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On normal form calculations
in impact oscillators

Ma ts H. Fr edr iksson a n d Ar n e B. No rdm a rk

Department of Mechanics, Royal Institute of Technology,

SE-100 44 Stockholm, Sweden

Normal form calculations are useful for analysing the dynamics close to bifurcations.
However, the application to non-smooth systems is a topic for current research. Here
we consider a class of impact oscillators, where we allow systems with several degrees
of freedom as well as nonlinear equations of motion. Impact is due to the motion of
one body, constrained by a motion limiter. The velocities of the system are assumed
to change instantaneously at impact. By de ning a discontinuity mapping, we show
how Poincaŕe mappings can be obtained as an expansion in a local coordinate. This
gives the mapping the desired form, thus making it possible to employ standard
techniques. All calculations are algorithmic in spirit, hence computer algebra routines
can easily be developed.

Keywords: impact oscillations; normal forms; non-smooth systems;
discontinuity mapping; computer algebra

1. Introduction

Modern dynamical systems theory supplies tools for local analysis of the dynamics
of ordinary di¬erential equations. Concepts such as Poincaŕe mappings, centre man-
ifolds and normal forms are helpful in understanding motion and bifurcations. The
underlying assumption for these techniques is that the vector  eld is su¯ ciently well
behaved. However, in models of mechanical systems one can  nd that assumptions
that are natural from the modelling point of view give vector  elds that lack smooth-
ness across boundaries in state space. Oscillating systems where impacts are possible
is one example where it is not straightforward to employ standard methods.

In impact oscillators one or more motion limiters are present. Typically, a wall acts
as a one-sided amplitude constraint. This situation is not uncommon in engineering
systems, where models that incorporate this behaviour have been used to under-
stand gears (Pfei¬er & Kunert 1990; Karagiannis & Pfei¬er 1991), railway wheelsets
(Nordstr½m Jensen & True 1997; Knudsen et al . 1992), mooring towers (Thompson
1983), printing devices (Tung & Shaw 1988), the mechanics of bipedal walking (Gar-
cia et al . 1998; McGeer 1993; Adolfsson et al . 1999), and several other dynamical
problems.

The motion during contact has a much shorter time-scale than the typical motion
of the system; consequently, a very common model for the impact is to assume that
velocities change at an instant. This is the model that will be used in this paper.
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Many papers have dealt with this subject. Among the  rst investigations using
a dynamical systems perspective we  nd Shaw & Holmes (1983), Shaw (1985a; b)
and Thompson & Gha¬ari (1983). Subsequent work has revealed dynamical features
found in smooth systems, as well as special features of the model, such as the dynam-
ics close to grazing impact (see Nordmark 1991), and the possibility of an in nite
number of impacts in  nite time (see Budd & Dux 1994). The main focus has been
on one-degree-of-freedom systems, but systems with several degrees of freedom have
been considered in Shaw & Shaw (1989), Aidanp�a�a & Gupta (1993), Fredriksson
(1997) and the thesis of Lee (1996). The study of such systems are, in general, com-
plicated by the abundance of parameters, thus special cases are usually considered
in order to reduce the number of parameters. To the authors’ knowledge no review
paper has been written, but the theme issue edited by Bishop (1994) is dedicated to
impact oscillations.

Previous investigations usually assume that the dynamics between impacts is given
by linear equations of motion. As the impact law relates the velocity after impact to
the velocity before impact, a coe¯ cient of restitution is used. The advantage of this
approach is that a closed-form solution for the motion between impacts can conve-
niently be written down, at least as long as the system has one degree of freedom.
For impact oscillators little attention has been paid to more general approaches to
local stability calculations, where one cannot rely on special features of the system.
A scheme for the derivation of local expressions would be desirable, giving means
to analyse systems where the interesting dynamics is impossible to capture using
linearized equations of motion. This would also be of interest for the engineering
community. The aim of the present paper is to propose such an idea. Combined with
standard techniques it gives a way to obtain a local Poincaŕe mapping P on the form

P (z) = Lz +N (z); (1.1)

where z is a local coordinate in the Poincaŕe section, L is the matrix that gives the
linear part of the mapping and N (z) are the higher-order terms. To obtain (1.1) is
the starting point if one would like to use normal forms to study bifurcations.

The paper is organized as follows. Firstly, we discuss the type of systems that we
have in mind. Local mappings are introduced, and an idea on how to handle the
impact part of the local dynamics is presented. This is done by de ning a disconti-
nuity mapping. This mapping encapsulates the contribution to the dynamics coming
from impacts. Three examples are studied. Finally, we discuss the results and how
these can be extended.

2. Motion and impact

Our assumptions about the system are largely inspired by models based on connected
rigid bodies. Such multibody models often o¬er su¯ ciently accurate and computa-
tionally e¯ cient models. They also relate well to the impact approximation, since a
truly rigid body must change velocities discontinuously upon impact with a rigid sur-
face. We assume that impact is due to a single body colliding with a surface. Thus,
only one condition for contact needs to be checked. The motion of the impacting
body is coupled to a larger system (in an arbitrary way) between impacts.

2



(a) State space and ° ow

The system is assumed to have n degrees of freedom. We denote coordinates on
the con guration manifold by q1; q2; : : : ; qn. Similarly, the velocities of the system
are u1; u2; : : : ; un. The state x is

x =

q1

u1

...
qn

un

(2.1)

and the time derivative _x of a motion is related to x by a vector  eld F :

_x = F (x): (2.2)

In many practical cases, time-periodic forcing is present. Indeed, all examples below
have periodic forcing. In developing the general arguments, we do not need to treat
this case separately. We can always rewrite the equations in the standard fashion, by
extending x with a phase angle 2 S1, and add _ = 1 to the equations of motion.

We denote the state space where the motion limiter is removed (or thought to be
penetrable) by X . This is partly a notational convenience. The main concern here
is how to obtain locally valid expressions, thus we will not have much to say about
global features of the state space. We write = (x; t) for the state space ®ow:

: X R ! X ; (2.3)

the mapping given by the solution of the di¬erential equation (2.2). When writing
the arguments explicitly we sometimes use an indexed time t, t(x). Thus, t(x) is
the state reached by following a trajectory from an initial point x during the time
interval t.

(b) The impact law

We de ne the function H = H(x) to be equal to the distance from the impacting
body to the motion limiting surface when H(x) > 0. The equation H(x) = 0 is
the condition for contact. We also allow H(x) < 0, meaning a state which breaks
the geometry imposed by the model. The contact condition can be interpreted as a
surface in X with an equation H(x) = 0. We denote the set of points that ful ls this
equation as :

= fx 2 X : H(x) = 0g: (2.4)

When a trajectory reaches , it is disrupted by the impact law. We view the impact
law as a mapping G : X ! X , which is only of interest on . The impact law leaves
coordinates on the con guration manifold unchanged. The velocities are changed,
where we allow the new velocities to depend on both velocities and the con guration
coordinates of the impact. We write

xa = G(x b ); (2.5)

where xa is the state immediately after impact, and x b is the state immediately
before impact.
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Figure 1. Impacting and non-impacting motion.

3. The discontinuity mapping

We now develop the main idea of the paper. Related work can be found in Fredriksson
& Nordmark (1997) and in Dankowicz & Nordmark (2000). For a derivation of the
linearization, see also M�uller (1995).

(a) Motivation

Away from , all of the dynamics is in the ®ow. If we wish to analyse non-impacting
motion close to a point x0, it is natural to consider the mapping T , where T > 0
is the time-interval of interest (the period in the case of periodic motion). A trivial
decomposition can be made,

T = t2 t1
; (3.1)

where t1 + t2 = T .
Including impacts, we assume that t1 is also the time of ®ight for an orbit starting

at a point ·x to reach a point ~x 2 :

~x = t1
(·x): (3.2)

Using the impact law, and then t2
, the image of ·x is

t2
G t1

(·x): (3.3)

This situation is indicated in  gure 1.
However, one should note that the expression t2

G t1
is valid as a mapping

only for points having a ®ight time equal to t1. In general the ®ight time for points in
a neighbourhood of ·x will be di¬erent. A decomposition similar to that of ®ow maps
would be convenient, which inspires the following idea: can we  nd a mapping C such

4



H < 0

H = 0
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Figure 2. The discontinuity mapping. Flowlines are dashed when H < 0.

that the correct mapping for all points close to ·x can be written as t2
C t1

? This
mapping C must then incorporate the jump in velocities implied by the mapping
G as well as the di¬ering ®ight times. The mapping C will be referred to as the
discontinuity mapping, since it takes care of all aspects of passing the discontinuity
imposed by the impact law.

Using this viewpoint, the in®uence of impacts is in a natural way separated from
the dynamics of the ®ow. Calculating the ®ow for a  xed time is also natural
in numerical computations, where can be locally expanded and the coe¯ cients
can be determined by integrating the variational equations for the  xed times t1
and t2.

If,  rstly, we follow the ®ow for a  xed time t1, the image of the starting point might
have H < 0. This is not consistent with the model, and the discontinuity mapping
C will have to address this. The de nition set for C is thus a neighbourhood N of
~x, where N X . The  rst step in de ning C is to note that for x 2 N we can
trace the ®owline passing through x to the intersection with . We use tC = tC(x)
to denote the short time of ®ight from x to . If H(x) < 0 then tC (x) < 0, and if
H(x) > 0 the time of ®ight to is positive. The latter situation is shown in  gure 2.

In this way we obtain a mapping from N to , and the image of x is tC (x)(x).
Using the impact law we get a point G tC (x)(x) close to G(~x). We now use this
as an initial condition and we follow the motion (disregarding the wall) for a time
tC (x). The discontinuity mapping is then

C(x) = tC (x)(G tC (x)(x)): (3.4)

It follows that C is a mapping from a state space neighbourhood of ~x (disregarding
the wall) to a state space neighbourhood of G(~x) (again disregarding the wall).
Choosing x = ~x we have tC(~x) = 0; hence C(~x) = G(~x), as expected.
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(b) Expansions

To write C in a useful form, we wish to express it as an expansion in y = x ~x:

C(x) = G(~x) + Ly + N (y); (3.5)

where L is the matrix giving the linearized mapping and N denotes nonlinear terms.
It is not hard to translate the ideas in the previous section into a step-by-step descrip-
tion of how to obtain this expression.

(i) Firstly we calculate the ®ow close to ~x. We use the tilde to stress the expansion
point, thus writing ~. It is sought as

~ = x+ t ~(y; t); (3.6)

where ~ is an expansion in y and t. We determine the unknown coe¯ cients in ~(y; t)
by using the fact that the ®ow satis es

@

@t
(x; t) = F ( (x; t)) (3.7)

for all x; t 2 X R.
(ii) The next step is to  nd the time tC(x) as an expansion in y. The unknown

coe¯ cients in tC are calculated by inserting the expression for the ®ow into an
expansion of H :

H( ~(x; tC)) = 0: (3.8)

(iii) We can now calculate the point of impact, x b :

x b = ~(x; tC(x)): (3.9)

(iv) We now direct our attention towards the impact law G. Using the notation
~Gx for the Jacobian of G at ~x, we write the expansion as

G(x) = G(~x) + ~Gxy + O(y)2; (3.10)

where O(y)2 denotes terms of order two and higher. We then have

xa = G(x b ); (3.11)

where x b (x) is known.
(v) The ®ow close to x̂ = G(~x) is now calculated. This is similar to the  rst step,

with only a change in the expansion point. For obvious reasons it is convenient to
denote the initial condition with a subscript `a’, and we use the circum®ex as we
have previously used the tilde:

^ = xa + t ^(xa x̂; t): (3.12)

(vi) Lastly, we insert t = tC in the expression for the ®ow:

C(x) = ^(xa; tC); (3.13)

where xa = xa(x) has been calculated in previous steps.
Finding the linearization is straightforward. The zeroth-order term in ~ is ~F =

F (~x), thus

~ = x + t( ~F + O(y; t)): (3.14)
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By writing

~Hx =
@H

@x
(~x); (3.15)

the function H(x) is

H(x) = ~Hxy + O(y)2; (3.16)

where the gradient ~Hx is a row vector. We use an unknown row vector ~tCx
to tenta-

tively write tC as

tC = ~tCx
y + O(y)2: (3.17)

By inserting this into (3.8) we get

~Hxy + ~Hx
~F ~tCx

y + O(y)2 = 0; (3.18)

thus

~tCx
=

~Hx

~Hx
~F
: (3.19)

From (3.9) and (3.14), we obtain

xb = ~x + I
~F ~Hx

~Hx
~F

y + O(y)2; (3.20)

where I is the identity matrix. Using the impact law we  nd

xa = G(~x) + ~Gx I
~F ~Hx

~Hx
~F

y + O(y)2; (3.21)

and by substituting xa and t = tC into ^ we have

C(x) = G(~x) + ~Gx I
~F ~Hx

~Hx
~F

+
F̂ ~Hx

~Hx
~F

y + O(y)2; (3.22)

thus

L = ~Gx +
(F̂ ~Gx

~F ) ~Hx

~Hx
~F

: (3.23)

Note that this form of the linearized map is uniquely speci ed by demanding that
vectors v orthogonal to ~Hx should be mapped to ~Gxv (since C is the same as G on

) and that ~F should map to F̂ (since C maps a ®owline through ~x to a ®owline
through x̂).

If we wish to derive the mapping to higher order the computations rapidly get
complex. A computer algebra system is very helpful in order to automate the calcu-
lations and to minimize errors. For error checking it is also helpful to note some of
the characteristics of the mapping. If we tentatively use the identity mapping for G,
then C is identity. If we take x 2 , then C = G. These observations can be used to
check that complicated expressions evaluate as expected.
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4. Examples

Let us investigate how the ideas above can be used in practical calculations. When
writing out expansions we use brackets [i; j; : : : ; k] as indices to label coe¯ cients. If
A is a function of the real variables x1; x2; x3, we write

A =
i;j;k 0

i + j + k<m

~A[i;j;k]

i!j!k!
(x1 ~x1)i(x2 ~x2)j(x3 ~x3)k + O(x ~x)m: (4.1)

An expansion that includes linear terms is then

A = ~A[0;0;0] + ~A[1;0;0](x1 ~x1) + ~A[0;1;0](x2 ~x2) + ~A[0;0;1](x3 ~x3) + O(x ~x)2:

(4.2)

(a) A forced n-degree-of-freedom system

We introduce some assumptions to obtain a system with an arbitrary number
of degrees of freedom, but with similarities to the familiar one-degree-of-freedom
periodically forced case. The basis for the one-degree-of-freedom model is a particle
moving along a line. This motion is now coupled to another system. Thus, the state
space without motion limiter, X , has the structure

X = R2 M S1; (4.3)

where the factor R2 is due to the position and velocity of the particle, M denotes
the submanifold of the state space which describes the system that is coupled to the
particle and the factor S1 is included by assuming periodic forcing. Furthermore, we
assume that the equations of motion are

_q1

_u1

...
_qn

_un
_

=

u1

A1(x)
...
un

An(x)
1

: (4.4)

When the motion limiter is taken into the model we assume that the impact process
only involves the particle model. The coordinate q1 describes the position of the
particle and the motion limiter is located at a critical coordinate q1 = qc, hence

H(x) = q1 qc: (4.5)

The impact law only changes the velocity of the particle, which we write as

u1a
= g(u1b

): (4.6)

All other velocities are una¬ected by the impact. Writing the impact law as

u1a
= û1 + g[1](u1b

~u1) + O(u1b
~u1)2; (4.7)

and denoting

Ai[0;:::;0]
= Ai[0]

; (4.8)
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we obtain from (3.23) the expression for the linearization L of C:

L =

û1

~u1
0 0 0 0 0 0

Â1[0]
g[1]

~A1[0]

~u1
g[1] 0 0 0 0 0

0 0 1 0 0 0 0

Â2[0]
~A2[0]

~u1
0 0 1 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 1 0 0

Ân[0]
~An[0]

~u1
0 0 0 0 1 0

0 0 0 0 0 0 1

: (4.9)

The local state-space volume change caused by an impact is given by the determinant
of L. Since L is triangular we immediately have

detL = g[1]

û1

~u1
: (4.10)

This is independent of the dimension of the system. For the much-used model where
the impact law is modelled by a coe¯ cient of restitution r,

u1a
= ru1b

; (4.11)

we have

detL = r2: (4.12)

(i) Poincar¶e mappings

For periodically forced systems without impacts, the canonical candidate for a
Poincaŕe section is ³ :

³ = fx 2 X : = ·g; (4.13)

for some choice of ·. The Poincaŕe mapping using this section is sometimes called
the stroboscopic mapping and denoted as P S . For impacting systems the situation
is more complicated. The impact velocity is often of major interest. A natural idea
is then to use a subset of (u1 > 0 or u1 < 0) as a Poincaŕe section. The mapping
is then referred to as the impact mapping, PI. Another choice is to use ³ (with
q1 > qc) and use this set as a section. This choice is more in conformity with the
current approach. Assume that we have a motion, making m impacts at the phases
~

1; ~
2; : : : ; ~

m before returning to ³ ; let P ³ ! ~³ 1
be the mapping, using only the ®ow,

from a neighbourhood of the starting point in ³ to the section of  xed phase where
the  rst impact occurs. Similarly we write P~³ 1 ! ~³ 2

; P~³ 2 ! ~³ 3
; : : : ; P~³ m ! ³

. We use Cj
³ = ~³

to denote the restriction of C by  xing the phase angle to the impact phase. The
stroboscopic mapping is then

P S = P~³ m ! ³ Cj ³ = ~³ m
P~³ 1 ! ~³ 2

C j ³ = ~³ 1
P ³ ! ~³ 1

: (4.14)
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To  nd periodic motion, standard root- nding algorithms can be employed. The
linearization of Cj ³ = ~³ is then useful. We obtain it simply by removing the last row
and last column in (4.9). It is worth noting that the determinant is the same for the
restricted mapping, thus the Poincaŕe section volume change due to impact is also
given by (4.10).

(b) A general one-degree-of-freedom system

We now consider a one-degree-of-freedom system, and we calculate an expansion
of C to order two. We use (4.4) with n = 1, where for simplicity we write q = q1,
u = u1 and A = A1. The special structure of the system can be used to  nd shortcuts
in the calculations. Using Q, U and for the components of the ®ow, we make the
trial solution

Q = q + t(u + 1
2
t (x; t)); (4.15)

where we use ~ for expansions at (~x; 0), and similarly we write ^ to stress that x̂ is
the point of expansion. By di¬erentiating Q with respect to time we obtain U :

U =
@Q

@t
= u + t (x; t) + 1

2
t
@ (x; t)

@t
: (4.16)

The unknown coe¯ cients in can be determined by di¬erentiating U with respect
to time and inserting all expressions in an expansion of A. We obtain

+ 2t
@

@t
+ 1

2
t2
@2

@t2
= A(Q;U; ): (4.17)

Carrying out the  rst step, we wish to obtain U to order two, hence we need ~ to
order one:

~ = ~[0;0;0;0] + ~[1;0;0;0](q ~q) + ~[0;1;0;0](u ~u)

+ ~[0;0;1;0]( ~) + ~[0;0;0;1]t+ O(x ~x; t)2: (4.18)

Expanding A to order one and using (4.17), we get

~[0;0;0;0] = ~A[0;0;0];

~[1;0;0;0] = ~A[1;0;0];

~[0;1;0;0] = ~A[0;1;0];

~[0;0;1;0] = ~A[0;0;1];

~[0;0;0;1] = 1
3
( ~A[1;0;0] ~u + ~A[0;0;0]

~A[0;1;0] + ~A[0;0;1]):

(4.19)

To  nd tC we note that since tC = 0 when q = ~q, it is natural to seek tC of the
form

tC(x) = (q ~q) (x); (4.20)

where is an expansion in x ~x. The unknown coe¯ cients in are found by inserting
t = tC into Q(x; t) = ~q, from which we obtain

1 + (u + (q ~q) 1
2

) = 0: (4.21)
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This gives the  rst-order expansion of :

~
[0;0;0] =

1

~u
;

~
[1;0;0] =

1

2~u3
~A[0;0;0];

~
[0;1;0] =

1

~u2
;

~
[0;0;1] = 0:

(4.22)

Inserting tC into U gives u b :

u b = u
1

~u
~A[0;0;0](q ~q)

+
1

2~u
~A[1;0;0] +

1

~u
~A[0;0;1] +

1

~u
~A[0;0;0]

~A[0;1;0]

1

~u2
~A2

[0;0;0] (q ~q)2

+
1

~u
~A[0;1;0] +

1

~u
~A[0;0;0] (q ~q)(u ~u)

1

~u
~A[0;0;1](q ~q)( ~) + O(x ~x)3: (4.23)

The expansion of the impact law is

ua = û + g[1](u b ~u) + 1
2
g[2](u b ~u)2 + O(u b ~u)3: (4.24)

To get the expansion of the ®ow close to x̂ we just change the tilde to a circum®ex.
Inserting t = tC and the initial conditions, we  nd that the position component qC

of C(x) is

qC = ~q +
û

~u
(q ~q) +

1

2~u2
Â[0;0;0] +

û

~u
2g[1]

~A[0;0;0] (q ~q)2

+
1

~u
g[1]

û

~u
(q ~q)(u ~u) + O(x ~x)3; (4.25)

and the velocity component uC is

uC = û+
1

~u
fÂ[0;0;0] g[1]

~A[0;0;0]g(q ~q)+g[1](u ~u)

+
1

2~u

û

~u
Â[1;0;0] g[1]

~A[1;0;0]

1

2~u2
(Â[0;0;1] g[1]

~A[0;0;1])

+
1

2~u3
~A[0;0;0](Â[0;0;0] g[1]

~A[0;0;0])

+
1

2~u2
(Â[0;0;0]Â[0;1;0] 2g[1]Â[0;1;0]

~A[0;0;0] +g[1]
~A[0;0;0]

~A[0;1;0])+
g[2]

2~u2
~A2

[0;0;0] (q ~q)2

+
g[1]

~u
(Â[0;1;0]

~A[0;1;0])
1

~u2
(Â[0;0;0] g[1]

~A[0;0;0])
g[2]

~u
~A[0;0;0] (q ~q)(u ~u)

+
1

~u
fÂ[0;0;1] g[1]

~A[0;0;1]g(q ~q)( ~)+ 1
2
g[2](u ~u)2 +O(x ~x)3: (4.26)

The phase-angle component C is simply

C = : (4.27)
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(c) A saddle-node bifurcation

In the case where the equations of motion between impacts are linear, all nonlin-
earities are in C. Assuming that we study an orbit with one impact, we can use the
section with = ~ to write the Poincaŕe mapping as

P S (z) = P~³ ! ~³ Cj ³ = ~³ (z); (4.28)

where z is the Poincaŕe section coordinate and P~³ ! ~³ is a linear mapping. This view-
point can be practical both for (numerically)  nding periodic orbits and for studying
the e¬ects of the nonlinear terms. As an example we take the one-degree-of-freedom
system with the acceleration given by

A = !2q 2 !u+ af(!2 1) cos( ) 2 ! sin( )g; (4.29)

and with the impact law

ua = ru b : (4.30)

Here the forcing is chosen so that if impacts are disregarded the motion will settle on
q = a cos( ), u = a sin( ). In the following a is varied while the other parameters
are kept  xed. Since we work with the restriction C j ³ = ~³ , the point of expansion is
the triplet ~q, ~u, ac. We use the notation C[i;j;k] for the coe¯ cients in the expansion
of Cj ³ = ~³ . Hence C[1;1;1] is the coe¯ cient in front of (q ~q)(u ~u)(a ac).

We can obtain the coe¯ cients C[i;j;k] by applying the result of the previous section.
The Jacobian of (the restriction of) C is LC ,

LC =
r 0

(1 + r)

~u
r

; (4.31)

the C[0;0;1] coe¯ cient is zero,

C[0;0;1] =
0
0

; (4.32)

and the coe¯ cients for the quadratic terms are

C[2;0;0] =

(1 + r)

~u2

(1 + r) 

~u3

; (4.33)

C[1;1;0] =
0

(1 + r)

~u2

; (4.34)

C[1;0;1] =
0

(1 + r)f(!2 1) cos(~) 2 ! sin(~)g
~u

; (4.35)

C[0;2;0] = C[0;0;2] = C[0;1;1] =
0
0
; (4.36)

where

= acf(!2 1) cos(~) 2 ! sin(~)g !2 ~q (4.37)

12



and

= ( 4 !~u) + ac~uf(!2 1) sin(~) + 2 ! cos(~)g: (4.38)

The mapping P~³ ! ~³ is

P~³ ! ~³ (z; a) = P~³ ! ~³ (ẑ; ac) + LT (z ẑ) + (I LT )
cos(~)

sin(~)
(a ac); (4.39)

where

LT = eBT ; (4.40)

B =
0 1
!2 2 !

; (4.41)

I is the identity matrix and T is the period of interest.
Choosing ! = 1=4:9, = 0:6, r = 1 and qc = 1, we can  nd a saddle-node

bifurcation involving 4-periodic motion with one impact when a = ac = 0:915 66.
The impact velocity is ~u = 0:368 15 and the impact phase is ~ = 2:727 95. To
approximately  nd the bifurcated motion we calculate the centre manifold and the
reduced dynamics. Using À as a coordinate, we write an expansion for the centre
manifold as

z = ~z + 1 À +M[0;1](a ac) + M[2;0]
1
2
À 2 + ; (4.42)

where 1 is the eigenvector corresponding to the eigenvalue 1 = 1 of L = LTLC .
There is an element of choice involved in normal form calculations. We have here
taken

1M[0;1] = 0; 1M[2;0] = 0; (4.43)

where 1 is the left eigenvector of L with eigenvalue 1, to make the expansion
unique. A comparison of the approximate solution with a solution found numerically
can be done in two ways. This is because a numerical routine for  nding periodic
orbits typically assumes that q > qc. Thus, either we  nd the bifurcated solution
numerically at a convenient phase and move it to the section ~, or else we move the
approximate solution to the section used for the numerical solution.

The latter approach is taken in  gure 3, where a bifurcation diagram at = 0
is shown. The eventual fate of the branches is thoroughly investigated in Nordmark
(2000). Both the stable and the unstable branch are destroyed in grazing bifurcations
as a is increased (the stable when a = 0:975 55, the unstable when a = 1).

5. Results and discussion

By using the discontinuity mapping, we have shown how to obtain series expansions of
mappings in impact oscillators with a unilateral displacement limiter. This is helpful
in analysing bifurcations. Some extensions of this work are straightforward. We can
change the assumption that the impact law can be written explicitly, by allowing an
implicit relation G(xa; x b ) as long as it can be solved locally. Systems where only one
impact can occur at a given time, but with many di¬erent contact possibilities, can be
brought into the present framework by applying the di¬erent discontinuity mappings
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Figure 3. Bifurcation diagram when = 0. The unstable branch is dashed.

several times, once for each contact. Other aspects are more subtle and call for future
studies. Models where spatially separated parts of one or several bodies can make
contact simultaneously have not received much attention. In such models two contact
conditions can be ful lled at the same time. One scenario that might be possible is
that a parameter change will change the order in which the impact events occur
for a periodic motion. Since linear stability is given by multiplying the Jacobians
of the di¬erent mappings, which, when composed, gives the Poincaŕe mapping; this
corresponds to switching order between the Jacobians of two discontinuity mappings.
Since matrix multiplication in general does not commute, this might lead to non-
di¬erentiable dynamics exactly when the order is switched.

We thank Dr Hanno Ess¶en for comments. This work was supported by the Swedish Research
Council for Engineering Sciences (TFR).

References

Adolfsson, J., Dankowicz, H. & Nordmark, A. B. 2000 3D passive walkers: ¯nding periodic gaits
in the presence of discontinuities. (Submitted.)

Aidanp�a�a, J. O. & Gupta, R. B. 1993 Periodic and chaotic behaviour of a threshold-limited
two-degree-of-freedom system. J. Sound Vib. 165, 305{327.

Bishop, S. R. (ed.) 1994 Impact oscillators (Theme issue). Phil. Trans. R. Soc. Lond. A 347.

Budd, C. & Dux, F. 1994 Chattering and related behaviour in impact oscillators. Phil. Trans.
R. Soc. Lond. A 347, 365{389.

Dankowicz, H. & Nordmark, A. B. 2000 On the origin and bifurcations of stick-slip oscillations.
Physica D 136, 280{302.

14



Fredriksson, M. H. 1997 Grazing bifurcations in multibody systems. Nonlinear Analysis Theor.
Meth. Applications 30, 4475{4483.

Fredriksson, M. H. & Nordmark, A. B. 1997 Bifurcations caused by grazing incidence in many
degrees of freedom impact oscillators. Proc. R. Soc. Lond. A 453, 1261{1276.

Garcia, M., Chatterjee, A., Ruina, A. & Coleman, M. 1998 The simplest walking model: stability,
complexity and scaling. ASME Jl Biomech. Engng 120, 281{288.

Karagiannis, K. & Pfei® er, F. 1991 Theoretical and experimental investigations of gear-rattling.
Nonlinear Dynam. 2, 367{387.

Knudsen, C., Feldberg, R. & True, H. 1992 Bifurcations and chaos in a model of a rolling railway
wheelset. Phil. Trans. R. Soc. Lond. A 338, 455{469.

Lee, G. 1996 The theoretical and numerical analysis of impact oscillators. PhD thesis, University
of Bristol.

McGeer, T. 1993 Dynamics and control of bipedal locomotion. J. Theor. Biol. 163, 277{314.

M�uller, P. C. 1995 Calculation of Lyapunov exponents for dynamic systems with discontinuities.
Chaos, Solitons Fractals 5, 1671{1681.

Nordmark, A. B. 1991 Non-periodic motion caused by grazing incidence in an impact oscillator.
J. Sound Vib. 145, 279{297.

Nordmark, A. B. 2000 Existence of periodic orbits in grazing bifurcations of impacting mechan-
ical oscillators. (In preparation.)

Nordstr¿ m Jensen, C. & True, H. 1997 On a new route to chaos in railway dynamics. Nonlinear
Dynam. 13, 117{129.

Pfei® er, F. & Kunert, A. 1990 Rattling models from deterministic to stochastic processes. Non-
linear Dynam. 1, 63{74.

Shaw, J. & Shaw, S. W. 1989 The onset of chaos in a two-degree-of-freedom impacting system.
J. Appl. Mech. 56, 168{174.

Shaw, S. W. 1985a Dynamics of harmonically excited systems having rigid amplitude constraints.
I. Subharmonic motions and local bifurcations. J. Appl. Mech. 52, 453{458.

Shaw, S. W. 1985b Dynamics of harmonically excited systems having rigid amplitude constraints.
II. Chaotic motions and global bifurcations. J. Appl. Mech. 52, 459{464.

Shaw, S. W. & Holmes, P. J. 1983 A periodically forced piecewise linear oscillator. J. Sound
Vib. 90, 129{155.

Thompson, J. M. T. 1983 Complex dynamics of compliant o® -shore structures. Proc. R. Soc.
Lond. A 387, 407{427.

Thompson, J. M. T. & Gha® ari, R. 1983 Chaotic dynamics of an impact oscillator. Phys. Rev.
A 27, 1741{1743.

Tung, P. C. & Shaw, S. W. 1988 The dynamics of an impact print hammer. J. Vib. Acoust.
Stress Reliability Design 110, 193{200.

15


