’ﬂ1:> — kjt(ftlvi) =0

because of

f;thz‘L:f“hn‘ZO, f@zk{b:f“kti=0-
Substituting (2. 1) and (5. 14) into (5. 16), we find

S M ans+ Bo)) — Ak, tvo+f 1 (Bus+ 7o) + Ay, =0,

and consequently

adv;— pAats— A puj+yv;)+ Bav;—7 dus+ A @u;+ fv;) =0,

or
—A2B+F—@u;+A2p+a—rw,=0,
from which
28=a—7, 28 =y—a.
LemMA 5.4. In Lemma 5. 2, we have
(56.17) p=0, =0

and consequently

a=y, a=7.
Proof. Transvecting the first equation

hitwr =cu+ ot

of (5.14) with k,° and using (5. 14), we obtain

183
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kuthitu = o(@ut -+ fot) + B(fut+ 70°),
=(aa+ pput+(af+ ).
Also transvecting the third equation
kitur=aut+ ot
of (5.14) with %’ and using (5. 14), we obtain
Rtk ot = a(an’ + Bv¥) + P(put+yv?)
=(a@+ pB)ut+(@p+ ).
Thus, %;* and k;* being commutative,
af+pi=ap+pr,
or
(r—a)f+(@—p)p=0,
or using (5. 15),
2574-242=0,

from which the lemma follows.
Combining Lemma 5. 2 and Lemma 5. 4, we have

LEMMA 5.5. For the normal (f,q,u,v, A)-structure of M such that the con-
nection induced in the novmal dbundle is trivial, we have

hitur=oau®, kv =av®,
(5. 18) .

krut=au®, ko =av®.
We also have

LEMMA 5.6. For the normal (f,gq,u,v, 2)-structure of M such that the con-
nection induced in the normal bundle is trivial, h* and k* commute with fi.

Proof. Transvecting (4. 10) with #* and using (2. 1) and (5. 18), we obtain
(foh =Ry 1YL= 22+ Qh™0* + a f Pl Yo 4 (AR + @ f 'ty =0,
or
(b —h, FM)(1—2%) =0,
that is,
Sl =ht
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Similarly we can prove
FrB=Ekf

LEmMA 5.7. For the normal (f,g,u,v, A)-structure of M such that lhe con-
nection induced in the normal bundle is trivial, we have

(5. 19) hithi=ah,  kiklr=ak.
Proof. Differentiating
hjut=oau,
covariantly, we obtain
Pl joyee + D ji(Prae?) = (Pra)oe s+ o Pras ),
or using (3. 5)
(Tehjiyu + R iRyt 12— ki) = (M)t j a(— Do £ — Ak )
and consequently taking skew-symmetric part
Rkt oo — bl f = Fra)u;— (Voo — ke f 1 +akp f
because of
Vil yi— Vb =0, Rkt =hiks.
But %' and f;* commute and consequently
(5. 20) 2h kit fo = (Teo)uj— (Vio)uug— 20k f
from which, transvecting with #¥*,

2h i fit = (Vo — (Vo) (1 —22)—2au. f

or
—2ah 00 = U Feyuj— (Vo)1 — ) — 20220,
that is,
(5.21) (T0)(1—A%)y=(u*Vra)ut,.
Thus, V;x being proportional to #, we find from (5. 20)
Ryl f=—ahp [,
or

bifithi=ali [,
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since ;' and fi* commute,
Transvecting this equation with f3*, we find

(B3:has)(— 04+ stntd -+ 0 0") = b o — 04 + unte + vp?),
or using (5. 18)
Rjihn = aln,
or
hith=ah.
Similarly, we can prove
k'R =ak;".
LeMMA 5.8. In Lemma 5.5 and Lemma 5.7, a and @ ave both constants.

Proof. Differentiating the second equation of (5.18) covariantly and taking
account of (3.5), we find

Vit yon— (kg f1* — Ak jn) = (V0)vs— alkjo s — Ays),
from which, taking the skew-symmetric part
kjhkit 5 —kihkjtfht =(Vjo)vi— (Via’)”j + CK(kuf]t _kjtfzt);

because of the equation of Codazzi (4. 7).
Transvecting the above equation with 7 and making use of (2. 1) and (5. 18),

we obtain
(5. 22) (1— 2o =W la)v,.

Thus, Ve is proportional to v, but (5. 21) shows that Fa is proportional to u,.
u, and v, being orthogonal to each other, we have Va=0 and hence a=const.

§6. The mean curvature vector.

The mean curvature vector of the submanifold M is defined to be

1 . 1 1
6.1 A VJXq,—%hi C+ o

2n kD,

and the mean curvature H of the submanifold M is defined to be the length of the
mean curvature vector, that is,
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1
4n?

(6. 2) H= (A" + (k)]

If the mean curvature vector vanishes identically on M, then M is said to be
minimal.
A necessary and sufficient condition for M to be minimal is that

(6. 3) hr=0, kit=0.
We have

LemMa 6.1. Suppose that the submanifold M is such that the connection
induced in the normal bundle is trivial and the (f,g, u, v, ))-structure induced on M
is normal. Then the mean curvature of M is constant.

Proof. Let o’ be an eigenvalue of %;/* at a point of M and p* the eigenvector
corresponding to o’ at the point. Then we have

htpt=a'ph,
Applying this %’ and taking account of (5. 19), we find
ad’pr=a’’p’,
from which
a'=a or a’'=0.

Thus the only eigenvalue of 7#;* is « or 0. Moreover, by Lemma 5. 8, a being
constant, the eigenvalues of #;* are constant.
Similarly we can show that k;* has only two constant eigenvalues @ and 0.
Now, let  and s be multiplicities of the eigenvalues « of %/* and of a of &*
respectively. Then, « and a being constant, » and s are also constant. So we
have

hﬂzm, kil=Sd’.

Substituting this into (6. 2), we obtain

(6. 4) H*= (r’a®+s?a®) =const.

1
4dn?
This lemma shows that, in the sequel, we have to consider only two cases.
One of these is the case where the submanifold is minimal and the another is the
case where the mean curvature vector does not vanish everywhere on M.
Suppose first that the submanifold A/ is minimal. Then from Lemma 5.7 we
find
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hyih?t=0, kjik7 =0,
from which
(6. 5) h3=0, k;;=0.
Thus equations of Weingarten give
7,C=0, V;D=0,

and consequently, the unit normals C and D being constant vectors, M is a 2u-
dimensional plane. Thus we have

THEOREM 6.1. Let M of codimension 2 of E be such that the comnection
induced on the normal bundle of M is trivial and the (f,g,u,v, 2)-structure on M
is novmal. If M is minimal, then M is a plane of codimension 2.

Suppose next that the mean curvature vector does not vanish everywhere on
M, and choose the first unit normal C along the direction of the mean curvature
vector and choose the second unit normal D in such a way that X,,C, D form the
positive orientation of E.

Then the 1-forms #; and »; are completely determined when M is given. We
say that such an (f, g, #, v, A)-structure is initrinsic.

Since the first unit normal C is chosen in the direction of the mean curvature
vector, we see, from (6. 1), that

6. 6) ki=0.

Thus if M is such that the connection induced in the normal bundle is trivial
and the (f, g, %, v, )-structure induced on M is normal, then we have, from (5. 19),

kj:kit=0,
from which
6.7) kj:=0.
Thus, equations of Gauss and Weingarten become respectively
rX,=h;C, VriC=—hXs r;D=0,
from which D is a constant vector and consequently
V(X D)=0,
that is,
X-D=const,

which shows that M lies in a (2rz+1)-dimensional plane. Thus we have
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THEOREM 6. 2. Let M of codimension 2 be such that the commection induced
in the normal bundle of M is trivial and the mean cuvvatuve vector does not vanish
everywhere. If the (f, g, u, v, D)-structure induced on M is normal, then theve exists
a Cn+1)-dimensional plane E*™* such that M is a hypersurface of it.

§7. Hypersurfaces of an odd-dimensional Euclidean space.

By theorem 6.2, there exists a (2n+1)-dimensional plane E’ such that the
submanifold M under consideration is a hypersurface of it. So, in this section, we
regard M as a hypersurface of a (2n+1)-dimensional Euclidean space E’, which is
of course in a (2n+2)-dimensional Euclidean space E.

We consider a linear coordinate system in E’ consisting of 2z+1 linearly
independent vectors E,, E; and D forming a linear coordinate system of E, where
here and in the sequel the indices &, 4, g, v, -»» Tun over the range {1,2, -, 2n+1}.
We put

(7. 1) g;zl:E;t'Eb
all the g,; being constant. We also have
(7. 2) E;-D=0.

Now, F being a complex structure of the (2z4-2)-dimensional Euclidean space
FE, we can put

FE,; =§01”Eﬂ +7]1D,

(7.3)

FD=—3"E,,
where
(7. 4) 7 =m0,

g being contravariant components of g,;.
From the first equation of (7. 3), we find

FE= " (u" Ee A 0,D)— . Exy
from which, F? being equal to —1,
@iu" = =0+’
0" 7.=0.

From the second equation of (7. 3), we find
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F’D=—yN " E;+n.D),
from which
e =0, =L
Moreover, from the first equation of (7. 3), we have
(FE)-(FE)=(p, Evt1.D) - (0" Ec D),
from which, (FE,)-(FE;) being equal to E,-E;=g,,

002 01" G+ e
Summing up, we have
Pieu" = =01+,
(7.5) =0,  @fy'=0, =1,
?#”901‘!]»;:9;41-77#7]1»

that is, (¢, 71 ¢,..) defines an almost contact metric structure of the (2n-1)
dimensional Euclidean space E’.

Now we consider a 2xz-dimensional submanifold M in £’ in E and represent it
by the position vector

X=X(x)=X"(x)E,,

the origin of the coordinate system being on E'.
The vectors X, tangent to M and the unit normal vector C to M can be
expressed as

(7.6) X.=BE,, C=CE,

respectively, where

Bf=8X".
Applying the operator F to the both sides of the first equation of (7. 6), we
find
FX,=B;'FE,,
[ X+ uC+o;D=BXe,"E.+nD),
or

By Ec+uC Ec4v;D= B p:"E:+n:.D)
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by virtue of (1.6), (7.3) and (7. 6), from which
0" Bt =f"By" +uC",
7]131;121)@'.

Applying the operator F to the both sides of the second equation of (7. 6), we
find

FC=CFE,
—ut X+ 2D =C¥o;*E.+7:.D),
or
—u( B E)+ 2D =C¥¢,"E+n:.D),
by virtue of (1.6), (7.3) and (7. 6), from which
0" C'=—u'By',
7.C =4,
Summing up, we have
0" B =By +uC",
7.7 0" C'=—u'By;
nBi=v;, nCA =2
1t will be easily verified that, ¢, 7, ¢.: defining an almost contact metric structure,

I g1, us, s, 2 define an (f, g, %, v, )-structure.
Now the equations of Gauss and Weingarten of M in E’ are respectively

7.9 P, X=hsC,
and

(7.9 ViC=—hiX;
or

(7. 10) V;Bi"=h;C*
and

VjC‘ = —}ljiBz‘.
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Differenting the first equation of (7.7) covariantly, we find
0 hC =V, fi") By + e C* + (Vi) C — i  BYE,
from which, taking account of the second equation of (7. 7),
V,fit= —hyu®+ b u;,
Viwy=—hf .l

Differentiating the second equation of (7. 7) covariantly and taking account of
(7.7), we find

1" (— I B = — (P B — il C",
or
—hH By +uCty= — (V;u?) B — uth ;:C",
from which
Vi =h,t fi.
Differentiating the third equation of (7.7) covariantly, we find
ik Cr =V 05,
from which
V=l
Finally differentiating the last equation of (7.7) covariantly, we find
=R Br )=V,
from which
Vid=—ht.
Summing up, we have
V,fit=—hju®+hu,
Viwi=—hsf,
(7.12)
Vivi=ahyi,
Vid=—hyt.

We assumed that (f, g, %, v, 2)-structure on M is normal, that is,
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(7.13) Sit =13 Vef =LV = ff =V f )+ (P s — Vit + (Vv — Vv ot =0.

As we have seen in § 6, the only eigenvalue of the tensor 4;* is @ or 0. We denote
the eigenspaces corresponding to the eigenvalues « and 0 by V., and V, respectively.
Since the multiplicity 7 of a is constant, V,(x) at # and V,(x) at x, xeM, define
respectively »- and (2n—7r)-dimensional distributions D. and D, over M. They are
complementary in the sense that they are mutually orthogonal and their Whiteney
sum is T'(M).

LemmMa 7.1. The distributions D, and D, are both integrable.

Proof. Let p* and ¢* be two arbitrary eigenvectors of #4;* with constant
eigenvalue a=0, then we have

hipr=ap’,  h'¢=aq"
from which
Vi) + (Vi pY) = (P M),
(Vih g +hi*(Viq") = a(V;q").
Thus
W™ PViq— g7V ;6= p'V ;4" —q'V; p")

by virtue of the equations of Codazzi, that is, if p* and ¢* belong to D,, then
[2,4q]* also belongs to D,. Consequently the distribution D, spanned by eigenvectors
of h* with eigenvalue a=0 is integrable.

Similarly we can also prove that the distribution D, spanned by eigenvectors
of A;* with eigenvalue 0 is integrable.

LEMMA 7. 2. Each integral manifold of D, is totally geodesic in M and so
is each integral manifold of D,.

Proof. Let p* and ¢* be two arbitrary vectors belonging to the distribution
D,. Then we have

(7.14) hi'pn=ap, hi'qn=ag;.
Differentiating the first equation of (7. 14) covariantly, we obtain
(Fiti) prn+ ki (Ps pr) =V ; s,
from which

hM Vi pr)—hi" Vo pr)=a(V; pi— Vo pj)
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by virtue of the equations of Codazzi. Transvecting this equation with ¢/ and
taking account of (7. 14), we have

7@V pn)—aq Vopn)=a@ Vi pi—V.by),
from which
hiMg'V;pn)=a(@’V; 1),
or
7Mg7V; p7)=a(g’V; "),

which shows that if p* and g* are two arbitrary vectors belonging to the distribu-
tion D,, then ¢/F,p* also belongs to the distribution D,. Thus each integral
manifold of D, is totally geodesic in M.

Similarly we can prove that each integral manifold of D, is totally geodesic
in M.

Moreover, if p* and w* belong respectively to D, and D,, we have

(ijth;h)pl = wfVJ(hz"p’) —hy;hijj‘b"’ = ——}lihijJp'”

and
(DI Rt =PIV () — b IV = e p? V0" — ™7V,
that is,
(7. 15) (W) p* = — WV )y
and
(DV Myt = o pIV;0™) — a( pIV 0™
(7.16)

=a(pIVw"),

vector of the form g* being written as (¢*).+(g")s, Where (g*). and (g*), respectively
denote the D, and D, components of ¢g*. Hence we get

—@Il; %)= (D7F 0™)0,

because of the equation of Codazzi.
Consequently we have

(7.17) @7, p,=0, thatis, wiV;pieD,,

and
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(7. 18) (D7 ™)y =0, that is,  pFureD.,.

Thus we see that the distributions D, and D, are parallel. So, using de Rham’s
decomposition theorem [7], we have

LemMA 7.3. If the submanifold M is complete, then M is a product of M,
and M,, M. corresponding lo the integral manifold of D. and M, to that of D.

LemmA 7.4. The M, is totally umbilical in E' and M, is totally geodesic in E'.
Proof. We represent M, by
(7. 19) o= xM(u®),

where #® are local coordinates on M,. Thus we have

(7. 20) X'=X"(2(u)),
from which

(7. 21) By =By By",
where

By =0,X*, Bi*=da®  (8s=0[3ud).
From (7. 21), we find by covariant differentiation
V.By* = B/ BV B*
because of F,By*=0, from which
Ve By = Be! Byth;:C*
or
(7. 22) PeBy = agaC”,

because B,* are eigenvectors of 4,;# with eigenvalue «. Equation (7. 22) shows that
M, is totally umbilical in E’.

We can similarly prove that M, is totally geodesic in E’.
LemMMA 7.5. The M, is a sphere and M, is a plane.

Proof. The M, being totally geodesic in F’, it is a plane. Thus M, is a
hypersurface of a Euclidean space.
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For the covariant derivative of C* along M,, we have
F.C =BV, C)
=—BJhsB
=—aB/B/,
By being an eigenvector of 4 with eigenvalue &, from which
VC*+aB,S=0
and consequently
C'HaX=A",

A* being a constant vector. This equation shows that A, lies on a sphere. Thus,
M, being the intersection of a plane and a sphere, M, is itself a sphere.

From these lemmas, we have

TueoreM 7.1. Let M be a 2n-dimensional complete differentiable hypersurface
in a (2n+1)-dimensional Fuclidean space E'. If the (f, g, u,v, A)-structure induced
on M is normal, then M is a product of a sphere and a plane.

Combining Theorems 6.1, 6.2 and Theorem 7.1, we obtain

THEOREM 7. 2. Let a complete diffeventiable submanifold M of codimension 2
of an even-dimensional Euciidean space be such that the conmection induced in the
normal bundle of M is trivial. If the (f, g, u, v, A)-structure induced on M is normal,
then M is a sphere, a plane, or a product of a spheve and a plane.

As a special case of Theorem 7.2, we have from (4. 3)

THEOREM 7. 3. Let a complete diffeventiable submanifold M of codimension 2
of an even-dimensional Fuclidean space be such that the comnmection induced in the
normal bundle of M is trivial. If the linear transformations h;j and ki which are
defined by the second fundamental tensors of M commute with £, then M is a
sphere, a plane, or a product of a spheve and a plane.
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