ON NORMAL (f, g, u, v, λ) -STRUCTURES ON SUBMANIFOLDS OF CODIMENSION 2 IN AN EVEN-DIMENSIONAL EUCLIDEAN SPACE

By Kentaro Yano and Masafumi Okumura

§ 0. Introduction.

It is well known that a hypersurface of an almost Hermitian manifold admits an almost contact metric structure naturally induced on it.

The study of hypersurfaces of a Euclidean space and of a Kählerian manifold on which the induced almost contact metric structure satisfies certain conditions has been started by one of the present authors [4, 5].

On the other hand Blair [1, 2], Goldberg [3], Ludden [1, 2], Yamaguchi [8] and the present authors [6, 9] started the study of hypersurface of an almost contact manifold and of submanifolds of codimension 2 of an almost complex manifold.

These submanifolds admit, under certain conditions, what we call (f, g, u, v, λ) -structure. An even-dimensional sphere of codimension 2 of an even-dimensional Euclidean space is a typical example of a manifold which admits this kind of structure.

In a previous paper [9], we have studied the (f, g, u, v, λ) -structure and given characterizations of even-dimensional sphere.

In the present paper, we study submanifolds of codimension 2 in an evendimensional Euclidean space which admit a normal (f, g, u, v, λ) -structure.

In § 1, we consider submanifolds of codimension 2 of an even-dimensional Euclidean space regarded as a flat Kählerian manifold. In the next section, we deal with (f, g, u, v, λ) -structure induced on a submanifold of codimension 2 of an even-dimensional Euclidean space.

In § 3, we find differential equations which f, g, u, v and λ satisfy. § 4 is devoted to the study of relations between the structure equations of the submanifold and the induced (f, g, u, v, λ) -structure.

In § 5 we prove a series of lemmas which are valid for normal (f, g, u, v, λ) structures and in § 6 we study properties of the mean curvature vector of the
submanifold with normal (f, g, u, v, λ) -structure.

In the last § 7, we study hypersurfaces of an odd-dimensional Euclidean space and determine all the hypersurfaces admitting a normal (f, g, u, v, λ) -structure.

Our main theorem appears at the end of §7.

Received June 24, 1970.

§ 1. Submanifolds of codimension 2 of an even-dimensional Euclidean space.

Let E be a (2n+2)-dimensional Euclidean space and denote by X the position vector representing a point of E. Since E is even-dimensional, E can be regarded as a flat Hermitian manifold, and hence there exists a tensor field F of type (1,1) with constant components such that

(1.1)
$$F^2 = -I$$

and

$$(1. 2) (FX) \cdot (FY) = X \cdot Y$$

for any vectors X and Y, where I denotes the identity transformation and a dot the inner product in the Euclidean space E.

We consider an orientable submanifold M of codimension 2 of E covered by a system of coordinate neighborhoods $\{U; x^h\}$, where here and throughout the paper the indices h, i, j, k, \cdots run over the range $\{1, 2, \cdots, 2n\}$.

We put

$$(1. 3) X_i = \partial_i X_i, \partial_i = \partial/\partial x^i,$$

then X_i are 2n linearly independent vector fields tangent to the submanifold M and

$$q_{ii} = X_i \cdot X_i$$

give components of the fundamental metric tensor of M regarded as a Riemannian manifold referred to the coordinate system $\{U; x^h\}$. We denote by C and D two mutually orthogonal unit normals to the submanifold M such that X_i , C, D form the positive orientation of E. Then we have

(1. 5)
$$X_i \cdot C = 0, \qquad X_i \cdot D = 0,$$

$$C \cdot C = 1, \qquad C \cdot D = 0, \qquad D \cdot D = 1.$$

Now the vectors X_i , C and D being linearly independent, the transforms FX_i of X_i by F can be expressed as

$$FX_i = f_i^h X_h + u_i C + v_i D$$

where f_i^h are components of a tensor field of type (1.1) and u_i and v_i are components of 1-forms in M.

As to the transform FC of C by F, we have

$$(FC) \cdot X_i = (F^2C) \cdot (FX_i) = -C \cdot (FX_i) = -u_i,$$

$$(FC) \cdot C = (F^2C) \cdot (FC) = -C \cdot (FC) = 0$$

by virtue of (1.2) and consequently

$$FC = -u^h X_h + \lambda D$$
,

where

$$u^h = u_i q^{ih}$$
,

 g^{ih} being contravariant components of the metric tensor and λ a function of M. As to the transform FD of D by F, we have

$$(FD) \cdot X_{i} = (F^{2}D) \cdot (FX_{i}) = -D \cdot (FX_{i}) = -v_{i},$$

$$(FD) \cdot C = (F^{2}D) \cdot (FC) = -D \cdot (FC) = -\lambda,$$

$$(FD) \cdot D = (F^{2}D) \cdot (FD) = -D \cdot (FD) = 0,$$

and consequently

$$FD = -v^h X_h - \lambda C$$

where

$$v^h = v_i g^{ih}$$
.

Thus we have

$$FX_i = f_i{}^h X_h + u_i C + v_i D,$$

(1. 6)
$$FC = -u^h X_h + \lambda D,$$

$$FD = -v^h X_h - \lambda C.$$

We note here that the 1-forms u_i and v_i depend on the choice of unit normals C and D but the function $\lambda = (FC) \cdot D$ does not depend on the choice of C and D. In fact, if we choose another set of mutually orthogonal unit normals C' and D', we have

$$C' = C\cos\theta - D\sin\theta,$$

$$D' = C \sin \theta + D \cos \theta$$
,

and consequently

$$(FC') \cdot D' = (FC \cos \theta - FD \sin \theta)(C \sin \theta + D \cos \theta)$$
$$= (\lambda D \cos \theta + \lambda C \sin \theta)(C \sin \theta + D \cos \theta)$$
$$= \lambda.$$

§ 2. (f, g, u, v, λ) -structure on a submanifold of codimension 2.

Now applying the operator F to the first equation of (1.6) and taking account of (1.6), we find

$$F^{2}X_{i}=f_{i}{}^{t}FX_{t}+u_{i}FC+v_{i}FD,$$

$$-X_{i}=f_{i}{}^{t}(f_{i}{}^{h}X_{h}+u_{i}C+v_{t}D)+u_{i}(-u^{h}X_{h}+\lambda D)+v_{i}(-v^{h}X_{h}-\lambda C),$$

from which

$$f_i^t f_t^h = -\delta_i^h + u_i u^h + v_i v^h,$$

$$u_t f_i^t = \lambda v_i, \qquad v_t f_i^t = -\lambda u_i.$$

Applying the operator F to the second equation of (1.6), we find

$$F^{2}C = -u^{i}FX_{i} + \lambda FD,$$

$$-C = -u^{i}(f_{i}^{h}X_{h} + u_{i}C + v_{i}D) + \lambda(-v^{h}X_{h} - \lambda C),$$

from which

$$f_i{}^h u^i = -\lambda v^h$$
, $u_i u^i = 1 - \lambda^2$, $v_i u^i = 0$.

Applying also the operator F to the last equation of (1.6), we find

$$F^{2}D = -v^{i}FX_{i} - \lambda FC,$$

$$-D = -v^{i}(f_{i}^{h}X_{h} + u_{i}C + v_{i}D) - \lambda(-u^{h}X_{h} + \lambda D),$$

from which

$$f_i^h v^i = \lambda u^h$$
, $u_i v^i = 0$, $v_i v^i = 1 - \lambda^2$.

Thus summing up, we have

$$f_{i}^{t}f_{i}^{h} = -\delta_{i}^{h} + u_{i}u^{h} + v_{i}v^{h},$$

$$u_{i}t_{i}^{t} = \lambda v_{i}, \qquad v_{i}f_{i}^{t} = -\lambda u_{i},$$

$$f_{i}^{h}u^{i} = -\lambda v^{h}, \qquad f_{i}^{h}v^{i} = \lambda u^{h},$$

$$u_{i}u^{i} = 1 - \lambda^{2}, \qquad u_{i}v^{i} = 0, \qquad v_{i}v^{i} = 1 - \lambda^{2}.$$

Now, substituting the first equation of (1.6) into

$$(FX_i)\cdot (FX_i)=X_i\cdot X_i$$

we find

$$(f_{i}^{t}X_{t}+u_{i}C+v_{i}D)(f_{i}^{s}X_{s}+u_{i}C+v_{i}D)=g_{i}$$

that is,

(2.2)
$$f_{j}^{t} f_{i}^{s} g_{ts} = g_{ji} - u_{j} u_{i} - v_{j} v_{i}.$$

If we put

$$(2.3) f_{it} = f_i^s g_{ts},$$

we find, from the first equation of (2.1),

$$f_j^t f_{ti} = -g_{ji} + u_j u_i + v_j v_i,$$

and from (2. 2)

$$f_j^t f_{it} = g_{ji} - u_j u_i - v_j v_i$$
.

From these two equations, we find

(2.4)
$$f_{j}^{t}(f_{ti}+f_{it})=0.$$

Transvecting (2.4) with f_{s}^{j} and taking account of the first equation of (2.1), we find

$$(-\delta_s^t + u_s u^t + v_s v^t)(f_{ti} + f_{it}) = 0,$$

from which

$$(2.5) f_{si} + f_{is} = 0,$$

because of the second and the third equations of (2.1). Thus the tensor f_{it} defined by (2.3) is skew-symmetric.

We call an (f, g, u, v, λ) -structure the set of f, g, u, v, and λ satisfying (2. 1) and (2. 2).

§ 3. Differential equations which f, g, u, v and λ satisfy.

We denote by $\{j^h_i\}$ the Christoffel symbols formed with g_{ji} and by \mathcal{V}_i the operator of covariant differentiation with respect to $\{j^h_i\}$. Then the equations of Gauss of M are

$$(3.1) V_{j}X_{i} = \partial_{j}X_{i} - \begin{bmatrix} h \\ j & i \end{bmatrix} X_{h} = h_{ji}C + k_{ji}D,$$

where

$$h_{ji} = h_{ij}$$
 and $k_{ji} = k_{ij}$

are the second fundamental tensors of M with respect to the normals C and D respectively.

The equations of Weingarten are

$$(3. 2) V_i C = \partial_i C = -h_i^h X_h + l_i D,$$

and

$$(3.3) V_i D = \partial_i D = -k_i{}^h X_h - l_i C,$$

where

(3.4)
$$h_i^h = h_{it}g^{th}, \qquad k_i^h = k_{it}g^{th}$$

and l_i are components of the third fundamental tensor with respect to the normals C and D. The l_i define the connection induced in the normal bundle of M.

Now applying the operator V_j of covariant differentiation to the first equation of (1. 6) and taking account of $V_i F = 0$, we find

$$FV_{\jmath}X_{i} = (V_{\jmath}f_{i}^{h})X_{h} + f_{i}^{h}V_{\jmath}X_{h} + (V_{\jmath}u_{i})C + u_{i}(V_{\jmath}C) + (V_{\jmath}v_{i})D + v_{i}(V_{\jmath}D),$$

$$F(h_{ii}C + k_{ii}D) = (V_{\jmath}f_{i}^{h})X_{h} + f_{i}^{t}(V_{\jmath}X_{t}) + (V_{\jmath}u_{t})C + u_{t}(V_{\jmath}C) + (V_{\jmath}v_{t})D + v_{t}(V_{\jmath}D),$$

or

$$\begin{split} h_{ji}(-u^hX_h+\lambda D)+k_{ji}(-v^hX_h-\lambda C)\\ =&(\mathcal{F}_jf_i{}^h)X_h+f_i{}^t(h_{ji}C+k_{ji}D)+(\mathcal{F}_ju_i)C+u_i(-h_j{}^hX_h+l_jD)+(\mathcal{F}_jv_i)D+v_i(-k_j{}^hX_h-l_jC), \end{split}$$

from which

$$\nabla_{j} f_{i}^{h} = -h_{ji} u^{h} + h_{j}^{h} u_{i} - k_{ji} v^{h} + k_{j}^{h} v_{i},$$

$$\nabla_{j} u_{i} = -h_{ji} f_{i}^{t} - \lambda k_{ji} + l_{j} v_{i},$$

$$\nabla_{j} v_{i} = -k_{ji} f_{i}^{t} + \lambda h_{ji} - l_{j} u_{i}.$$

Applying the operator V_i to the second equation of (1.6), we find

$$F \mathcal{V}_i C = -(\mathcal{V}_i u^h) X_h - u^h \mathcal{V}_i X_h + (\mathcal{V}_i \lambda) D + \lambda (\mathcal{V}_i D),$$

$$F(-h_i{}^h X_h + l_i D) = -(\mathcal{V}_i u^h) X_h - u^h (\mathcal{V}_i X_h) + (\mathcal{V}_i \lambda) D + \lambda (\mathcal{V}_i D),$$

or

$$\begin{split} -h_i{}^t(f_t{}^hX_h + u_tC + v_tD) + l_i(-v^hX_h - \lambda C) \\ = -(\nabla_i u^h)X_h - u^t(h_{it}C + k_{it}D) + (\nabla_i \lambda)D + \lambda(-k_i{}^hX_h - l_iC), \end{split}$$

from which

$$\nabla_i u^h = h_i^t f_t^h - \lambda k_i^h + l_i v^h,$$

$$\nabla_i \lambda = -h_i^t v_t + k_{it} u^t.$$

Applying the operator Γ_i to the last equation of (1.6), we find

$$\begin{split} F \, V_i D &= - (\overline{V}_i v^h) X_h - v^t (\overline{V}_i X_t) - (\overline{V}_i \lambda) C - \lambda (\overline{V}_i C), \\ F (-k_i{}^t X_t - l_i C) &= - (\overline{V}_i v^h) X_h - v^t (\overline{V}_i X_t) - (\overline{V}_i \lambda) C - \lambda (\overline{V}_i C), \end{split}$$

or

$$-k_i{}^t(f_i{}^hX_h + u_iC + v_iD) - l_i(-u^hX_h + \lambda D)$$

$$= -(\mathcal{V}_iv^h)X_h - v^t(h_{it}C + k_{it}D) - (\mathcal{V}_i\lambda)C - \lambda(-h_i{}^hX_h + l_iD),$$

from which

$$abla_i v^h = k_i^t f_{t^h} + \lambda h_i^h - l_i u^h,$$

$$abla_i \lambda = -h_{it} v^t + k_i^t u_t.$$

Thus, summing up, we have

(3. 5)
$$\nabla_{j}f_{i}^{h} = -h_{ji}u^{h} + h_{j}^{h}u_{i} - k_{ji}v^{h} + k_{j}^{h}v_{i},$$

$$\nabla_{j}u_{i} = -h_{ji}f_{i}^{t} - \lambda k_{ji} + l_{j}v_{i},$$

$$\nabla_{j}v_{i} = -k_{ji}f_{i}^{t} + \lambda h_{ji} - l_{j}u_{i},$$

$$\nabla_{i}\lambda = -h_{ii}v^{t} + k_{ii}u^{t}.$$

§ 4. Normal (f, g, u, v, λ) -structure.

We now compute

$$(4. 1) S_{ji}^{h} = N_{ji}^{h} + (\nabla_{j}u_{i} - \nabla_{i}u_{j})u^{h} + (\nabla_{j}v_{i} - \nabla_{i}v_{j})v^{h},$$

where

$$(4. 2) N_{ji}^{h} = f_{j}^{t} \nabla_{t} f_{i}^{h} - f_{i}^{t} \nabla_{t} f_{j}^{h} - (\nabla_{j} f_{i}^{t} - \nabla_{i} f_{j}^{t}) f_{t}^{h}$$

is the Nijenhuis tensor formed with f_i^h . Substituting (3. 5) into (4. 1), we find

$$\begin{split} S_{ji}{}^{h} = & f_{j}{}^{t}(-h_{ti}u^{h} + h_{t}{}^{h}u_{i} - k_{ti}v^{h} + k_{t}{}^{h}v_{i}) \\ & - f_{i}{}^{t}(-h_{tj}u^{h} + h_{t}{}^{h}u_{j} - k_{tj}v^{h} + k_{t}{}^{h}v_{j}) \\ & - (h_{j}{}^{t}u_{i} - h_{t}{}^{t}u_{j} + k_{j}{}^{t}v_{i} - k_{i}{}^{t}v_{j})f_{t}{}^{h} \\ & - (h_{jt}f_{i}{}^{t} - h_{it}f_{j}{}^{t} - l_{j}v_{i} + l_{i}v_{j})u^{h} \\ & - (k_{jt}f_{i}{}^{t} - k_{it}f_{j}{}^{t} + l_{j}u_{i} - l_{i}u_{j})v^{h}, \end{split}$$

that is,

$$S_{ji}^{h} = (f_{j}^{t}h_{i}^{h} - h_{j}^{t}f_{i}^{h})u_{i} - (f_{i}^{t}h_{i}^{h} - h_{i}^{t}f_{i}^{h})u_{j}$$

$$+ (f_{j}^{t}k_{i}^{h} - k_{j}^{t}f_{i}^{h})v_{i} - (f_{i}^{t}k_{i}^{h} - k_{i}^{t}f_{i}^{h})v_{j}$$

$$+ (l_{j}v_{i} - l_{i}v_{j})u^{h} - (l_{j}u_{i} - l_{i}u_{j})v^{h}.$$

When the tensor S_{ji}^h vanishes identically, the (f, g, u, v, λ) -structure is said to be *normal*.

Now the equations of Gauss of the submanifold M are

$$(4.4) K_{ki}^{h} = h_{k}^{h} h_{ii} - h_{i}^{h} h_{ki} + k_{k}^{h} k_{ii} - k_{i}^{h} k_{ki},$$

where

$$K_{kji}{}^{h} = \partial_{k} \begin{Bmatrix} h \\ j & i \end{Bmatrix} - \partial_{j} \begin{Bmatrix} h \\ k & i \end{Bmatrix} + \begin{Bmatrix} h \\ k & t \end{Bmatrix} \begin{Bmatrix} t \\ j & i \end{Bmatrix} - \begin{Bmatrix} h \\ j & t \end{Bmatrix} \begin{Bmatrix} t \\ k & i \end{Bmatrix}$$

are components of the curvature tensor of M, the equations of Codazzi are

(4. 5)
$$\begin{aligned} \nabla_{k}h_{ji} - \nabla_{j}h_{ki} - l_{k}k_{ji} + l_{j}k_{ki} = 0, \\ \nabla_{k}k_{ji} - \nabla_{j}k_{ki} + l_{k}h_{ji} - l_{j}h_{ki} = 0, \end{aligned}$$

and the equations of Ricci are

$$(4.6) V_{i}l_{i} - V_{i}l_{j} + h_{j}{}^{t}k_{ti} - h_{i}{}^{t}k_{tj} = 0.$$

In the sequel, we assume that the connection induced in the normal bundle of M has no curvature, that is, we can choose C and D in such a way that we have $l_i=0$, and we say in this case that the connection induced in the normal bundle is *trivial*.

In this case, we have, from (4.5),

$$(4.7) V_k h_{ji} - V_j h_{ki} = 0, V_k k_{ji} - V_j k_{ki} = 0,$$

which say that the tensors $V_k h_{ji}$ and $V_k k_{ji}$ are both symmetric in all the three indices, and, from (4.6),

$$(4.8) h_{j}^{t}k_{ti}-h_{i}^{t}k_{tj}=0,$$

or

$$(4.9) h_{j}^{t}k_{t}^{i} - k_{j}^{t}h_{t}^{i} = 0,$$

which says that h_i^h and k_i^h are commutative as linear transformations in the tangent space of M.

Now for the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, we have, from (4.3),

$$(4.10) (f_j{}^t h_i{}^h - h_j{}^t f_i{}^h) u_i - (f_i{}^t h_i{}^h - h_i{}^t f_i{}^h) u_j + (f_j{}^t k_i{}^h - k_j{}^t f_i{}^h) v_i - (f_i{}^t k_i{}^h - k_i{}^t f_i{}^h) v_j = 0.$$

Since 1-forms u_i , v_i and l_i depend on the choice of unit normals C and D, the tensor $S_{ji}{}^h$ also depends on the choice of the normals. However, the left hand side of (4.10) does not depend on the choice of C and D. In fact, if we choose another set of mutually orthogonal unit normals C' and D', we have

(4. 11)
$$C' = C \cos \theta - D \sin \theta,$$

$$D' = C \sin \theta + D \cos \theta.$$

Then the second fundamental tensors h_{ji} and h_{ji} with respect to C' and D' are defined by

(4. 12)
$$V_{j}X_{i} = h_{ji}'C' + k_{ji}'D'.$$

Substituting (4.11) into (4.12) and comparing the resulting equation with (3.1), we get

(4. 13)
$$h'_{ji} = h_{ji} \cos \theta - k_{ji} \sin \theta,$$
$$k'_{ji} = h_{ji} \sin \theta + k_{ji} \cos \theta.$$

On the other hand (4.11) and the first equation of (1.16) show that

$$u_i' = u_i \cos \theta - v_i \sin \theta,$$

$$(4. 14)$$

$$v_i' = u_i \sin \theta + v_i \cos \theta.$$

Consequently we have

$$\begin{split} &(f_{\jmath}{}^{t}h_{t}^{\prime h}-h_{\jmath}^{\prime t}f_{t}^{h})u_{i}^{\prime}-(f_{i}{}^{t}h_{t}^{\prime h}-h_{i}^{\prime t}f_{t}^{h})u_{j}^{\prime}+(f_{\jmath}{}^{t}k_{t}^{\prime h}-k_{\jmath}^{\prime t}f_{t}^{h})v_{i}^{\prime}-(f_{i}{}^{t}k_{t}^{\prime h}-k_{i}^{\prime t}f_{t}^{h})v_{j}^{\prime}\\ =&(f_{\jmath}{}^{t}h_{t}^{h}-h_{\jmath}{}^{t}f_{t}^{h})u_{i}-(f_{i}{}^{t}h_{t}^{h}-h_{i}{}^{t}f_{t}^{h})u_{\jmath}+(f_{\jmath}{}^{t}k_{t}^{h}-k_{\jmath}{}^{t}f_{t}^{h})v_{i}-(f_{i}{}^{t}k_{t}^{h}-k_{i}{}^{t}f_{t}^{h})v_{\jmath}. \end{split}$$

This shows that the conditions imposed on M are of intrinsic character.

§ 5. Some lemmas on normal (f, g, u, v, λ) -structure.

As we have seen in $\S 4$, the condition imposed on the submanifold M does not depend on the choice of unit normals C and D.

The main purpose of the following discussions is to determine submanifolds of codimension 2 of E which satisfy (4. 10).

Assuming that the function $\lambda(1-\lambda^2)$ does not vanish almost everywhere on M, we prove following series of lemmas.

Lemma 5.1. For the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, we have

(5. 1)
$$f_{j}^{t}h_{t}^{h} - h_{j}^{t}f_{t}^{h} = au_{j}u^{h} + b(u_{j}v^{h} + v_{j}u^{h}) + cv_{j}v^{h}$$

and

(5. 2)
$$f_j{}^t k_t{}^h - k_j{}^t f_t{}^h = b u_j u^h + c(u_j v^h + v_j u^h) + d v_j v^h,$$

a, b, c, and d being scalars of M.

Proof. We put

(5.3)
$$P_{j}^{h} = f_{j}^{t} h_{t}^{h} - h_{j}^{t} f_{t}^{h}, \qquad Q_{j}^{h} = f_{j}^{t} k_{t}^{h} - k_{j}^{t} f_{t}^{h}$$

and note that

(5.4)
$$P_{ji} = f_j^t h_{ti} + f_i^t h_{tj}, \qquad Q_{ji} = f_j^t k_{ti} + f_i^t k_{tj}$$

are both symmetric with respect to j and i. Then equation (4.10) can be written as

$$(5.5) P_{i}^{h}u_{i} - P_{i}^{h}u_{i} + Q_{i}^{h}v_{i} - Q_{i}^{h}v_{i} = 0,$$

from which, by transvection with u^i ,

$$P_{j}^{h}(1-\lambda^{2})-(P_{i}^{h}u^{i})u_{j}-(Q_{i}^{h}u^{i})v_{j}=0$$

by virtue of (2.1), that is, P_j^h is of the form

$$(5. 6) P_{j}^{h} = u_{j} P^{h} + v_{j} Q^{h},$$

and consequently P_{ji} is of the form

$$(5.7) P_{ji} = u_j P_i + v_j Q_i.$$

Since P_{ji} is symmetric, we have, from (5.7),

(5.8)
$$u_{j}P_{i}-u_{i}P_{j}+v_{j}Q_{i}-v_{i}Q_{j}=0,$$

from which we see that P_i must be of the form

$$(5.9) P_i = au_i + bv_i$$

and Q_i of the form

$$Q_i = du_i + cv_i.$$

Substituting (5.9) and (5.10) into (5.8), we find

$$u_i(au_i+bv_i)-u_i(au_i+bv_i)+v_i(du_i+cv_i)-v_i(du_i+cv_i)=0$$
,

or

$$(b-d)(u_iv_i-u_iv_i)=0.$$

from which, u_i and v_i being orthogonal to each other, we have

$$b=d$$
.

and consequently we have

$$P_i = au_i + bv_i, \qquad Q_i = bu_i + cv_i,$$

or

$$P^h = au^h + bv^h$$
, $Q^h = bu^h + cv^h$.

Substituting these into (5.6), we obtain

(5. 11)
$$P_{j}^{h} = au_{j}u^{h} + b(u_{j}v^{h} + v_{j}u^{h}) + cv_{j}v^{h}.$$

Similarly, we have

(5. 12)
$$Q_{j}^{h} = \bar{a}u_{j}u^{h} + \bar{b}(u_{j}v^{h} + v_{j}u^{h}) + \bar{d}v_{j}v^{h}.$$

Substituting these into (5.5), we find

$$(u_j v_i - u_i v_j) \{ (b - \bar{a}) u^h + (c - \bar{b}) v^h \} = 0,$$

from which

$$\bar{a}=b, \qquad \bar{b}=c.$$

Equations (5. 11), (5. 12) and (5. 13) prove the lemma.

Lemma 5. 2. For the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, we have

$$(5. 14) \begin{array}{ccc} h_i{}^hu^i{=}\alpha u^h{+}\beta v^h, & h_i{}^hv^i{=}\beta u^h{+}\gamma v^h, \\ k_i{}^hu^i{=}\bar{\alpha} u^h{+}\bar{\beta} v^h, & k_i{}^hv^i{=}\bar{\beta} u^h{+}\bar{\gamma} v^h. \end{array}$$

Proof. Transvecting (5. 1) with f_{k} , we find

$$(-\delta_k^t + u_k u^t + v_k v^t)h_t^h - f_k^j h_j^t f_t^h = a\lambda v_k u^h + b\lambda (v_k v^h - u_k u^h) - c\lambda u_k v^h$$

by virtue of (2. 1), or

$$-h_{kh}+u_k(u^th_{th})+v_k(v^th_{th})+h_{ts}f_k{}^tf_h{}^s=a\lambda v_ku_h+b\lambda(v_kv_h-u_ku_h)-c\lambda u_kv_h,$$

from which, taking the skew-symmetric part,

$$u_k(u^t h_{th}) - u_h(u^t h_{tk}) + v_k(v^t h_{th}) - v_h(v^t h_{tk}) = -\lambda(a+c)(u_k v_h - u_h v_k).$$

This equation shows that $u^t h_{th}$ and $v^t h_{th}$ should be respectively of the form

$$u^t h_{th} = \alpha u_h + \beta v_h, \qquad v^t h_{th} = \beta u_h + \gamma v_h,$$

that is,

$$h_i{}^h u^i = \alpha u^h + \beta v^h, \qquad h_i{}^h v^i = \beta u^h + \gamma v^h.$$

The other two equations will be proved in a similar way. We note here that α , β , γ and $\bar{\alpha}$, $\bar{\beta}$, $\bar{\gamma}$ are given by

$$\begin{split} &(1-\lambda^2)\alpha = h_{ji}u^ju^i, & (1-\lambda^2)\beta = h_{ji}u^jv^i, & (1-\lambda^2)\gamma = h_{ji}v^jv^i, \\ &(1-\lambda^2)\bar{\alpha} = k_{ji}u^ju^i, & (1-\lambda^2)\bar{\beta} = k_{ji}u^jv^i, & (1-\lambda^2)\bar{\gamma} = k_{ji}v^jv^i. \end{split}$$

LEMMA 5.3. In Lemma 5.2, we have

$$(5. 15) 2\beta = \bar{\alpha} - \bar{\gamma}, 2\bar{\beta} = \gamma - \alpha.$$

Proof. In (4.10), we contract with respect of h and i, then we obtain

$$(5. 16) f_1^t(h_t^i u_i) - h_1^t(f_t^i u_i) + f_1^t(h_t^i v_i) - h_1^t(f_t^i v_i) = 0$$

because of

$$f_i^t h_t^i = f^{it} h_{ti} = 0, \qquad f_i^t k_t^i = f^{it} k_{ti} = 0.$$

Substituting (2. 1) and (5. 14) into (5. 16), we find

$$f_{J}^{t}(\alpha u_{t}+\beta v_{t})-\lambda h_{J}^{t}v_{t}+f_{J}^{t}(\tilde{\beta}u_{t}+\bar{\gamma}v_{t})+\lambda k_{J}^{t}u_{t}=0,$$

and consequently

$$\alpha \lambda v_i - \beta \lambda u_i - \lambda (\beta u_i + \gamma v_i) + \tilde{\beta} \lambda v_i - \tilde{\gamma} \lambda u_i + \lambda (\tilde{\alpha} u_i + \tilde{\beta} v_i) = 0,$$

or

$$-\lambda(2\beta+\bar{\gamma}-\bar{\alpha})u_i+\lambda(2\bar{\beta}+\alpha-\gamma)v_i=0,$$

from which

$$2\beta = \bar{\alpha} - \bar{\gamma}, \qquad 2\bar{\beta} = \gamma - \alpha.$$

LEMMA 5.4. In Lemma 5.2, we have

$$\beta = 0, \qquad \bar{\beta} = 0$$

and consequently

$$\alpha = \gamma$$
, $\bar{\alpha} = \bar{\gamma}$.

Proof. Transvecting the first equation

$$h_i{}^h u^i = \alpha u^h + \beta v^h$$

of (5. 14) with k_h^t and using (5. 14), we obtain

$$k_h{}^t h_i{}^h u^i = \alpha(\bar{\alpha} u^t + \bar{\beta} v^t) + \beta(\bar{\beta} u^t + \bar{\gamma} v^t),$$

$$= (\alpha \bar{\alpha} + \beta \bar{\beta}) u^t + (\alpha \bar{\beta} + \beta \bar{\gamma}) v^t.$$

Also transvecting the third equation

$$k_i^h u^i = \bar{\alpha} u^h + \bar{\beta} v^h$$

of (5. 14) with h_h^t and using (5. 14), we obtain

$$h_h^t k_i^h u^i = \bar{\alpha} (\alpha u^t + \beta v^t) + \bar{\beta} (\beta u^t + \gamma v^t)$$
$$= (\alpha \bar{\alpha} + \beta \bar{\beta}) u^t + (\bar{\alpha} \beta + \bar{\beta} \gamma) v^t.$$

Thus, h_i^h and k_i^h being commutative,

$$\alpha \bar{\beta} + \beta \bar{\gamma} = \bar{\alpha} \beta + \bar{\beta} \gamma$$
,

or

$$(\gamma - \alpha)\tilde{\beta} + (\bar{\alpha} - \bar{\gamma})\beta = 0$$

or using (5.15),

$$2\bar{\beta}^2 + 2\beta^2 = 0,$$

from which the lemma follows.

Combining Lemma 5. 2 and Lemma 5. 4, we have

Lemma 5.5. For the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, we have

$$h_i{}^h u^i = \alpha u^h, \qquad h_i{}^h v^i = \alpha v^h,$$

$$k_i{}^h u^i = \bar{\alpha} u^h, \qquad k_i{}^h v^i = \bar{\alpha} v^h.$$

We also have

Lemma 5.6. For the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, h_i^h and k_i^h commute with f_i^h .

Proof. Transvecting (4. 10) with u^i and using (2. 1) and (5. 18), we obtain

$$(f_{j}{}^{t}h_{t}{}^{h}-h_{j}{}^{t}f_{t}{}^{h})(1-\lambda^{2})+(\lambda h_{t}{}^{h}v^{t}+\alpha f_{t}{}^{h}u^{t})u_{j}+(\lambda k_{t}{}^{h}v^{t}+\bar{\alpha} f_{t}{}^{h}u^{t})v_{j}=0,$$

or

$$(f_J^t h_t^h - h_J^t f_t^h)(1 - \lambda^2) = 0,$$

that is,

$$f_{\jmath}^{t}h_{t}^{h}=h_{\jmath}^{t}f_{t}^{h}$$
.

Similarly we can prove

$$f_{i}^{t}k_{t}^{h}=k_{i}^{t}f_{t}^{h}$$
.

Lemma 5.7. For the normal (f, g, u, v, λ) -structure of M such that the connection induced in the normal bundle is trivial, we have

(5. 19)
$$h_i^t h_t^h = \alpha h_i^h, \quad k_i^t k_i^h = \bar{\alpha} k_i^h.$$

Proof. Differentiating

$$h_{ji}u^i = \alpha u_j$$

covariantly, we obtain

$$(\nabla_k h_{ji})u^i + h_{ji}(\nabla_k u^i) = (\nabla_k \alpha)u_j + \alpha(\nabla_k u_j),$$

or using (3.5)

$$(\nabla_k h_{ji})u^i + h_{ji}(h_k^t f_{t^i} - \lambda k_k^i) = (\nabla_k \alpha)u_j + \alpha(-h_{kt} f_j^t - \lambda k_{kj})$$

and consequently taking skew-symmetric part

$$h_{ji}h_k{}^tf_i{}^t - h_{ki}h_j{}^tf_i{}^t = (\nabla_k\alpha)u_j - (\nabla_j\alpha)u_k - \alpha h_{ki}f_j{}^t + \alpha h_{ji}f_k{}^t$$

because of

$$\nabla_k h_{ii} - \nabla_i h_{ki} = 0$$
, $h_{ii} k_k^i = h_{ki} k_i^i$.

But h_k^t and f_t^t commute and consequently

$$(5. 20) 2h_{ji}h_k{}^t f_t{}^i = (\nabla_k \alpha)u_j - (\nabla_j \alpha)u_k - 2\alpha h_{kl}f_j{}^t,$$

from which, transvecting with u^k ,

$$2h_{ii}\alpha u^t f_t^i = (u^k \nabla_k \alpha) u_i - (\nabla_i \alpha)(1 - \lambda^2) - 2\alpha^2 u_t f_i^i$$

or

$$-2\alpha\lambda h_{ii}v^{i} = (u^{k}\nabla_{k}\alpha)u_{j} - (\nabla_{i}\alpha)(1-\lambda^{2}) - 2\alpha^{2}\lambda v_{j},$$

that is,

$$(5. 21) (\nabla_j \alpha)(1 - \lambda^2) = (u^k \nabla_k \alpha) u_j.$$

Thus, $V_{j\alpha}$ being proportional to u_j , we find from (5. 20)

$$h_{ii}h_k^t f_i^i = -\alpha h_{kt} f_i^t$$

or

$$h_{ii}f_k^t h_t^i = \alpha h_{it}f_k^t$$

since h_k^t and f_{t^i} commute.

Transvecting this equation with $f_h{}^k$, we find

$$(h_{ji}h_t^i)(-\delta_h^t + u_hu^t + v_hv^t) = \alpha h_{jt}(-\delta_h^t + u_hu^t + v_hv^t),$$

or using (5.18)

$$h_{ji}h_{h}^{i}=\alpha h_{jh},$$

or

$$h_i^t h_t^h = \alpha h_i^h$$
.

Similarly, we can prove

$$k_i^t k_t^h = \bar{\alpha} k_i^h$$
.

LEMMA 5. 8. In Lemma 5. 5 and Lemma 5. 7, α and $\bar{\alpha}$ are both constants.

Proof. Differentiating the second equation of (5.18) covariantly and taking account of (3.5), we find

$$(\nabla_j h_i^h) v_h - h_i^h (k_{jt} f_h^t - \lambda h_{jh}) = (\nabla_j \alpha) v_i - \alpha (k_{jt} f_i^t - \lambda h_{ji}),$$

from which, taking the skew-symmetric part

$$h_i^h k_{it} f_h^t - h_i^h k_{jt} f_h^t = (\nabla_j \alpha) v_i - (\nabla_i \alpha) v_j + \alpha (k_{it} f_j^t - k_{jt} f_i^t),$$

because of the equation of Codazzi (4.7).

Transvecting the above equation with v^j and making use of (2.1) and (5.18), we obtain

$$(5. 22) (1-\lambda^2) \overline{V_j} \alpha = (v^k \overline{V_k} \alpha) v_j.$$

Thus, $V_{j\alpha}$ is proportional to v_j , but (5. 21) shows that $V_{j\alpha}$ is proportional to u_j . u_j and v_j being orthogonal to each other, we have $V_{j\alpha}=0$ and hence $\alpha=$ const.

§ 6. The mean curvature vector.

The mean curvature vector of the submanifold M is defined to be

(6. 1)
$$\frac{1}{2n}g^{ji}\nabla_{j}X_{i} = \frac{1}{2n}h_{i}^{i}C + \frac{1}{2n}k_{i}^{i}D,$$

and the mean curvature H of the submanifold M is defined to be the length of the mean curvature vector, that is,

(6. 2)
$$H^{2} = \frac{1}{4n^{2}} \left[(h_{i}^{i})^{2} + (h_{i}^{i})^{2} \right].$$

If the mean curvature vector vanishes identically on M, then M is said to be minimal.

A necessary and sufficient condition for M to be minimal is that

$$(6.3) h_i^i = 0, k_i^i = 0.$$

We have

Lemma 6.1. Suppose that the submanifold M is such that the connection induced in the normal bundle is trivial and the (f, g, u, v, λ) -structure induced on M is normal. Then the mean curvature of M is constant.

Proof. Let α' be an eigenvalue of h_i^h at a point of M and p^i the eigenvector corresponding to α' at the point. Then we have

$$h_i^h p^i = \alpha' p^h$$
.

Applying this $h_{h^{j}}$ and taking account of (5. 19), we find

$$\alpha \alpha' p^{j} = \alpha'^{2} p^{j}$$
,

from which

$$\alpha' = \alpha$$
 or $\alpha' = 0$.

Thus the only eigenvalue of h_i^h is α or 0. Moreover, by Lemma 5.8, α being constant, the eigenvalues of h_i^h are constant.

Similarly we can show that k_i^h has only two constant eigenvalues $\bar{\alpha}$ and 0.

Now, let r and s be multiplicatives of the eigenvalues α of $h_i{}^h$ and of $\bar{\alpha}$ of $k_i{}^h$ respectively. Then, α and $\bar{\alpha}$ being constant, r and s are also constant. So we have

$$h_i = r\alpha, \qquad k_i = s\bar{\alpha}.$$

Substituting this into (6.2), we obtain

(6.4)
$$H^{2} = \frac{1}{4n^{2}} (r^{2}\alpha^{2} + s^{2}\bar{\alpha}^{2}) = \text{const.}$$

This lemma shows that, in the sequel, we have to consider only two cases. One of these is the case where the submanifold is minimal and the another is the case where the mean curvature vector does not vanish everywhere on M.

Suppose first that the submanifold M is minimal. Then from Lemma 5.7 we find

$$h_{ji}h^{ji}=0, \qquad k_{ji}k^{ji}=0,$$

from which

$$(6.5) h_{ji}=0, k_{ji}=0.$$

Thus equations of Weingarten give

$$V_iC=0$$
, $V_iD=0$,

and consequently, the unit normals C and D being constant vectors, M is a 2n-dimensional plane. Thus we have

Theorem 6.1. Let M of codimension 2 of E be such that the connection induced on the normal bundle of M is trivial and the (f, g, u, v, λ) -structure on M is normal. If M is minimal, then M is a plane of codimension 2.

Suppose next that the mean curvature vector does not vanish everywhere on M, and choose the first unit normal C along the direction of the mean curvature vector and choose the second unit normal D in such a way that X_i , C, D form the positive orientation of E.

Then the 1-forms u_i and v_i are completely determined when M is given. We say that such an (f, g, u, v, λ) -structure is *intrinsic*.

Since the first unit normal C is chosen in the direction of the mean curvature vector, we see, from (6.1), that

$$(6, 6)$$
 $k_i^i = 0.$

Thus if M is such that the connection induced in the normal bundle is trivial and the (f, g, u, v, λ) -structure induced on M is normal, then we have, from (5.19),

$$k_{ii}k^{ji}=0$$
,

from which

(6.7)
$$k_{ii}=0.$$

Thus, equations of Gauss and Weingarten become respectively

$$\nabla_j X_i = h_{ji}C, \qquad \nabla_j C = -h_j{}^h X_h \qquad \nabla_j D = 0,$$

from which D is a constant vector and consequently

$$V_i(X \cdot D) = 0$$
,

that is,

$$X \cdot D = \text{const}$$

which shows that M lies in a (2n+1)-dimensional plane. Thus we have

THEOREM 6. 2. Let M of codimension 2 be such that the connection induced in the normal bundle of M is trivial and the mean curvature vector does not vanish everywhere. If the (f, g, u, v, λ) -structure induced on M is normal, then there exists a (2n+1)-dimensional plane E^{2n+1} such that M is a hypersurface of it.

§ 7. Hypersurfaces of an odd-dimensional Euclidean space.

By theorem 6.2, there exists a (2n+1)-dimensional plane E' such that the submanifold M under consideration is a hypersurface of it. So, in this section, we regard M as a hypersurface of a (2n+1)-dimensional Euclidean space E', which is of course in a (2n+2)-dimensional Euclidean space E.

We consider a linear coordinate system in E' consisting of 2n+1 linearly independent vectors E_{λ} , E_{λ} and D forming a linear coordinate system of E, where here and in the sequel the indices κ , λ , μ , ν , \cdots run over the range $\{1, 2, \dots, 2n+1\}$. We put

$$(7.1) g_{u\lambda} = E_u \cdot E_{\lambda},$$

all the $g_{\mu\lambda}$ being constant. We also have

$$(7.2) E_{\lambda} \cdot D = 0.$$

Now, F being a complex structure of the (2n+2)-dimensional Euclidean space E, we can put

(7. 3)
$$FE_{\lambda} = \varphi_{\lambda}^{\mu} E_{\mu} + \eta_{\lambda} D,$$

$$FD = -\eta^{\mu} E_{\mu},$$

where

$$\eta^{\kappa} = \eta_{1} q^{\lambda \kappa},$$

 $g^{\lambda \kappa}$ being contravariant components of $g_{\mu\lambda}$. From the first equation of (7.3), we find

$$F^{2}E_{\lambda} = \varphi_{\lambda}^{\mu}(\varphi_{\mu}^{\kappa}E_{\kappa} + \eta_{\mu}D) - \eta_{\lambda}\eta^{\kappa}E_{\kappa},$$

from which, F^2 being equal to -I,

$$\varphi_{\lambda}^{\mu}\varphi_{\mu}^{\ \kappa} = -\delta_{\lambda}^{\kappa} + \eta_{\lambda}\eta^{\kappa},$$

$$\varphi_{\lambda}^{\mu}\eta_{\mu} = 0.$$

From the second equation of (7.3), we find

$$F^2D = -\eta^{\lambda}(\varphi_{\lambda}^{\kappa}E_{\kappa} + \eta_{\lambda}D),$$

from which

$$\varphi_{\lambda}^{\kappa}\eta^{\lambda}=0, \quad \eta_{\lambda}\eta^{\lambda}=1.$$

Moreover, from the first equation of (7.3), we have

$$(FE_{\mu})\cdot (FE_{\lambda}) = (\varphi_{\mu}{}^{\nu}E_{\nu} + \eta_{\mu}D)\cdot (\varphi_{\lambda}{}^{\kappa}E_{\kappa} + \eta_{\lambda}D),$$

from which, $(FE_{\mu}) \cdot (FE_{\lambda})$ being equal to $E_{\mu} \cdot E_{\lambda} = g_{\mu\lambda}$,

$$g_{\mu\lambda} = \varphi_{\mu}^{\nu} \varphi_{\lambda}^{\kappa} g_{\nu\kappa} + \eta_{\mu} \eta_{\lambda}.$$

Summing up, we have

(7. 5)
$$\varphi_{\lambda}^{\mu}\varphi_{\mu}^{\kappa} = -\delta_{\lambda}^{\epsilon} + \eta_{\lambda}\eta^{\kappa},$$

$$\varphi_{\lambda}^{\mu}\eta_{\mu} = 0, \qquad \varphi_{\lambda}^{\kappa}\eta^{\lambda} = 0, \qquad \eta_{\lambda}\eta^{\lambda} = 1,$$

$$\varphi_{\mu}^{\nu}\varphi_{\lambda}^{\kappa}g_{\nu\kappa} = g_{\mu\lambda} - \eta_{\mu}\eta_{\lambda},$$

that is, $(\varphi_{\lambda}^{r}, \eta_{\lambda}, g_{\mu\lambda})$ defines an almost contact metric structure of the (2n+1) dimensional Euclidean space E'.

Now we consider a 2n-dimensional submanifold M in E' in E and represent it by the position vector

$$X=X(x)=X^{\epsilon}(x)E_{\epsilon}$$

the origin of the coordinate system being on E'.

The vectors X_i tangent to M and the unit normal vector C to M can be expressed as

$$(7.6) X_i = B_i^{\kappa} E_{\kappa}, C = C^{\kappa} E_{\kappa},$$

respectively, where

$$B_i^{\kappa} = \partial_i X^{\kappa}$$
.

Applying the operator F to the both sides of the first equation of (7.6), we find

$$FX_i = B_i^* FE_s$$

$$f_i^h X_h + u_i C + v_i D = B_i^{\lambda}(\varphi_i^{\kappa} E_{\kappa} + \eta_{\lambda} D),$$

or

$$f_i{}^h B_h{}^\kappa E_{\kappa} + u_i C^{\kappa} E_{\kappa} + v_i D = B_i{}^{\lambda} (\varphi_i{}^{\kappa} E_{\kappa} + \eta_i D)$$

by virtue of (1.6), (7.3) and (7.6), from which

$$\varphi_{\lambda}^{\kappa}B_{i}^{\lambda}=f_{i}^{h}B_{h}^{\kappa}+u_{i}C^{\kappa}$$

$$\eta_{\lambda}B_{i}^{\lambda}=v_{i}$$
.

Applying the operator F to the both sides of the second equation of (7.6), we find

$$FC=C^{2}FE_{2}$$

$$-u^{i}X_{i}+\lambda D=C^{\lambda}(\varphi_{\lambda}^{\kappa}E_{\kappa}+\eta_{\lambda}D),$$

or

$$-u^{i}(B_{i}^{\kappa}E_{\kappa})+\lambda D=C^{\lambda}(\varphi_{\lambda}^{\kappa}E_{\kappa}+\eta_{\lambda}D),$$

by virtue of (1.6), (7.3) and (7.6), from which

$$\varphi_{\lambda}^{\kappa}C^{\lambda} = -u^{i}B_{i}^{\kappa}$$

$$\eta_{\lambda}C^{\lambda}=\lambda$$
.

Summing up, we have

$$\varphi_{\lambda}^{\kappa}B_{i}^{\lambda}=f_{i}^{h}B_{h}^{\kappa}+u_{i}C^{\kappa}$$

$$\varphi_{\lambda}^{k}C^{\lambda} = -u^{i}B_{i}^{k}$$

$$\eta_{\lambda}B_{i}^{\lambda}=v_{i}, \qquad \eta_{\lambda}C^{\lambda}=\lambda.$$

It will be easily verified that, φ_{λ}^{t} , η_{λ} , $g_{\mu\lambda}$ defining an almost contact metric structure, f_{λ}^{h} , g_{ji} , u_{i} , v_{i} , λ define an (f, g, u, v, λ) -structure.

Now the equations of Gauss and Weingarten of M in E' are respectively

$$\nabla_{j}X_{i}=h_{ji}C,$$

and

$$(7.9) \nabla_j C = -h_j^i X_i,$$

or

$$(7. 10) V_j B_i^{\kappa} = h_{ji} C^{\kappa}$$

and

$$\nabla_j C^r = -h_j{}^i B_i{}^r$$
.

Differenting the first equation of (7.7) covariantly, we find

$$\varphi_{i}^{\kappa}h_{ii}C^{\lambda} = (\nabla_{i}f_{i}^{h})B_{h}^{\kappa} + f_{i}^{t}h_{ii}C^{\kappa} + (\nabla_{i}u_{i})C^{\kappa} - u_{i}h_{i}^{t}B_{i}^{\kappa},$$

from which, taking account of the second equation of (7.7),

$$abla_j f_i{}^h = -h_{ji} u^h + h_j{}^h u_i,$$

$$abla_j u_i = -h_{ji} f_i{}^t.$$

Differentiating the second equation of (7.7) covariantly and taking account of (7.7), we find

$$\varphi_{\lambda}^{\kappa}(-h_{j}^{t}B_{t}^{\lambda}) = -(\nabla_{j}u^{i})B_{i}^{\kappa} - u^{i}h_{ji}C^{\kappa},$$

or

$$-h_{j}^{t}(f_{t}^{h}B_{h}^{s}+u_{t}C^{s})=-(V_{j}u^{i})B_{i}^{s}-u^{i}h_{ji}C^{s},$$

from which

$$\nabla_i u^i = h_i^t f_i^i$$
.

Differentiating the third equation of (7.7) covariantly, we find

$$\eta_{\lambda}h_{ji}C^{\lambda} = V_{j}v_{i}$$

from which

$$\nabla_i v_i = \lambda h_{ii}$$
.

Finally differentiating the last equation of (7.7) covariantly, we find

$$\eta_{\lambda}(-h_{i}^{h}B_{h}^{\lambda})=\nabla_{i}\lambda$$

from which

$$\nabla_i \lambda = -h_{it} v^t$$
.

Summing up, we have

(7. 12)
$$\begin{aligned} \nabla_{j}f_{i}^{h} &= -h_{ji}u^{h} + h_{j}^{h}u_{i}, \\ \nabla_{j}u_{i} &= -h_{ji}f_{i}^{t}, \\ \nabla_{j}v_{i} &= \lambda h_{ji}, \\ \nabla_{j}\lambda &= -h_{ji}v^{t}. \end{aligned}$$

We assumed that (f, g, u, v, λ) -structure on M is normal, that is,

$$(7. 13) S_{ii}{}^{h} = f_{i}{}^{t}\nabla_{t}f_{i}{}^{h} - f_{i}{}^{t}\nabla_{t}f_{j}{}^{h} - (\nabla_{j}f_{i}{}^{t} - \nabla_{i}f_{j}{}^{t})f_{i}{}^{h} + (\nabla_{j}u_{i} - \nabla_{i}u_{j})u^{h} + (\nabla_{j}v_{i} - \nabla_{i}v_{j})v^{h} = 0.$$

As we have seen in § 6, the only eigenvalue of the tensor h_i^n is α or 0. We denote the eigenspaces corresponding to the eigenvalues α and 0 by V_{α} and V_0 respectively. Since the multiplicity r of α is constant, $V_{\alpha}(x)$ at x and $V_0(x)$ at x, $x \in M$, define respectively r- and (2n-r)-dimensional distributions D_{α} and D_0 over M. They are complementary in the sense that they are mutually orthogonal and their Whiteney sum is T(M).

LEMMA 7.1. The distributions D_{α} and D_0 are both integrable.

Proof. Let p^h and q^h be two arbitrary eigenvectors of h_i^h with constant eigenvalue $\alpha \neq 0$, then we have

$$h_i{}^h p^i = \alpha p^h$$
, $h_i{}^h q^i = \alpha q^h$,

from which

$$(\nabla_j h_i{}^h) p^i + h_i{}^h (\nabla_j p^i) = \alpha(\nabla_j p^h),$$

$$(\nabla_j h_i^h)q^i + h_i^h(\nabla_j q^i) = \alpha(\nabla_j q^h).$$

Thus

by virtue of the equations of Codazzi, that is, if p^h and q^h belong to D_a , then $[p,q]^h$ also belongs to D_a . Consequently the distribution D_a spanned by eigenvectors of h_i^h with eigenvalue $\alpha \neq 0$ is integrable.

Similarly we can also prove that the distribution D_0 spanned by eigenvectors of h_i^h with eigenvalue 0 is integrable.

Lemma 7.2. Each integral manifold of D_{α} is totally geodesic in M and so is each integral manifold of D_0 .

Proof. Let p^h and q^h be two arbitrary vectors belonging to the distribution D_a . Then we have

$$(7. 14) h_i{}^h p_h = \alpha p_i, h_i{}^h q_h = \alpha q_i.$$

Differentiating the first equation of (7.14) covariantly, we obtain

$$(\nabla_j h_i^h) p_h + h_i^h (\nabla_j p_h) = \alpha \nabla_j p_i$$

from which

$$h_i{}^h(\overline{V}_jp_h)-h_j{}^h(\overline{V}_ip_h)=\alpha(\overline{V}_jp_i-\overline{V}_ip_j)$$

by virtue of the equations of Codazzi. Transvecting this equation with q^j and taking account of (7.14), we have

$$h_i{}^h(q^j\nabla_jp_h) - \alpha q^h(\nabla_ip_h) = \alpha q^j(\nabla_jp_i - \nabla_ip_j),$$

from which

$$h_i{}^h(q^j\nabla_jp_h)=\alpha(q^j\nabla_jp_i),$$

or

$$h_i{}^h(q^jV_jp^i)=\alpha(q^jV_jp^h),$$

which shows that if p^h and q^h are two arbitrary vectors belonging to the distribution D_{α} , then $q^j \overline{V}_j p^h$ also belongs to the distribution D_{α} . Thus each integral manifold of D_{α} is totally geodesic in M.

Similarly we can prove that each integral manifold of D_0 is totally geodesic in M.

Moreover, if p^i and w^i belong respectively to D_0 and D_α , we have

$$(w^{j}\nabla_{j}h_{i}^{h})p^{i}=w^{j}\nabla_{j}(h_{i}^{h}p^{i})-h_{i}^{h}w^{j}\nabla_{j}p^{i}=-h_{i}^{h}w^{j}\nabla_{j}p^{i}$$

and

$$(p^{j}\nabla_{i}h_{i}^{h})w^{i} = p^{j}\nabla_{i}(h_{i}^{h}w^{i}) - h_{i}^{h}p^{j}\nabla_{i}w^{i} = \alpha p^{j}\nabla_{i}w^{h} - h_{i}^{h}p^{j}\nabla_{j}w^{i},$$

that is,

$$(7.15) (w^j \nabla_i h_i^h) p^i = -\alpha (w^j \nabla_i p^i)_\alpha,$$

and

(7. 16)
$$(p^{j} \overline{V}_{j} h_{i}^{h}) w^{i} = \alpha (p^{j} \overline{V}_{j} w^{h}) - \alpha (p^{j} \overline{V}_{j} w^{h})_{\alpha}$$
$$= \alpha (p^{j} \overline{V}_{j} w^{h})_{0},$$

vector of the form q^h being written as $(q^h)_{\alpha} + (q^h)_0$, where $(q^h)_{\alpha}$ and $(q^h)_0$ respectively denote the D_{α} and D_0 components of q^h . Hence we get

$$-(w^j \nabla_i p^i)_{\alpha} = (p^j \nabla_i w^h)_{0}$$

because of the equation of Codazzi.

Consequently we have

(7.17)
$$(w^{j} \nabla_{j} p^{i})_{\alpha} = 0, \quad \text{that is,} \quad w^{j} \nabla_{j} p^{i} \in D_{0},$$

and

(7. 18)
$$(p^{j} \overline{V}_{j} w^{h})_{0} = 0, \quad \text{that is,} \quad p^{j} \overline{V}_{j} w^{i} \in D_{\alpha}.$$

Thus we see that the distributions D_0 and D_{α} are parallel. So, using de Rham's decomposition theorem [7], we have

Lemma 7.3. If the submanifold M is complete, then M is a product of M_{α} and M_0 , M_{α} corresponding to the integral manifold of D_{α} and M_0 to that of D_0 .

Lemma 7.4. The M_{α} is totally umbilical in E' and M_0 is totally geodesic in E'.

Proof. We represent M_{α} by

$$(7. 19) x^h = x^h(u^a),$$

where u^a are local coordinates on M_a . Thus we have

$$(7.20) X^{\kappa} = X^{\kappa}(x(u)),$$

from which

(7. 21)
$$B_b^{\kappa} = B_b^h B_h^{\kappa}$$
,

where

$$B_b^{\kappa} = \partial_b X^{\kappa}, \qquad B_b^{h} = \partial_b x^{h} \qquad (\partial_b = \partial/\partial u^b).$$

From (7. 21), we find by covariant differentiation

$$\nabla_c B_b{}^{\kappa} = B_c{}^j B_b{}^i \nabla_j B_i{}^{\kappa}$$

because of $V_c B_b{}^i = 0$, from which

$$\nabla_c B_b^{\kappa} = B_c^{j} B_b^{i} h_{ii} C^{\kappa}$$

or

$$(7. 22) V_c B_b^{\ \epsilon} = \alpha g_{cb} C^{\ \epsilon},$$

because $B_b{}^h$ are eigenvectors of $h_j{}^h$ with eigenvalue α . Equation (7.22) shows that M_a is totally umbilical in E'.

We can similarly prove that M_0 is totally geodesic in E'.

LEMMA 7.5. The M_{α} is a sphere and M_0 is a plane.

Proof. The M_0 being totally geodesic in E', it is a plane. Thus M_{α} is a hypersurface of a Euclidean space.

For the covariant derivative of C^{κ} along M_{α} , we have

$$\begin{aligned} \nabla_c C^{\kappa} &= B_c{}^j (\nabla_j C^{\kappa}) \\ &= -B_c{}^j h_j{}^{\kappa} B_i^{\kappa} \\ &= -\alpha B_c{}^j B_j{}^{\kappa}, \end{aligned}$$

 $B_{c^{j}}$ being an eigenvector of $h_{j^{i}}$ with eigenvalue α , from which

$$\nabla_c C^{\kappa} + \alpha B_c^{\kappa} = 0$$

and consequently

$$C^{\kappa} + \alpha X^{\kappa} = A^{\kappa}$$

 A^{ϵ} being a constant vector. This equation shows that M_{α} lies on a sphere. Thus, M_{α} being the intersection of a plane and a sphere, M_{α} is itself a sphere.

From these lemmas, we have

Theorem 7.1. Let M be a 2n-dimensional complete differentiable hypersurface in a (2n+1)-dimensional Euclidean space E'. If the (f, g, u, v, λ) -structure induced on M is normal, then M is a product of a sphere and a plane.

Combining Theorems 6. 1, 6. 2 and Theorem 7. 1, we obtain

Theorem 7.2. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space be such that the connection induced in the normal bundle of M is trivial. If the (f, g, u, v, λ) -structure induced on M is normal, then M is a sphere, a plane, or a product of a sphere and a plane.

As a special case of Theorem 7.2, we have from (4.3)

Theorem 7.3. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space be such that the connection induced in the normal bundle of M is trivial. If the linear transformations $h_j^{\,\nu}$ and $k_j^{\,\nu}$ which are defined by the second fundamental tensors of M commute with $f_j^{\,\nu}$, then M is a sphere, a plane, or a product of a sphere and a plane.

BIBLIOGRAPHY

- [1] BLAIR, D. E., AND G. D. LUDDEN, Hypersurfaces in almost contact manifold. Tôhoku Math. J. 22 (1969), 354-362.
- [2] Blair, D. E., and G. D. Ludden, and K. Yano, Induced structures on submanifolds. K\u00f6dai Math. Sem. Rep. 22 (1970), 188-198.

- [3] GOLDBERG, S. I., AND K. YANO, Polynomial structures on manifold. Ködai Math. Sem. Rep. 22 (1970), 199-218.
- [4] Окимика, М., Certain almost contact hypersurfaces in Euclidean spaces. Kōdai Math. Sem. Rep. 16 (1964), 44–55.
- [5] Окимика, М., Contact hypersurfaces in certain Kaehlerian manifolds. Tôhoku Math. J. 18 (1966), 74-102.
- [6] Окимика, М., Certain hypersurfaces of an odd dimensional sphere. Tôhoku Math. J. 19 (1967), 381–395.
- [7] DE RHAM, G., Sur la réductibilité d'un espace de Riemann. Comm. Math. Helv. 16 (1952), 328-344.
- [8] Yamaguchi, S., On hypersurfaces in Sasakian manifold. Kōdai Math. Sem. Rep. 21 (1969), 64-72.
- [9] Yano, K., and M. Okumura, On (f, g, u, v, λ) -structures. Kōdai Math. Sem. Rep. 22 (1970), 401–423.

Tokyo Institute of Technology, and Saitama University.